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1 Introduction

As a research field, the detection and attribution (D&A) of 
climate change is at least a quarter of a century old (Wigley 
and Barnett 1990), with pioneering studies going back to at 
least the 1970s (Chervin et al. 1974; Chervin and Schneider 
1976; Hasselmann 1979). Despite this healthy age (at least 
in climate change research terms), D&A remains solely 
a research field and has yet to make the transition to also 
being a service. This contrasts with projections (and even 
predictions) of future climate change, for instance, which 
are readily available in various tailored formats through 
a number of internet sites. In this paper we attempt to lay 
some of the groundwork for making such a transition by 
developing and testing an algorithm for rapid assessment 
of the degree to which a response to anthropogenic emis-
sions is detectable for a specified climate variable, spatial 
domain, season, and historical period. In particular, the 
algorithm assesses the quality of data sources entering into 
a comparison against expected (historical) and observed 
climate change, performs the comparison, and examines 
the robustness of the comparison to uncertainties in the 
input data. Its output is a description of confidence (Mas-
trandrea et al. 2010) concerning the existence and magni-
tude of the role of anthropogenic emissions in observed 
regional climate change.

Possible interest in a rapid D&A service is emerging on a 
number of fronts. One is still within scientific research itself. 
For instance, the Fifth Assessment Report of the Intergov-
ernmental Panel on Climate Change (IPCC AR5) assessed 
the role of observed changes in climate on observed impacts 
in natural and human systems, and the role of anthropogenic 

Abstract Despite being a well-established research field, 
the detection and attribution of observed climate change 
to anthropogenic forcing is not yet provided as a climate 
service. One reason for this is the lack of a methodology 
for performing tailored detection and attribution assess-
ments on a rapid time scale. Here we develop such an 
approach, based on the translation of quantitative analysis 
into the “confidence” language employed in recent Assess-
ment Reports of the Intergovernmental Panel on Climate 
Change. While its systematic nature necessarily ignores 
some nuances examined in detailed expert assessments, 
the approach nevertheless goes beyond most detection and 
attribution studies in considering contributors to building 
confidence such as errors in observational data products 
arising from sparse monitoring networks. When com-
pared against recent expert assessments, the results of this 
approach closely match those of the existing assessments. 
Where there are small discrepancies, these variously reflect 
ambiguities in the details of what is being assessed, reveal 
nuances or limitations of the expert assessments, or indi-
cate limitations of the accuracy of the sort of systematic 
approach employed here. Deployment of the method on 
116 regional assessments of recent temperature and pre-
cipitation changes indicates that existing rules of thumb 
concerning the detectability of climate change ignore the 
full range of sources of uncertainty, most particularly the 
importance of adequate observational monitoring.
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emissions on observed changes in climate, but generally did 
not consider the relevance of one for the other: i.e. whether 
the observed attributed climate changes have any observed 
impacts, or whether the attributed impacts are related to 
anthropogenic climate change (Bindoff et al. 2013; Cramer 
et al. 2014). A primary reason was the lack in the availa-
ble literature documenting D&A studies that could support 
such an assessment, coupled with the lack of an established 
methodology for efficient estimation that could have been 
implemented by the chapter authors. With the algorithm 
developed in this paper, Hansen and Stone (2015) explore 
this gap by evaluating the role of anthropogenic climate 
change in the observed climate changes noted to have 
observed impacts in the IPCC AR5 (Cramer et al. 2014).

Another source of interest is within the wider private and 
public policy-making community, who are increasingly con-
sidering detection and attribution evidence when making pol-
icy and adaptation decisions. For this reason, attribution is a 
recurring component of the World Meteorological Organisa-
tion’s Global Framework for Climate Services, for instance 
(World Meteorological Organization 2014). However, recent 
developments have tended to focus on understanding extreme 
weather within the context of anthropogenic climate change 
(Stott et al. 2013; James et al. 2014) due to the highly vis-
ible impacts of such events, with less attention on describing 
longer-term changes within a service setting.

Some efforts have been made to produce a large set of 
D&A information on long-term climate change for a vari-
ety of regions, domain sizes, seasons, and/or periods (e.g. 
Karoly and Wu 2005; Jones et al. 2013). Such efforts fall 
short of a service, not least because any region-season-
period-variable combination of interest to someone (e.g. 
because of a government agency’s remit) are unlikely to 
align well with any amongst the limited number that can 
possibly be examined in a research paper. There is of course 
a philosophical point here: if we have studies attributing 
observed global warming to emissions, and that warming 
is expected to be broadly uniform across the globe, do we 
really need local, seasonal, and/or shorter-period analyses 
too? Indeed, Christidis et al. (2012) estimate distributions 
of regional annual mean temperatures for recent years under 
actual and hypothetical natural (i.e. no human influence 
on the climate) scenarios by using results of analyses con-
ducted at larger spatial scales to infer the more local infor-
mation (Christidis et al. 2010). The relevant assumptions 
break down for climate variables with more heterogeneous 
trends, however, such as the timing of the rain season onset. 
And in any case many stakeholders see a necessity for local 
information: climate services are under continual demand to 
provide explicitly local predictions of future warming. Thus 
while current attribution products are useful for scientific 
understanding, it is not clear that they provide an accurate 
source of information for making policy decisions.

The information content of most D&A studies exploring 
the role of anthropogenic emissions on historical climate 
change is also incomplete. Their analyses are generally 
expressed in strictly quantitative terms (usually a statisti-
cal significance level or confidence interval on some metric 
like a regression coefficient), without an explicit assess-
ment of the relevance of unquantified factors, such as the 
accuracy of the observational data product (Jones and Stott 
2011). The IPCC assessment reports differ in this respect, 
using a calibrated “confidence” language to character-
ise the total effect of all contributors, quantifiable or not, 
to building confidence in assessments (Mastrandrea et al. 
2010). This confidence language will form the basic output 
of the algorithm developed in this paper. With the intention 
that it can be implemented on a large number of cases on 
a rapid time scale, this algorithm is necessarily generic in 
nature, and thus ignores additional possible worthy inputs, 
such as local observational data products. Such issues are 
discussed further in Sect. 5. As such, the output from this 
algorithm might be better described as estimates of what 
more focused and comprehensive analyses would conclude, 
with this algorithm implemented specifically because 
resource constraints preclude the detailed analyses for now.

2  The confidence estimation algorithm

2.1  The confidence metric

The desired output of this attribution assessment is a descrip-
tion of confidence concerning the attribution of a major 
role of anthropogenic emissions in an observed change in 
regional climate (with attribution of at least a minor role 
being another output obtained along the way). The algorithm 
is centred around the comparison of observed variations 
in the climate against our expectations of how the climate 
should have changed, with the latter developed through some 
sort of understanding of how the climate might respond to 
external drivers (Hegerl et al. 2010; Hegerl and Zwiers 
2011). Around that comparison we must also consider the 
adequacy of our understanding, of the implementation of our 
understanding, and of the inputs to the analysis.

