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 Review Article Open Access

MASP-2 (mannose/mannan binding lectin (MBL) associated serine protease-2) is a serum protein predominantly synthesized

by the liver as a ~75kDa protein and is  one of the key molecules of the innate immune system. It  is  mainly bound to

multimeric protein complexes, such as MBL, the three ficolins (M-ficolin, L-ficolin and H-ficolin) and collectin kidney 1 (CL-

K1, alias CL-11). These complexes serve as pathogen receptors, which are further bound to MASP-1, a serine protease.

Binding of these complexes to their appropriate pathogenic ligands auto-activates MASP-1. Active MASP-1 in turn acts on its

substrate, MASP-2, and thereby activates it. In a cascade of proteolytic cleavage events, MASP-2 activates complement

proteins C4 and C2 to form C4b2a (classical C3 convertase), thereby converging the lectin pathway with the classical pathway

of complement activation. Further, MASP-2 activity is regulated by several factors, including the serine protease inhibitor

C1INH and by interaction with other proteins of the lectin complement pathway.
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PROTEIN FUNCTION

MBL-associated  serine  protease-2  (MASP-2)  was  initially

discovered in 1997 by Thiel et al. MASP-2 has the following

domains:  two  CUB  (C1r/C1s/Uegf/bmp1),  one  epidermal

growth factor (EGF)-like, two complement control proteins

(CCPs) and a serine protease (which is a chymotrypsin-like

protease domain) (Fujita et al. 2002).

Activation of complement pathway : MASP-2 in complex with

collectins such as mannose/mannan-binding lectin (MBL) or

collectin  kidney  1  (CL-K1,  alias  CL-11)  and  ficolins  (M-

ficolin,  L-ficolin  and  H-ficolin)  activates  the  complement

pathway (Ali et al.  2012, Ma et al.  2013). Upon binding of

collectins  or  ficolins  to  its  appropriate  pathogenic  ligands,

MASP-2 cleaves C4, followed by binding of C2 to C4b and

subsequent cleavage of C2 forming C4b2a (C3 convertase),

which  cleaves  C3  into  C3a  and  C3b  (Wallis  et  al.  2007,

Vorup-Jensen et al. 1998, Matsushita et al. 2000). MASP-2

was previously believed to be autoactivated (Vorup-Jensen et

al.  2000). However, as per current literature another serine

protease, MASP-1, bound to MBL or ficolins activates MASP-

2  to  generate  C3  convertase  (see  'Regulation  of  Activity')

(Møller-Kristensen et al.  2007). MASP-2, in comparison to

C1s, has higher efficiency of C4 (~23-fold) and C2 (~3 fold)

cleavage, which is attributed to better binding of the substrate

through its CCP domains (Rossi et al. 2001, Rossi et al. 2005).

Use of a randomized substrate phage display library revealed

MASP-2 to be around 50 times more catalytically active than

C1s  (Kerr  et  al.  2008).  MASP-2  also  has  very  weak  C3

cleaving  activity  (Rossi  et  al.  2001).

Opsonophagocytosis:  MASP-2  in  complex  with  MBL  and

ficolins have been documented to aid in opsonophagocytosis of

Staphylococcus  aureus  (Neth  et  al.  2002)  and  group  B

streptococci (Aoyagi et al.  2005). However, it is not clear if

MASP is required or if MBL/ficolins alone are sufficient for

this function (Shiratsuchi et al. 2008). In mice however, MASP-

2 knockout results in increased susceptibility to pneumococcal

infection,  due  to  a  defect  in  opsonization  of  Streptococcus

pneumoniae  (Ali  et  al.  2012).

Other roles: MASP-2 has been shown to activate coagulation

(Krarup et al. 2007) and studies in mice have shown MASP-2 to

be involved in ischemia-reperfusion injury (Schwaeble et al.

2011).  sMAP (also known as MAp19) is  a  splice variant  of

MASP2  (see  'Splice  Variants'  section)  with  no  enzymatic

activity. Hence unlike MASP-2, sMAP cannot cleave C4 and

C2.

