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ULTRAHOMOGENEOUS AND EXISTENTIALLY CLOSED
HEYTING ALGEBRAS

Abstract. Aspects of ultrahomogeneous and existentially closed Heyting alge-
bras are studied. The isomorphism type, non-simplicity, and non-amenability
of the automorphism group of the Fraïssé limit of finite Heyting algebras are
examined among others.

In these notes, we examine countable ultrahomogeneous existentially closed (e.c.)
Heyting algebras. The existence of model-completion T ∗ of the theory T of Heyting
algebra [7] is of interest in its relation to second-order intuitionistic propositional
logic. Countable ultrahomogeneous Heyting algebras are paradigmatic models of
T ∗, one of them being its prime model.

In the first section, we see that there are uncountably many countable ultraho-
mogeneous e.c. Heyting algebras. The remainder of the article concerns the prime
model L of T ∗. In the second section, we study the countable atomless Boolean
algebra definable in L. In the last section, we look at the automorphism group of L
with the Kechris-Pestov-Todorcević correspondence in mind, where it will be proved
inter alia that Aut(L) is not amenable. In the Appendix, we study issues related to
the axiomatization of T ∗.

It is an important future task to investigate the combinatorics of the age Age(L)
of L, in particular about the existence of order expansion of Age(L) with the Ramsey
property and the ordering property, and the metrizability of Aut(L).

Preliminaries. Let T be the theory of Heyting algebras. The model completion
T ∗ of T exists. It is axiomatized by

(1) T ∪ {U(θ′ → θ) | θ existential}

where U denotes universal closure, θ′ is a quantifier-free formula such that T |=
U(θ → θ′), and T + U(θ′ → θ) is a conservative extension with respect to the
universal formulas (θ′ is the result of applying the QE algorithm in [7] to θ).

We will study an ultrahomogeneous model L of T ∗ later in this article. Neither
T nor T ∗ is locally finite, but L is. However, L is not uniformly locally finite, so
T ∗ is not ℵ0-categorical. T ∗ is not uncountably categorical either because of its
instability. The Fraïssé limit L is the prime model of T ∗. In many cases, the Fraïssé
limit of a class of finite structures is pseudofinite. However, this is not the case for
the complete theory T ∗ + (0 6= 1); there is a sentence φ implied by the theory that
is not satisfied by any finite structure of the same signature. Indeed, take φ to be
the conjunction of the density of the partial order (see Ghilardi and Zawadowski [7,
Proposition 4.28]), 0 6= 1, and

∧
T .

We review an important construction of Heyting algebras (this material appears
in, e.g., Chagrov and Zakharyaschev [3]). For an arbitrary poset P, the poset of
upward closed sets, or up-sets, of P ordered by inclusion has a Heyting algebra
structure. We call this Heyting algebra is dual of P. Conversely, if L is a finite
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2 ULTRAHOMOGENEOUS AND EXISTENTIALLY CLOSED HEYTING ALGEBRAS

Heyting algebra, then one can associate with L the poset P of join-prime elements
of L with the reversed order. One can show that the dual of P is isomorphic to L.

Suppose that L and L′ are the duals of P and P′, respectively, and that f : P→ P′
is p-morphic, i.e., f is monotonic with

∀u ∈ P ∀v ≥ f(u)∃w ≥ u f(w) = u,

then the function f∗ defined on L′ that maps each up-set with its inverse image
under f is a Heyting algebra homomorphism L′ → L. We call f∗ the dual of f as
well. If f is injective, then f∗ is surjective; if f is surjective, then f∗ is a Heyting
algebra embedding.

1. Countable Ultrahomogeneous Heyting algebras

The model completion T ∗ is the theory of the Fraïssé limit L of finite nontriv-
ial Heyting algebras, which exists [7]. The strong amalgamation property of T
was proved by Maksimova [13]; in fact, her construction establishes the super-
amalgamation property for the class of finite Heyting algebras. Recall that a Fraïssé
class K of poset expansions has the superamalgamation property if for every di-
agram A1 ←↩ A0 ↪→ A2 of inclusion maps in K, the amalgamation property of K
is witnessed by a diagram A1 ↪→ A ←↩ A2 of inclusion maps in such a way that
A1 |̂ A0

A2, where |̂ is the ternary relations for subsets of A defined as:

S |̂
T
U ⇐⇒ ∀a ∈ S ∀b ∈ T

{
a ≤ b =⇒ ∃c ∈ U a ≤ c ≤ b
b ≤ a =⇒ ∃c ∈ U b ≤ c ≤ a

}
.

For the sake of completeness, we directly show the superamalgamation property
for the class K of finite Heyting algebras. Let A1 ←↩ A0 ↪→ A2 be a diagram of
inclusions in K. Consider the dual Pi of Ai (i = 0, 1, 2). Consider P := {(p1, p2) ∈
P1 × P2 | p1 ∼ p2}, where p ∼ p′ if and only if p ≤ c ⇐⇒ p′ ≤ c for every c ∈ P0.
One can show that (the restriction of) the projection πi : P � Pi is a p-morphism
for i = 1, 2 and that πi induces an embedding of Ai into a finite Heyting algebra A.
Choose a copy of A so that Ai ⊆ A. It suffices to show that if a1 ≤A a2 for ai ∈ Ai,
there exists a0 ∈ A0 such that a1 ≤A a0 ≤A a2 (We shall omit superscripts from
≤A henceforth). Let a0 =

∧
{a ∈ A0 | a1 ≤ a0} ∈ A0. We claim that a1 ≤ a0 ≤ a2.

It suffices to show that for every p2 ≤ a0 prime in A2, we have that p2 ≤ a2. We
prove this by showing the existence of p1 ≤ a1 prime in A1 such that p1 ∼ p2; then,
since (p1, p2) ∈ P, and (p1, p2) ∈ π∗1(a1) ⊆ π∗2(a2), we would conclude that p2 ≤ a2.
Let c :=

∧
{a ∈ A0 | p1 ≤ a}, and consider the elements below a1 ∧ c prime in A1.