Mastrandrea et al. (2010) formulate two qualitative 
descriptors for use in assessments conducted by the Inter-
governmental Panel on Climate Change for summarising 
current understanding of various statements with regards to 
climate change. The intention of the algorithm being devel-
oped in this paper is to estimate belief in whether a state-
ment of attribution is accurate based on direct evidence, so 
we adopt the confidence descriptor here. This confidence 
descriptor merges evaluation of the quality and quantity of 
evidence (Sect. 2.3) and of the degree of agreement across 
sources of evidence (Sect. 2.4) into a single qualitative 
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assessment. It has been adopted in the D&A chapters of all 
recent IPCC assessment reports (Seneviratne et al. 2012; 
Bindoff et al. 2013; Cramer et al. 2014), allowing direct 
comparison in Sect. 3 between results estimated here and in 
two of those reports.

While the output is qualitative, the algorithm itself is 
quantitative, with the mapping from the latter to the former 
described in Sect. 2.5. It uses a numerical metric, c, to char-
acterise confidence (Fig. 1). The metric is assigned an initial 
value which depends on the number of input data sources 
(Sect. 2.3.1). This value is then left unchanged or reduced 
based on a series of tests which examine our belief in the 
adequacy of the input data sources and our understanding 
of the relevent processes (Sect. 2.3). It is then further left 
unchanged or modified based on a series of tests which 
evaluate the agreement between observed changes and our 
expectations based on process-based modelling (Sect. 2.4). 
All of these tests output a confidence-reduction factor, γ, by 
which the confidence metric is multiplied. Because reduc-
tion of the metric is always by multiplication, the order of 
the tests does not in fact matter.

2.2  Ingredients

The steps of the algorithm for estimating confidence for a 
given aspect of climate change use various combinations of 
the following inputs:

•	 Information about the climate change of interest, spe-
cifically identification of the climate variable, specifi-
cation of the seasonal extent, and specification of the 
spatial extent.

•	 Nobs gridded observational products. The usage of mul-
tiple data sets allows some (albeit likely incomplete) 
inclusion of measurement error and the uncertainty in 
calculating a regionally and seasonally averaged esti-
mate from instantaneous point measurements.

•	 Simulations of the climate system from Nmod models 
which have been driven with all known possible important 
drivers of climate change, including both anthropogenic 
and natural drivers. For dynamical climate models, aver-
aging across multiple simulations which produce differ-
ent possible weather trajectories for each model provides 
a more accurate estimate of the model’s response signal.

•	 Simulations of the climate system from the same Nmod 
climate models but which have been driven with natural 
drivers only.

•	 A large number of years of simulations of dynamical 
climate models with no variations in external drivers 
beyond the annual cycle. While in practice it would be 
preferable to have these for each of the above Nmod cli-
mate models, in practice the sampling requirement of a 
large ensemble dictates that we will assume that in gen-
eral data will be borrowed from available simulations of 
these and other models.

2.3  Assessment of data sources (evidence)

2.3.1  Diversity of data sources

The observational and (after-the-fact) prediction products 
comprise our ultimate sources of evidence, so having more 
numerous independent products available should increase 
the robustness of the evidence base. We consider the 

Fig. 1  Schematic of the 
algorithm for estimating the 
confidence in the detection and 
attribution of a climate response 
to anthropogenic drivers. An 
initial metric based on the 
availability of data products 
is degraded according to tests 
against various criteria. These 
tests are described in Sects. 2.3 
through 2.4
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predictions of response signals to come solely from simula-
tions of dynamical climate models (e.g. Taylor et al. 2012), 
generally of about the same generation (note however that 
having models of different generations, for instance “state-
of-the-art” dynamical models and “back-of-the-envelope” 
zero-dimensional models, could add substantially to con-
fidence by indicating a lack of sensitivity of conclusions 
to climate model design). If the errors in the variability 
and response signals of climate models were independent, 
then we would expect the information content to scale as √
Nmod . However, because climate models have not been 

developed in isolation, it might be expected that they share 
errors, and indeed recent studies suggest that ad hoc col-
lections of climate models of similar levels of complexity 
have an effective sample size only about one half the total 
number of models (Jun et al. 2008; Pennell and Reichler 
2010) in terms of the errors in their mean climatology. In 
the absence more relevant studies, we assume that a similar 
property holds for interannual variability.

Similarly, observational data products are not independ-
ent of each other, most particularly in sharing most of the 
measurements they use as input. Studies of the effective 
sample size of observational products are currently lack-
ing, but in any case would likely be variable- and region-
dependent. Through analogy, we suppose a similar scaling 
as for climate models. In research-grade assessments, it 
may be possible to better characterise these effective sam-
ple sizes, for instance noting the degree with which the 
observational products share the input data. The impor-
tant assumption here is that the information content scales 
as 

√
N . The mapping of the metric to the qualitative lev-

els described in Sect. 2.5 includes a calibration that would 
override any multiplicative constant added here, so we take 
the initial confidence as

While in theory this allows an infinite initial confidence, in 
practice only reasonable values of γsources are possible with 
the current diversity of data sources (e.g. Table 3).

2.3.2  Observational measurement density

The spatial distribution of observational measurements 
is not uniform, and in some areas may be insufficient for 
accurate representation of the regional climate. To estimate 
the adequacy of measurement density, we estimate the frac-
tion of the variance of the time series of a regional climate 
variable that is accounted for by the given measurement 
density using a method building on that employed in New 
et al. (2000). For the land-based variables, we consider the 
number of stations reporting in the month for each grid cell. 
Sea surface temperature products instead report the total 
number of individual measurements taken from moving 

(1)γsources =
√

Nobs · Nmod .

ships so, following the analysis of Jones et al. (1997), we 
divide by 5 to get an effective number of stations.

The stations in each grid cell (or “effective stations” 
in the case of ocean data) are assigned random locations 
within that grid cell, subject to land/sea definitions. Stations 
are considered to only become active or inactive in a spe-
cific order (e.g. while there is a single station in the cell it 
is always station A, it never moves or changes identity, and 
if a second station is then added, later on that station will 
be deactivated before station A). Stations that are active for 
less than 90 % of the total period examined are discarded. 
This threshold is fairly strict, but it serves the purpose of 
ensuring that the first and last 5-year segments of a 50-year 
period (as examined in later sections) both have data. 
Moreover, because the lowest station coverage occurs dur-
ing the final decade of this period, results should be insensi-
tive to relaxation of this threshold to values as low as 75 % 
or to even lower values when accompanied with additional 
thresholds for coverage at the ends of the period. We then 
estimate the fraction of the variability accounted for by the 
available active stations at each point within the region on 
a higher resolution (0.1◦ × 0.1◦ longitude-latitude) grid. 
Only stations within the decorrelation radius, rdecorr, of the 
grid cell are considered (New et al. 2000). It is assumed 
that differences between two stations separated by distance 
rstat can be represented as random noise that is correlated in 
space with fractional variance 1− e

−2· rstat
rdecorr . The fractional 

variance accounted for by the station coverage, γdensity, is 
then provided by the integral on the high-resolution grid of 
the product of the variance unaccounted for by the given 
stations:

where acell and aregion are the spatial area of the cell on the 
high-resolution grid and of the region respectively, Nyear is 
the number of years in the period, and the stations being 
considered (stat(cell, year)) varies with location and year.

