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Abstract 

Attention plays a fundamental role in higher-level cognition.  

In this paper we develop a computational model for how 

auditory spatial attention is distributed in space.  Our model 

builds on the assumption that attentional bias has bottom-up 

and top-down components.  We represent each component 

and their synthesis as a map, associating a level of attentional 

bias to locations in space. The maps and their interaction are 

modeled using an artificial intelligence approach based on 

constraints. We describe the behavioral task we have 

designed to measure the attentional bias and discuss the 

results.  We then test different hypotheses on the shape and 

interaction modalities of the maps in terms of how well they 

fit our behavioral data.  The findings showed that combining 

top-down and bottom-up spatial attention gradients that differ 

in their spatial properties produced the best fit to behavioral 

data, and suggested several novel mechanisms for future 

testing. 

Keywords: auditory attention; computational modeling; 
saliency map; constraints.   

Cognitive engineering problems and attention 

Humans evolved in a dynamic environment of shifting 

opportunities and threats.  Consequently, we are well-

equipped to organize and frequently change goals and 

priorities to effectively deal with events in the natural and 

social worlds.  High-level cognitive attributes, such as 

intelligence, creativity, and imagination presumably evolved 

to capitalize on these dynamics to promote survival (Flinn, 

Geary, & Ward, 2005).  A key aspect of higher-level 

cognition is attention.  An important role for attention-like 

selection in information processing may not be limited to 

human cognition.  For example, Helgason and colleagues 

proposed that attention is an essential element for systems to 

exhibit generalized intelligence, regardless of whether it is a 

biological or artificial intelligence system (Helgason, 

Thorisson, Garrett, & Nivel, 2014).   

 In this article we broadly consider attention as a flexible 

means of enhancing specific aspects of information 

processing, as determined by factors such as the current goal 

(top-down) or stimulus characteristics important to the 

organism (such as unexpected loud sounds)(Chun, Golomb, 

& Turk-Browne, 2011).  This flexibility is assumed to be 

implemented by specific cognitive processing routines that 

were selected during the course of human evolution 

(Cosmides & Tooby, 2013).  Differences between sensory 

modalities in terms of how the adequate stimulus and receptor 

transduction relate to the kinds of information that can be 

detected in the environment is one factor relevant to the 

design of attentional processes.  Consequently, in at least 

some respects attentional processing may sharply differ 

between sensory modalities. 

 We focus on the auditory system, and consider 

implications of the idea that the auditory system has a 

comparative advantage over other modalities in the ability to 

panoramically monitor the environment.  Hearing provides 

an early warning system (Scharf, 1998) that allows organisms 

to prepare for, or evade, threats and to capitalize on prey or 

mating opportunities.  This “3-D sphere” of spatial sensitivity 

for hearing is unique among sensory modalities because it can 

detect environmental events that are at a distance from the 

body (cf. somatosensation, gustation, to some degree 

olfaction) and out of sight (vision). 

 

Stability-flexibility dilemma and attentional systems 
 Most attention models consider attention that is directed by 

a conscious choice (“top-down” or “voluntary”) to differ in 

important ways from attention that is involuntarily 

“captured” by an event in the world that has a salient property 

(Petersen & Posner, 2012).  Salience can be due to physical 

properties, such as a loud sound, or by having personal 

meaning such as one’s name (Moray, 1959) or taboo words 

(Arnell, Killman, & Fijavz, 2007),  

and other aspects that may depend on the situation (Gygi & 

Shafiro, 2011).  The distinction between top-down and 

bottom-up attentional functions is both useful and 

2114



meaningful, even though top-down and bottom-up attentional 

processes are highly interactive (Folk, Remington, & 

Johnston, 1992). 

 One of the defining features of the top-down aspect of 

attention is that it is limited.  Either by design, such as 

matching the limitations in the number of actions that can be 

done at one time, or by overload from having too much 

information to be processed at one time, or both, voluntary 

attention is limited (Allport, 1989; Posner, 1978).  Spatial 

attention has been intensively studied, in part, because it 

vividly illustrates limitations in attentional capacity.  The 

limited capacity of spatial attention can be expressed as a 

spatial gradient relative to an attended location (reviewed in 

(Cave, 2013).  The classic way to consider this gradient is that 

it reflects decreased investment of attentional resources with 

greater distance from an attentional focus, and the extent of 

the gradient can be adjusted based on the current task 

(Eriksen & St. James, 1986). 