Assume by way of contradiction that all of them are bounded from above by some
element in {a ∈ A0 | p1 6≤ a}. Then, so is a1 ∧ c, i.e., a1 ∧ c ≤ d for some d ∈ A0
with p1 6≤ d. Now, we have a1 ≤ c→ d ∈ A0. By the definition of a0, this means
that a0 ≤ c→ d. Since p1 ≤ c→ d, and p1 ≤ c, we have p1 ≤ c∧ (c→ d) ≤ d, which
is a contradiction. Hence, one can find a p1 ≤ a1 prime in A1 such that p1 ∼ p2.

We introduce notation naming structures obtained by the superamalgamation
property: Let D be the diagram B ←↩ A ↪→ C in Age(L), where Age(L) the age
of L is regarded as a category whose morphisms are the embeddings. The super-
amalgamation property for Age(L) gives rise to a subalgebra

⊔
D of L such that there

are embeddings ιD←↩ : B ↪→
⊔
D and ιD↪→ : C ↪→

⊔
D with ιD←↩(B) |̂ ιD↪→(A) ι

D
↪→(C).

One can show that ιD←↩(B) \ ιD←↩(A) and ιD↪→(C) \ ιD↪→(A) are disjoint.
The following is a model-theoretic argument that L is e.c.:
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Proof. Consider a quantifier-free formula φ0(x, y) and a tuple a ∈ L. Note that
〈a〉L is finite by the construction of L, so there is a quantifier-free formula ψ(y) such
that for any Heyting algebra L′′ and b ∈ L, we have

L′′ |= ψ(b) ⇐⇒ 〈b〉L
′′ ∼= 〈a〉L.

Now suppose that there is L′ ⊃ L such that L′ |= ∃xφ0(x, a). This implies the
formula

(2) ∃x∃y[φ0(x, y) ∧ ψ(y)]

is satisfiable over T . By the extended form of the finite model property for T that
works for equations as well as inequations [4], there is a finite Heyting algebra L0
satisfying (2). By construction, without loss of generality L0 ⊆ L. Let ξ, b ∈ L0
be the witness to ∃x, ∃y, resp. The isomorphism 〈b〉L → 〈a〉L induces another
i : L→ L by ultrahomogeneity. It follows that i(ξ) solves the formula φ0(x, a) in
L. �

Fact 1.1. There are continuum many finitely generated Heyting algebras up to
isomorphism.

This fact is probably well known, but a proof is included for the sake of com-
pleteness.

Proof. Regard the chain ω+1 as a Heyting algebra. Note that every order-preserving
injection ω + 1 → ω + 1 is a Heyting algebra embedding. Since such functions
are in bijective correspondence with strings in ωω, there are continuum many of
them. Now consider the free Heyting algebra F with one generator. Construct an
embedding ι : (ω + 1)→ F recursively as follows: let ι(0) = 0 and ι(ω) = 1; having
defined ι(n) for n < ω, define ι(n+ 1) to be the join of the two successors of ι(n).
It can be checked directly that ι is a Heyting algebra embedding. By Abogatma
and Truss [1, Theorem 2.4], we conclude that there are continuum many finitely
generated Heyting algebras up to isomorphism. �

Proposition 1.2. Let K be an inductive class of finitely generated structures with
the amalgamation property, and let A ∈ K. There exists an ultrahomogeneous
structure A] ∈ K that is existentially closed in K and extends A.

Proof. We construct A] as the union of an ω-chain A0 ⊆ A1 ⊆ · · · of structures in
K. Let A0 = A. Fix a bijection π : ω × ω → ω such that π(i, k) < i for i, k < ω.

Having Ai constructed, we extend Ai to Ai+1 as follows:
Case i = 2i′: Apply the well-known construction to Ai to obtain Ai+1 so that
Ai+1 |= φ(ā) whenever φ(x̄) is an existential formula, ā is in Ai, and there
exists C ∈ K such that Ai ⊆ C and that C |= φ(ā).

Case i = 2i′ + 1: We do the construction in the proof of Abogatma and
Truss [1, Lemma 2.3], which is included for the sake of completeness. There
are at most countably many partial isomorphisms of Ai, i.e., isomorphisms
between substructures of Ai; enumerate them as (ϕik)k<ω. Take (j, k)
such that π(j, k) = i′. Let A′i+1 be the structure in K witnessing the
amalgamation property for the diagram

Ai
ι1←↩ domϕjk

ι2◦ϕjk

↪→ Ai,
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where ι1, ι2 are the inclusion maps of the correct types. Replace Ai+1
with an isomorphic copy if need be so that Ai ⊆ Ai+1. Note that ϕjk is
extended to a partial isomorphism ϕ̃jk of A′i+1, where dom ϕ̃′jk = Ai. One
can use a similar construction to obtain Ai+1 with a partial isomorphism
ϕ̃jk extending ϕ̃′jk such that Ai ⊆ ran ϕ̃jk.

That A] is e.c. in K can be proved as usual. Let ϕ : B → C be an isomorphism
where B,C are finitely generated substructures of A]. Let j < ω be such that
the finitely many generators of B and C are contained in Aj ; in fact, we have
B,C ⊆ Aj . Take k < ω so that ϕ = ϕjk. By the construction of Ai+1 from Ai,
where i = 2π(j, k) + 1, ϕ is extended by a partial automorphism ϕ̃jk of A], where
dom ϕ̃jk ∩ ran ϕ̃jk ⊇ Ai. Note that i > j. By repeating this, one obtains a chain
ϕ = ϕ0 ( ϕ1 ( · · · , where domϕm < domϕn whenever m < n, so the union⋃
n<ω ϕ has the domain A], which is evidently an isomorphism A] → A]. We have

seen that A] is ultrahomogeneous. �

Corollary 1.3. There are continuum many countable ultrahomogeneous e.c. Heyt-
ing algebras.
Proof. This follows immediately from the preceding propositions as a single countable
ultrahomogeneous e.c. Heyting algebra has at most countable substructures up to
isomorphism. �

2. Definable Countable Atomless Boolean Algebras

In the next section where we study the topological group of automorphisms of
L, first-order interpretations of B in L would be useful. Of course, the countable
atomless Boolean algebra embeds in L by the weak homogeneity of L. However:
Proposition 2.1. No substructure of L that is a countable atomless Boolean
algebra is a relativized reduct.
Proof. We show that for any countable atomless Boolean algebra B ⊆ L there are
an automorphism σ of L over a and a distinct countable atomless Boolean algebra
B′ ⊆ L such that σ(B) = B′ setwise. (Then the domain of B will be seen to be
undefinable.)