REGULATION OF ACTIVITY

MASP-2  is  synthesised  as  single  chain  proenzyme  and

activation proceeds through the cleavage of a single Arg-Ile

bond, generating two disulfide-linked chains, A (N-terminal)

and B (C-terminal  serine protease domain).  Isolated rat  and

human recombinant MASP-2 undergo autoactivation, which is

enhanced by binding to target-bound MBL or ficolins (Chen

and Wallis 2004, Gal et al. 2005). MBL was also proposed to

occlude the C4 binding site on MASP-2, till activation occurs

(Chen and Wallis 2004). Recent studies, including in a MASP-1

deficient patient and MASP-1 knockout mice, structural details

and use of  inhibitors demonstrate that  MASP-1 cleaves and

thereby activates MASP-2 (Degn  et  al.  2012, Megyeri et al.

2013, Kocsis et al. 2010, Heja et al. 2012a, Heja et al. 2012b,

Takahashi et al. 2008).

MASP-2  activity  is  inhibited  by  C1  inhibitor  (C1INH),  an

inhibitor for C1r, C1s and MASP-1. C1INH forms equimolar

complexes with both MASP-1 and MASP-2 (Matsushita et al.

2000,  Rossi  et  al.  2001,  Ambrus et  al.  2003,  Presanis  et  al.

2004)  and  can  inhibit  MASP-2  fifty-fold  faster  than  C1s,

implying MASP-2 to be a major physiological target of C1INH

(Kerr et al. 2008). Also, anti-thrombin III could inhibit activity

in the presence of heparin (Presanis et  al.  2004,  Paréj  et  al.

2013). MASP-3 (a splice variant of MASP1) and sMAP have

been shown to down-regulate C4 deposition,  most likely by
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competing with MASP-2 binding to MBL or ficolins (Dahl et

al.  2001,  Møller-Kristensen et  al.  2007,  Iwaki  et  al.  2006,

Skjoedt et al. 2010a). However, results obtained in vitro with

human proteins suggest that sMAP has no inhibitory activity

on MASP-2 mediated activation of the lectin pathway (Degn et

al.  2011).  Also,  MAp44  (also  known as  MAP-1),  another

splice variant of MASP1, can disrupt heterodimer interaction of

MASP-1 and MASP-2 and thereby inhibit MASP-2 activity

(Degn et  al.  2013,  Degn et  al.  2009,  Skjoedt  et  al.  2010b,

Pavlov et  al.  2012).

INTERACTIONS

Collectins and ficolins: Both MASP-2 and sMAP form homo-

dimers in human and rat (Chen and Wallis 2001, Thielens et

al. 2001, Feinberg et al. 2003) in a Ca2+ dependent manner.

The  homodimers  then  go  on  to  interact  with  MBL and  L-

ficolin through its CUB1 domain in a Ca2+ dependent manner

(Thielens et al. 2001, Gregory et al. 2004). Comparison of K
D

values between MASP-2 and sMAP suggest MASP-2 to bind

more efficiently to MBL (0.8 nM vs 13 nM). MASP-2 and

sMAP  bind  to  Lys55  (residue  number  corresponds  to  the

mature protein) of MBL in presence of Ca2+ (Thiel et al. 2000,

Teillet et al. 2007). Further, MASP-2 and sMAP compete with

calreticulin (CRT) for the same binding site on MBL (Pagh et

al. 2008). The oligomerization state of MBL has no influence

on the  interaction  with  the  MASPs (similar  K
D

 values  for

trimer and tetramer) (Teillet et al. 2005). MASP-2 interaction

with L-ficolin and H-ficolin also requires Ca2+ (Ma et al. 2004,

Matsushita  and Fujita  2001,  Cseh et  al.  2002,  Zacho et  al.

2012, Csuka et al. 2013). Lys57 and Lys47 of L-ficolin and H-

ficolin respectively (residue numbers correspond to the mature

proteins) are important in binding to MASP-2 (Lacroix et al.

2009). M-ficolin was shown to mediate activation of the lectin

pathway, which strongly suggests that, similarly to L- and H-

ficolins, M-ficolin interacts with MASP-2 (Liu et al. 2005).

MASP-2 can also interact with a novel collectin, CL-11 (CL-

K1) to activate the complement pathway (Ali et al. 2012, Ma

et al. 2013).