 The fundamental problem with including top-down and 

bottom-up attention in one general attention system that 

distributes attentional resources across space is that attention 

cannot be simultaneously both focused and diffuse.  This kind 

of trade-off has been termed the “stability-flexibility 

dilemma (Liljenström, 2003), the “shielding–shifting 

dilemma” (Thomas Goschke & Bolte, 2014), and a trade-off 

between organization and flexibility (Baars, 1997).  The 

problem is compounded by not knowing when something 

will happen outside of the attentional focus that is critical for 

survival, thus preventing an anticipatory shift by top-down 

attention.  Both top-down and bottom-up attention have clear 

survival value, but limited attention capacity implies trade-

offs between resources devoted to top-down vs. bottom-up 

attention functions.  Similar issues concerning cognitive 

trade-offs have been explored in the context of cognitive 

control and task switching (Goschke, 2000), automatic vs. 

controlled processing (Schneider & Chein, 2003), various 

dual process models of cognition (Evans, 2008), long-term 

knowledge (Caramazza & Shelton, 1998), and memory 

systems (Sherry & Schacter, 1987). 

 

Methods and computational modeling 

The present study addresses the stability-flexibility dilemma 

posed by needing attention to be both focused on a task while 

also monitoring the environment for potential threats or 

opportunities by modeling auditory spatial attention bias as 

the net result of two attention modules and their output 

(Figure 1).  Our aim is to develop a rigorous quantitative 

theory of auditory spatial attention.  One module, called the 

“goal map” is devoted to top-down attention necessary to 

perform the current task.  The other module, termed the 

“saliency map”, is specialized to monitor, in parallel, the 

environment and, when needed, engage bottom-up orienting 

that overrides current attentional focus based on top-down 

processes.  We combine novel parametric behavioral 

measures to map-out auditory attention over space with a 

computational model to explain how specific top-down and 

bottom-up mechanisms jointly determine the shape of 

auditory spatial attention gradients. 

 
Figure 1.  Proposed attentional model architecture. 

 

 Relative to existing models of auditory attention, the 

current model is designed to help understand somewhat 

higher levels of cognitive processing.  Others have modeled 

perceptual features and how they are combined to generate a 

saliency map.  There is overlap with our model at the level of 

saliency map.  Prior work computes perceptual features such 

as stimulus location, frequency, intensity, and saliency as an 

output that is computed from a raw sensory input (Coensel & 

Botteldooren, 2010; Kayser, Petkov, Lippert, & Logothetis, 

2005).  Instead, we start with perceptual features as a given 

input and model how  top-down and bottom-up modules 

interact in the context of working memory.  Note also that the 

choice of modeling auditory spatial attention in the frontal 

plane has the benefit of needing to explain attentional bias in 

only one-dimension (the azimuth plane at a constant distance 

from center of head), which simplifies modeling.  In contrast, 

visual studies of saliency maps use two-dimensional models 

(Kalinli & Narayanan, 2007). 

 
Model design  The model is designed using constraints, a 

very general and powerful artificial intelligence framework 

for problem modeling and solving.  (Rossi, Van Beek, & 

Walsh, 2006).  Constraints lie at the core of many successful 

applications in several domains such as scheduling, planning, 

vehicle routing, configuration, networks, and bioinformatics.  

The basic idea in constraint-based modeling is that the user 

states the constraints and a general-purpose constraint solver 

is used to solve them.  Constraint solvers take a real-world 

problem, represented in terms of decision variables and 

constraints, and find, if it exists, an assignment to all the 

variables that satisfies all the constraints.  A constraint 

concerns a subset of variables and defines which 

simultaneous assignments to those variables are allowed.  

Solutions are found by searching the solution space either 

systematically, as with backtracking or branch and bound 

algorithms, or use forms of local search which may be 

incomplete, that is, there is no guarantee they will return a 

solution.  Systematic methods often interleave search and 

inference, where inference consists of propagating the 

information contained in one constraint to other constraints 

via shared variables. Constraints have been used before in the 

context of human cognition for example to model skilled 

behavior (Howes, Vera, Lewis, & McCurdy, 2004).  Recently 

an implementation of the cognitive architecture ACT-R 
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based on constraint handling rules, which are a closely related 

to constraints, has been proposed in (Gall & Frühwirth, 

2014).  To the best of our knowledge, this is the first time 

constraints  are employed at this level of cognitive modeling 

and in the context of attention. 

