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ABSTRACT OF THE DISSERTATION

Quasi-Galois Theory in Tensor-Triangulated
Categories

by

Bregje Ellen Pauwels
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2015

Professor Paul Balmer, Chair

We consider separable ring objects in symmetric monoidal categories and inves-
tigate what it means for an extension of ring objects to be (quasi)-Galois. Remi-
niscent of field theory, we define splitting ring extensions and examine how they

occur. We also establish a version of quasi-Galois-descent for ring objects.

Specializing to tensor-triangulated categories, we study how extension-of-scalars
along a quasi-Galois ring object affects the Balmer spectrum. We define what it
means for a separable ring to have constant degree, which turns out to be a nec-
essary and sufficient condition for the existence of a quasi-Galois closure. Finally,
we illustrate the above for separable rings occurring in modular representation

theory.
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INTRODUCTION

Classical Galois theory studies field extensions L/K through the Galois group T,
that is the group of automorphisms of L that fix K. Writing L' for the subfield of
elements in L fixed by I, we call a field extension Galois with group I if L' = K.
For a polynomial f € K|z|, the splitting field of f over K is the smallest extension
over which f decomposes into linear factors. A field extension L/K is sometimes
called quasz’—Galoiﬂ when L is the splitting field for some polynomial in K|[z].
We highlight some facts from Galois theory for fields (see [Bou81] or [Kap72], for
instance) to consult later. Let L/K be a finite field extension and f an irreducible

separable polynomial with coefficients in K. Then,

(a) The field L is a splitting field of f over K if and only if L is the smallest
extension of K such that L ®g K|x]/(f) = L*del/),

(b) There exists a unique (up to isomorphism) splitting field of f over K.

(c¢) The field extension L/K is quasi-Galois if and only if any irreducible poly-

nomial with a root in L factors completely in L.

(d) There exists a field extension N/L such that N is quasi-Galois over K and
no other field between L and N is quasi-Galois over K. This field is unique

up to isomorphism and we call N the quasi-Galois closure of L over K.

In this dissertation, we adapt the above ideas to the context of (commutative,
separable) ring objects in symmetric monoidal categories. The generalisation
of Galois theory from fields to rings originated with Auslander and Goldman
in [AG60, App.]. They considered commutative separable algebras S that are

projective over the base ring R. For a finite group I' of ring automorphisms of S

!see Bourbaki [Bou81, §9]. In the literature, a quasi-Galois extension is sometimes called
normal or Galois, probably due to the fact that those notions coincide when L/K is separable.



fixing R, the extension S/R is called Galois with group T' if the maps R < ST

and

S®RS—>HS:x®y|—>(5L’-’y(y))7€p (0.0.1)

yel

are isomorphisms. Five years later, Chase, Harrison and Rosenberg gave six char-
acterisations of Galois extensions of commutative rings [CHR65]. Further gener-
alisations are aplenty [Kre67, [CS69, KT8l [Hes09]. In particular, Rognes [Rog08]
introduced a Galois theory up-to-homotopy. The objects of study are brave new
rings: commutative monoids in categories of structured spectra. The maps in the
definition of Auslander and Goldman are now required to be isomorphisms in the

stable homotopy category.

In our version, the analogue of a separable field extension will be a commutative
separable ring A in a symmetric monoidal idempotent-complete category K, with
special emphasis on tensor-triangulated categories. Here, A is called separable if
the multiplication map A ® A — A has a right inverse A -+ A ® A which is an
A, A-bimodule morphism. Throughout the rest of the introduction, we assume all

ring objects are commutative. Consider the following two examples:

Algebraic Geometry If V — X is an étale morphisms of schemes, we can
understand the derived category of V' as the category of A-modules for some

separable ring A in the derived category of X (see [Ballda, Th.3.5, Rem.3.8]).

Modular Representation theory Let H < G be finite groups and k a field.
Consider the ring object A% := k(G/H) in X := kG —mod with all [¢g] € G/H
being orthogonal idempotents. Then, Balmer ([Bal15]) shows that A% is separable
and there is an equivalence A% —Mody = kH—mod such that extension-of-scalars
coincides with the restriction Res%. We can consider the ring A% in any category
that receives kG —mod, say the derived category K = Db(]kG—mod) or stable
category K = kG —stab, and the equivalence will still hold. Likewise, extension-

of-scalars along a suitable separable ring recovers restriction to a subgroup in



equivariant stable homotopy theory, in equivariant K K-theory and in equivariant
derived categories ([BDSI14]). In particular, sometimes results obtained for an
opportune subgroup H can be extended to the whole group G by performing
descent along the ring A%. This technique was most notably used in [Ballf] to
describe the kernel and image of the restriction homomorphism 7'(G) — T(H),
where T'(G) denotes the group of endotrivial kG-modules and |G : H] is invertible
in k.

Separable ring objects allow a sound notion of degree [Ball4b], and our first
Galois-flavoured result shows that the degree of A provides a bound for the number
of ring endomorphisms of A in X (Theorem [2.2.4). Another reason we turn
to separable rings is that the category of A-modules in X remains symmetric
monoidal. We can therefore consider algebras over a separable ring, meaning ring

objects in the module category.

The condition R = ST in Auslander and Goldman’s definition is delicate in
a category without equalizers and is the topic of further work. As it turns out,
the second condition is interesting in its own right. Let (X,®,1) be an
idempotent-complete symmetric monoidal category and A a ring object in K with
multiplication 4 : A® A — A and unit n : 1 — A. We think of A as a ring
extension of 1 and consider a group I' of ring automorphisms of A in K. We then
define the ring homomorphism

iAo A— ][4,

yel’

by pr, Ar = (1 ® 7).

Definition. We call (A,T") quasi-Galois in X if A\r : A® A — []

er A is an

isomorphism.

To illustrate, let R be a commutative ring and S a commutative R-algebra.

Suppose (5, T') is a Galois extension of R in the sense of Auslander and Goldman,



where I' is some finite group of ring automorphisms of S over R. In particular,
S is projective and separable as an R-module. Then, (S,T") is quasi-Galois in the
symmetric monoidal categories R—Mod and DP*(R). If S is an indecomposable

ring, it moreover follows that I' contains all ring endomorphisms of S over R:

Theorem. (3.1.2). Let A be a nonzero separable indecomposable ring object of
finite degree in K. Let " be the set of ring endomorphisms of A in K. The

following are equivalent:

(1) || = deg(A).
(1)) A A= A* as left A-modules for somet € N .

(i1i) T is a group and (A,T') is quasi-Galois in XK.

Following classical field theory, we introduce splitting rings (compare to :

Definition. Let A and B be ring objects in K and suppose B is indecompos-
able. We say B splits A if B® A = B*98A) a5 (left) B-algebras. We call B a
splitting ring of A if B splits A and any ring morphism C' — B, where C' is an

indecomposable ring object splitting A, is an isomorphism.

Under mild conditions on K, Corollary shows B is quasi-Galois if and
only if B is a splitting ring of some nonzero ring object A in K; our terminology
matches up with classical field theory. Moreover, Proposition shows that

every separable ring object in K has (possibly multiple) splitting rings.

If in addition, we assume that X is tensor-triangulated, we can say more about
the way splitting rings arise. Examples of tensor-triangulated categories appear
in many different shapes, be it in algebraic geometry, homological algebra, sta-
ble homotopy theory or modular representation theory. Paul Balmer [Bal05] has
introduced the spectrum of an (essentially small) tensor-triangulated category X,

providing an algebro-geometric approach to the study of triangulated categories.



In short, the spectrum Spc(K) of K is the set of all prime thick ®-ideals P C K.
The support of an object x in K is the subset supp(z) = {P € Spc(K) | = ¢
P} C Spe(XK). The complements of these supports form a basis for a topology on
Spce(X). A complete description of the spectrum can come from a classification
of the thick ®-ideals in the category, as in modular representation theory, alge-
braic geometry and stable homotopy theory. Still, classifying the thick ®-ideals
remains an open challenge for many tensor-triangulated categories. When such
a classification is unknown, for instance in the derived category of G-equivariant
vector bundles over a scheme, new information about the spectrum could mean
progress in the classification problem. Tensor-triangular geometry seeks to deliver
techniques for the study of the spectrum, which in turn could mean progress in

the classification problem.

Extension-of-scalars along separable ring objects can play a central role in this
endeavor. When A is a separable ring in a tensor-triangulated category, the cate-
gory of A-modules in X remains tensor-triangulated [Ballll, Cor.4.3]. We can thus
consider algebras over a separable ring without leaving the tensor-triangulated
world or descending to a model category. In particular, we can study the contin-

uous map

Spc(Fy) @ Spe(A—Modg) — Spe(X) (0.0.2)
induced by the extension-of-scalars functor Fy : X — A—Modx.

Thus motivated, we translate our quasi-Galois theory to the tensor-triangular
setting. We assume X is nice (say, Spc(X) is Noetherian or X satisfies Krull-
Schmidt). Proposition provides an analogue to |(c)t

Proposition. Let A be a separable ring in X such that the spectrum Spc(A-Mody)
is connected, and suppose B is an A-algebra with supp(A) = supp(B). If B is
quasi-Galois in K, then B splits A.