MASPs and other proteins: MASP-3 was found together with

MASP-2  on  large  MBL  oligomers  whereas  MASP-1  and

sMAP were found on lower MBL oligomers,  but  no direct

evidence  of  heterodimerization  was  provided  (Thiel  et  al.

2000, Dahl et al. 2001, Tateishi et al. 2011). A recent study

documents  heterodimer  formation  between  MASP-1  and

MASP-2,  which  can  be  disrupted  by  MAp44  (Degn  et  al.

2013). The CCP domains of MASP-2 positively co-operate

with the active site to ensure effective binding to C4 and C4b

(Duncan  et  al.  2012,  Kidmose  et  al.  2012).  The  exosite

contributed by both CCP domains of MASP-2 recognizes the

C345C domain of C4.

The  experimental  methods  used  to  characterize  these

interactions are documented in CMAP, a complement map

database (Yang et  al.  2013).

PHENOTYPES

Most  inherent  differences  in  the  protein  levels  arise  from

single nucleotide polymorphisms (SNPs),  several  of  which

(D120G, R99N, V377A, R439H) have been documented in the

recent years.

p.D120G: The SNP resulting in D120G substitution, found in

Caucasians and Inuits from West-Greenland (Thiel et al. 2007)

shows very low serum levels (5% and 45% of wild-type in

homozygous  and  heterozygous  mutants  respectively)

(Stengaard-Pedersen et al. 2003). A cystic fibrosis patient with

homozygous D120G mutation was found to have a severe lung

disease  (Olesen  et  al.  2006).  Further  studies  showed  that

MASP-2 with D120G substitution could not bind to MBL and

hence could not activate the complement pathway (Thiel et al.

2009). The same mutation, when introduced in MAp19, also

abolished its interaction with MBL and L-ficolin (Gregory et al.

2004).

p.R99Q: This SNP isolated in the CUB1 domain is generally

found in African and Amerindian populations (Lozano et al.

2005, Thiel et al. 2007). MASP-2 with p.R99Q could cleave C4

as efficiently as wild-type (Thiel et al. 2009).

p.P126L:  This  SNP,  similar  to  R99N,  is  isolated  in  CUB1

domain  and  generally  found  in  African  and  Amerindian

populations (Lozano et al. 2005, Thiel et al. 2007). Individuals

with  homozygous  p.126L  showed  non-functional  MASP-2

(Thiel et al. 2007), while the isolated protein could cleave C4

efficiently (Thiel et al. 2009). p.126L has also been linked to

Crohn’s disease haplotype with reduced MASP-2 levels and

associated with chagasic cardiomyopathy (Boldt et al. 2011).

p.V377A:  Similar  to  p.126L,  p.V377A also  shows  reduced

MASP-2 levels,  is  linked to  Crohn’s  disease  haplotype and

associated with chagasic cardiomyopathy (Boldt et al. 2011).

However, the V377A protein (similar to wild type and p.126L)

has a normal enzymatic activity and can cleave C4 (Thiel et al.

2007, Thiel et al. 2009).

p.R439H: This variant, common in Sub-Saharan Africans with a

gene frequency of 10%, binds normally to MBL but is deficient

in enzymatic activity (Thiel et al. 2009).

p.156-159 dupCHNH: This four amino-acid tandem duplication

polymorphism, which results in poor secretion of the protein is

found only in  Chinese population with a  gene frequency of

0.26%. It does not bind to MBL and hence does not result in

deposition of C4 (Thiel et al. 2007, Thiel et al. 2009).

Additonally,  p.D371Y  is  associated  with  susceptibility  to

hepatitis C virus infection (Tulio et al. 2011). Polymorphisms

flanking MAp19 exon 5 and MASP2 haplotypes generating low

MASP-2 levels were associated with susceptibility to leprosy

(Boldt et al. 2013). MASP-2 levels and thereby activity have

been associated with several diseases, including schizophrenia

and  septic  shock  induced  mortality  (Mayilyan  et  al.  2006,

Charchaflieh et al. 2012). MASP-2 deficiency lead to increased

risk  of  fever  and  neutropenia  in  pediatric  cancer  patients

(Schlapbach  et  al.  2007),  while  higher  MASP-2  level  was

associated with better event free survival in pediatric patients

with hematologic malignancies, especially lymphoma (Zehnder

et al. 2009). A study showed neonates with very low MASP-2

levels (below 42 ng/ml) to have a shorter mean gestational age

and a higher incidence of premature and low birthweight babies.