Recall that B is the union of an ω-chain B0 ⊆ B1 ⊆ . . . of finite Boolean
algebras. We construct an ω-sequence A0, A1, . . . of finite Boolean algebras that
are subalgebras of L and an ω-chain B′0 ⊆ B′1 ⊆ . . . such that Bk, B′k ⊆ Ak, that
Bk ∼= B′k, and that Bk 6= B′k.

Let D0 be the diagram B0 ←↩ 2 ↪→ B0. Let A′0 =
⊔
D. By the weak homogeneity

of L, there is an embedding i0 : A′0 → L such that (i0 ◦ ιD←↩) � B0 is the identity. Let
A0 be ran i0 and B′0 be ran(i0 ◦ ιD↪→).

Having Ak and B′k defined, we define Ak+1 and B′k+1 as follows. the diagram
Ak ←↩ B′k ↪→ Bi+1. Let D̃k+1 be the diagram Ak ←↩ Bi ↪→ Bi+1, and Dk+1 be
Bi+1 ←↩ Bi ↪→

⊔
D̃k+1. By appealing to the weak homogeneity of L as before, take

an embedding ii+1 :
⊔
Dk+1 ↪→ L so that B′i+1 := ran(ii+1 ◦ ι

Dk+1
↪→ ◦ ιD̃k+1

↪→ ) extends
B′i and that Bi+1 = ran(ii+1 ◦ ι

Dk+1
←↩ ). Finally, let Ak+1 = ran ii+1.

By construction and by the ultrahomogeneity of L, the two substructures Bk
and B′k are conjugate under an automorphism of L. Let B and B′ be the unions of
Bk’s and B′k’s, respectively. Then B and B′ are conjugate under an automorphism
of L, and B 6= B′. �
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If we drop the requirement that a copy of B in L be a subalgebra of L, we do
obtain a natural interpretation as follows:

Proposition 2.2. There is an atomless Boolean algebra which is a relativized
reduct of L.

Proof. The set B of fixed points of 1− (1− ·) in L is a Boolean algebra by setting
a ∧B b = ¬¬(a ∧L b) and the remaining operations of B the restrictions of the
corresponding operations of L. (Note that B is not a substructure of L.)

Suppose that a ∈ B is an atom of B. We show that a is also an atom of L.
To see this, assume the contrary, and let b be such that 0 < b < a, where b 6∈ B.
Since b 6∈ B, we have 1− (1− b) 6= b; since 1− (1− c) ≤ c for all c ∈ B, we have
1− (1− b) < b. Now 1− (1− b) ∈ B and 0 < 1− (1− b) (since 1− b < 1), so we
have 0 < 1− (1− b) < a, contradicting the assumption that a is an atom of B.

We have seen that any atom in B is an atom of L. Since there is no join-irreducible
elements (let alone atoms) in L [7, Proposition 4.28.(iii)], B is atomless. �

3. Automorphism Group

In this last section, we look at the automorphism group of L with the Kechris-
Pestov-Todorcević correspondence in mind.

Recall that the extreme amenability of topological groups are of interest only
if they are not locally compact [9]. It is well known that Aut(M) for a countable
ω-categorical M is not locally compact [12]. Even though L is not ω-categorical, we
can show the following.

Proposition 3.1. The topological group Aut(L) is not locally compact.

Proof. It suffices to show that for every finite subset S ⊆ L there is an infinite
orbit in Aut(L)(S) y L. Note that for every finite subalgebra A ⊆ L, there exists
a ∈ L \ A such that a is join-prime in 〈Aa〉L. By repeatedly using this, take an
ω-sequence (ai)i<ω of elements of L such that ai ∈ L \ 〈Sa0a1 . . . ai−1〉L is join-
prime in 〈Sa0a1 . . . ai〉L for i < ω. By construction, there exists an automorphism
φi : L→ L fixing S pointwise such that φi(ai) = ai+1 for i < ω. Hence, the orbit of
a0 under Aut(L)(S) is infinite. �

An obvious strategy to study Aut(L) is to relate it to Aut(B), where B is the
countable atomless Boolean algebra. The following lemma gives rise to a topological
embedding of the former into the latter.

Lemma 3.2.
(1) Let f : H → H1 be a Heyting algebra homomorphism between finite algebras.

There are finite Boolean algebras B(H) and B(H1) and a Boolean algebra
homomorphism B(f) : B(H)→ B(H1). There are interior operators ◦ , ◦1

on B(H), B(H1) such that B(H)◦ ∼= H and B(H1)◦1 ∼= H1. If f is injective,
so is B(f); if f is surjective, so is B(f).

(2) There is an interior operator ◦ on the countable atomless Boolean algebra
B such that B◦ is isomorphic to the universal ultrahomogeneous countable
Heyting algebra L.

(3) An automorphism L→ L can be extended (as a function between pure sets)
to another B → B. Moreover, there is an embedding Aut(L) ↪→ Aut(B)
that is a homeomorphism onto its image.
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Proof.
(1) Let P and P ′ be the dual posets of H and H1, respectively. There is a

p-morphism D(f) : P1 → P that is the dual of f . D(f) is surjective if f is
injective. Let B(H) = P(P ) and B(H1) = P(P1). D(f) induces a Boolean
algebra homomorphism B(f) : B(H)→ B(H1). B(f) is injective if D(f) is
surjective. Likewise, B(f) is surjective if f is. Let ◦ , ◦1 be the operations
that take a subset to the maximal up-set contained by that set.