With one eye on future applications of the theory, we are on the lookout for
separable rings whose Galois theory and geometry interact well. That is, we would
like to control the support of the splitting rings. Recall that the local category
Ky at the prime P € Spc(K) is the idempotent-completion of the Verdier quo-
tient K ~P. We say a separable ring A has constant degree if its degree as a ring in
K5 is the same for every prime P € supp(A) C Spc(K). Finally, Proposition m
and Theorem m provide a version of @ and @:

Theorem. If A has connected support and constant degree, there exists a unique
splitting ring A* of A. Furthermore, supp(A) = supp(A*) and A* is the unique
quasi-Galois closure of A in K. That is, any A-algebra morphism B — A* with

B quasi-Galois and indecomposable in K, is an isomorphism.

Initially, we were motivated to consider rings that behave “Galois”as a means
to study the map [0.0.2l We note that any group I' of ring automorphisms of A

acts on A—Modgk and on its spectrum Spc(A—Modg). Then,
Theorem. (5.2.2)). If (A,T) is quasi-Galois in K,

supp(A) = Spc(A—Modyg)/T.

In particular, we recover Spc(X) from Spe(A—Mody) when supp(A4) = Spc(K).
This happens exactly when A is nil-faithful, that is when A ® f = 0 implies f
is ®-nilpotent. In fact, when the functor A ® — is faithful and (A4,T") is quasi-
Galois, we find that X = (A —Modg)'. Here, the category (A—Mody)l has
objects (z, (0, : * = 27),er), where z is an A-module in X, we write 27 for z with
y-twisted A-action, and (0,),er is a family of A-linear isomorphisms satisfying
some cocycle condition. More generally, if (A, ") is quasi-Galois, Corollary
shows

Descy(A) = (A—Modg)",

where Descy(A) is the descent category of A in the sense of [Mes06].



In the last chapter of the dissertation, we compute degrees and splitting rings
for the separable rings A% := k(G /H) from above. The degree of A% in D (kG—
mod) is simply [G : H], and A% is quasi-Galois if and only if H is normal in G.
Accordingly, the quasi-Galois closure of A% in the derived category D?(kG—mod)
is the ring A, where N is the normal core of H in G (Cor. . On the other
hand, Theorem shows that the degree of A% in kG —stab is the greatest
0 <n < |G : H] such that there exist distinct [g1], ..., [gn] in H\G with p dividing
|H9'N...NH9|. In that case, the splitting rings of Ay are exactly the A%, |~ ron
with g1,..., g, as above. Finally, A% is quasi-Galois in kG —stab if and only if p
does not divide |H N HY N H%"| for g € G — H and h € H — HY.



CHAPTER 1

Preliminaries: Rings in monoidal categories

In this dissertation, we interpret the notion of Galois extensions of rings in a
broader context. Our playing field will be symmetric monoidal idempotent-
complete categories and the main characters are objects that behave like rings. In
this first chapter, we give a short overview of these concepts. For the definition
of a symmetric monoidal category, we refer to [Mac98|, Section XI.1].

Throughout this chapter, (X,®,1) will denote a symmetric monoidal

additive category.

Notation 1.0.1. For objects x1,...,x, in X and a permutation 7 € S,,, we will
write 71 21®. . .QT, — Tr(1)®. .. @T7(,) to denote the isomorphism that permutes

the tensor factors.

Definition 1.0.2. A ring object A € XK is a triple (A, u,n) with associative
multiplication p: A® A — A and two-sided unit 1 : T — A. That is,

ARAALE, AR A AT L A A 104
f@m P and P
A A—"— A A
commute. We call a ring commutative when p(12) = p. If (A, ua,na) and

(B, up,np) are rings, we call a morphism o : A — B in X a ring morphism

if the diagrams

A A4 A 1M

A
la@a la a:nd \ la
nB
B

BB - B



commute.

Convention 1.0.3. We will often call A a ring in K instead of a ring object. All

rings are assumed commutative.

Definition 1.0.4. Let (A, i, n) be a ring object in K. A left A-module is a pair
(x € K, 0: A®z — x) such that the action g is compatible with the ring structure

in the usual way. That is, the diagrams

AARr —22 Ag 19z "% Ao
L@l lg and lg
Ager —2 o T

commute. Right modules are defined analogously. Every object z € K gives rise
to a free A-module A ® x with action given by p: AQ A®x MA@, 1f (z, 01)

and (y, 02) are left A-modules, a morphism « : z — y is said to be A-linear if the

diagram
Aor —2 5o
ll@a la
ARy LI Y
commutes.

Definition 1.0.5. A ring A in X is called separable if the multiplication map
i A® A — A has an A, A-bilinear section. That is, there exists a morphism
0:A— A® A such that uo = 14 and the diagram

AR A
o®1 l 1®oc
o
ARA®A A ARARA
1®p J/U ne1
AR A

commutes.



Notation 1.0.6. Let A and B be ring objects in K. We write A x B for the
ring A ® B with component-wise multiplication. We will also consider the ring
structure on A ® B given by (us @ up)(23) : (A® B)®? — (A® B). We write A°
for the enveloping ring A ® A°P. If A and B are separable, then so are A°, A®R B

and A x B. Conversely, A and B are separable whenever A x B is separable.

Remark 1.0.7. Of course, left A°~-modules are just A, A-bimodules. Furthermore,
any A-linear morphism A — A is A%linear because A is assumed commutative.

Finally, any two A-linear morphisms A — A commute.

Example 1.0.8. Let R be a commutative ring. The category of R-modules forms
a symmetric monoidal category (R—Mod, ®g, R). The (commutative, separable)

ring objects in this category are just (commutative, separable) R-algebras.

Ezxample 1.0.9. Let G be a finite group and let k be a field. We write kG —Mod
for the category of left kG-modules. For any kG-modules M and N, the tensor
product M ®y N inherits the structure of a kG-module by letting G act diagonally.
Then, (kG —Mod, ®y, k) is symmetric monoidal, and the ring objects are k-

algebras equipped with an action of GG via algebra automorphisms.

1.1 The Eilenberg-Moore category of modules

We study the category of A-modules for a ring (A, u,n) in K. The results in this

section all appear in [Ball4b, §1].

Definition 1.1.1. The FEilenberg-Moore category A —Modyx has A-modules as
objects and A-linear morphisms. We will write £y : X — A—Mody for the
extension-of-scalars, given by Fs(z) = (A®x, u®1), and write Uy : A~Modg — K

10



for the forgetful functor Uy (z, 9) = x. The adjunction

X
Fa|l—H|Ua
A—Modx

is also called the Eilenberg-Moore adjunction, see [EM65].

The Kleisli category A—Freey is the full subcategory of A—Mody on free A-modules.
In other words, the objects are the same as K, writing F4(z) € A—Freey for x € K,
with morphisms Hom 4 (Fa(x), Fa(y)) := Homg (2, A®y). Let’s write f : Fy(z) —
F4(y) for the morphism corresponding to f : * — A ® y in K. The Eilenberg-

Moore adjunction restricts to Fju : K ° , A—Freex : Uy, see [Kle65)].

Fxample 1.1.2. Let R be a commutative ring and A a commutative finite étale
(flat and separable) R-algebra. Then X := DP“f(R), the homotopy category
of bounded complexes of finitely generated projective R-modules, is a symmet-
ric monoidal category. Since A is R-flat, the object A = A[0] in K keeps its
ring structure. Then A is a separable ring object in K and the category of A-

modules A—Mody is equivalent to DP*(A) [Balll, Th.6.5].

Definition 1.1.3. We say K is idempotent-complete if every idempotent mor-
phism splits. That is, for all x € K, any morphism e : z — x with e = e yields a

decomposition & = x1 @ 2 under which e becomes ().

Remark 1.1.4. Every additive category X can be embedded in an idempotent-
complete category K% in such a way that K — X% is fully faithful and every
object in K? is a direct summand of some object in K. We call K* the idempotent-
completion of K.

Remark 1.1.5. If X is idempotent-complete, the module category A —Mody is
idempotent-complete too. When A is moreover separable, A—Mody is equivalent
to the idempotent-completion of A — Freex, see [Ballll]. In particular, any A-

module z is a direct summand of the free module F4(Ua(z)).

11



We can define a tensor product ®4 on the Kleisli category A—Freeyx by

Fy(r) @4 Faly) == Falr @ y)

on objects and f ®4 7 = (1 ®1®1)(23)(f ® g) for morphisms f : 2 — A ® o'
and g:y > A®y in K:

1y L ApreAcy s AvAer oy L Asr ey

The tensor ®,4 yields a symmetric monoidal structure on A —Freex with unit
A = F4(1). If we moreover assume the ring A is separable and X is idempotent-
complete, idempotent-completion conveys the tensor ®4 from A —Freeyx to A—
Mody.

We could also define a tensor product ®’ directly on objects (z, ) in A—Mody;
the following lemma is key. As A is commutative, we let o denote both the left

and right action of A on z.
Lemma 1.1.6. Let (A, p,n,0) be a separable ring in K and suppose (z, 01) and
(y, 02) are A-modules. Consider the endomorphism

Ugy = Ut x®me®A®y%x®A®A®y%z®y,

Then, v(o1 ®1) = v(1® 02) = (01 @ )18 0@ 1)1 2@ A®Y — 2@y, and any
morphism f : x®y — z with z € K such that f(01®1) = f(1R02) : tRARY — 2,

satisfies fv = f. In particular, v is idempotent.

