
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
A Plausible Micro Neural Circuit for Decision-Making

Permalink
https://escholarship.org/uc/item/65s227h7

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 39(0)

Authors
Hui, Wei
Dawei, Dai
Yijie, Bu

Publication Date
2017
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/65s227h7
https://escholarship.org
http://www.cdlib.org/


A Plausible Micro Neural Circuit for Decision-Making  
 

Wei Hui, Dai Dawei, BuYijie (weihui@fudan.edu.cn, dwdai14@fudan.edu.cn) 
Laboratory of Cognitive Model and Algorithms, Department of Computer Science, Shanghai Key Laboratory of Data 

Science, Fudan University, Shanghai, China 

 

Abstract 

An intermediate level between neural circuits and behaviors is 
neural computations, various behaviors that animals exhibit 
following some basic control laws can be implemented by some 
canonical neural computations [Carandini, 2012]. To explore how 

the microscopic activity of neurons leads to macroscopic 
behavioral control strategy, we consider basic logic-like operations 
as some canonical computations in the brain. In this paper, firstly 
we designed the functional circuits for basic logic-like operations 
based on the known neurophysiological properties. Secondly, 
using basic functional circuits constructed a possible neural 
network for decision logic of animal’s behavior. This study 
provides a general approach for constructing the neural circuits to 

implement the behavioral control rules. Furthermore, this study 
will help us to establish a transitional bridge between the 
microscopic activity of the nervous system and the macroscopic 
animal behavior. 

Keywords: Neural circuits; Logic; Neural computations; 

Introduction 

Brain as a complex system, three distinct levels should be 

understood, i.e., behavior level, algorithm level and 

implementational level, which is famously known as Marr’s 

tri-level hypothesis [Marr 1982]. The benefit of this clear 

distinction is that researchers can focus on a certain level 

and do researches purposefully. In [Carandini, 2012], the 

brain was analogized to a computer, as we know, all 

applications in the computer can be reduced to the most 

primitive operations (Logic instructions) of CPU, so is the 

brain. Researches indicate that the brain deal with different 

problems by combining and repeating a core set of 
canonical neural computations [Carandini & Heeger, 2011]. 

We understand the every detail of instructions, which were 

implemented in CPU; however, we know little about the 

details of circuit’s constitution in brain. However, without a 

clear link to behavior and computational mechanism, it is 

hard to understand what is computed. Therefore, ―We need 

a foundational mechanistic, computational framework to 

understand how the elements of the brain work together to 

form functional units and ultimately generate the complex 

cognitive behaviors‖ [Brown, 2014].  

Obviously, understanding the canonical computations in 

the brain is helpful to reveal the computational framework 

from circuit to behavior. In this paper, we consider the basic 

logical operations as some kind of canonical computations 

in nervous system. Why can the logical operations be 

considered a kind of canonical computations in nervous 

system? We make the rational reasoning from the 

computational perspective, logic reflects the most basic 

requirement that any computation can be successfully 
implemented. Thus, the rules through which animals control 

their behavior can be described by logic language. In order 

for a biological nervous system to achieve a specific 

computation, its structure must be sufficiently complex to 

achieve the basic logic operations. Therefore, there must be 

many types of neural circuits to achieve various logical rules 

in the nervous system. Since, any type of behavioral logic 

can be formally described by propositional logical. With this 

reliable and complete formal language, we can describe the 

basic control rules accurately, with which behaviors comply. 

Furthermore, with different firing mode of neurons and the 
synergistic connections between pyramidal neurons and 

intermediate neurons, how does the nervous system 

assemble a circuit to achieve a set of specific logical rules?  

The aim of our work is not to construct the neural 

network to achieve the logic operations. In this paper, we 

attempt to explore computational framework how the 

microscopic neural activities can systematically explain the 

macroscopic behavior from the logic view. 

Related works 

Research indicates that the brain relies on a core set of 

computations to apply different functions for different 

problem [Carandini & Heeger, 2011]. Neural computations, 

which occur in populations of neurons, are a transitional 

level from circuit to behavior. Although, some computations 

have been discovered in nervous system, there are no details 

of such circuits’ constitution. In order to reveal the true 

mechanism of nervous system the research works involve in 

different field. Table1 lists the related works. 