In practice, measurement density is not available for 
most observational products, so for the evaluation con-
ducted in Sect. 3 we only obtain this information from one 
product for each climate variable (Table 1). For the land-
based variables these observation counts are for a rela-
tively high-spatial-resolution product, while for sea surface 
temperature the information is only available for the rela-
tively coarse resolution (200,000 km2) HadSST3.1.1.0. The 
HadSST3.1.1.0 density data, which consider in situ data 
only, will furthermore be an underestimate for higher reso-
lution products that also use satellite data in more recent 
decades, such as those used in the analysis of Sect. 3; this 

(2)

γdensity =
1

Nyear · aregion
Σyear

Σcell

(

acell ·
(

1−Πstat(cell,year)

(

e
−2·

rstat(cell,year)
rdecorr

)))
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could produce a bias toward lower confidence in regions 
with a small number of in situ measurements, such as the 
Antarctic Ocean.

2.3.3  Region size

Dynamical climate models have a limited spatial resolu-
tion, meaning they are better at reproducing variations in 
large-scale mechanisms than ones closer to the resolution 
size. Furthermore, the smaller scale characteristics of the 
anthropogenic drivers of climate change (particularly aero-
sol emissions) are less well understood than the larger scale 
properties. This means we are a priori less confident in 
analyses of climate model predictions for smaller regions. 
Similarly, the accuracy of observational products becomes 
more sensitive to the interpolation method used at scales 
around or smaller than the station separation. To account 
for this, the confidence metric is reduced by an amount 
related to the region’s size. If aregion is the area covered by 
the region in units of 106 km2, then the confidence metric is 
multiplied by

The functional form is such that γ ∼ 1 at continental scales 
(Jones et al. 2013), and such that γ ∼ 0.5 at scales around 
the smallest dynamical resolution of the current generation 
of climate models (about 42 times larger than the grid cell 

(3)γsize = 0.5+
arctan(aregion)

π
.

size) (Fig. 2). The lower value of 0.5 is a balance between 
acknowledging that the modelling and observational prod-
ucts may retain some skill even if they are not fully resolv-
ing processes and features and realising that size-related 
inaccuracies are also likely to emerge as penalties in the 
tests described in Sect. 2.4 which we do not want to double 
count.

2.3.4  Physical representation

The basic physical processes behind some aspects of the 
climate are both well understood and mostly resolved in 
dynamical models, but this is not the case for some vari-
ables. For instance, the microphysical processes that gener-
ate precipitation are not simulated in climate models, but 
rather are approximated by somewhat heuristic algorithms. 
In recognition of this, the confidence metric is multiplied 
by a constant that depends only on the climate-variable:

The general effect on confidence for precipitation is a 
reduction of one of the Mastrandrea et al. (2010) levels.

It would be preferable if this factor could be informed 
by more developed empirical or process-based methods. A 
relevant question is whether the climate model is reliable, 
but this is essentially considered by the steps described in 
Sects. 2.4.2 through 2.4.5. Unfortunately, understanding of 

(4)
γphysics = 0.8 for precipitation

= 1.0 for temperature.

Table 1  Observational data 
products used to characterise 
observational monitoring 
density around the globe. The 
decorrelation radius is also 
given for each variable (New 
et al. 2000)

Climate variable Station density data set Decorrelation radius (km)

2 m air temperature CRU TS 3.22 (Harris et al. 2014) 1200

Precipitation CRU TS 3.22 (Harris et al. 2014) 450

Sea surface temperature HadSST3.1.1.0 (Kennedy et al. 2011a, b) 1200

Fig. 2  The functional forms of two of the confidence multipli-
ers underlying the algorithm. Left the multplication factor relating 
to region size, with representative countries listed. Right the mul-
tiplication factor relating to whether the predicted magnitude of the 
response to anthropogenic emissions matches the observed magni-

tude, as estimated by linear regression, for the case of 21 combina-
tions of observational and model data products. The point at which 
the p value of the comparison of the number of matches against the 
binomial distribution is 0.1 is marked
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what additional qualities of a climate model are required to 
make it more accurate in the D&A context remain poorly 
understood (Santer et al. 2009; Flato et al. 2013). There-
fore, in the interest of not introducing complexity which 
does not clearly add information, for now Eq. 4 seems the 
most parsimonious option.

2.4  Comparison between the data sources (agreement)

2.4.1  Comparison of observed and predicted climate 
change

The analysis method behind much research into the detec-
tion and attribution of climate change in recent years 
applies a linear regression model to compare output from 
climate model simulations against observed climate 
changes (Bindoff et al. 2013). The central idea is to sepa-
rate aspects of the climate response that we consider to 
be known (i.e. tightly constrained by external parameters) 
from those that we consider to be less well known (i.e. not 
tightly constrained). The pattern by which the climate sys-
tem is expected to respond to a particular external driver 
is generally considered robust and well estimated by past 
and current dynamical climate models; thus the pattern can 
act as a fingerprint for that response. For instance, both the 
climate system and models of the climate system should 
respond to a large volcanic eruption soon after that erup-
tion, a feature that distinguishes its response from other 
drivers. In contrast, the magnitude of the response may not 
be something that is particularly well estimated by current 
climate models, because this depends on feedback pro-
cesses within the climate system, such as how cloud micro-
physics interact with the larger scale climate, whose effects 
are not so directly constrained.

With this in mind, if Xobs(t) represents variations in an 
observed climate variable as a function of time t, Xant,mod(t) 
represents the expected climate response to anthropogenic 
external drivers according to climate model mod, and 
Xnat,mod(t) represents the expected climate response to nat-
ural external drivers, then the regression can be written as 
(Allen and Tett 1999):

Note that all X are all taken as anomalies with zero mean 
over the full Nyear period. Robs,mod(t) is the residual of 
the regression and βant,obs,mod and βnat,obs,mod are the 
regression coefficients estimated such that the variance of 
Robs,mod(t) is minimised. This formulation of the regres-
sion assumes that we can perfectly estimate the Xant,mod(t) 
and Xnat,mod(t) responses (Allen and Stott 2003). In the test 

(5)

Xobs(t) = βant,obs,mod · Xant,mod(t)

+ βnat,obs,mod · Xnat,mod(t)

+ Robs,mod(t).

cases examined in Sects. 3 and 4 this assumption is impor-
tant because the estimates will be derived from a small 
number of climate model simulations. However, the result-
ing underestimate in the uncertainty from the regression 
will be compensated by repetitive estimation (and solving 
of the regression equation) using multiple (Nobs · Nmod ) 
combinations of observational and climate model data 
sources. An option for further development would be to 
utilise regression approaches that explicitly permit multiple 
estimates of both the dependent and independent variables, 
thus considering all observational and climate model data 
sources in a single calculation (Hannart et al. 2014).