Proof. First, note that v(g; ® 1) = (01 ® 02)(1 ® 0 ® 1) follows from

x®A®yﬂ>x®A®2®y%x®y
1®n®1A 91®1®1®1T 91®92A
TRy x®A®3®yM>x®A®2®y
Q1®1A 1®1®0®1T 1®a®1/\

TR®ARY 1®1en®1 @A Ry 1ouel TRARY,

1

12



in which the lower right square commutes because o is A, A-bilinear. A similar
diagram shows v(1 ® 02) = (01 ® 02)(1 ® 0 ® 1). Finally, for morphisms f as in

the lemma, we see that the diagram

1®n®1T \ ll@u@l lm@l lf
x@y 1®n®1 x®A®y 01®1 x@y f )¢

1

commutes. O

Seeing how v : x ® y — x ®y is idempotent and K is idempotent-complete, we
can define x ® y as the direct summand im(v) of z ® y, with projection p,, = p

and inclusion j,, = j:
v:x@yﬁp%w@/y‘;)x@y. (1.1.7)
By Lemmal|l.1.6, we get a split coequaliser in K,
01®1 p ,
x®A®y?§x®ny® Y, (1.1.8)
02
and A acts on z ®' y by
’ 1®7 01®1 p /
ARr R y—>ARrQy —— 1y —» R y.

For f:x — 2’ and g : y — 3y in A—Mody, we consider the commutative diagram

1®1n®1 1®Ro®1 01®02

v TRY — T RQARY — T RARARYy — > xRy
lf@g lf@l@g lf®1®1®g lf@g
v x’®y’Mm’@A@y'Mw’@A@A@y’%x’@y’

and get a map

f®&g:imv)=2® y—— im(V) =2y

13



Remark 1.1.9. The diagram

ARr®Y a1®1 r®y lonel 2@ A®Y 100®1 r® A2 @y
J1®1®77®1 l91®92
A®$®A®QM>A®$®A®2®ZJ 1®01®02 AQz®y 01®1 @y

commutes. In fact, v is A%linear and = ® y is a direct summand of x ® y as

Ac-modules.

Proposition 1.1.10. Suppose K is idempotent-complete and (A, pu,n, o) is a sep-
arable ring in K. The tensor products @' and @4 on A—Mody are naturally iso-
morphic. They yield a symmetric monoidal structure ® 4 : A—Modyx x A—Mody —
A—Mody on the Eilenberg-Moore category under which F4 becomes monoidal. We

will write 14 := A for the unit object in A—Modx.

Proof. 1t is not hard to see that ® 4 defines a symmetric monoidal structure on the
Kleisli category A—Freex, with unit A = F4(1). What is more, extension-of-scalars
F, : X — A-Freey is monoidal by construction. After idempotent-completion, the
symmetric monoidal structure carries over to A—Modg. Thus, the proposition
follows if we show that ® and ®4 agree on A—Freex. Given free A-modules
Fi(z) = A®x and Fu(y) = A®y, we can identify Fu(z) @ Fa(y) 22 ® A®? @y

and note that the endomorphism from Lemma |1.1.6],
v Fa(z) @ Faly) — Fa(z) ® Fa(y),

is given by the first row of the commuting diagram

@ AR gy 1Q1OBIBL o 493 y 181808181 | o g4 g y LOUBEBL, o 402 y

\ l1®u®1®1 l1®u®1®1®1 ‘

x®A®2®ny®A®3®y

m%

TR ARY.

14



In other words, the following diagram commutes

v

/\

Fa(x) ® Fa(y) —2 Fa(x) ® Fa(y) —— Fa(x) ® Fa(y)

F F

AR ARy 2% Agroy 22, A0 ARz ®y

and Fy(z) ® F4(y) = im(v) is isomorphic to A ® x ® y in XK.
Recall that the A-action on F4(x) ® Fa(y) is given by the first row of

AR Fa(z) @ Faly) —25 A A®z @ A®y —2280, Fu(x) @ Fa(y) —2» Fa(z) @ Faly)

: - ;

AARr0y 22 A A Agrey —2% , A9 ARroy 222 AQr ey,

\—/?

1
so Fa(z) ® Fa(y) is isomorphic to Fa(x ® y) = Fa(z) ®4 Fa(y) as A-modules.
For morphisms f : Fa(z) — Fa(z') and § : Fa(y) — Fa(y') in A—Freex corre-
sponding to f: 2z = A® 2’ and ¢ : y = A® vy’ in K, the tensor product f ®4 7 is
the bar of

10y 2 Agr Aoy P A Aor oy M2 A @y,

So, f ®4 7 is the top row of

34
A®m®yMA®2®xl®A®y/!)A@i))@x/@y’M)A@Q(g)x’@y/%A@z/@y/

f®' 7 is given by

(AR2) @ (Ay) —— Acr0 Aoy 22 4229 0 A2 0y "2 A0 Ay —2 (A0 )& (4

Fa(2) @ Fa(y) —2— Fa(2) ® Fa(y) 2% Fa(e') ® Fa(y)) —2— Fa(2') ' Fa(y),
where f ® g is the map

ARz ARy 2%, g2 9 @ A2 gy L2 A @ AR Y.
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Under the correspondence Fa(x) ® Fa(y) =2 A® x ® y, this becomes

o 34
A®z®y%A®2®x®ylmgA®3®x’®A®y’%A@’Q@m’@A@Q@y’

lﬂ®1®1 L@l@u@l

18/89 I

ARz Ry — > A®? 2 ARy AR @ ARy

Hence f ®' G is given by

" (p®1e1)(1R1R1RQL

ARz oy 2 A2 g r @y A R ® )A®x’®y’,

\ [perer )]

A®x®ym>A®2®x’®A®y'

which is the bar of

roy 25 Agr Aoy -2 A Ao oy “ Ay @y,

We conclude that

Fa(z) @ Faly) —— A®z®y
lf@/g l(u@l@l)(%)(f@g):fmg
Fa(2) @ Faly) —— A®2' @y

commutes and the tensor products Fu(z) ® Fa(y) and Fa(z) ® 4 Fa(y) are natu-

rally isomorphic. [

Proof. Tt is not hard to see that ® 4 defines a symmetric monoidal structure on the
Kleisli category A—Freey, with unit A = F4(1). What is more, extension-of-scalars
Fy . X — A-Freey is monoidal by construction. After idempotent-completion, the
symmetric monoidal structure carries over to A—Modg. Thus, the proposition
follows if we show that ® and ®4 agree on A—Freex. Given free A-modules
Fi(z) = A®x and Fa(y) = A®y, we can identify Fa(z) @ Fa(y) € 2@ A®?®y

and note that the endomorphism from Lemma [1.1.6]

v: Fa(z) @ Faly) — Fa(z) @ Fa(y),
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is given by the first row of the commuting diagram

T ® A @y 1O1ONBIBL o 493 y 19180818l o A8l gy 1OUBUBL o ge2 g y

\ J/l@p,@l@l ll®p®1®1®l ‘

T ® A% @y 2718l 1 o 493 gy 1910u@1 T ® A2 gy

1®u®1 1®0®1

TR ARY.

In other words, the following diagram commutes

v

— T

Fa(z) @ Fay) —2= Fa(x) @ Faly) —— Fa(z) @ Fa(y)

l% lg

AARz0y L2y ARy 2 A9 ARzRy
and Fy(z) ® F4(y) = im(v) is isomorphic to A ® z ® y in XK.
Recall that the A-action on F4(x) ® Fa(y) is given by the first row of

1®j 1®1I®1
A® Fa(2) ® Faly) = A® A® e ® A®y —— Fa(z) ® Faly) —» Fa(z) @ Fa(y)

: - ;

A0ARz0y 2228 A9 A0 AQry —22% , Ao Az y =22 Agz®y,

\/‘r

1

so the corresponding action on A ® = ® y

pR1R1IR1
—_—

AR Falz) ® Faly) —2 5 AR ARz @ ARy Fa(z) ® Fa(y)

Fa(x) @ Faly),

which corresponds to

ARARTRY ~22% A9 A ARy L2 AR AR T®Y

\ l1®u®1®1 lu@)l@l

AARzrey — "% L Agrey,
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so Fa(z) ® Fa(y) is isomorphic to Fa(x ® y) = Fa(z) ®4 Fa(y) as A-modules.
For morphisms f : Fu(z) — Fa(z') and § : Fa(y) — Fa(y') in A—Freex corre-
sponding to f:z - A® a2’ and ¢ : y = A® vy in K, the tensor product f @' 7 is
given by

feg

Fa() & Fa(y) —— Fa(2) ® Fa(y) =% Fa(2/) ® Fa(y') —— Fa(2') &' Fa(y)-

Under the correspondence Fa(x) ® Fa(y) =2 A® z ® y, this becomes

Az @y 2% A2 9 r oy A2 @ @y L2 A9 @y,

Jeo o]

ARz ARy 5 Aor @ AQy
where f ® g is the map

ARz ARy ~H2%, g2 0 @ A2 gy L2 A9 @ AR Y.