Table1. List of related works 

Category Sub-category Attributes 

F
o
r 

C
o
m

p
u
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o
n
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P

u
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o
se

 

Numerical 
modeling 

MP model, BP model, CNN, RBM; 
[McCulloch,1943; Rumelhart et al,1986; Fischer & Ige, 2012; ] 

. Limited function approximation; 

. Violating basic biological facts *; 

Spike modeling 

HH model[Hodgkin & Huxley, 1952] 
HR [Hindmarsh& Rose, 1984] 

. Good biological plausibility; 

. Low efficiency;[Izhikevich, 2004] 

A simple Spike model  
[Izhikevich, 2003, 2004] 

. Good biological plausibility; 

. High efficiency; [Izhikevich, 2003, 2004] 

A cortical simulator 
[Aanthanarayanan & Modha, 2007] 

. Coarse clique-level simulation; 

. No certain behavior interrelated to; 
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Model of thalamocortical systems 
[Izhikevich & Edelman, 2008] 

. Good biological plausibility; 

. No certain behavior interrelated to; 

F
o
r 

P
h
y
si

o
lo

g
ic

al
 P

u
rp

o
se

 

Sensor-motor 
circuit 

Circuits for 
C.elegans’ 
behaviors: 

Using ANN to construct 
[Fer ée et al, 1996, 1999]; 

.Circuit in ANN-mode is of poor biological plausibility; 

Using DNN to construct 
[Jian-Xin & Xin, 2013] 

.Moderate biological plausibility; 

.No biological neuron was used; 

Reusable and 
combinable 
primitive circuit 

Canonical 
neural 
computations 

Linear filtering; 
Divisive; Normalization; 
Thresholding; 
[Carandini & Heeger, 2011;Wang, 2002; 

Carandini, 2005, 2012;] 

.Hypothesis on functionalism-level, not on implementation level 

.No constitution details of circuit; 

Decision-
making circuit 

Modulators of Decision-making 
[Kenji Doya, 2000, 2008] 

. Good biological plausibility; 

. No detail constitution of circuit; 

Model of two-choice decisions 
[Ratcliff & Rouder, 1998] 

. Less biological details; 

. Numerical approximation only; 

Probabilistic model for decision making 
[Wang, 2002; Wei & Dai & Bu, 2017; Wei & Bu & Dai, 2017] 

. Good biological plausibility; 

. Matching behaviorism data; 

. Statistical abstraction on group-level neural activities. 

* Violating basic biological facts includes:(1) the activation mode of the MP model is two-valued, but that of biological neuron is impulse-firing; (2)the 

type of ANN’s neuron is unitary, however, in the biological neural system, not only multiple types of neurons exist but also their proportion matters; (3)the 

numerical settings of threshold and connection weights of ANN being able to adjust at will are too idealistic; (4)numerical neurons in the same layer working 

with perfect synchronization are too idealistic, however, time differences of signal transmitting are more general. 

Biological neuron 

Neuron Model 

Izhikevich proposed a simple spiking neuron model that 

reduces the HH model to a 2-D system [Izhikevich, 2003]. 

Ordinary differential equations are of the form: 

 

20.04v 5v 140 u I

du
a bv u

dt

v c;
If v 30,Then

u u d;

dv

dt
   

 






 

 

                   (1) 

Interpretation of parameters refers to [Izhikevich, 2003]. In 

the paper, typical values of parameters for excitatory neuron 

were: a = 0.02, b = 0.25, c = -65, d = 8. Average firing 

rate (AFR) of pyramidal neuron was between 0 and 21 Hz. 
Typical values of parameters for inhibitory neuron were: a 

= 0.1, b = 0.2, c = -55 ~ -48, d = 2. AFR of intermediate 

neuron was between 0 and 200 Hz. 