(2) Let (Li)i<ω be a chain of finite Heyting algebras used in the construction of
L; so

⋃
i Li = L. Let Bi = B(Li) and ◦i be an interior operator such that

Bi
◦i ∼= Li. We may take Bi ⊆ Bi+1 for i < ω. Then ◦i+1 extends ◦i . Let

B =
⋃
iBi and ◦ =

⋃ ◦i . Then B◦ = (
⋃
iBi) ◦ =

⋃
iBi
◦i =

⋃
iHi = H. It

remains to show that B is atomless. Take an arbitrary a ∈ B that is nonzero.
Take i < ω such that a ∈ Bi. Let Pi be the poset dual to Li; then a is a
nonempty subset of Pi. Take some w ∈ a. Let P ′ be the poset obtained
from Pi by replacing w with the 2-chain {w1 < w2}. Let π : P ′ � Pi be the
surjection that maps the chain to {w} and is the identity elsewhere. This is
a p-morphism, and it induces ι : Li ↪→ L′, where L′ is the dual of P ′. Take
k < ω such that there is an embedding ι′ : L′ ↪→ Lk such that ι′ ◦ ι is the
identity on Li. Write L′ for that image of L′. Let b = (a \ {w}) ∪ {w1}.
Then b ∈ Bk = B(Lk) ⊆ B and 0 < b < a.

(3) Let f : L→ L be an automorphism. Let fk : Lk → L′k be the restriction of
f to Lk where L′k = f(Lk). Each fk is an automorphism. By the fact above,
fk induces a Boolean algebra automorphism B(fk) : B(Lk) → B(L′k) for
each k < ω; and by construction B(fj) extends B(fk) for each k < j < ω.
Let f̂ =

⋃
k B(fk). Then f̂ is an isomorphism B → B.

Let g : L→ L be another automorphism. We need to show f̂ ◦ ĝ = (f ◦g)̂.
Let a ∈ B be arbitrary. It suffices to show that f̂(ĝ(a)) = (f ◦ g)̂(a). Take
i < ω such that g(a), a ∈ Bi = B(Li). Then (f ◦ g)̂(a) = B((f ◦ g)|Lk

)(a) =
B(fk)(B(gk)(a)) = f̂(ĝ(a)).

Let ι : Aut(L) → Aut(B) be the map f 7→ f̂ . The map ι is a group
homomorphism as seen above, and it is clearly injective.

Next, we show that ι is continuous. Let b̄ be a tuple in B. It suffices to
show that for an automorphism f : L→ L the value of f̂(b̄) is determined
by the value of f(ā) for a tuple ā in L. There exists k < ω such that b̄ is in
Bk = B(Lk). Let fk : Lk → L′k be an automorphism that is a restriction of
f . Then f̂(b̄) = B(fk)(b̄). Let ā be an enumeration of the finite algebra Lk;
then ā is what we needed.

Finally, we show that the image ι(U) is open in ran ι ⊆ Aut(B) for an
arbitrary basic open set U of Aut(L). Indeed, let U be the set of f : L→ L

fixing the values of f at ā ∈ L; then ĝ ∈ ι(U) in and only if ĝ � B0 = f̂ � B0
for g : L→ L, where B0 is the Boolean subalgebra of B generated by ā. �

Note that despite L ⊆ B, the structure L is not interpretable in B because the
latter is ℵ0-categorical whereas the former is not.

There is another way Aut(B) and Aut(L) can be related. Recall the interpretation
of B in L from Proposition 2.2, and let h¬¬ : Aut(L)→ Aut(B) be the continuous
homomorphism that it induces.
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Lemma 3.3. Consider the copy of B as a relativized reduct of L as before. Every
element L is a finite join of elements of B.

Proof. Let a ∈ L be arbitrary. Take a finite subalgebra H ⊆ L so a ∈ H, and let
P be the dual poset of H so we may identify an element of H with an up-set of
P. Possibly by replacing L by another finite Heyting algebra into which L embeds,
we may assume that P is a forest. Furthermore, without loss of generality, we may
assume that a is principal. Suppose that a is generated by x ∈ P. If x is a root,
then a itself is regular, so there remains nothing to show. Suppose not, and let x−
be the predecessor of x. Let P1,P2 be disjoint posets isomorphic to that induced
by a ⊆ P. Let P′ := (P \ a) t P1 t P2 whose partial order is the least containing
those of the summands and x− ≤ P1, x− ≤ P2. Consider the surjective p-morphism
P′ � P that collapses {minP1,minP2} into x, and let i : H ↪→ H ′ be the Heyting
algebra embedding it induces. Note that Pi ∈ H ′ is regular for i = 1, 2 and that
i(a) = P1 ∨ P2. Let φ : H ′ → Hr(a) be an isomorphism such that Hr(a) is a
subalgebra of L and φ � H is the identity. Let r1(a) := φ(P1) and r2(a) := φ(P2).
We have a = r1(a) ∨ r2(a) and ri(a) ∈ B (i = 1, 2) as promised. �

Proposition 3.4. The continuous homomorphism h¬¬ is injective and is a homeo-
morphism onto its image. However, h¬¬ is not surjective, and its image is a
non-dense non-open set.

Proof. The first claim is immediate. We show that h¬¬ is not surjective.
Consider the 3-element chain C3, which can be regarded as a Heyting algebra,

and let a ∈ C3 be such that 0 < a < 1. Note that a is irregular and a principal
up-set in the dual finite poset of C3. Let D be the diagram C3 ←↩ 2 ↪→ C3, where 2
is the 2-element Heyting algebra. Let a0 = ιD←↩(a), a1.5 = ιD↪→(a), and H = Hr(a1.5).
Next, let D′ be the diagram H ←↩ ιD←↩(C3) ↪→ H. Let a1i = ιD

′

←↩(ri(a1.5)), a2i =
ιD

′

↪→(ri(a1.5)) and a0i = ri(a0) for i = 1, 2.
The Boolean subalgebra B6 generated by aji (0 ≤ j ≤ 2, 1 ≤ i ≤ 2) in B has six

atoms, each permutation of which extends to an automorphism of B. Consider the
permutation aji 7→ a(j+1 mod 3)i, which extends to an automorphism of B6, which
in turn extends to φ ∈ Aut(B) by ultrahomogeneity of B. By construction,∨