Hence f ®' g is given by

, (®1e1)(kelelel

A®x®y&1®1>14®2®x®y A1 @y )A®x’®y’,

\ [poren )]

Az ey 2% A2 g/ 0 Ay
which is the bar of
roy 25 Agr Aoy -2 A Ao oy “ Ay @y,

We conclude that

Fa(z) @ Fay) —— A2 ®y
lf@’g l(u@l@l)@?»)(f@g)zf@w
Fa(2) @ Fa(y) — A® 2’ @y

commutes and the tensor products Fu(z) ® Fa(y) and Fa(z) ® 4 Fa(y) are natu-

rally isomorphic. O

18



o

Remark 1.1.11. The canonical A-linear isomorphism A ®4 x — x is given by the
map

A®A£L‘";>A®$L>l',

with inverse

a:L@l>A®x—p»A®Ax.

Indeed, gjp(n ® 1) = ov(n ® 1) = o(n ® 1) = 1, by Lemma and the
diagram
AR r—r s Aps—2 g

lﬁ@l@Al lﬂ@l

| A A s P s A AR —225 A®
P@AI P@l lp
A®Ax;'>A®x—p»A®Ax
1
commutes because p is an A, A-bimodule morphism.
Remark 1.1.12. Recall that the endomorphism ring of the unit object in a sym-
metric monoidal category is commutative, and composition coincides with the
tensor product. See [BallOa], for instance. In particular, any two A-linear endo-

morphisms A — A commute.

Proposition 1.1.13. (Projection Formula). Suppose K is idempotent-complete
and let (A, pu,n) be a separable ring in K. For all x € A—Modyx and y € K, there
is a natural isomorphism Ua(x @4 Fa(y)) = Ua(x) @ y in K.

Proof. Proving this for free modules © € A—Freey is sufficient, so let x = Fa(z2)

with 2z € K. We show that
Ua(x®@a Fa(y)) = Ua(Fa(2) @4 Fa(y)) = Ua(Fa(z®y)) 2 ARz0y = Ua(z)®y

naturally in # and y. For 2/ = F(2') € A—Freex and f : # — 2’ in A— Freex

corresponding to f : 2 = A® 2’ in K, we note that f ®4 lp, ) = foAn® 1, is
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the bar of

fen®l pRIR1

2QYy— ARz ®A®y—>A®A®z RY — AR Z vy,
so f®@alp Ay = f ® 1. Therefore, the required diagram
Ua(Fa(z) ®a Faly)) = Ua(Falz®y)) = Agzey = Ualz)®y
l1®f®1
Ua(f®al) Ua(f1) ARA®2zQy Ua(Ho1
lu@l@l
Ua(Fa(Z) ®@a Faly)) = UalFa(z’®y) = A7y = Us(d)®y
commutes. Naturality in y follows easily. O]

Remark 1.1.14. Explicitly, the isomorphism Ua(x @4 Fa(y)) = Ua(x) ® y from
Proposition [1.1.13]is given by

Gy $®A(A®y)¢>:c®(z4®y)&A@x@y%x@y,

where p: A ® x — x is the action of A on z. In particular, ¢, is left A-linear.

1.2 Rings in the Eilenberg-Moore category

This section contains a haphazardous collection of results on algebras over a ring
object. Again, all of the results can be found in [Ball4bl §1].

Let (A, pua,na) and (B, ug,np) be rings in K. We say that B is an A-algebra if
there is a ring morphism i : A — B in X. In that case, we can consider the

A-module structure on B given by
A B, Bgo B "2, B, (1.2.1)

making pup into an A°-linear morphism. We define a functor Fj : A—Freex —

B—Freex on the Kleisli category by setting
Fy(Fa(z)) = Fp(z) and Fu(f) =(h@1,)f
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for Fs(x) in A—Freex and f: 2 — A® 2’ in K. It is not hard to check that Fj

is monoidal, with
Fp(Fa(z) ®4 Fa(y)) = Fi(Fa(z ®y)) = Fp(z ® y) = Fp(z) ®p Fp(y).

Indeed, for morphisms f: 2z = A® 2’ and g : y > A®y in K we know that
f®a g=(pa®1®1)(23)(f ®g) and

F(HesF@)=ele)23)helehe )(fog),

and the following diagram commutes:

10y —1% s Aor oAy - Ao dAerey “IN Aer oy

lf@g lh®1®h®1 lh@h@l@l lh@@l

Ao @ A0y B o Boy -2 BoBor oy 28 Bor oy

If K is moreover idempotent-complete and the rings A and B are separable,
idempotent-completion yields a monoidal functor F} : A—Mody — B—Mody.
Alternatively, if z is an A-module, we can consider the B-module structure on
B ®4 x given by

Bo®Bosz 22y Bo.

and define a functor F} : A—Modyx — B—Mody by setting
F(x)=B®ax and F(f)=1p®a f
for A-linear morphisms f.

Proposition 1.2.2. Suppose that X is idempotent-complete and (A, pa,na) and
(B, up,nB) are separable rings in K. If there is a ring morphism h: A — B in X,

then the functors Fy, and F}, defined above are naturally isomorphic.

Proof. Tt suffices to show that F}, and F; agree on A—Freey, so let Fa(x) be the
free A-module on x € K. By the Projection Formula [1.1.13] we have a natural
isomorphism

Fl(Fa(z)) = B®a Falz) —2% B@x = Fp(z) = Fy(Fa(x)),
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in K, which is B-linear seeing how

(B® B)®4 Falz) 2" . Bo Box
J/MB@AIFA(OC) J/NB@lac
B®aFalz) — " s Bou.

commutes by naturality of ¢. In fact, Remark [1.1.14|shows that ¢p, is given by

¢po: BRsFulr)—1 s BeAos —2,BgBeor 22 s Bwu,

with j defined as in Let f : Fa(z) — Fa(y) be a morphism in A— Freey,
corresponding to f : 2z — A®y in K. Then, F/.(f) = 1®,4 f is given by

Fi(f): Boa(Aoz) =22, Be, (Ao A y) 2242 Be, (AR y)

and Fj, maps f to F,(f) = (h® 1) f:

F(f): Beor—2 s BeAey 2 . BeBoy 2%, Bay.

So, it suffices to show

B®a(A® A®Y) 1Oanal] B®a(A®y)

lﬁbB,A@y lqu,y

B®A®yLm>B®B®yL@>B®y

commutes, which follows because ¢ is left A-linear (Remark [1.1.14)). O]

Remark 1.2.3. Suppose (A, pua,na) and (B, up,ng) are separable rings in X and

h: A — B is a ring morphism.

1. The following diagram commutes up to isomorphism:
K

A—Mody o s B—Mody .
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Indeed, Fj,(Fa(x)) = Fp(x) for every x € K, and for morphisms f : 2z —y

in X we see that

Fp(Fa(f)) = Fn(na @ f) = (h@ )(na@ f) =np @ f = Fa(f)
in B—Modg(.

2. If k: B — C is another ring morphism then Fy, = FiFj. As before, it
suffices to check this on the Kleisli category. For F(x) € A—Freey, clearly
Fk(Fh(FA({E))) = Fk(FB(LIZ')) = Fc(fE), and

Fy(Fu(F) =2 F((h@ 1) f) =2 (k@ 1)(h@1)f = Fu(f)
for every morphism f: 2z —- A®y in X.

Proposition 1.2.4. Suppose K is idempotent-complete and let A be a separable
ring in K. There is a one-to-one correspondence between A-algebras B in K and
rings B in A—Mody. Under this correspondence, B is separable if and only if B

18.

Proof. If B is aring in K and h : A — B a ring morphism, we can equip B with
an A°-module structure as in [[.2.1 We will write g for both the left and right
action of A on B, and (B, o) for the corresponding object in A—Mody. As before,
we will write 7 and p for the inclusion and projection maps of the direct summand

B®4Bin B® B,
v: BosB—l3sB®B—"% B®,B.

Since pp(e®1) = up(l®p): B A® B — B, the coequaliser gives a map
n:B®y B — B such that up = ug:

B®B—2% B®,B

Rl"

B.
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In fact, we have that i = upj, seeing how up = pupv = upjp by Lemma [1.1.6]

This shows that i is A-linear, and we can define the commutative ring (B, i, 7 :=

h) in A—Modyx. To show that fi(1p ®4 77) = 1p, for instance, note that

1®np

M\
—

BoA—" BeB—" . B

lp lp ) H (1.2.5)

B—= sBo,A—2" \Be,B—" B

B

commutes. Now, suppose B is separable. The section o : B — B® B is A-linear,

seeing how the diagram

AoB—"" .BepBp—" ___.p

J/].@O'B J/1®O'B j/a'B

@131 pE®1

A9B®B — B®B®B — B®B

commutes. Then, the ring B in A—Mody is separable with section pog : B —
B ®y B for . Indeed, Tipop = upjpop = pupvop = pupop = 1 and pop is (left)
B-linear because the following diagram commutes:

Bo,B 24" . Bo,BoB 2" s Bo,B®,B

| | [

B®B—%" BoB9B — sB®B®4B |m®

I
lﬂB l}uz@l l,uB(XJAl

B 75 sy B® B L B® 4 B.

Right B-linearity follows similarly.
Conversely, for any ring (B,71,7) in A—Mody, write h := Ux(7j) : A — B.

One easily verifies that B := Ux(B) is a commutative ring in X with unit np :

13 A-—" 3B and multiplication

up: BB —2% B®,B " B.
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In particular, the commuting diagram shows that ug(lp ® ng) = 1. If we
moreover assume that B is separable in A—Mody with section @ for 7, it follows
that B is separable in K with section jo : B — B ® B. That is, upjo = upjo =

o = 1p and j& is (left) B-linear because the following diagram commutes:

BB —% ,BeoBosB—Y .BoB®B

& [ea [per

Bo,B—24 s B BosB —24 s Bo,B®B |usel

B
lu lﬂ@Al lu@l

B g B®4 B J B® B.