Time delays in AP transmission 

Delay means the time of AP propagating from pre-synaptic 

neurons to post-synaptic neurons [Tolnai et al, 2009]. A 

wide range of time delays (up to 20 ms) could occur. Since 

most previous studies did not relate to specific behavioral 

control logic, which was easy to ignore. In fact, the duration 

from when the AP is generated to its arrival at the 

postsynaptic neuron is time-critical or time-sensitive. In this 
paper, the different delays of AP transmission may be 

similar to ―time multiplexing‖ in signal processing, which 

plays an important role in behavioral decision logic.  

In this paper, we simulated the propagation delays of AP 

using different queue lengths. For example, using four 

different queue lengths, as shown in Fig. 1 (b, Queue 1~4), 

simulated the different delays of AP propagating from the 

cell body to positions 1~4 in Fig. 1(a). If the length of a 

queue is n, then the AP is delayed n milliseconds. Four 

queues with sequential increases in length indicated that as 

the location of the synapse on the axon moved away from 

the cell body, the delays increased. If an AP was generated 

in the pre-synaptic neuron, we added 1 to the head of the 
queue; otherwise, we added 0. When the end of queue 

element was 1, it indicated that the postsynaptic neuron 

received an AP. Delays of single neuron were limited; if 

large delays are required in the nervous system, Fig. 1(c) 

presents a possible way. 
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Figure 1. Simulation of the delays in AP transmission along an 
axon using queues. 

The firing rate of pyramidal neurons is adjustable 

A study has indicated that intermediate neurons participate 

in regulating the firing rates of neural networks [Sanders, et 

al, 2013]. Fig. 2 shows a possible way of implementation 

that could achieve this regulation of AFR in the nervous 
system. This cooperative activity in which excitatory 

neurons and inhibitory neurons regulate the AFR of 

downstream neurons is a basic mechanism through which 

nervous systems function. 

dendrite

E

Excitatory synapticExcitatory synaptic

Inhibitory synapticInhibitory synaptic
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Figure 2. AFR of downstream neurons can be regulated by 
different combinations of upstream excitatory and inhibitory 
synapses. 

In Fig. 2, if pyramidal neuron E received AP with a stable 

AFR from upstream excitatory neurons (Eneus), then the 

AFR of E could be regulated successfully by increasing or 

decreasing the firing rate of upstream inhibitory neurons 

(Ineus), as shown in Fig. 3. Table 2 shows changes in the 

range of neuron E’s AFR with changes in the AFR of 

upstream Eneus and Ineus. This basic law revealed that 

nervous systems could regulate output firing rate through a 

precise configuration of types of neurons and connections. 
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Figure 3. (a) The AFR of neuron E increased with a decrease in the 
AFR of upstream Ineus. (b) The AFR of E decreased with an 
increase in the AFR of upstream Ineus. 

Table2. Regulating the AFR of neurons within a certain range. 
AFR of Eneus 17~19Hz 

AFR of Ineus 0~50Hz 50~100Hz 100~150Hz 150~200Hz 

AFR of E 16~18Hz 13~16Hz 9~13Hz 3~9Hz 

AFR of Ineus 75~80Hz 

AFR of Eneus 17~19Hz 12~16Hz 8~12Hz 5~8Hz 

AFR of E 14~16Hz 12~16Hz 8~12Hz 5~8Hz 

Neural circuit designs for logic-like operations 

AP from pre-synaptic neurons can produce excitatory 

post-synaptic potentials (EPSP) or inhibitory post-

synaptic potentials (IPSP). Since, single AP generates too 

small EPSP or IPSP to activate or inhibit the post-

synaptic neurons; we assume that a train of at least 40 AP 

could activate the postsynaptic neuron. We employ a 

group of neurons (neuron cluster) that included 50~100 

neurons as a functional unit, which is used to construct 

circuits to achieve the basic logic-like operations. Since, 

any of the complex logic can be expressed as a logical 

expression by four basic logical operations: And, Or, 

Negation, and Conditional. We implement four circuits 

that are equivalent to the function of these basic logic 

operations. The circuits contain excitatory neurons and 

inhibitory neurons.  
In the paper, when a constant stimulus 7.5 adding 

background noise is presented to a neuron cluster, AFR of 

cluster is higher than 10Hz; while a constant stimulus 3.8 

adding background noises is presented, AFR of cluster is 

lower than 5Hz. If the AFR of a neuron cluster is higher 

than 10 Hz, then the proposition expressed by the neuron 

cluster is True; if the AFR of a neuron cluster is lower 

than 7 Hz, then the propositions is False. 