L

φ({a11, a12}) 6=
∨
L

φ({a21, a22})

showing that φ is not in the range of h¬¬.
The last paragraph also shows that the image of h¬¬ is not dense. To see

that ran h¬¬ is not open, let b be an arbitrary tuple in B, and we show that
Aut(B)(b) \ ran h¬¬ 6= 0. Take a finite subalgebra H of L such that H generates
〈a〉B as a Boolean algebra. Let D′′ be the diagram1 H ←↩ 2 ↪→

⊔
D. The

image ran ιD′′

↪→ generates a copy B′6 of B6. Take an automorphism ψ0 on
⊔
D′′

ψ0 � B′6 is as constructed in the preceding paragraph and that ψ0 � ran ιD′′

←↩ is
the identity.2 The automorphism ψ0 extends to another φ ∈ Aut(B), which is in
Aut(B)(b) \ ran h¬¬. �

1To be more precise, one can replace
⊔

D by an appropriate copy by the weak homogeneity of
L.

2The existence of such an automorphism can be proved in terms of the concrete representation
of the

⊔
D′′.
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We will show the non-amenability of Aut(L) later in this section. Before doing so,
we find it interesting to see that Aut(L) is distinct from the automorphism groups
of better-known ultrahomogeneous structures.

Lemma 3.5. Let N be a countable strongly 2-homogeneous structure, p ∈ S1(N),
and M be an ω-categorical structure in a possibly different countable language. Let
fM : ω → ω be defined by fM (n) = |SMn (0)|. Suppose that for every n0 < ω there
exist m < ω and a set X of m-types realized in N such that for every q(x1, . . . , xm)
and i < m we have p(xi) ⊆ q(x1, . . . , xm) and that fM (n0m) < |X|. Then:

(1) The topological group Aut(N) is not topologically isomorphic to Aut(M).
(2) The abstract group Aut(N) is not isomorphic to Aut(M) if Aut(M) has

the small index property.

More generally, an analogous statement about a strongly (κ+ 1)-homogeneous
N , a κ-type p, and sets X of κ ·m-types of N holds true.

Proof. The second claim is a corollary of the first (see, e.g., Hodges [8, Lemma
4.2.6]).

By way of contradiction, assume that Aut(M) and Aut(N) are topologically
isomorphic. First, we see:

Claim. There exists n0 = n0(p) < ω and a function c : p(N)→Mn0 such that for
any formula φ(x1, . . . , xm) in the language of N there is a formula φ∗(x1, . . . , xm)
in the language of M with

N |= φ(b1, . . . , bm) ⇐⇒ M |= φ∗(c(b1), . . . , c(bm))
for every b1, . . . , bm ∈ N with bi ∈ p(N) (1 ≤ i ≤ m).

In other words, N is Ind-interpretable in M . Before proving this claim, we
note that if (a1, . . . , am) ∈ φ(Nm)4 ψ(Nm), then c(a1) . . . c(am) ∈ φ∗(Mn0m)4
ψ∗(Mn0m).

We adapt the proof of a well-known fact [8, Lemma 7.3.7] combined with the strong
2-homogeneity of N to prove this claim. Let h : Aut(M)→ Aut(N) be a topological
isomorphism. By the strong 2-homogeneity, the realizers of p in N form an orbit of
Aut(N) y N . Fix b |= p in N . Since h is continuous, h−1(Aut(N)(b)) is open and
hence contains Aut(M)(a) for some n0 < ω and a ∈Mn0 . Define c : p(N)→Mn0

so that for b′ ∈ p(N) we have c(b′) = h−1(α) · a, where α is the unique element of
Aut(N) such that α(b) = b′. Now let φ(x1, . . . , xm) be as in the assumption of the
claim, and consider X := {c(d) ∈Mn0m | d ∈ Nm, N |= φ(d)}. Since h is a group
homomorphism, we can easily show that X is an orbit of Aut(M) yMn0m. By the
ℵ0-homogeneity of M , X is 0-definable, say, by φ∗.

Take m < ω and X as in the assumption. For q ∈ X let p∗ be the possibly
partial n0m-type {φ∗ | φ ∈ q∗} over 0 of M . By construction, if a tuple a ∈ Nm

realizes q, we have c(a) |= q∗. We conclude that |{q∗ | q ∈ X}| > fM (n0m), a
contradiction. �

Corollary 3.6. The topological group Aut(L) is not realized as the automorphism
group of any of the following structures:

• the countable atomless Boolean algebra B,
• the Fraïssé limit D of finite distributive lattices, or
• countable ultrahomogeneous structures in finite relational languages.
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Moreover, Aut(L) is not isomorphic to Aut(B) or Aut(D) as abstract groups.

Proof. We will handle the cases of B and D first. Recall that Aut(B) and Aut(D)
have the small index property [17, 6]. Since Th(L), Th(B), and Th(D) eliminate
quantifiers, we may replace “types” with “quantifier-free types” in applying the
preceding lemma to these structures. Since fD grows asymptotically faster than
fB, it suffices to prove the conclusion for D. Let V be the variety of Gödel
algebras, i.e., Heyting algebras satisfying the equation (x → y) ∨ (y → x) = 1.
This is a locally finite variety. For a tuple of variables x, write FV

x for the free
V-algebra generated by x, and let p be qftpF

V
x (x/0). Let m < ω be arbitrary

and x = x1 . . . xm. Consider Ha := FV
x × (FV

x /θa), where θa is the principal filter
generated by a ∈ FV

x . This is a V-algebra. Now, let Xm = {qftpHa(x′/0) | a ∈ FV
m },

where x′ := (x1, x1) . . . (xm, xm). By construction, we have p((xi, xi)) ⊆ q(x′)
whenever q(x′) ∈ Xm and 1 ≤ i ≤ m. Moreover, as Ha is finite for every a ∈ FV

m ,
every type in Xm is realized in L.