Right B-linearity follows similarly. Finally,

AgA—"2" s BoA—*" sBoB " B
I [ I |
A@sA—"% s Bo, A— ,Bg,B—" B
AN A |
A b B B
commutes so h = Uy(7) is a ring morphism. O

Proposition 1.2.6. Suppose X is idempotent-complete, A is a separable ring in
K and B is a separable A-algebra, say B € L := A~Mody. There is an equivalence
B—Modyg ~ B—Mod,; such that

X Fa L

lFB [

B—Mody —=— B—Mody,

commutes up to isomorphism.

Proof. Consider the commutative diagram

Kt

lps [

B—Freex —— B—Freeg,
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where the bottom row is defined on objects by sending Fp(z) to Fz(Fa(z)). On

morphisms, it is defined by the sequence of natural isomorphisms

Homp(Fp(x), Fp(y)) = Homy(z, B ® y) = Homy (2, Ua(B) ® y) = Homy (2, Ua(B ®4 Fa(y))

=~ Homu(Fa(z), B ®4 Faly)) = Homg(F5(Fa(z)), F5(Fa(y))),

where the first isomorphism is given by the Projection Formula [1.1.13] Seeing
how Fg(z) is a direct summand of Fg(Fa(x)) for every x € L, it follows that
the bottom row is an equivalence up to direct summands. After idempotent-

completion, the diagram

Fy

X L

| |

B—MOd(K — E—MOdL,
commutes up to isomorphism and the bottom row is an equivalence. O

Proposition 1.2.7. Suppose K and L are symmetric monoidal idempotent-complete
categories, F' : KX — L is a monoidal functor and A is a separable ring in XK.
Then, B := F(A) is a separable ring in L and there exists a monoidal functor

F : A—Modyg — B—Mod, such that FFy = FgF and UgF = FUy,

Fp
K ———" A—Modyg

Ua

Js s
Fp

L —>U B—Mod, .
B

Proof. 1f (A, j1a,m4) is a separable ring in K, it is not hard to see that B := F(A) is
a separable ring in £ with multiplication pup : B B = F(A®A) Flua), F(A)=B

and unit np : 1y = F(lx) M

F(A) = B. We define the monoidal functor F
on objects (x, 0) € A—Mody by F(z) = F(z) with B-module structure given by
B® F(zx) =2 F(A® x) o, F(z). On morphisms, F is given by F(f) = F(f).
Now, UgF = FUy follows immediately and we can check that

F(Fa(x))=F(A®2z) 2 B® F(x) = Fp(F(x)).
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The restricted functor F : A—Freex — B—Free is clearly monoidal, and therefore

sois F : A—Mody — B—Mod,. O
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CHAPTER 2

Separable rings

In this chapter, we collect some concepts and results on separable rings. In partic-
ular, we define the degree deg(A) of a separable ring A in X and study its relation
to the number of ring morphisms A — B.

Throughout this chapter, (X,®, 1) will denote an idempotent-complete

symmetric monoidal category.

Definition 2.0.1. Let us call aring A in X indecomposable when A is nonzero and
the only idempotent A-linear morphisms A — A in K are the identity 14 and 0.
In other words, A is an indecomposable ring if it doesn’t decompose as a direct

sum of nonzero A°-modules, or as a product of nonzero rings (see Lemma [2.1.2)).

Remark 2.0.2. Let A be a separable ring in K. Recalling the one-to-one correspon-
dence between A-algebras B in K and rings B in A—Mody, from Proposition |1.2.4}

the ring B is indecomposable if and only if B is.

Lemma 2.0.3. Let (A, p,n) be a separable ring in K.

(a) For every ring morphism « : A — 1, there exists a unique idempotent A-

linear morphism e : A — A such that ce = o and ena = e.

(b) If 1 is indecomposable and o; : A — 1 with 1 < i < n are distinct ring
morphisms with corresponding idempotent morphisms e; : A — A as above,

then €i€; = 5i,j€i and ;65 = 6i,j05i'

Proof. For (a), consider the right A-linear morphism e := (a®1)o : A — A, where

o is a separability morphism. Since A is commutative, it is also a left A-linear
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morphism. Idempotence follows from the commutativity of

A—% s A A% 4

[er l

NARARAZEY A0 A

lﬂ@l la@l

A A—® g

and ae = a(a ® 1)o = auo = « is clear. Finally, ena is the top row of the
commuting diagram

11@"7 11 ®0

Al 2101 10A—% 19 A0A 2% 94

A®I]_ 14®n A®A 1AQo A®A®A 1A®a®1ﬂ A®A a®l 4 ]]_®A

~) o

A—"— 5 AR A

so ena = e indeed. Now, for any other A-linear morphism €’ such that ae’ = a

and e'na = €, we see that e = ena = enae’ = e’ = ¢'e = e'nae = ena = €
by Remark [1.1.12

For (b), let 1 <i,j < n and consider the commuting diagram

A 67 :H_ n

[

A
AR A 29 Ag A% A

P b

A—2 51

which shows that osejna; = wie;. Then, (cejn)(ciejn) = weje;n = azen so
a;e;n = 1 — 1 is idempotent and therefore 0 or 1;. In the first case, a;e; =
aena; = 0. If aye;n = 14, we get aye; = aye;na; = a; by the above diagram and
also aje; = aye;na; = aj, thus ¢ = j. Hence, aje; = 0; ;04 and e;je; = enoe; =

€i’l70éi5i7j = eiéi,]* ]
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Proposition 2.0.4. Let A be a separable ring in K and suppose A decomposes as
a product of indecomposable A-algebras A = Ay x ... X A,. This decomposition is

unique up to (possibly non-unique) isomorphism.

Proof. Let A be as above, with decomposition A = A; x ... x A, for some
indecomposable A-algebras Ai,...,A,. We show that for any two rings B,C
with A =2 B x C, we can find 0 < k < n such that B & A; x ... x A, and
C=Ap1 x...x A, as A-algebras, possibly after reordering the A;. The propo-

sition then follows immediately. The category A—Mody decomposes as
A—MOdg( = Al—MOdg( X ... X An—MOdg(,

under which 1,4 corresponds to (14,,...,14,). Accordingly, the A-algebras B
and C can be written as (B, ..., B,) and (C4,. .., C,) respectively, with B;, C; €
A; —Mody for every i. Given 14 = B x C, we see 14, = B; x C; for every 1.
The indecomposability of 1,4, then gives B; = 0 or B; = 14,. Without loss of
generality, we can assume (By,...,B,) = (14,,...,14,,0,...,0) in A—Mody for
some 0 < k <n. Weconclude B= A; x...xA,and C = A1 X... X A, as

A-algebras. O

Remark 2.0.5. The above argument moreover shows that if a ring A = B x C'in

X has an indecomposable ring factor A;, then A; is a ring factor of B or C.

2.1 Degree of a separable ring

In this section, we recall Balmer’s definition of the degree of a separable ring in
a tensor-triangulated category, see [Ball4b], and show the definition still holds
in a non-triangulated setting. Unless stated otherwise, we only assume X is an
idempotent-complete symmetric monoidal category. Whenever A is a ring and B
is an A-algebra in K, we will write B for the corresponding ring object in A—Mody

(as in Proposition [1.2.4)).
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Lemma 2.1.1. Let (A, pa,na) and (B, ug,ng) be separable rings in K and sup-
pose f : A — B and g : B — A are ring morphisms such that go f = 14.
Equipping A with the structure of B¢-module via the morphism g, there ezists a
B¢-linear morphism ]7: A — B such that g o f: 1a. In particular, A is a direct

summand of B as a B®-module.

Proof. First, consider the A-module structure on B given by f and note that
g: B — Ais A-linear:

AoB-1®, BeB ", B

| e b

AQB 29, A Aty A

We can then apply Lemma to the ring morphism g : B — 14 in A—Modg
to find an idempotent Be-linear morphism é : B — B such that ge = § and
engg = e. Forgetting the A-action, we are left with an idempotent B¢-linear
morphism e such that ge = g and efg = e. Let f:: ef. Now we equip A with a
B¢-module structure via the morphism g and show that fvis indeed B¢linear. It

is left B-linear because the diagram

BoA—"" L A0A-y4
lf Qf lf
10f BB - .,pB

l€®1 le
efg®l=e®1

B®B:}B®BLB

1®e
commutes, where pp(1®e) = eup = up(e®1) in the last row since e is B®-linear.

By a similar argument, fis also right B-linear. Finally, g]?: gef =gf =14. O

Lemma 2.1.2. ([Ball4bl Lem.2.2]). Let A be a ring in K, Ay and Ay two A°-
modules and h :+ A = A, ® Ay an A®-linear isomorphism. Then A, and Ay

admit unique ring structures under which h becomes a ring isomorphism h : A =

Al X AQ.
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Theorem 2.1.3. Let A and B separable rings in K and suppose f : A — B
and g : B — A are ring morphisms such that g o f = 14. Then there exists a
separable ring C and a ring isomorphism h : B = A x C such that pr;h = g.
Equipping C' with an A-module structure via the morphism pry hf, it is unique up

to isomorphism of A-algebras.