And-like operation circuit 

As we know that the concept of the neocortex is as an 

assemblage of the basic functional units [Jean-Vincent Le 

Bé, 2007]. Neurons in the fourth layer accept the external 

signal input from the afferent fibers (area-b in Fig. 4). Small 

pyramidal cells and intermediate neurons in the second and 

third layers are responsible for processing the signal (area-a 

in Fig. 4). In the fifth layer, large pyramidal cells are 

responsible for propagating the ―results‖ out of the cerebral 

cortex (area-c in Fig. 4). Axons are shown in black and 

dendrites are shown in blue.  

I

II

III

IV

V

VI
Intermediate neuronIntermediate neuron

Pyramidal neuron

or satellite cell 

Pyramidal neuron

or satellite cell 
Excitatory synapseExcitatory synapse

Inhibitory synapseInhibitory synapse

a

b

c

 
Figure 4. Morphological principles of connectivity between 

neocortical neurons (Corresponding to [Jean-Vincent Le Bé, 2007]). 

And-like operation is equivalent to that upstream neuron 

clusters A and B both fire AP at a high rate, followed by 

neuron cluster C firing at a high rate; otherwise, C fires at a 

low rate. As shown in Fig. 5-Left, neurons in A and B full 

connect to neurons in C. A and B represent two propositions, 

and C achieves the function of operation ―A And-like B‖. As 

shown in Fig.5-Right, A and B (corresponding to clusters A 

and B in Fig.5-Left) that represent the incoming information 

should be distributed in the fourth layer of the neocortex. C 

(corresponding to C in Fig.5-Left) that achieves the 

computation of the And-like operation for A and B should 
be distributed in the second and third layer. At last, the 

processing results are propagated out of neocortex by the 

large pyramidal cells in the fifth layers. We re-layout the 

Fig.5-Left and obtain the Fig.5-Right. The new circuit 

satisfies the anatomical discoveries and achieves the logic 

function. It is a feasible implementation in neurobiology. 

BA

C

… ...

… ...

I
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III

IV

V

VI

A B

C

RightLeft

P

 
Figure 5. Circuit of And-like operation 

AFR of A and B are stable due to the stable input. Neuron 

cluster C receives AP from A, and the time span is so long 

(about 20 ms) that the number of AP is small at any given 
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moment. The distribution property of AP from neurons in 

cluster B is similar to that of A. If neuron clusters A and B 

both fire at a high rate, AP trains from A and B at least 

partially overlap. The purpose of this design is that when 

only one of the two neuron clusters fires at a high rate, the 

strength of the subsequent EPSP is too weak to activate C 
fire at a high rate. However, when A and B both fire at a 

high rate, due to the overlap of EPSP, the strength of the 

EPSP is sufficiently strong that C fires at a high rate as well. 

However, we found that C would not fire with a high rate 

every time during the experiment. The EPSP from A and B 

does not necessarily overlap because the overlap is time-

critical or time-sensitive. Thus, it is possible that C fires at a 

low rate even if both A and B fire at high rate. To avoid 

such a situation, one feasible way that we used neuron 

clusters as functional units, and the properties of neurons in 

a cluster are different, including the model parameters and 

AP delays. Therefore, initiation of neuronal firing is 
asynchronous. As a result, EPSP always can be overlapped 

in C. When A and B both fire at high rate, and C fires with a 

high rate. Typical values for the delays of neuronal AP are 1 

ms, 2 ms, …20 ms in A and B; each delay has the same 

number of neurons, and the model parameters of each 

neuron is little different. As shown in Fig. 6, only when 

neuron clusters A and B both fire at a high rate, does C fire 

at a high rate [Fig. 6(d)]; otherwise, C fires at a low rate [Fig. 

6(a), (b), and (c)]. This circuit performs the function of And-

like operation. 
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Figure 6. AFR of the And-like operation circuit 

Or-like operation circuit 

Or-like operation is equivalent that if at least one of 

upstream neuron clusters A and B fires AP at a high rate, 

then C fires at a high rate; otherwise, C fires at a low rate. 