The regression assumes that responses to climate change 
are linearly additive, which has yet to be strongly tested at 
subcontinental scales, but which nevertheless appears rea-
sonable for the magnitude of the temperature and precipita-
tion responses considered here as well as given the statis-
tical power afforded by the available data sets (Shiogama 
et al. 2012). Available climate model data (Sect. 3.1) gen-
erally only cover the Xnat,mod(t) response signal and the 
Xall,mod(t) = Xant,mod(t)+ Xnat,mod(t) response to the full 
combination of anthropogenic and natural drivers. Substi-
tuting into Eq. 5 we get:

The regression coefficients βant,obs,mod and 
βnat,obsmod + βant,obs,mod and their uncertainty due to the 
limited sampling of the observed climate response against 
the noise of natural internally generated variability of the 
climate system are estimated using the code available at 
http://www.csag.uct.ac.za/~daithi/idl_lib/detect/ (Allen 
and Tett 1999). Traditionally, a response to anthropogenic 
forcing is considered to be detected if βant,obs,mod is posi-
tive and inconsistent with zero at some level of statistical 
significance given this sampling uncertainty.

The regression is performed separately for each combi-
nation of the Nobs observation data products and the Nmod 
climate model products. The translation of these regres-
sion analyses into modification of the confidence metric is 
described in Sects. 2.4.2 through 2.4.5.

2.4.2  Matching signals

This test addresses the question whether the fingerprint of 
the anthropogenic response expected by the climate mod-
els is indeed found in the observational data. In terms of 
the regression, the question is whether βant,obs,mod > 0 . 
This step is the critical test for a climate change detection 
analysis. If we suppose that each of the climate models 
and observational products represent random samples of 

(6)

Xobs(t) = βant,obs,mod · Xall,mod(t)

+ (βnat,obs,mod − βant,obs,mod) · Xnat,mod(t)

+ Robs,mod(t).

http://www.csag.uct.ac.za/~daithi/idl_lib/detect/
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the probability distributions of possible models and obser-
vations respectively, then we can add the probability dis-
tributions for each of the Nobs · Nmod observation-model 
combinations and calculate the fraction of the combined 
distribution that is greater than zero, fsignal. The confidence 
metric is then multiplied by γsignal = fsignal.

2.4.3  Match of magnitude of anthropogenic climate 
change

Whether the magnitude of the observed signal matches the 
predicted magnitude is often considered a component of 
attribution rather than detection (Hegerl et al. 2010). How-
ever, a match in magnitude can be considered an indication 
that the observed signal analysed in the regression is indeed 
the predicted signal, rather than, for instance, a response 
to an ignored driver that happens to closely resemble the 
predicted response to anthropogenic drivers. In this sense a 
match of magnitudes helps to build confidence.

Within the regression formulation used here, the ques-
tion is whether any of the regression coefficients for the 
anthropogenic response, βant,obs,mod are inconsistent with 
1. This is a two-sided problem so we cannot use a similar 
approach as in Sect. 2.4.2. Instead, we consider the number, 
nfail, of the Nobs · Nmod estimates of the βant,obs,mod regres-
sion coefficients that are inconsistent with 1 at the α = 0.1 
significance level, i.e. whether 1 lies outside of the 90 % 
(statistical) confidence range. The choice of α = 0.1 sim-
ply follows the standard of most regression-based climate 
change studies (e.g. Bindoff et al. 2013). The p value, pant, 
of obtaining nfail failures in a binomial distribution centred 
on probability α = 0.1 is then used to calculate the multi-
plication factor of

where the exponent is defined such that the factor is half-
way to its lowest value at pant = α (Fig. 2). The one-sided 
nature reflects that our confidence is not diminished if 
fewer estimates of βant,obs,mod are inconsistent with 1 than 
would be expected by chance (even though that could 
reflect an overestimation of uncertainty). The maximum 
penalty of 40 % reflects a view that while a mismatch of 
magnitudes does indicate an inconsistency between pre-
dicted and observed responses, it does not necessarily inter-
fere with detection (e.g. Gillett et al. 2005).

2.4.4  Match of magnitude of natural climate change

The above test only concerns the response to anthropo-
genic drivers. While they are less directly connected to the 

(7)γant =
6

10
+

4

10
·
(

1

2
· (1− cos(π · pant))

)ζ

conclusions of the analysis, it would also help build confi-
dence (or not reduce it) if the observed response to natural 
drivers is also not inconsistent with the predicted response. 
The step described in Sect. 2.4.3 is repeated here but for 
the estimates of βnat,obs,mod and with a smaller maximum 
reduction, such that

The maximum 10 % reduction reflects that this test is less 
relevant for conclusions regarding anthropogenic forc-
ing. For instance, climate models predict short cool peri-
ods following large explosive volcanic eruptions, but the 
observed cooling is significantly smaller than predicted. 
While it seems current climate models have a problem 
in representing relevant feedbacks, the detection of a 
response to volcanic eruptions is nevertheless generally 
considered robust (Bindoff et al. 2013).

2.4.5  Consistency of autonomous variability

As an extremely nonlinear system, the climate generates 
variability autonomously whether it is being influenced 
by external factors or not. If the assumptions behind the 
regression hold and all the important external drivers 
have been included in the Xall,mod(t) and Xnat,mod(t) pair, 
then the residual Robs,mod(t) from the regression should 
be indistinguishable from this autonomous variability. 
Simulations of climate models whose external drivers do 
not vary from year to year (labeled “unforced preindus-
trial simulations” in Table 4) provide an estimate of what 
that variability should be on the multi-decadal time scale 
that is relevant here. A comparison of the Robs,mod(t) 
arising from the regression and the variability in these 
unforced simulations is performed following (Allen and 
Tett 1999).

In many cases the residual is inconsistent with the 
unforced simulations at the α = 0.1 significance level. Fol-
lowing the same approach as in Sect. 2.4.4, the multiplica-
tion factor is defined as

If the residuals from all Nobs · Nmod combinations fail the 
test, then this can have the effect of lowering by up to three 
Mastrandrea et al. (2010) confidence levels. As with incon-
sistencies in the regression coefficients, gross failure of the 
residual test is a major concern (especially as it is a weak 
test, Allen and Tett 1999), and could reflect missing drivers, 
amongst other possibilities.