In  contrast,  babies  with  infections  had  higher  MASP-2

concentrations (St Swierzko et al.  2009). Pre-mature infants

with higher MASP-2 cord blood levels compared with controls

developed necrotizing enterocolitis at a later stage (Schlapbach

et al. 2008). Colorectal cancer patients showed higher MBL-

MASP activity as compared to controls (Ytting et al. 2004) and

high MASP-2 levels are significantly correlated with recurrent

cancer disease and poor survival (Ytting et al. 2005, Ytting et

al.  2008). MASP-2 levels are also increased in patients with

acute  lymphoblastic  leukaemia,  non-Hodgkin  lymphoma,

central  nervous  system  (CNS)  tumors  (Fisch  et  al.  2011),
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hematological  infections (0.53 µg/ml compared to patients

without  infections 0.37 µg/ml)  (Ameye et  al.  2012).

MAJOR SITES OF EXPRESSION

MASP-2 is mainly expressed in the liver (Endo et al. 2002),

with smaller amounts (~100-500 fold less compared to liver)

found in the small intestine and testis (Seyfarth et al. 2006).

MASP-2-specific mRNA expression, which is generally absent

in healthy ovary tissues, was detected in the ovary tissues of

patients with malignant reproductive disease (Swierzko et al.

2007).  Increased  MASP-2  expression  was  observed  in

esophageal squamous cancer cells in premalignant condition,

dysplasia  in  comparison  with  the  normal  tissues  and  is

associated with late clinical stage and nodal metastasis (Verma

et al. 2006). The promoter activity of the MASP-2 gene was

increased in the presence of IL-1β. However, this increase is

nullified in the presence of IL-6 (Endo et al. 2002). MASP-2

gene expression is positively regulated by binding of Stat3 to

its promoter region (Unterberger et al. 2007).

SPLICE VARIANTS

MASP2  located  on  chromosome  1p36.2–3  has  one  splice

variant, MAp19 or sMAP, which is 19 kDa in size (Stover et

al.  1999,  Takahashi  et  al.  1999).  MASP2  encompasses  12

exons (Stover  et al.  2004), among which 11 encode the six

domains of MASP-2: two CUB, an epidermal growth factor

(EGF)-like, two complement control proteins (CCPs) and a

serine protease domain (Fujita et al. 2002). Alternative splicing

at exon 5 results in MAp19, which shares 4 exons with MASP-

2 (encoding the N-terminal CUB and EGF domains) whereas

exon  5  encodes  a  unique  C-terminal  extension  of  4  a.a.

(Schwaeble et al. 2002). MAp19 is enzymatically inactive (as

it lacks the serine protease domain) and is believed to down-

regulate lectin pathway in mice (Iwaki et al. 2006). However

contradictory  results  were  obtained  in  vitro  using  human

proteins  (Degn  et  al.  2011).

REGULATION OF CONCENTRATION

MASP-2 concentrations differ among the diverse populations.

Africans from Zambia show the lowest levels of 0.196 μg/ml,

while  Hong  Kong  Chinese,  Amerindians  and  Danish

Caucasians show 0.262 μg/ml, 0.29 μg/ml and 0.416 μg/ml

respectively (Thiel  et  al.  2007).  Another study showed the

levels in a danish donor population to be 0.534 μg/ml (Møller-

Kristensen  et  al.  2003).  It  is  likely  that  higher  MASP-2

concentrations in individuals from a UK population, compared

to Armenians, leads to 2-fold higher MBL-MASP-2 activity

(Mayilyan et al.  2006b).  The concentration of MAp19 was

detected to be 0.217 μg/ml, (11nM, compared to the 7nM of

MASP-2) (Degn et al. 2011). Both MASP-2 and MAp19 are

generally found in complex with other proteins such as MBL

and ficolins in serum (Thiel et al. 2000, Møller-Kristensen et

al. 2003).