The structure in Fig5 can also achieve the function of Or-

like operation through modifying the parameters to make 
sure that APs from neuron clusters A and B are synchronous 

and concentrated, and when one of the two clusters fires at a 

high rate, at least 40 AP have reached C at one given 

moment. Typical values for the delays of the neuronal AP 

are 1 ms for A and 5 ms for B. The purpose of this design is 

that when at least one of the two neuron clusters (A, B) fires 

at a high rate, the strength of subsequent EPSP is 

sufficiently strong to make C fire at a high rate [as shown in 

Fig. 7(b), (c), and (d)]. Only when neuron clusters A and B 

both fire at a low rate, C fires at a low rate [as shown in Fig. 

7(a)]. This circuit performs the function of  ―A Or-like B‖. 
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Figure 7. AFR of the Or-like operation circuit 

Conditional-like operation, Negation-like operation 

circuit 

Conditional-like operation is equivalent to a simple 

projection relationship from upstream to downstream 

neurons, such that if upstream neurons fires with a high rate, 

then downstream neurons fires with a high rate; otherwise, 

downstream neurons fire at a low rate. Negation-like 

operation is equivalent that if A fires AP at a high rate, then 

C fires with a low rate; otherwise, C fires with a high rate. 

As shown in Fig.8-left, neurons in A fully connect to 

neurons in I1… Im, E1… Ek, and neurons in I1… Im, E1… Ek, 

full connect to neurons in C. In addition, for local circuits: 
E1 Conditional-like C, and Ek Conditional-like C. Neurons in 

I1… Im are all inhibitory, and the others are excitatory. A 

represents a proposition, and C performs the function of 

operation ―Negation-like A‖. Its possible form in neocortex 

is shown in Fig. 8-right. 
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Figure 8. Circuit of Negation-like operation. 

The circuit contains excitatory neurons and inhibitory 

neurons. When neuron cluster A fires at a high rate, which 

activate intermediate neuron firing at 60~110Hz, and the AP 

are asynchronous, which led to neuron cluster C receiving 

nearly continuous IPSP. Thus, neurons in C are inhibited, 

and C could not fire at a high rate. When A fires at a low 

rate, the intermediate neurons fire less than 60 Hz, which 

could not inhibit the activity of downstream neurons. Here, 

the excitatory signal that from A activated C with ―time 
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division multiplexing‖ by neuron clusters E1, E2, and E3 (m 

= 3, k = 3). Thus, the AFR of C is about 3 times greater than 

that of A. Typical values of delays from A to I1, I2, and I3 

were 1 ms, 10 ms, and 20 ms, and AP delays from A to 

neuron clusters E1, E2, and E3 are 20 ms, 40 ms, and 60 ms, 

respectively. AP delays from I1, I2, and I3 to neuron cluster 
C are 1 ms, and AP delays from E1, E2, and E3 to C are 30 

ms. Each delay had about the same number of neurons. The 

above settings are not absolute. The circuit performs the 

transfer of a low firing rate to a high firing rate [Fig. 9(a)], 

and a high firing rate to a low firing rate [Fig. 9(b)]. 
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Figure 9.  AFR of the Negation-like operation circuit 

Constructing a neural network for a specific 

behavior based on the logic-like operations 

Any of the propositional logical expressions can be 

transferred into an equivalent conjunctive or disjunctive 

paradigm. Thus, the nervous system could possibly perform 

a logic function by realizing the corresponding paradigm. 

We demonstrated the implementation of a neural circuit 

for decision-making logic using a rat’s behavioral decision. 

In the behavioral experiment [Yang et al., 2014], the rat was 

trained to go to alternate arms of a Y-maze for drinking, and 

after the training, the rat never made a mistake to the same 
side two times as shown in Fig. 10. This experiment verified 

that the rat formed a set of accurate rules for decision 

making (turning left or right), which depended on the 

information that the side from which the rat obtained the last 

drink, and whether the rat reached the neck of the Y-maze.   
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Figure 10. Behavior decision experiment of rat (Corresponding to 

[Yang et al, 2014]). 