(8)γnat =
9

10
+

1

10
·
(

1

2
· (1− cos(π · pnat))

)ζ

(9)γresid =
1

2
+

1

2
·
(

1

2
· (1− cos(π · presid))

)ζ

.
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2.4.6  Major role

Assessment of the attribution of observed climate 
change to anthropogenic emissions requires a descrip-
tion of the magnitude of that role relative to other fac-
tors (Hegerl et al. 2010). For this algorithm we assess 
whether emissions have had a “major role” in the 
behaviour of the observed climate (Stone et al. 2013). 
This is interpreted as asking whether the anthropogenic 
response accounts for at least one third of the tempo-
ral variance; other possible contributors to the vari-
ance would be the response to natural drivers, autono-
mous variability, or possible neglected drivers. This is 
calculated by integrating the variance of the adjusted 
anthropogenic response (βant,obs,mod · Xant,mod(t)) across 
the calculated probability distribution of the regression 
coefficient βant,obs,mod:

where

The dq are the quantiles of the probability distribution 
of the βant,obs,mod regression coefficient, and σ 2

obs and 
σ 2
obs,mod(q) are the variances of the observed data Xobs(t) 

and the adjusted model data βant,obs,mod(q)·Xant,mod(t) , 
respectively. Note that without this test of the rela-
tive role, this algorithm is assessing the detection of 
an anthropogenic response in observed climate change 
(Hegerl et al. 2010; Stone et al. 2013).

2.5  Mapping the quantitative metric to the qualitative 
levels

The multiplication factors described in Sects. 2.3 through 
2.4 are multiplied together to produce the confidence 
metric:

This metric is then mapped to the confidence levels listed 
in Table 2 which include the five levels of Mastrandrea 
et al. (2010) as well as a further level of no confidence 
(cmap = 0 ) for cases where no evidence is available or the 
algorithm reveals a fundamental disagreement between 
expected and observed responses. The mapping is per-
formed according to

(10)γmajor =
1

Nobs·Nmod

Σobs,mod

∫

q

δobs,mod(q)·dq

(11)δobs,mod(q) =
{

1, σ 2
obs,mod(q)·3 > σ 2

obs

0, σ 2
obs,mod(q)·3 ≤ σ 2

obs

.

(12)
c = γsources · γdensity · γsize · γphysics · γsignal · γant

· γnat · γresid · γmajor .

(13)cmap =
5 log(1+ 3 · c)

2 log(4)
.

The logarithmic nature of this mapping function reflects the 
multiplicative nature in which the tests modify the initial 
γsources value. The constants serve two purposes. First, if 
Nobs = Nmod = 1 and all γ multipliers are equal to 1 (i.e. 
all tests are passed perfectly, then cmap = 2.5 and we have 
medium confidence of a major anthropogenic contribution. 
Second, adding one within the logarithm provides a lower 
bound of no confidence, but it distorts the logarithmic inter-
pretation, which the factor of 3 within the logarithm allevi-
ates for larger values.

3  Comparison against detailed assessments

3.1  Data

In this section we compare attribution results from the 
algorithm described above against assessments in the IPCC 
AR5. The data required by the algorithm can be divided 
into observationally-based data (Xobs) and climate model-
based data. The observational data sets used are listed in 
Table 3, selected on the basis of having global (terrestrial 
or marine) coverage, covering the 1951–2010 period, and 
having a spatial resolution finer than 2502km2. All of the 
terrestrial air temperature and precipitation data sets are 
based on in situ station monitoring, while the two marine 
data sets analyse both in situ measurements and, in more 
recent decades, remote sensing data. The Hurrell sea sur-
face temperature data set adopts HadISST1 values through 
to October 1981, then NOAA OI.v2 values (Reynolds and 
Smith 1994) thereafter. Because not all products report the 
monitoring density, only the data sets listed in Table 1 are 
used for that purpose.

The response signals Xall,mod(t) and Xnat,mod(t), as 
well as the autonomous unforced variability Xnoise, can be 
estimated from simulations of dynamical climate models 
driven with only the respective external drivers. For this 
analysis, we take simulations from the CMIP5 database 
(Taylor et al. 2012) listed in Table 4. The spatial resolution 

Table 2  List of confidence levels described by Mastrandrea et al. 
(2010) and the corresponding values of the quantitative confidence 
metric cmap used in this paper. An additional level of no confidence is 
added for cases where no information is available

Confidence label Numerical values

No confidence cmap = 0

Very low confidence 0 < cmap < 1

Low confidence 1 ≤ cmap < 2

Medium confidence 2 ≤ cmap < 3

High confidence 3 ≤ cmap < 4

Very high confidence 4 ≤ cmap
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lists the average box size on the grid used to output the 
data. This is the same grid or approximates the scale used 
in the model’s dynamical calculations. Because of the 
nature of simulation numerics, models effectively only 
resolve features several times this scale; in this sense the 
listed spatial resolution is not directly comparable against 
the resolution listed for the observational data sets. For 
each of the models with multiple available simulations 
for estimating the response signals Xall,mod and Xnat,mod , 
the sampling noise is reduced by averaging across the 3 
to 10 simulations available in each case. The regression 
model (Sect. 2.4.1) is estimated for each combination of 
the Nmod = 7 climate models with available simulations 
and the Nobs observational products, resulting in 21 regres-
sion models for 2-m air temperature over land, 14 for sea 
surface temperature, and 28 for precipitation. Data for esti-
mating the autonomous unforced variability Xnoise is taken 
from these and additional climate models in order to allow 
a more precise estimate of the expected covariance of the 
residual Robs,mod(t).

3.2  IPCC AR5 WGI chapter 10 assessments

A first comparison can be made against the assessments of 
regional warming from the climate change detection and 
attribution chapter of the IPCC AR5 (Bindoff et al. 2013). 
The statements were intended to be robust for the regional 
domain and time period. We assume that all statements:

•	 refer exclusively to land territory (including the Arctic 
statement, due to the paucity of marine monitoring in 
the Arctic);

•	 are relevant to the 1951–2010 period (except for the 
Arctic for which the 1961–2010 period more closely 
matches the statement);

•	 apply to the IPCC regional definitions used in the IPCC 
AR5 (Hewitson et al. 2014);

•	 apply to annual mean values averaged evenly over the 
region.

Table 5 compares confidence assessments made with 
the algorithm developed in Sect. 2 against assessments for 
statements made in the IPCC AR5.

The algorithm agrees with the IPCC AR5 assessments 
for the attribution assessments for all of the populated 
regions except Africa, where the confidence metric falls 
just shy of the border between medium and high confi-
dence. The station density step is the dominant difference 
between the African result and those for the other popu-
lated regions (not shown). The difference for the Antarctica 
conclusion similarly arises because the CRU TS 3.22 prod-
uct used for estimating station density does not cover Ant-
arctica. In contrast, the discrepancy for the Arctic conclu-
sion arises mostly from the test of the residual variability 
after the regression.