Let n0 < ω be given. We have

fD(n) =
n∑
i=1

S(n, i)i!M(i) ≤ nn!M(n) max
i
S(n, i),

where n = n0m, S(·, ·) are Stirling numbers of the second kind, and M(i) is the
i-th Dedekind number. Furthermore, by log maxi S(n, i) = O(n logn) [14] and
log2 M(n) = O

((
n
n/2
))

[11], we have

log fD(n) = O(n2) +O

((
n

n/2

))
+O(n logn) = O

((
n

n/2

))
,

where we assumed n0 is even without loss of generality. On the other hand,
Valota [18] showed that |Xm| = |FV

m | = (d(m))2 + d(m), where d(0) = 1, and

d(k) =
k−1∏
i=0

(d(i) + 1)(
n
i).

Therefore, log |Xm| = O(d(m)), and

log d(m) ≥
m−1∑
i=0

(
n

i

)
log d(i).

One can show by induction that log d(m) is at least the m-th Fubini number, which
is strictly greater than m! asymptotically [15]. Therefore, there exists m such that
|Xm| > fD(n0m) as

(
n0m
n0m/2

)
∼ 4n0m/

√
πn0m.

Finally, it is known that for every countable ultrahomogeneous structure M in
a finite relational language, fM is bounded from above by the exponential of a
polynomial [2], so the claim follows from the argument above. �

We now proceed to showing the non-amenability of Aut(L).

Definition 3.7. Let H be a finite nondegenerate Heyting algebra. We write I(b)
for the set of join-prime elements below or equal to b for b ∈ H. Let ≺ be an
arbitrary linear extension of the partial order on I(1) induced from H. We define a
total order ≺alex on H extending ≺ by the following:

a ≺alex a′ ⇐⇒ max
≺

(I(a)4 I(a′)) ∈ I(a′).
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This is clearly a total order, which is known as the anti-lexicographic order. We call
this a natural ordering on H.

An expansion of a finite nondegenerate Heyting algebra H by a natural total
order is called a finite Heyting algebra with a natural ordering.

It is easy to check that if (H,≺) is a finite Heyting algebra with a natural ordering,
and H happens to be a Boolean algebra, then (H,≺) is a finite Boolean algebra
with a natural ordering in the sense of Kechris, Pestov, and Todorcević [9].
Proposition 3.8. The class K∗ of finite Heyting algebras with a natural ordering
is a reasonable Fraïssé expansion of Age(L).
Proof. We show that K∗ is reasonable and that K∗ has the amalgamation property.
(Other claims are clear.) In what follows, for a totally ordered set (X,<) and
Y,Z ⊆ X, we write Y < Z to mean that y < z whenever y ∈ Y and z ∈ Z.

Let H1 ⊆ H2 be finite Heyting algebra, and let ≺alex
1 be an arbitrary admissible

total order on H1. We show that there exists an admissible order on H2 extending
≺alex

1 . Let π : P2 � P1 be the surjective p-morphism dual to the inclusion map
H1 ↪→ H2. Note that identifying I(1Hi

) with Pi as pure sets, an admissible total
order of Hi extends the dual of the order of Pi for i = 1, 2.

Suppose that for p, q ∈ P1 we have p ≺1 q. Since ≺alex
1 is admissible, p 6≤ q.

Take arbitrary p′, q′ ∈ P2 such that π(p′) = p and that π(q′) = q. Since π is
order-preserving a fortiori, we have p′ 6≤ q′.

Let R = (≤ \∆) ∪ {(p′, q′) | π(p′) ≺2 π(q′)} be a binary relation on P2 = I(1H2),
where ∆ is the diagonal relation. It can be shown by induction from the fact in the
preceding paragraph that R contains no cycle. Therefore, R can be extended to a
total order ≺2. Furthermore, for p, q ∈ P1, we have π−1(p) ≺2 π

−1(q); a fortiori,
π−1(p) ≺alex

2 π−1(q). This shows that ≺alex
2 extends ≺alex

1 .
Next, we show the amalgamation property for K∗. Let D be the diagram

H1 ←↩ H0 ↪→ H2 in Age(L) and let ≺alex
i be an arbitrary admissible ordering on

Hi for i = 1, 2. Recall the dual poset P of
⊔
D is a sub-poset of the product order

P1 × P2, where Pi is the dual of Hi (i = 1, 2) [13]. Define a total order ≺ on P so it
extends the product order of ≺1 and ≺2.

We first show that ≺ extends the dual of the order of P. Assume that (p1, p2) ≤
(q1, q2) for (pi, qj) ∈ P and 1 ≤ i, j ≤ 2. (Recall that pi, qi ∈ Pi.) Since the order
of P is induced by the product of those of P1 and P2, we have pi ≤ qi for i = 1, 2.
Because ≺i extends the dual of the order of Pi, we have pi �i qi (i = 1, 2). By the
construction of ≺, we have (p1, p2) � (q1, q2) as desired.

We then show that (
⊔
D,≺alex) witnesses the amalgamation property. Because of

the strong amalgamation property of Age(L), it suffices to show that ≺alex extends
ιD←↩(≺alex

1 ) and ιD↪→(≺alex
2 ). Take p, p′ ∈ P1, and assume that p ≺ p′ (the other

case can be handled in a similar manner). Since ιD←↩ is induced by the projection
π1 : P � P1, it suffices to show that π−1(p) ≺alex π−1(p′). Now, it is easy to see
that, in fact, π−1(p) ≺ π−1(p′) by the construction of ≺. �

Corollary 3.9. Aut(L) is not amenable.
Proof. Consider the Boolean algebras that witness the conditions (i) and (ii) of [10,
Proposition 2.2] for the class of finite Boolean algebras with natural orderings [9,
Remark 3.1]; call them A1 and A2. Since A1, A2 ∈ K, and the Heyting algebra
embeddings A1 → A2 are exactly the Boolean algebra embeddings A1 → A2, the
pair A1, A2 witness the conditions (i) and (ii) of the same propositions for K∗. �
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Finally, we study the aspects of the combinatorics of Age(L) pertaining to the
extreme amenability of Aut(L). The Kechris-Pestov-Todorcević correspondence
concerns order expansions of the ages of ultrahomogeneous structures with the
ordering property [9]. One can make an empirical observation that the ordering
property of an order expansion of a Fraïssé class have been proved by two classes of
arguments, one of which is based on a lower-dimensional Ramsey property, with
the other argument rather trivially following from the order-forgetfulness of the
expansion. The former is applied to many classes of relational structures such as
graphs, whereas the latter is used with the countable atomless Boolean algebras and
the infinite-dimensional vector space over a finite field. Our structure L is similar
to the latter classes of structures. However, we see the following.