We outlined the behavior in a set of logical expressions: 

Drink_L, the rat last drank on the left side of the Y-maze; 

Drink_R, the rat last drank on the right side; Thirsty, the rat 

was in a thirsty state; At_Neck, the rat reached the neck of the 

Y-maze; Turn_L, the rat made a decision with turning left; 

Turn_R, the rat made a decision with turning right. The 

decision logic could be described such that the rat was 

thirsty, and working memory retained the left (or right) side 

of the Y-maze from which the rat last drank. Then, when the 
rat reached the neck of the Y-maze again, it executed the 

command of turning right (or turning left). The process of 

decision logic could be expressed by a proposition logical 

expression: (Thirsty ˄ Drink_L ˄ At_Neck → Turn_R) ˅ (Thirsty 

˄ Drink_R ˄ At_Neck → Turn_L). A plausible neural network 

could achieve this decision logic, as shown in Fig. 11. 
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Figure11. Neural circuit for rat’s decision-making. 

Taking the rat executing the turning-right command as an 

example, the details of the circuit were such that: First, four 

neuron clusters represented the four propositions, Thirsty, 

Drink_L, At_Neck, and Turn_R. If the AFR of a neuron cluster 

was higher than 10 Hz, then the corresponding proposition 

was true; otherwise it was false. Second, we constructed the 

neural circuit for the logical expression: Thirsty ˄ Drink_L 

based on the And-like circuit. Third, we constructed the 

neural circuit for the logical expression: Thirsty ˄ Drink_L ˄ 

At_Neck based on the And-like circuit. Finally, we 

constructed the circuit (Thirsty ˄ Drink_L ˄ At_Neck)→Turn_R 
based on the Conditional-like circuit. In addition, we 

designed two groups of intermediate neurons (I3 and I4) 

between Turn_R and Turn_L to avoid misuse; Drink_L and 

Drink_R were also mutually exclusive, if the two 

propositions were both true, the decision making would be 

disordered. When the rat was in a given status, the neuron 

cluster that expressed the opposite status was inhibited. The 

complete circuit for decision-making is shown in Fig. 11.  

We simulated the process of decision-making for a rat in 

a Y-maze. As shown in Fig. 12, (L-Choice) If the rat last 

drank at the right side of the Y-maze (Drink_R=True), then 

when the rat reached the neck of the Y-maze (At_Neck= True) 
it executed the command turning-left (Turn_L=True); 

otherwise, the rat executed the command turning-right 

(Turn_L=False). (R-Choice) If the rat last drank at the left 

side of the Y-maze, then when the rat reached the neck of 

Y-maze, rat executed the command turning-left; otherwise, 

the rat executed the command turning-right. 
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        Figure 12.  Decision-making in Y-maze 

Conclusion 

Finally, we summarize our work through Marr’s three-

level hierarchy. (a) What is computed? Our answer is that 

some logical rules are computed. Modeling from this 

perspective can help us to understand the functional base 

line of it. (b) Why is it computed? For sake of accurate 

behavior-controlling, these logical rules must be 

computed, which is the fundamental demand to a specific 

behavior. (c) How is it computed? In this paper, we 

design some types of local neural circuits to achieve four 

basic logic-like operations as canonical computations and 

assemble them to simulate a rat’s decision making 

behaviors in Y-maze. Firstly, our circuit design is highly 

faithful to neurobiological facts like neuron firing mode, 

two major types of neuron, the proportion constrain of 

their numbers, and pulse-based mode of communication. 

Secondly, in the scope of cortical column our logical-

equivalent local circuits are biologically plausible to be 

implemented. Thirdly, these basic functional modular are 

configurable, reusable and combinable. 
We lack a bridge theory from circuit to behavior 

[Carandini, 2012]. For example, how do microscopic 

activities of neurons and logical relationships in circuits 

support the achievement of cognitive ability? Our aim is to 

construct a biological neural network for behavioral control 

rules from a logic perspective. This study may be useful for 

gradually transitioning from microscopic neural activity to 

macroscopic behavioral control. In our future works, we 

will explore neural computational mechanism about how 

a proper circuit is formed. 
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