 The model makes several assumptions regarding proactive 

and reactive control.  According to Braver’s dual mechanisms 

framework (Braver, 2012), proactive control generates a 

sustained attentional bias in accordance with task goals, such 

as focusing on a pianist about to begin their recital.  Reactive 

control, as the name suggests, is attentional orienting in 

response to a stimulus, such as if the pianist plays their first 

chord and everybody realizes that the piano is out of tune.  In 

our model the goal map is the mechanism for proactive 

control.  The spatial focus of the goal map can also be 

redirected in response to stimuli, and so could have a role in 

reactive control too.  In contrast, the saliency map codes for 

reactive control.  The relation between the saliency map and 

proactive control is only indirect.  The focus of the saliency 

map is designed to be away from the goal map focus, thus 

any proactive shifts in the goal map focus will consequently 

lead to a similar shift in the saliency map focus. 

 

Task and data to be modeled  Young adult subjects (n=42) 

listened to 25 and 75 Hz amplitude modulated white noise, 

and responded with left/right hand (counterbalanced across 

subjects). Virtual stimuli were delivered via headphones to 

one of 5 locations in the frontal horizontal plane (L→ R 

locations: -90°, -45°, 0°, +45°, +90°; 2.4 sec SOA).  In each 

6 min block subjects attended to a standard location (either -

90°, 0°, or +90°).  Most stimuli were given at the standard 

location (p=.84), with occasional shifts to the other 4 

locations (p=.04/location).  Analysis of variance (ANOVA) 

was used to examine reaction time as a function of standard 

condition (3) and stimulus location (5).  Data were collapsed 

across AM rates (ns).  We note that the following model is 

designed from general principles based on the attention and 

working memory literature, but the actual modeling here is 

very specific to our task.  This is common in other areas such 

models of canonical visual search tasks.  Future work will 

expand this model to include other tasks and situations. 

 

The model  Behavioral results were modeled using a 

constraint-based representation made up of three 

components: goal map, saliency map, and priority map. The 

maps represent the attentional bias across the horizontal 

frontal plane (-90° to +90°) (see heat-map in Figure 2, top-

left) .  The priority map is the weighted sum of the goal and 

saliency maps and represents the total attentional bias at each 

degree location.  Operationally, attention bias in the priority 

map relates to reaction time by equation 1: 

 

Eq. 1 Attentional bias = (2,000-reaction time)/(2,000) 

 

The “2,000” value was chosen as an upper limit on reaction 

times to be analyzed (both in ms), and included nearly every 

correct trial in every subject.  The units of attention bias are 

arbitrary, but index reaction time with a range of between 

approximately 0.90, which corresponds to a an extremely fast 

reaction time of 200 ms, to 0.0, which indicates a 2,000 ms 

reaction time.  Thus, larger attention bias values in the 

priority map reflect short reaction times and efficient 

processing, and longer reaction times have smaller values.   

Figure 2: Variables and constraints that represent the 

interactions between the three maps in the model. 

 

Each map is represented by a collection of variables, one for 

each 2-degree (the minimum distinguishable by a human ear) 

location in the range {-90°,…,+90°}, and a set of constraints 

over the variables.  Figure 2 (left) shows a portion of the 

constraint graph of the model where nodes correspond to 

variables and edges to constraints.  These constraints limit the 

simultaneous assignments of the constrained variables as 

indicated in the equations below, where  VG
i, VS

i, and VP
i 

represent the i-th variables of the goal, saliency and priority 

maps.  The constraints defining each map  involve the 

variable corresponding to the attended location (A) and the 

variables corresponding to a location.  The variables 

associated with the goal map (blue nodes in Figure 2) are 

constrained to represent a standard Gaussian distribution with 

its peak at level GG and located at the attended location A. An 

example of one such distribution is shown in Figure 2 right 

above the set nodes representing the goal map variables.  

Each node represents the 2 degree portion of the x-axis right 

above it and the associated attentional bias value (y-axis) is 

the value assigned to the variable corresponding to the node. 