Proposition 3.10. There is no Fraïssé order class of isomorphism types that
expands the class of finite Heyting algebras and is order-forgetful.

Proof. Suppose that such a class K∗ exists. Let H be an arbitrary finite Heyting
algebra, and consider the action of Aut(H) on the set of binary relations on H.
Since K∗ is closed under isomorphs, the set of admissible orderings AL on H is a
union of orbits. Since K∗ is order-forgetful, AL consists of a single orbit.

Now, consider the poset P′ that is the disjoint union of two 2-chains, with its
quotient P obtained by collapsing one of the 2-chains into a point. The canonical
surjection P′ � P is p-morphic, which induces a Heyting algebra embeddingH ↪→ H ′.
Let a, b ∈ H ′ correspond to the two 2-chains. Clearly, H is rigid whereas there
is an automorphism φ : H ′ → H ′ under which a and b are conjugates. Consider
an admissible ordering ≺ on H ′; without loss of generality, we may assume a ≺ b.
Writing the action of Aut(H ′) by superscripts, we have b ≺φ a. Since K∗ is a Fraïssé
class, the restrictions of ≺ and ≺φ to H, respectively, are admissible orderings on
H. Now, we have ≺ ∩H2 6= ≺φ ∩H2, as witnessed by (a, b) ∈ H2. These cannot
belong to the same orbit of AH as H is rigid. �

From this point on, we study Aut(L) as an abstract group. In fact, we will show
the normality of Aut(L) by an argument applicable to many other ultrahomogeneous
lattices.

Lemma 3.11. IfM is a countable ultrahomogeneous structure with Age(M) having
the superamalgamation property, then M has an automorphism g : M →M that
moves almost maximally with respect to |̂ in the sense of Tent and Ziegler [16,
Lemma 5.3].

Proof. A back-and-forth construction. Enumerate M as (ai)i<ω and all the realized
1-types over all finite subsets of M as (pi)i<ω. We construct g as the union of the
chain 0 = g0 ⊆ g1 ⊆ · · · , each of which is a partial isomorphism with a finite domain.
Along the way, we construct a chain 0 = S0 ⊆ S1 ⊆ · · · of realized 1-types. Suppose
that gj has been constructed. To construct gj+1, one does the following:
If j = 3i. If ai is in dom gj , then gj+1 := gj . Otherwise, let gj+1 extend gj so
gj+1(ai) may be a realization of gj(p) outside ran gj , which exists due to the strong
amalgamation, where p is the type of ai over dom gj .
If j = 3i+ 1. Similar as above, but use range instead of domain.
If j = 3i + 2. Let k be the least such that pk is over X, that X ⊆ dom gj , and
that pk 6∈ Si. (There may not be such k, in which case gj+1 := gj and Si+1 := Si,
but there will be such k for infinitely many i because of the other two kinds of
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stages.) Let Si+1 := Si ∪ {pk}. If all realizers of pk is in dom gj , then gj+1 := gj .
If not, apply the strong amalgamation to obtain infinitely many realizers of pk.
Since dom gj is finite, there exists a |= pk outside dom gj . Let D be the diagram
〈aX〉 ←↩ 〈X〉 ↪→ 〈aX〉, and let the diagram 〈aX〉 incl.

↪→ A
ι←↩ 〈aX〉, where A ⊆ M ,

witness the superamalgamation property for D. Now let gj+1 := gj ∪ {(a, ι(a))}.
(Replace ι(a′) by something else if need be so ι(a′) 6∈ ran gj by replacing the amalgam
by one with more copies of 〈aX〉.) By the superamalgamation property, we have
a |̂ X gj+1(a). �

Theorem 3.12. Let M be a countable ultrahomogeneous structure with Age(M)
having the superamalgamation property. Moreover, assume that the amalgamation
property of Age(M) is witnessed canonically and functorially by ⊗ in the sense of
Tent and Ziegler [16, Example 2.2.1] (the superamalgamation property need not be
witnessed in this manner). Then, the abstract group Aut(M) is normal.

Proof. First, observe that the proof of [16, Lemma 2.8] depend only on the station-
arity and existence properties of an independence relation on M . Hence, apply the
proof of the lemma to the independence relation induced by ⊗ as in [16, Exam-
ple 2.2.1], which has the stationarity and existence properties, to conclude that the
topological group Aut(M) has a dense conjugacy class. By the superamalgamation
property of Age(M), one can show that the relation |̂ satisfies all defining proper-
ties of a stationary independence relation but the stationarity. In fact, the invariance
of |̂ follows from the ultrahomogeneity of M . The monotonicity and the symmetry
of |̂ are obvious by the shape of the definition of |̂ . To show transitivity, assume
that A |̂ BC D and that A |̂ B C. To show A |̂ B D, take an arbitrary a ∈ A and
d ∈ D. Suppose a ≤ d. (The case of d ≤ a can be handled in a similar way.) Since
A |̂ BC D, there is b ∈ BC such that a ≤ b ≤ d. If b ∈ B, we are done. Otherwise,
b ∈ C, so by A |̂ B C, there is b′ ∈ B such that a ≤ b′ ≤ b. Now we have a ≤ b′ ≤ d.
Finally, to show the existence property of |̂ , let p be a realized type over a finite
set B and C a finite set. Let a be a tuple realizing p. Now consider the diagram D:

〈aB〉 ←↩ 〈B〉 ↪→ 〈BC〉

Let the diagram 〈aB〉 ι
↪→ A

incl.←↩ 〈BC〉, whereA ⊆M , witness the superamalgamation
propriety for D. It is clear that ι(a) |̂ B C. By examining the proofs of [16, Theo-
rem 2.7 and Lemma 5.3], one can see that they do not depend on the stationarity of
|̂ . Therefore, for g constructed in the preceding lemma, every element of Aut(M)
is the product of 16 conjugates of g. �

Corollary 3.13. Aut(L) is normal.