Serum levels of MASP-2 also differ with age. Cord sera shows

a  value  of  0.093  μg/ml  (St  Swierzko  et  al.  2009),  while

newborns  show  serum  levels  of  0.126  μg/ml.  The  levels

increase  with  age  and  peak  at  adulthood  (0.416  μg/ml)

(Sallenbach et al. 2011). However, the levels are stable over

time in healthy adults, which makes them potential biomarkers

(Ytting et al. 2007). Patients with hereditary angiodema, which

is  the  clinical  manifestation of  C1INH deficiency,  showed

decreased MASP-2 levels  (Varga et  al.  2008).

ANTIBODIES

MASP-2  antibodies  are  available  from:  Santa  Cruz

Biotechnology,  Abcam,  Novus  Biologicals,  Sigma Aldrich,

Hycult  Biotech,  Biorbyt,  LifeSpan  Biosciences,  Atlas

Antibodies,  Aviva,  Geneway  Biotech,  GenTex,  My

BioSource.com,  Origene  Technologies,  Antibodies-online,

Abnova, Creative Biomart, Bioss Inc, USCN Life Science and

Fitzgerald  industries.  MASP-2 antibody has  been used as  a

therapeutic  intervention  in  mice  to  prevent  injury  by

gastrointestinal  post-ischemic reperfusion (Schwaeble  et  al.

2011).
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Table 1: Functional States

STATE DESCRIPTION LOCATION REFERENCES
MASP-2 extracellular region
MASP-2/C1INH extracellular region Kerr FK et al. 2008; Matsushita M et al. 2000

MASP-2/C4 extracellular region Duncan RC et al. 2012; Kidmose RT et al. 2012

MASP-2/C4b extracellular region Wallis R et al. 2007

2(MASP-2) extracellular region Chen CB and Wallis R 2001; Gregory LA et al. 2004; Thielens NM et
al. 2001

sMAP extracellular region Stover CM et al. 1999; Takahashi M et al. 1999

2(sMAP) extracellular region Chen CB and Wallis R 2001; Cseh S et al. 2002; Gregory LA et al.
2004; Thielens NM et al. 2001

3(3MBL)/ 2(MASP-1) /
2(sMAP)

extracellular region Dahl MR et al. 2001; Degn SE et al. 2011; Gregory LA et al. 2004;
Tateishi K et al. 2011; Teillet F et al. 2005

L-FCN/  2(MASP-1)/ 2(MASP-
2) /2(sMAP)

extracellular region Lacroix M et al. 2009; Cseh S et al. 2002; Matsushita M et al. 2000; Ma
YG et al. 2004

H-FCN/ 2(sMAP) extracellular region Lacroix M et al. 2009; Zacho RM et al. 2012; Csuka D et al. 2013

4(3MBL)/ 2(MASP-1)/ 2(MASP-
2)/ 2(MASP-3)

extracellular region Dahl MR et al. 2001; Sekine H et al. ; Teillet F et al. 2005; Thielens NM
et al. 2001

5(3MBL)/ 2(MASP-1)/ 2(MASP-
2)/ 2(MASP-3)

extracellular region Dahl MR et al. 2001; Sekine H et al. ; Teillet F et al. 2005; Thielens NM
et al. 2001; Wallis R et al. 2007

6(3MBL)/ 2(MASP-1)/ 2(MASP-
2)/ 2(MASP-3)

extracellular region Sekine H et al. ; Teillet F et al. 2005; Thielens NM et al. 2001; Dahl MR
et al. 2001; Wallis R et al. 2007

L-FCN/ 2(MASP-1)/ 2(MASP-2) extracellular region Cseh S et al. 2002; Lacroix M et al. 2009

H-FCN/ 2(MASP-1)/ 2(MASP-
2)

extracellular region Csuka D et al. 2013; Lacroix M et al. 2009; Zacho RM et al. 2012

CL-K1/ 2(MASP-1)/ 2(MASP-2) extracellular region Ali YM et al. ; Ma YJ et al.

MBL,ficolins/active2(MASP-1)/
2(MASP-2)

extracellular region Fujita T et al. 2002; Héja D et al. 2012; Héja D et al. 2012

MBL,ficolins/ active2(MASP-
1)/active2(MASP-2)

extracellular region Héja D et al. 2012; Héja D et al. 2012; Megyeri M et al. 2013
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