Similarly, for the saliency (where the distribution is shown 

below the nodes) and the priority map. Note that parameter 

dG is the standard deviation of the Gaussian and is used to 

model a symmetrical decrease in top-down attentional 

resources away from the goal location.  Likewise, the 

variables corresponding to the saliency map have values 

compatible with an inverted Gaussian distribution with peak 

level –GS at attended location A and   standard deviation dS 

representing a symmetrical increase in bottom-up attention 

away from the attended location. Finally, each priority map’s 

variable takes as value the weighted sum of the values of the 

corresponding goal map and saliency map variables. The 
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graph at the bottom-right of Figure 2, shows an example of a 

goal map bias (green), saliency map bias (blue) and the 

associated priority map (purple). Weights  and , are used 

to model the magnitude of contribution of, respectively, the 

goal and saliency maps to the priority map. 

𝐺𝑜𝑎𝑙 𝑀𝑎𝑝: (𝐴 = 𝑎, 𝑉𝐺
𝑖 = 𝐺𝐺𝑒

−|𝑎−𝑖|2

2𝑑𝐺
2

) 

𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦 𝑀𝑎𝑝: (𝐴 = 𝑎, 𝑉𝑆
𝑖 = 𝐺𝑆 − 𝐺𝑆𝑒

−|𝑎−𝑖|2

2𝑑𝐺
2

) 

 

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑀𝑎𝑝: (𝑉𝐺
𝑖 = 𝑢, 𝑉𝑆

𝑖 = 𝑣, 𝑉𝑃
𝑖 = 𝛼𝑢 + 𝛽𝑣) 

 

We note that the constraint based model allows an easy 

extension to a 2D or 3D bias distribution. This can be 

achieved in two ways: either by increasing the number of 

variables (e.g. for the planar case a set for each concentric 

hemisphere), or by increasing the complexity of the domain 

values, e.g. 2D bias distributions over  2 degree sectors. 

 

Results 
We first describe and discuss the results of the behavioral 

experiment in the previous section, and then the results of 

applying our computational model to the behavioral data.  

The goal map and saliency map each had two parameters for 

fitting: attention bias and standard deviation.  

 

Behavioral results 
Reaction time curves for angular shifts had an inverted-u 

shape at all 3 standard locations (p’s<.01)(Figure 3).  

Attending to the right (+90° standard) had an attenuated 

inverted-u curve vs. -90° and 0° standards (p<.01).  Results 

show comparable reaction time increases to the nearest shift 

location for the 0° and -90° standards, and then decreases in 

reaction time at the most distant locations.  For the +90° 

standard there was a more gradual increase and decrease in 

reaction time across shift locations.  Accuracy was high for 

all stimulus locations and conditions (> 94%) and will not be 

analyzed here. 

 

 

Figure 3.  Behavioral results showing mean reaction times 

for standard locations at the far left (-90°), midline (0°), and 

far right (+90°) locations.  A) Reaction time as a function of 

location for the three standard locations.  B)  Normalized 

reaction times plotted relative to the standard location, here 

denoted by “0°”. 

 

 

Computational modeling results 
Stochastic local search was used to find parameter values for 

dS, dG, GS and GG, that minimize the root-mean-square (rms) 

error between the priority map and behavioral data.  

Bootstrapping methods were used to compare model fit as the  

parameters for the goal and saliency maps varied.  There were 

100 runs for each standard location to assess the consistency 

of results.  On each run half of the subjects (n=21) were 

randomly selected to train the model.  The model was then 

tested for fit using root-mean square error on the grand 

average of the remaining subjects (n=21). 

 
Comparison of two vs. three-component models  Having 

attention bias centered on the standard location and 

decreasing with distance was modeled with only the goal map 

having input to the priority map.  This two-component model 

had a poor fit to the reaction time data, with rms values nearly 

100x worse than models with both goal and saliency map 

inputs to the priority map (Figure 4).  Models with both top-

down (goal map) and bottom-up (saliency map) spatial 

attention bias fit the data well, with rms values ranging from 

0.0040 to 0.0035 for left or right standard locations (±90°) 

and 0.0011 and 0.0012 for the 0° standard.  The fits at each 

standard location were all significantly different from each 

other (p’s < .001).  By contrast, rms values with only the goal 

map in the model were 0.3137 ((-90° standard), 0.3060 (+90° 

standard), and 0.1191 (0° standard). We note that a model 

based only on the saliency map was not tested as it would 

have not been able to model the increased bias at the attended 

location.  The results clearly show that a simple attention 

gradient that decreases with distance from the attended 

standard location (goal map only) is unable to account for the 

behavioral data.  Models with both goal and saliency maps 

provided a good fit to the behavioral results.  It is unclear why  

 