Proof. Most of the proof in [Ball4bl Th.2.2] still holds, adjusting to the non-

triangulated case by way of Lemma [2.1.1 O

For a separable ring (A, u,n) in K, we can apply Theorem to the mor-
phisms f=1,®n: A— ARxAand g=pu: A® A — A. Thus we find a separable
ring A’ and a ring isomorphism h : A® A = A x A’ such that pr; h = p. The

resulting A-algebra A’ is unique up to isomorphism.

Definition 2.1.4. ([Ball4bl). The splitting tower of a separable ring A
1=A0 5 A=Al 5 AR 5 Al 5 gl

is defined inductively by AP+ = (AP where we consider A" as a ring in
AP~ _Mody. If A4 £ 0 and Al = 0, we say the degree of A is d and write
deg(A) = d. We say A has infinite degree if Al £ 0 for all d > 0.

Remark 2.1.5. Regarding A" as a ring in A"~/ —Mody, we have (AM)m =~
AlFm=1] for all m > 1 by construction. Thus, deg(A™) = deg(A4) —n + 1
when A £ 0.

Ezxample 2.1.6. Let R be a commutative ring with no idempotents but 0 and 1.
Suppose A is a commutative projective separable R-algebra. By [DI71, Prop.2.2.1],
A is finitely generated as an R-module. The degree of A as a separable ring in

K = DP*(R) (see Example |1.1.2) recovers its rank as an R-module.

Proposition 2.1.7. Let A and B be separable rings in XK.
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(a) Let F: X — L be an additive monoidal functor. For every n > 0, the rings
F(AM) and F(A)P are isomorphic. In particular, deg, (F(A)) < degy(A).

(b) Suppose A is a B-algebra. Then degp yjoq, (Fp(A)) = degy(A).

¢) Forn > 1, we have Fym(A) =2 17" x APt g5 AlM_algebras.
A Aln]

Proof. (a) and (c) are proved in [Ball4b]. To prove (b), observe that AM is
a B-algebra and therefore a direct summand of Fg(AM) = Fg(A)™. Hence,
Fp(A)" 0 when A" £ 0 and degp yjoq, (F5(A)) > degy(A). O

Lemma 2.1.8. ([Ball4b, Lem.3.11]). Let n > 1. For A = 1*" € K, we have
AP = AX0=1) g A-algebras.

Proof. We prove there is an A-algebra isomorphism A : A®@ A =5 A x A"~ with
pry A = p. Let’s write A = [[ ) 1;, A® A = [To<ijen 1 Li ® 1; and A" =
Z;é H?:_ol 1% with 1T = 1; = 1 for all 4, k. Define A : A® A — A*" by mapping

the factor 1; ® 1; identically to 1,;_;), where we take the indices to be in Z,. It

is not hard to see that A is an A-algebra isomorphism and pr,_y A = p4. O

Corollary 2.1.9. Let n > 1. The degree of 1** € X is n and (1*")" = 1>
in X.

Proof. Write A := 1*". The result is clear for n = 1, and we proceed by induction
on n, using Lemma . Applying the induction hypothesis to A2 = ILX("_I)
in A—Modyx, we get degy ypoq, (A?) =n — 1 and Al = (AR =~ 1D o
(]_Xn)X(n—l)! o pxn! ]

Corollary 2.1.10. Let A be a separable ring of finite degree in K. Then deg(A X

1*™) > deg(A) + n.

Proof. Let B := Alde] By Proposition [2.1.7(c), we know Fp(A x 1*7) =
Fp(A) x F(1°7) 22 1,9 x 1%, So, deg(F(A x 1*")) = deg(A) +n and the
result follows from Proposition [2.1.7|(a). O
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Definition 2.1.11. We call K nice if every separable ring A of finite degree has a

decomposition A = A; x ... x A, for some indecomposable rings Ay, ..., A, in XK.

Ezample 2.1.12. The categories kG —mod, D(kG —mod) and kG —stab (see
Section [7]) are nice categories. More generally, every essentially small idempotent-

complete symmetric monoidal category that satisfies Krull-Schmidt is nice.

Ezample 2.1.13. Let X be a Noetherian scheme. Then DP®(X), the derived

category of perfect complexes over X, is nice (see Lemma [5.0.1)).

2.2 Counting ring morphisms

Lemma 2.2.1. Let A be a separable ring in K. If 1 is indecomposable and there
are n distinct ring morphisms A — 1, then A has 1*" as a ring factor. In

particular, there are at most deg A distinct ring morphisms A — 1.

Proof. Let o; : A — 1,1 =1,...,n bedistinct ring morphisms with corresponding
idempotent A-linear morphisms e; : A — A as in Lemma[2.0.3] Since A*—Mody is
idempotent-complete, e; yields a decomposition A = A; @ A of A°-modules under
which e; = (§9). In fact, since the e; are orthogonal idempotents, they yield a
decomposition A = A; @ Ay ® -+ D A, & A’ of A>modules. By Lemma [2.1.2]
the A; and A’ admit unique ring structures such that A = A; x Ay x --- X
A, x A’. The first claim follows because every factor A; is ring isomorphic to 1

via a;incly,. The statement about the degree is now an immediate consequence

of Corollary [2.1.10} O

Let A be a separable ring in X and n > 1. The property Fym(A) = 177, x
Al from Proposition m(c) characterises the ring A™ in the following way:

Proposition 2.2.2. Let B be an indecomposable separable ring in K. The fol-

lowing are equivalent:
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(i) 15" is a ring factor of Fp(A) in B—Modx.
(i) There exists a ring morphism A" — B in K.
(11i) There exist (at least) n distinct ring morphisms A — B in K.

Remark 2.2.3. When X is nice (Def. [2.1.11)), (i) and (ii) remain equivalent even

for decomposable rings B.

Proof. (i)=-(ili) Suppose 15" is a ring factor of F(A) in B—Modx and write
pr,: B®& A — B withi=1,...,n for the corresponding projections in X. The
ring morphisms

apA%B@ALB,

satisfy up(lp ® a;) = pry(pup ® 14)(1p ® np ® 14) = pr; as pr; is a B-algebra
morphism for i = 1,...,n. Hence, the «; are all distinct. For (iii)=(i), let
a;: A— B,i=1,...,n be distinct ring morphisms. Seeing how «; = ug(lp ®
a;)(ng ® 14) for every i, the B-algebra morphisms pp(lp ® ;) : B®&® A — B are
also distinct. Having found n distinct ring morphisms Fp(A) — 1 in B—Mody,
Lemma [2.2.1| shows 135" is a ring factor of Fp(A).

We show (i)=-(ii) by induction on n. The case n = 1 is just (iii) and has
already been proven. Now suppose n > 1 and 15" is a ring factor of Fz(A). By
the induction hypothesis, there exists a ring morphism A"~ — B. Thus B is an

Aln=1_algebra, let us write B for the corresponding separable ring in A ~—Modx.

By Proposition [2.1.7|(c), we know

Fo(F 41 (A)) = Fg(ﬂjﬂﬁ?j) x Ay =~ ]%(”*” x Fig(AlM).

On the other hand, the commuting diagram

Fyin—1)

K —2" 5 AU _Mody

|- I

B— MOdg{ é E— MOdA["—l]—ModgK
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from Proposition shows that Fp(A) is mapped to Fg(F4m-1(A)) under the
equivalence B—Modyx ~ B—Mod gin-11_ypoa, - SO, Fp(Fyin-11(A)) has 15" as a ring
factor. Remark shows that we can compare indecomposable factors and it
follows that 15 is a ring factor of Fz(AM). By the induction hypothesis, there
exists a ring morphism A" — B in Al"~1 —Mody and therefore in K. To show
(ii)=>(i), we suppose B is an Al"-algebra and write B for the corresponding sep-
arable ring in A" —Modg. Using Proposition again, F(A) is mapped to
F5(F 4 (A)) under the equivalence B—Mody ~ B —Mod 4 104 .- By Proposi-
tion (c), Fp(Fam(A)) = Fp(1p, x APy =2 150 5 Fp(AP) so 15" is a
ring factor of Fg(A) in B—Mody. O

Theorem 2.2.4. Let A and B be separable rings in K and suppose A has finite
degree and B is indecomposable. There are at most deg(A) distinct ring morphisms

from A to B.

Proof. Suppose there are n distinct ring morphisms from A to B. By Proposi-

tion we know 15" is a ring factor of Fig(A). Then, n < degp ypoq, (F(A)) <
degy(A) by Corollary [2.1.10{ and Proposition [2.1.7|(a). O

Remark 2.2.5. Let A and B be separable rings in K.

e Theorem [2.2.4] is evidently false when B is not indecomposable, say A =

B = 1*". Indeed, deg(A) = n but A has at least n! ring endomorphisms.

e When X is nice and A, B are separable rings of finite degree in K, the number
of ring morphisms from A to B is finite even when B is decomposable, since

B can be written as a finite product of indecomposable rings.
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CHAPTER 3
Finite quasi-Galois theory

As before, (X, ®, 1) denotes an idempotent-complete symmetric monoidal
category. For now, we only assume (A, i, n) is a nonzero ring in X and I' is a finite
set of ring endomorphisms of A containing 14. Consider the ring H'yGF A, writing
H’yGF A, to keep track of the different copies of A, and define ¢; : A — HvGF A,
by pr,¢; = 1 and 5 : A — Hwer A, by pr iy = v for all v € I'. Thus, ¢,
renders the (standard) left A-algebra structure on [[ . A, and we can introduce

a right A-algebra structure via ,.
Definition 3.0.1. We define the ring morphism
Ar = A A®A—>H76FA7
by pr, A = (1 ® ). Note that A(1®7) = ¢ and A(n @ 1) = ¢s,

A
1®n ®1

(3.0.2)

n®1 ®2

A ® A 2 H'yGF A"/?

so A is an A°-algebra morphism.