3.3  IPCC AR5 WGII chapter 22 assessments

A further comparison can be made against the subcontinen-
tal detection and attribution assessments made in the Afri-
can chapter of the IPCC AR5 (Niang et al. 2014). An inter-
esting aspect of this comparison is that one of the authors 
of this paper led the compilation of these African assess-
ments in the IPCC AR5, and thus differences in calibra-
tion of confidence levels should not be an issue (inasmuch 
as this paper’s algorithm reflects the author’s calibration). 
Niang et al. (2014) provide assessments for both precipi-
tation and temperature, both of detection and of attribu-
tion of a major role for five regions based on the Regional 
Economic Communities. Because there were no available 
studies that directly performed D&A analysis for these 
regions, the assessments were performed through expert 
judgement by considering the combination of results from 
studies investigating various components of the emissions-
to-climate-change chain, plots comparing observations and 
model simulations prepared for the report, evaluation of 
our level of understanding of the relevant processes, and 
evaluation of the adequacy of the observational network. 
While no time period is specified, the assessments are 

Table 3  List of observational 
data products used in analyses 
in this paper. A 1.0° longitude 
by 1.0° latitude grid box covers 
7900km2 on average across 
the globe, being larger on the 
equator than at the poles 

Climate variable Data products Spatial resolution (km2)

Terrestrial air temperature CRU TS 3.22 (Harris et al. 2014) 2000

GISTEMP (250 km land) (Hansen et al. 2010) 63,000

UDel v3.01 (Matsuura and Willmott 2012) 2000

Precipitation CRU TS 3.22 (Harris et al. 2014) 2000

GPCC v6 (Schneider et al. 2014) 7900

NOAA PRECL (1° × 1°) (Chen et al. 2002) 7900

UDel v3.01 (Matsuura and Willmott 2012) 2000

Sea surface temperature HadISST1 (Rayner et al. 2003) 7900

Hurrell (Hurrell et al. 2008) 9200
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heavily influenced by the time series plots of observed and 
simulated change shown in the chapter (which happen to 
share a large number of data sources with this paper); given 
these plots and that monitoring density improves markedly 
in the 1960s, we take the relevant period to be 1961–2010. 
Additionally, while the IPCC AR5 precipitation assess-
ments are for land areas only, the temperature assessments 

apply to the combined terrestrial and Exclusive Economic 
Zone (EEZ) territories. Because of the lack of high spatial 
resolution observational products of combined terrestrial 
and marine near-surface air temperature, we must treat the 
terrestrial and marine areas separately, and thus we assume 
that the assessments apply equally to these two components 
of the overall region.

Table 4  Details of the climate models and their simulations used in the analyses in this paper

All data are from the CMIP5 climate model database (Taylor et al. 2012). The long unforced simulations can be divided into 323 segments cov-
ering a 50-year period; the number of segments differs for other periods. The spatial resolultion refers to the average of the resolution across all 
grid cells in the output data format (which is often only representative of the scale of the grid on which the calculations were performed). A 1.0° 
longitude by 1.0° latitude grid cell covers 7900 km2 on average across the globe, being larger on the equator than at the poles

Climate model Simulations Resolution 
(km2) 

Historial (Xall,mod(t)) Natural historical (Xnat,mod(t)) Unforced Air Ocean

BCC-CSM1.1 r1i1p1 62,000 6100

BCC-CSM1.1-M r1i1p1 10,000 6100

CanESM2 r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1 r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1 r1i1p1 62,000 10,000

CCSM4 r1i1p1, r2i1p1, r4i1p1 9000 4200

CESM1-CAM5 r1i1p1 9000 4200

CNRM-CM5 r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1, 
r6i1p1, r7i1p1, r8i1p1, r9i1p1, 
r10i1p1

r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1, 
r8i1p1

r1i1p1 16,000 4800

CSIRO-Mk3.6.0 r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1, 
r6i1p1, r7i1p1, r8i1p1, r9i1p1, 
r10i1p1

r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1 r1i1p1 28,000 14,000

FIO-ESM r1i1p1 62,000 4200

GFDL-CM3 r1i1p1 39,000 7100

GFDL-ESM2G r1i1p1 39,000 6700

GFDL-ESM2M r1i1p1 39,000 7100

GISS-E2-H-p1 r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1, 
r6i1p1

r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1 r1i1p1 39,000 39,000

GISS-E2-H-p2 r1i1p2 39,000 39,000

GISS-E2-H-p3 r1i1p3 39,000 39,000

GISS-E2-R-p1 r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1, 
r6i1p1

r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1 r1i1p1 39,000 39,000

GISS-E2-R-p2 r1i1p2 39,000 39,000

GISS-E2-R-p3 r1i1p3 39,000 39,000

HadGEM2-AO r1i1p1 18,000 7400

HadGEM2-ES r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1 r1i1p1, r2i1p1, r3i1p1, r4i1p1 r1i1p1 18,000 7400

IPSL-CM5A-LR r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1, 
r6i1p1

r1i1p1, r2i1p1, r3i1p1 r1i1p1 55,000 19,000

IPSL-CM5A-MR r1i1p1 25,000 19,000

MIROC-ESM r1i1p1 62,000 10,000

MIROC-ESM-CHEM r1i1p1 62,000 10,000

MPI-ESM-LR r1i1p1 28,000 9100

MPI-ESM-MR r1i1p1 28,000 1600

NorESM1-M r1i1p1 37,000 4200

NorESM1-ME r1i1p1 37,000 4200

Total simulations 48 33 323

Total models Nmod = 7 Nmod = 7 27
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The comparison is listed in Table 6. Unlike for the com-
parison in Sect. 3.2, there are more numerous discrepancies 
for the African regions. Precipitation assessments are all the 
same or less confident than in the IPCC AR5. For major-
role attribution, the inconsistency for four regions could 
arise simply from the lack of a no confidence level in the 

IPCC AR5. The only two-level discrepancy is for rainfall 
over ECOWAS (the Economic Community of West African 
States). In Niang et al. (2014) the ECOWAS assessment was 
based on a number of detailed studies which considered the 
underlying data sources and processes in more detail than 
in our algorithm, for instance by evaluating the ability of 

Table 5  Comparison of confidence in detection statements and in 
attribution statements for regional assessments in Table 10.1 of Bind-
off et al. (2013). The specific periods analysed (given in square brack-

ets) are based on the discussion in Table 10.1 and Section 10.3.1.1.4 
of Bindoff et al. (2013)

Bindoff et al. (2013)’s statement Confidence in detection Confidence in attribution of 
major role

Bindoff et al. (2013) Algorithm Bindoff et al. (2013) Algorithm

“Result 28”: anthropogenic forcing has made a substantial 
contribution to warming to each of the inhabited continents 
[1951–2010]

Africa High Medium

Europe High High

Asia High High

Australasia High High

North 
America

High High

Central and 
South 
America

High High

“Result 29”: anthropogenic contribution to very substantial Arctic warming 
over the past 50 years [1961–2010]