Figure 4.  Model fit with only the goal map (GM) 

representing top-down attention bias vs. the addition of a 

bottom-up component (saliency map, SM).  Models 

examined whether goal and saliency maps had either equal 

influence on the priority map (“GM & SM) or their levels 

were included as a parameter in the model (“free levels”).  

Model fit was measured using root-mean-square error (rms). 
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the fit for the 0° standard is even better than the ±90° 

standards, but this may relate to the truncated range of 

locations on either side (±90°). 

 

Standard deviation parameters  The range of spatial 

attention bias for the goal and saliency maps was quantified 

with separate standard deviation parameters (Figure 5).  

When only the goal map was included in the model the best 

fits had standard deviations of ~100°, which produced a 

gradual decrease of attentional bias from the standard 

location.  As shown above, only including the goal map 

produced a poor fit to the behavioral data.  In all models with 

goal and saliency maps the standard deviations had, large, 

progressive reductions from standard locations on the left, to 

midline, and to the right (p<.001).  This pattern was evident 

for both the goal and saliency map SD parameters.  Analysis 

of both fixed and free bias models showed main effects of 

map type, with significantly larger SD values in the saliency 

map (p’s < .001).  There were interactions between standard 

location and map type, indicating that the difference between 

the SD of goal and saliency maps varied among standard 

locations (p’s < .001). 

 

Figure 5.  Standard deviation (SD) parameters in the models 

with goal map (GM) and saliency map (SM) components.  

Standard deviation units are in degrees. 

 

Attention bias level  Lastly, we tested a model where the 

attention bias levels from the goal and saliency maps to the 

priority map were free to vary.  The findings from when bias 

parameters were added to the model are shown in Figure 6 

for each standard location.  For the ±90° standards the goal 

map had a significantly greater bias than the saliency map, 

indicating a greater influence over the priority map outcomes.  

This was most evident for the -90° standard, which had little 

variability among modeling runs (p<.001).  In contrast, for 

the 0° standard there was substantial variability over 

modeling runs, and there was no significant difference 

between goal and saliency map bias. 

 

Note that the range of attentional bias levels in the goal and 

saliency maps is much larger than the priority map (data not 

shown).  This is the result of the model solutions having SD  

Figure 6.  Attention bias level results in the free level models.  

Bias indicates the overall level of inputs from the goal and 

saliency maps to the priority map.  Greater bias indicates 

more influence over the priority map values. 

 

parameter values that were both narrow enough to 

individually have bias levels near asymptote within the 

degree range tested.  The model sums the contributions of 

goal and saliency maps to generate the priority map, which in 

turn is proportional to reaction time.  The goal and saliency 

curves over space overlapped such that when one map had 

low bias the other had a large amount of bias.  This additive 

approach in combination with moderate SD ranges forces 

many locations to have large differences between goal and 

saliency map values while retaining a much smaller range of 

priority map values.  For perspective, the range of biases of 

between .76 - .70 corresponds to reaction times between 480-

600 ms. 

 

Discussion and conclusions 
In this paper we have studied spatial attention of the auditory 

system from a behavioral and computational modeling point 

of view.  The main findings were that a traditional top-down 

attention gradient could not account for the behavioral data, 

but a model with two gradients corresponding to top-down 

and bottom-up bias worked well.  The model is based on 

structuring the overall allocation of attentional bias as the 

sum of bottom-up and a top-down components.  We have 

presented behavioral results aimed at describing the effect of 

the overall attentional bias and we have provided an 

experimental evaluation of different model hypothesis in 

terms of how well they fit the data. There was a pronounced 

left-right asymmetry in the reaction time profiles as a 

function of location that was accounted for by progressive 

reductions in the SD parameters of goal and saliency maps.  

The results support our approach which constitutes, to the 

best our knowledge, the first computational model that 

integrates top-down and bottom-up auditory spatial attention 

processes.  
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