Lemma 3.0.3. Suppose A\p : A® A — [[.cp A, is an isomorphism.

yer

(a) There is an A®-linear morphism o : A - A® A with u(1 ® v)o = 01, for

every v € I'. In particular, A is separable.

(b) Let v € T'. If there exists a nonzero A-linear morphism « : A — A with

ay = a, then v = 1.
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(c) Let vy € I'. If there exists a nonzero ring B and ring morphism o : A — B

with oy = a, then v = 1.

(d) The ring A has degree |I'| in XK.

Proof. To prove (a), define the A%linear morphism o := A lincl; : A - A® A.

The following diagram shows that p(1 ® v)o = 01

AR A — s A0A—1 A

A [ea
inch\/‘ / \ %

[Ler Ay [lyer 4
For (b), suppose ay = a¢ and 0 : A - A® A as in (a). Then a = auoc =
pl@a)e = p(l® a)(l®vy)o = ap(l ® y)o = ad, ;. Hence, « = 0 or v = 1.
For (c), suppose ay = a and 0 : A - A® A as in (a). Then o = auo =
pla®@a)e = pla® a)(l®@y)o = ap(l @ y)o = ad,y. Again, a = 0 or v = 1.
Finally, let d = |I'| be the order of the set. Given that F4(A) = 1% in A—Mody,
Proposition 2.1.7(b) shows deg(A4) = d. O

Definition 3.0.4. We say (A,I") is quasi-Galois in K when A is a nonzero ring,

I is a finite group of ring automorphisms of A and \p : A ® A — Hwer A, is an
isomorphism. We also call Fy : X — A—Modx a quasi-Galois extension with

group I'.

Ezxample 3.0.5. Let A :== 1" and I' = {7, | 0 < i < n — 1} = Z, where 7, is
the permutation matrix corresponding to (12---n) and v; := i. Then (A,T) is
quasi-Galois. Indeed, in the notation of the proof of Lemma [2.1.8] +; sends the
summand 1; identically to 1;;; < A and the isomorphism A is precisely the Ap
from above.

More generally, let I' be any finite group and let A := Hwer 1,, with 1 = 1, for
every v € I' and component-wise structure. Then (A,I") is quasi-Galois, where
v € I acts on A by sending 1., — A identically to 1., < A. In particular, this

example shows that I" does not always contain all ring automorphisms of A.
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Example 3.0.6. Let R be a commutative ring, A a commutative R-algebra and I a
finite group of ring automorphisms of A over R. Suppose A is a Galois extension
of R with Galois group I' in the sense of Auslander and Goldman ([AG60]). In
particular, A is a finitely generated projective R-module and A is separable as
an R-algebra by [DI71, Prop. 3.1.2]. Then, A is quasi-Galois with group I' as

a ring object in the symmetric monoidal categories R —Mod and DP(R) (see

Example |1.1.2)).

Lemma 3.0.7. Suppose (A, 1) is quasi-Galois of degree d in X and F : X — L is
an additive monoidal functor with F'(A) # 0. Then F(A) is quasi-Galois of degree
d in L with group F(I') = {F(v) | v € T'}. In particular, being quasi-Galois is

stable under extension-of-scalars.

Proof. Seeing how
F(Ar): F(A)® F(A) = F(A® A) — [ F(4)
~ver

is an isomorphism in L, it is enough to show Apry = F(Ar). Recall that Ap
is defined by pr, A\r = pa(lsa ® ¥), hence pr, F(Ar) = pray(lra) ®a F(7)).
In particular, the morphisms jip(ay(1pay ®a F(7v)) with v € I' are all distinct,
therefore so are the F'(v). This shows that F([]p A) = [[ ) F/(A) and Apr) =
F(Ar). O

3.1 Quasi-Galois theory for indecomposable rings
Proposition 3.1.1. Suppose (A,T') is quasi-Galois in K.

(a) If B is a separable indecomposable A-algebra, T acts faithfully and transi-
tively on the set of ring morphisms from A to B. In particular, there are

exactly deg(A) distinct ring morphisms from A to B.
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(b) If A is indecomposable, any ring endomorphism of A is an automorphism

and belongs to T'.

Proof. The set of ring morphisms from A to B is non-empty, as B is an A-algebra,
and I' acts on it by precomposition. Faithfulness follows from Lemma |3.0.3{c).
The action is transitive because the set of ring morphisms from A to B has no
more than deg A = |I'| elements by Theorem [2.2.4] This proves (a). For (b), note
that the ring A has at most deg A = |T'| ring endomorphisms by Theorem [2.2.4]

so I must provide all of them. O

So, for an indecomposable ring A of finite degree, we can simply say A is
quasi-Galois, with the understanding that the Galois group I' contains all ring

endomorphisms of A.

Theorem 3.1.2. et A be a nonzero separable indecomposable ring of finite degree.

Let T be the set of ring endomorphisms of A. The following are equivalent:

(i) [T| = deg(A).
(i1) Fa(A) = 1% as rings in A—Mody, for some t > 0.
(iii) Ar is an isomorphism.

(iv) T is a group and (A,T) is quasi-Galois in K.

Proof. Let d := deg(A). (i)=(ii) Lemma [2.2.2 shows that || = deg(A) implies
1%% is a ring factor of F4(A). Since deg(F4(A)) = d, Corollary [2.1.10] shows
(i

Fu(A) = 1%% To prove (ii)=(iii), first note that ¢ = d follows from Proposi-

tion [2.1.7(b). Let I : A® A = A*? be an A-algebra isomorphism. Consider the

ring morphisms

AL A A Ly Axd Py g i=1,....d,
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and note that pu(la ® o) = pr; (L ® 14)(1a @ n ® 14) = pr; [ for every i, so the
«a; are all distinct. Now, I' = {«; | 1 < ¢ < d} by Theorem and [ = Ar in the
notation of Definition [3.0.1] For (iii)=>(iv), it is enough to show that every v € T
is an automorphism. By Lemma [3.0.3] (a), we can find an A®linear morphism
o:A— A® A such that u(1 ® v)o = 61, for every v € I'. Let v € I' and note
that (1®v)o : A - A® A is nonzero since v = u(y ® 1)(1 ® v)o is nonzero.
Hence there exists 7' € I' such that pr, Ar(1 @ 7)o = u(1 @) (1 ®@ 7)o = 014,
is nonzero. This means 7'y = 1 and 7/(77) = 7/ so 77/ = 1 by Lemma [3.0.3|c).
(iv)=(i) is the last part of Lemma [3.0.3| O

Corollary 3.1.3. Quasi-Galoisness is stable under passing to indecomposable fac-
tors. De facto, if A, B and C' are separable rings in K with A= B x C' as rings,

Fu(A) = 1% as A-algebras and B is indecomposable, then B is quasi-Galois.

Proof. Under the decomposition A—Modyx = B — Modyx xC —Mody, the iso-
morphism Fy(A) = 1%% corresponds to (Fp(B x C), Fo(B x C)) = (154, 15%).
Given that 1z is indecomposable and that ﬂgd has Fp(B) as a ring factor, we see

Fp(B) = 1} for some 1 < t < d by Proposition and Remark [2.0.5, The
result now follows from Theorem B.1.2 O

Corollary 3.1.4. Let A be a separable ring in KX and B an indecomposable A-
algebra. If B is quasi-Galois in K, then the ring B is quasi-Galois in A—Modx-.

Proof. This follows immediately from Lemma and Corollary|3.1.3| seeing how
B is an indecomposable ring factor of the quasi-Galois ring F4(B) in A~Modg. [

3.2 Splitting rings

Definition 3.2.1. Let A and B be separable rings in K. We say B splits A if

Fp(A) = ILEdeg(A) in B—Mody. We call an indecomposable ring B a splitting ring
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of A if B splits A and any ring morphism C' — B, where C' is an indecomposable

ring splitting A, is an isomorphism.

Remark 3.2.2. Let A be a separable ring in K with deg(A) = d. The ring A% in
XK splits itself by Proposition [2.1.7(a),(c) and Corollary

Fya(A") & (Fya(A) = (18 )4 = 174

In particular, A4 has constant degree d! in X by Lemma m

Lemma 3.2.3. Let A be a separable ring in K that splits itself. If Ay and As
are indecomposable ring factors of A, then any ring morphism A; — Ay is an

1somorphism.