High Medium

“Result 30”: human contribution to observed warming averaged over avail-
able stations over Antarctica [1951–2010]

Low No

Table 6  Comparison of confidence in detection and attribution statements for the African regions listed in Figure 22-3 of Niang et al. (2014)

The regions are based on the Regional Economic Communities: the combination of the East African Community, Intergovernmental Authority 
on Development, and Egypt (EAC/IGAD/Egypt); the Economic Community of Central African States (ECCAS); the Economic Community of 
West African States (ECOWAS); the Southern African Development Community (SADC); and the Arab Maghreb Union (UMA). Niang et al. 
(2014)’s assessments of warming applied to the combination of land and Exclusive Economic Zone (EEZ) areas, whereas these two components 
are assessed separately here

Niang et al. (2014)’s statement Confidence in detection Confidence in attribution of major role

Niang et al. (2014) Algorithm Niang et al. (2014) Algorithm

EAC/IGAD/Egypt land annual mean precipitation changes Low low Very low No

EAC/IGAD/Egypt land and EEZ annual mean warming Medium High (land) Medium High (land)

Medium (EEZ) Medium (EEZ)

ECCAS land annual mean precipitation changes Very low Very low very low No

ECCAS land and EEZ annual mean warming Low Very low (land) Low Very low (land)

Medium (EEZ) Medium (EEZ)

ECOWAS land annual mean precipitation changes Medium Low Low No

ECOWAS land and EEZ annual mean warming Medium High (land) Medium High (land)

High (EEZ) High (EEZ)

SADC land annual mean precipitation changes Low Very low Very low No

SADC land and EEZ annual mean warming High Medium (land) High Medium (land)

High (EEZ) High (EEZ)

UMA land annual mean precipitation changes Very low Very low Very low No

UMA land and EEZ annual mean warming High Medium (land) Medium medium (land)

Medium (EEZ) Medium (EEZ)
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climate models to adequately represent the West African 
monsoon and rejecting models which did not pass a certain 
benchmark. However, many of these studies specifically 
examined the drying and partial recovery of rainfall over the 
Sahel, which only partly overlaps with the ECOWAS region 
(note that the spatial averaging of precipitation performed 
here is based on fractional anomalies, so a 30 % reduction 
in some part of the Sahel would be considered equivalent 
to a 30 % reduction in a corresponding area on the much 
wetter coast). This case may therefore be illustrating both 
the relative strength of detailed targeted analysis in compari-
son to this paper’s algorithm, and the relative strength of the 
algorithm in being easily tailored to the specific requirement 
of an assessment (in this case the ECOWAS territorial area).

Marine temperature detection and major-role attribution 
assessments both tend to be assigned higher confidence 
by the algorithm, whereas discrepancies tend to balance 
for terrestrial temperature. In part this is a reflection of 
the separation of the joint terrestrial-marine assessments: 
some of the terrestrial assessments suffer from poor sta-
tion coverage, so when the better-monitored marine areas 
are separated they are freed from this penalty. ECCAS (the 
Economic Community of Central African States) suffers 
especially from poor monitoring coverage over land, but 
not over its EEZ.

4  Application to nation‑scale regions

In this section we deploy the algorithm on precipitation and 
temperature changes over a large number of regions. We 
adopt the regions developed for an operational system link-
ing changes in the chance of extreme weather to anthro-
pogenic emissions (http://www.csag.uct.ac.za/~daithi/
forecast, Angélil et al. 2014). These regions are based on 
political/economic groupings and are all approximately 
2million km2 in size. Because of limitations in the model-
ling technique used by that system, all regions are terres-
trial and exclude countries dominated by archipelagos (e.g. 
Indonesia) as well as Antarctica. The limited political/eco-
nomic links of some countries also impose limits within the 
2million km2 size criterion (e.g. Suriname and Ukraine). 
For the sake of simplicity we maintain those omissions. 
The algorithm is run on annual total precipitation and 
annual mean 2 m air temperature over these regions. (As 
in Sect. 3.3, the spatial averaging of precipitation is on the 
fractional anomaly, so arid and wet areas contribute equally 
to a region’s variability.) The data sources are the same as 
listed in Tables 3 and 4.

The results for detection of an anthropogenic influence 
and for attribution of a major anthropogenic role (differing 
through the exclusion/inclusion of γmajor from the “major 
role” test) are shown in Fig. 3. An anthropogenic influence 

on precipitation variations is only detected with a reason-
able confidence in some northern mid and high latitude 
regions, and with one exception (consistent with the recent 
assessment report for part of that region (Bhend 2015)) 
there is at most very low confidence that that role is sub-
stantial. The reason for this is apparent in Fig. 4, which 
shows how the estimate of confidence is affected by the 
various steps of the algorithm, and in Fig. 5, which maps 
selected multiplication factors (specifically those that vary 
noticeably from region to region). For a large number of 
the regions, inadequate station density in the monitoring 
networks is a major restriction on confidence in detec-
tion. Note that because of the smaller decorrelation scale 
the network density must be considerably higher for pre-
cipitation than for temperature (Table 1), meaning that for 
temperature station density is only a large constraint in 
central Africa and the Western Arctic (Fig. 6). Unlike for 
temperature, all of the steps in the algorithm contribute to 
a notable decrease in the confidence metric for detection of 
precipitation changes over almost all regions. The magni-
tude of any potentially detected signal is always very small 
in relation to the autonomous year-to-year variability of 
the climate system, leading to consistently large decreases 
(γmajor ≤ 0.25) in confidence at the “major role” step dis-
tinguishing detection of an anthropogenic influence from 
attribution of a major role.   

Not surprisingly, confidence is much higher for tempera-
ture changes, with at least high confidence in detection of 
an anthropogenic influence over most regions outside of 
Africa (Fig. 3). The attribution of a major role is assigned 
slightly less confidence, with only three high-latitude 
regions with large warming signals retaining very high con-
fidence. The spatial pattern of confidence in detection (and 
attribution) differs from the expected signal-to-noise ratio 
(Mahlstein et al. 2011; Bindoff et al. 2013). The reason for 
this is apparent by looking at the lowest-confidence case in 
Fig. 4. While all four regions with low or very low confi-
dence in detection are located in an area of the tropics with 
an expected high signal-to-noise ratio, they are also regions 
with poor monitoring station coverage; monitoring cover-
age tends to be a major factor for regions with medium con-
fidence in detection as well. This illustrates that the current 
rule-of-thumb of stronger detectability of warming in the 
tropics (Bindoff et al. 2013) ignores the full set of sources 
of uncertainty, and in particular the role of adequate long-
term monitoring.