By the result by Maksimova, our argument shows the normality of the auto-
morphism group of the Fraïssé limit of finite members of each of the 7 nontrivial
subvariety of Heyting algebras with the (super-)amalgamation property. Moreover,
our argument seems to be applicable to other Fraïssé classes of lattice expansions
with the superamalgamation property.

Appendix A. Axiomatization

Following Darnière and Junker [5], we follow the formalism of co-Heyting algebras,
or cHAs for short. They are exactly the order-theoretic dual of Heyting algebras.
Let T be the theory of co-Heyting algebras. This is a theory in the language of
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lattices expanded by a binary function symbol −, where x− y is the supremum of
elements z for which y ∨ z ≥ x, which always exists in a co-Heyting algebra. As
before, we write T ∗ for the model-completion of T .

We write y � x iff y ≤ x and x− y = 0. Darnière and Junker [5, Section 4] lists
two axioms D1 and S1 that are satisfied by e.c. co-Heyting algebras:

D1: For every a, c such that c� a 6= 0 there exists a nonzero element b such
that:

c� b� a.

S1: For every a, b1, b2 such that b1 ∨ b2 � a 6= 0 there exists nonzero elements
a1 and a2 such that:

a− a2 = a1 ≥ b1

a− a1 = a2 ≥ b2

a1 ∧ a2 = b1 ∧ b2.

D1 is of the form (1), but S1 is not; in particular, the consequent of D1 does not
imply the antecedent over T . However, consider the following condition:
(AS1′)
(b1 = a and b2 = 0) or (b2 = a and b1 = 0) or (b1 < a and b2 < a and b1∧ b2 � a).

The same construction as in [5, Lemma 4.2] shows that AS1′ implies the consequent
of S1 in T ∗. It can also be seen that the consquent of S1 implies AS1′ over T . I refer
to the conditional obtained from S1 by replacing the antecedent with AS1′ as S1′.

Proposition A.1. D1 does not imply S1′; a fortiori, it does not axiomatize T ∗.

Proof. It suffices to show that, given a finite cHA L with x, y ∈ L such that x� y
and a, b1, b2 ∈ L witnessing the failure of S1′, there is a finite L′ ⊃ L such that
L′ |= ∃z(x� z � y), and that a, b1, b2 still witness the failure of S1′. For let L0 be
a cHA as in the hypothesis of the claim; the usual argument gives rise to a chain
L0 ⊂ L1 ⊂ . . . , where Ln+1 is constructed by applying the claim to Ln, the union⋃
n Ln of which will satisfy D1 and the negation of S1′.
In fact, the following construction in [5, Lemma 4.1] works. Let y1, . . . , yr be the

join-irreducible components of y in L. Let I0 be the poset of the join-irreducible
elements of I; let I be the poset obtained from I0 by replacing each yi by the
chain {ηi < yi}. The p-morphism I � I0 that collapses each chain {ηi < yi} to
yi induces a cHA embedding L ↪→ L′, where L′ is the cHA of downsets of I. An
element z ∈ L′ is in (the image of) L if and only if there is 1 ≤ i ≤ r such that
ηi ∈ z and that yi 6∈ z. Suppose that there are a1, a2 ∈ L′ witnessing the consequent
of S1′. By hypothesis, one of them is in L′ \ L; without loss of generality, assume
a1 is. There is 1 ≤ i ≤ r such that ηi ∈ a1 and that yi 6∈ a1. By the consequent
of S1′, a = a1 ∨ a2 ∈ L. Since ηi ∈ a1 ∪ a2, we have that yi ∈ a1 ∪ a2. Hence,
yi ∈ a2, and thus ηi ∈ a2. Therefore, ηi ∈ a1 ∩ a2, and yi 6∈ a1 ∩ a2. However,
a1 ∧ a2 = b1 ∧ b2 ∈ L, which leads to a contradiction. �

Lemma A.2. For a finite cHA L and a, b ∈ L, we have a � b if and only if for
every join-irreducible component b′ of b we have a ∧ b′ < b′.

Proof. Note that to prove quantifier-free formulas one may just treat elements of
a cHA as closed sets in a space. If concepts of higher quantifier complexity (e.g.,
irreducibility) are involved, care must be taken.
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Let (bi)i<k be the join-irreducible components of b. Then

b− a = b ⇐⇒
∨
i

bi − a =
∨
i

bi

⇐⇒
∨
i

(bi − a) =
∨
i

bi identity in cHAs

⇐⇒
∨
i

(bi − a) ≥
∨
i

bi

⇐⇒ ∀i
∨
j

(bj − a) ≥ bi definition of
∨

⇐⇒ ∀i∃j bj − a ≥ bi join-primality of bj
⇐⇒ ∀i bi − a ≥ bi no other j than i can satisfy that
⇐⇒ ∀i bi − (a ∧ bi) ≥ bi
⇐⇒ ∀i (a ∧ bi) < bi by join-primality of bi; see [5].

�

Proposition A.3. S1′ does not imply D1.

Proof. We use a similar argument as before. We let L0 be the minimal nontrivial
cHA, and we apply to Ln the construction in [5, Lemma 4.2] to obtain Ln+1. Note
that for n < ω there is no chain consisting of more than one element in the poset of
join-irreducible elements of Ln with the induced order.

We claim that for n < ω there is no nonzero z ∈ Ln such that 0� z � 1—that
is, 0 and 1 witness the failure of D1. Indeed, suppose that there is such a z 6= 0.
There exists a join-irreducible component u′ of 1 such that u′ ∧ z 6= 0 since z 6= 0
and by distributivity. Take a join-irreducible component z′ of z ∧ u′. We now have
a nontrivial chain {z′ < u′} of join-irreducible elements. �
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