5  Discussion

This paper has both developed a framework for assess-
ing the detection and attribution of climate change on 
a large scale and developed a specific implementation. 

http://www.csag.uct.ac.za/~daithi/forecast
http://www.csag.uct.ac.za/~daithi/forecast
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The framework is simply an explicit quantification of the 
framework developed and applied in recent IPCC Assess-
ment Reports (Seneviratne et al. 2012; Bindoff et al. 2013; 
Cramer et al. 2014), based on the confidence level formula-
tion of Mastrandrea et al. (2010). This considers not only 
the result of a single comparison of expected responses to 
climate change with observed trends, but also examines 
the agreement between comparisons using different data 

sources, as well as the underlying appropriateness and 
accuracy of those data sources. In terms of implementation 
in the IPCC reports, it has generally been assumed that the 
components of confidence are separable. What is new in 
the algorithm developed in this paper is the concept that the 
components are also quantifiable and multiplicative. The 
degree to which both these assumptions are justifiable is 
open to discussion, but for this algorithm the assumptions 

Fig. 3  Assessments of the detection of an influence (top row) and 
attribution of a major role (bottom role) for anthropogenic emissions 
in observed climate variations during the 1961–2010 period over vari-

ous political/economic regions of the world. All regions are terres-
trial and approximately 2million km

2; land areas not included in any 
regions are shown in white. All assessments are for annual averages

Fig. 4  Calculation of the 
confidence metric for the 
assessments shown in Fig. 3 
of the detection and attribution 
of observed climate variations 
during the 1961–2010 period 
for various ∼2million km

2 
political/economic regions of 
the world
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only need to hold approximately, because the algorithm is 
not intended for use as an expert “final word” but rather a 
more general tool.

In terms of the specific implementation developed in 
this paper, it is centred around the popular multiple lin-
ear regression approach underlying much climate change 
detection and attribution research (Bindoff et al. 2013), 
but other options exist. Indeed, exploration of multiple 
methods should really be considered in establishing con-
fidence. Similarly the division of the components of con-
fidence could probably be chosen differently, according to 
the exact nature of the detection and attribution study. For 
instance, in some cases (e.g. because an impact has been 
observed) there may be a required direction of climate 
change, and so an additional test will be needed to ensure 
that the required trend exists in the observational products 
being used (Hansen and Stone 2015).

There are three specific areas of the implementation 
that require consideration. First, the algorithm operates 

within a realm of well-behaving inputs. For instance, 
while it is plausible, as stipulated in Sect. 2.3.1, that the 
maximum possible confidence should be the same when 
[Nobs = 3,Nmod = 6] as when [Nobs = 6,Nmod = 3], it is 
less obvious that the situation [Nobs = 36,Nmod = 1] or 
[Nobs = 1,Nmod = 36] should also have the same maxi-
mum confidence. Modifications may be warranted for such 
extreme situations.

Second, the quality of the development of the various 
steps in the algorithm varies considerably. For instance, 
confidence in detection must depend directly on the sta-
tion density as well as the distribution of those stations, 
and there must be no confidence when there are no obser-
vations at all (Hegerl et al. 2010). While the method used 
here makes simple assumptions about the spatial correla-
tion of climatic variability, these same assumptions are 
well tested and have also been used in the development 
of respected observational products. However, the way in 
which a statistical failure of the “variability match” step 

Fig. 5  Maps of the multiplication factors contributing to the calcula-
tion of the confidence metrics for the precipitation assessments shown 
in Fig. 3 for various ∼2million km

2 political/economic regions of the 
world. Colour levels are the same for all of the pink maps, with the 
range of the colour bar reflecting the range of possible values of the 

multiplication factor. Maps are not show for the “diversity of data 
sources”, “region size”, or “physical representation” steps because 
these are set to be identical or near-identical across these regions, nor 
for the “major role” step, for which all multiplication factor values 
are γmajor ≤ 0.25
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in the regression analysis should be translated into a quan-
titative modification of the confidence metric is less obvi-
ous. While selection of the maximum possible reduction 
in confidence by this step has been informed by experi-
ence with regression analysis, the value is still a subjective 
choice based on the authors’ experience and intuition. For-
tunately, some of the steps that seem to have the greatest 
bearing on the final confidence (monitoring density, signal 
match, and major role) are also the steps with the high-
est quality translation from analysis to confidence metric. 
Nevertheless, a decision to give substantially more weight 
to some of the other steps (particularly “match of magni-
tude of anthropogenic climate change”) could be impor-
tant for some regions, for both precipitation and tempera-
ture (Figs. 5, 6).

Finally, the output of this algorithm is qualitative in 
nature, and the relation between qualitative terms like 
“major role” and quantitative metrics remains at least 

partly subjective. Fortunately, results here do not appear to 
have been that sensitive to choice of “major role” thresh-
old. However, the mapping from the quantitative confi-
dence metric, c, through cmap into the qualitative Mas-
trandrea et al. (2010) levels can lead to systematic shifts 
of a full confidence level. In that sense the comparisons 
performed in Sect. 3 against existing expert assessments 
served an important role to check on the calibration of the 
algorithm.

Ultimately, this algorithm is no substitute for detailed 
expert detection and attribution analysis. For instance, the 
“physical representation” step (Sect. 2.3.4) is the only step 
in the algorithm responsible for evaluating whether the 
climate models are capable of representing the processes 
required in order to adequately represent the regional and 
seasonal climate of interest. Currently that step consists 
of a simple binary function depending only on the cli-
mate variable. Future development of the algorithm could 

Fig. 6  Maps of the multiplication factors contributing to the calcula-
tion of the confidence metrics for the temperature assessments shown 
in Fig. 3 for various ∼2million km

2 political/economic regions of the 
world. Colour levels are the same for all of the pink maps, with the 
range of the colour bar reflecting the range of possible values of the 

multiplication factor. Maps are not show for the “diversity of data 
sources”, “region size”, or “physical representation” steps because 
these are set to be identical or near-identical across these regions, nor 
for the “matching signals” step, for which all multiplication factor 
values are close to 1
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add some evaluation of, for instance, the spatial pattern of 
the mean annual climatology and the annual cycle, but it 
is hard to envisage a systematic approach that could ever 
be as nuanced and detailed as an expert evaluation whilst 
remaining generalisable.

Despite these disadvantages relative to detailed expert 
assessments, this algorithm has some important strengths 
that mean it can serve as a complementary tool. Most 
particularly, it can be deployed simply and straightfor-
wardly on a large scale, as illustrated in Sect. 4. Per-
forming those 116 assessments in 116 separate detailed 
papers would require unobtainable resources; in con-
trast, the main performance bottleneck in conducting the 
calculations presented in Sect. 4 was simply the extrac-
tion of the regional and seasonal data from the various 
data products. While there were some discrepancies 
between the algorithm’s results and those of existing 
expert assessments, these did not necessarily point to a 
fault in the algorithm: some of the expert assessments 
were based on fewer data sources, for instance. Given 
these points, this algorithm, or approaches similar to it, 
could provide an important tool toward the inclusion of 
detection and attribution analysis within the provision of 
climate services.
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