Proof. Suppose A splits itself and let A;, As be indecomposable ring factors of A.
Suppose there exists a ring morphism f : A; — A, and write A, for the corre-
sponding ring in A;—Modg. Then, A, is an indecomposable ring factor of Fjy, (As)
and hence of Fs,(A). On the other hand, Fy4, (A) = ]lzldeg(A) because A splits it-
self. By Proposition m, this means we have an isomorphism of rings Ay = 1 4,
or, forgetting the Aj-action, a ring isomorphism g : As 5 Ay in K. Note that
A; is quasi-Galois by Corollary [3.1.3] so the ring morphism gf : A; — A; is an
isomorphism by Proposition [3.1.1(b). The lemma now follows. ]

Lemma 3.2.4. Suppose K is nice (see Def. |2.1.11) and let A, B be separable
rings i XK. If B is indecomposable and there exists a ring morphism A — B

in K, then there exists a ring morphism C' — B for some indecomposable ring

factor C of A.

Proof. Since X is nice, we can write A = A; x ... x A,, with A; indecomposable for
1 < < n. If there exists a ring morphism A — B in K, Proposition [2.2.2 shows
that 1p is a ring factor of Fg(A) = Fp(A;) X -+ X Fg(A,). Since 1p is indecom-
posable, it is a ring factor of some Fg(A;) with 1 < ¢ < n by Proposition m

The lemma now follows from Proposition [2.2.2 O
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The following lemma is an immediate consequence of Proposition [2.2.2}

Lemma 3.2.5. Let A and B be separable rings in K and suppose B is indecom-

posable. Then B splits A if and only if B is an A48 _qlgebra.

Proposition 3.2.6. Suppose K is nice and let A be a separable ring in K. An
indecomposable ring B is a splitting ring of A if and only if B is a ring factor
of Aldee] I particular, any separable ring in X has a splitting ring and at most

finitely many.

Proof. Let d := deg(A) and suppose B is a splitting ring of A. By the above
lemma, B is an Al¥-algebra and there exists a ring morphism C — B for some
indecomposable ring factor C' of AlY by Lemma, . Since C' splits A, the ring
morphism C' — B is an isomorphism.

On the other hand, suppose B is a ring factor of A, Then B splits A. Let C be an
indecomposable separable ring splitting A and suppose there is a ring morphism
C — B. As before, C' is an Al¥-algebra and there exists a ring morphism ¢’ — C
for some indecomposable ring factor C’ of Al¥. The composition C' — C — B is
an isomorphism by Remark and Lemma([3.2.3] This means B is a ring factor

of the indecomposable ring C', so C' = B. n

Corollary 3.2.7. Suppose K is nice. An indecomposable separable ring B in K
18 quasi-Galois if and only if there exists a nonzero ring A in K such that B is a

splitting ring of A.

Proof. If B is indecomposable and quasi-Galois of degree ¢, then B = ]lg,(t_l).
Hence B is the unique splitting ring of B:

Bl =~ (B[Q})[t—l] o (ﬂg(t—l))[t—u o~ (-1
Now suppose B is a splitting ring for some A in K, say with deg(A) =d > 0. By

Proposition [3.2.6) Fg(B) is a ring factor of Fp(A) 2 Fp(A)d 2 (134 = 15
so Fp(B) = 15 for some ¢ > 0. Hence, B is quasi-Galois by Theorem O
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CHAPTER 4

Tensor-triangulated categories

Many everyday triangulated categories come equipped with a symmetric monoidal
structure ®, from algebraic geometry and stable homotopy theory to modular
representation theory. Using the ®-structure, Paul Balmer [Bal05] has introduced
the spectrum of a tensor-triangulated category, providing an algebro-geometric
approach to the study of triangulated categories. In this chapter, we review some
of the main concepts from tensor-triangular geometry, and recall some bits and
pieces on separable rings that we will need later. In particular, we by no means aim
to provide a complete overview of the theory. We refer to [NeeOI] for an extensive
account of triangulated categories, to [Kral(] for a summary on localizations and

to [BallOb] for a great introduction to tensor-triangular geometry.

Definition 4.0.1. Let X be a triangulated category. We call a subcategory replete
if it is closed under isomorphisms. A triangulated subcategory of K is a full replete
additive subcategory £ C X which is closed under (de)suspension and taking
cones. That is, whenever x — y — z — Xz is an exact triangle of X and z,y € £,
then also z € £. A thick subcategory is a triangulated subcategory that is closed

under direct summands.

Proposition 4.0.2. ([BS01, Prop. 3.2]). Let X be a triangulated category. The
idempotent-completion X" (see Remark admits a unique triangulated cate-

gory structure such the embedding K — K* is exact.

Definition 4.0.3. A tensor-triangulated category is a triangulated category X,

equipped with a symmetric monoidal structure (®,1) that is compatible with
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the triangulation. In particular, the bifunctor ® : X x X — K is exact in each
variable. For a more precise account, we refer to [Sanl4]. We call a functor

tensor-triangulated when it is exact and monoidal.

Remark 4.0.4. If K is a tensor-triangulated category, then the idempotent-completion
X! remains tensor-triangulated and the embedding K < X! is a tensor-triangulated

functor.

Definition 4.0.5. Let K be a tensor-triangulated category. A triangulated sub-
category § C K of X is said to be ®-ideal if x € K and y € J implies that
TRy €.

Remark 4.0.6. Let X be a tensor-triangulated category and J C K a thick ®-ideal.
Recall that the Verdier quotient K/J has the same objects as K and morphisms
obtained by calculus of fractions, inverting those morphisms whose cone is in .
Then, K/J inherits a canonical tensor-triangulated structure making the localiza-

tion functor ¢ : X — K/J tensor-triangulated.

Definition 4.0.7. We call a tensor-triangulated category K strongly closed if
there exists a bi-exact functor hom : K°° x KX — X with a natural isomorphism
Homy(z ®y, z) = Homg (x, hom(y, z)) and such that every object in X is strongly
dualizable, that is the natural morphism hom(x, 1) ® y = hom(z,y) is an isomor-

phism for all z,y in K.

Ezample 4.0.8. [Bal07, Prop. 4.1] Let X be a Noetherian scheme. Then DP*(X),
the derived category of perfect complexes over X, is a strongly closed tensor-
triangulated category, with derived tensor product —®éx. The internal hom is

given by the derived Hom sheaf RHomop, .
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4.1 Tensor-triangular geometry

In this section, we briefly recall some tensor-triangular geometry and refer the
reader to [Bal05] for precise statements and motivation.
Throughout the rest of this section, (X,®,1) will denote an essentially

small tensor-triangulated category.

Definition 4.1.1. A prime ideal of X is a thick ®-ideal P with the property that
x ®y € P implies that either x € P or y € P. The spectrum Spc(K) of K is the

set of all prime ideals P C K.

Remark 4.1.2. The spectrum Spc(XK) is indeed a set because X is assumed essen-

tially small.

Definition 4.1.3. The support of an object z in K is
supp(z) :={P € Spc(K) | x ¢ P} C Spc(K).

The complements U (x) := Spc(K) —supp(x) of these supports form an open basis
for what we call the Balmer topology on Spc(X). The study of tensor-triangulated

categories and their spectrum is called tensor-triangular geometry.

Remark 4.1.4. The Balmer topology on Spc(X) appears to be a “reverse” version
of the familiar Zariski topology on the prime spectrum of a commutative ring.

Indeed, the closed sets in Spc(XK) have the form
Z(&):={P e Spc(K)|ENP #£D},

for some family of objects € C K. This is not what one would expect in algebraic
geometry, and familiar notions from algebraic geometry may take on surprising
new meanings in tensor-triangular geometry. For instance, the closed points in
Spce(XK) are the minimal primes, and X is local if Spc(X) has a unique minimal

prime.
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Theorem 4.1.5. ([Bal05, Prop. 3.2]). The support supp(—) assigns a closed sub-
set supp(z) C Spe(K) to any object x € K and satisfies the following properties:
1. supp(0) = 0 and supp(1) =Spc(X)
2. supp(z ® y) = supp(x) U supp(y)

3. supp(Xz) = supp(z), where ¥ : X — K denotes the suspension.

4. supp(z) C supp(x) Usupp(y) if there is an ezxact triangle v — y — z — .
5. supp(z ® y) = supp(z) N supp(y)

The pair (Spe(X), supp) is in some sense the universal such assignment satisfying

the above properties. For a more precise statement, see [Bal(3, Prop. 3.2].

Remark 4.1.6. ([Bal0b, Cor. 2.4]). An object z € X is called ®-nilpotent if
x®" = 0 for some n > 1. Then, x is ®-nilpotent if and only if supp(z) = (). What
is more, a separable ring A in X is nilpotent if and only if A = 0, seeing how A is

a direct summand of A ® A.

Definition 4.1.7. Every tensor-triangulated functor F' : X — £ induces a con-

tinuous map

Spc(F) : Spe(L) — Spe(X),
defined by Spc(F)(Q) :== F~1(Q).
Most of the results in this dissertation only hold for idempotent-complete
categories. The following proposition, together with Remark [£.0.4] shows this

is a mild condition. Indeed, we can idempotent-complete categories when needed,

without affecting their spectrum.

Proposition 4.1.8. ([Bal03, Cor. 3.14]). The embedding i : X — K* of X into

its idempotent-completion induces a homeomorphism Spc(i) : Spe(XK?) =N Spe(X).
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Proposition 4.1.9. ([Bal05, Prop. 3.11]). Let J C X be a thick ®-ideal and
let ¢ : X — K/J denote the Verdier quotient functor. The map Spc(q) in-
duces a homeomorphism  Spe(K/J) —— V(J) C Spe(K)  where V(J) == {P
Spc(K)|P D d}.

Definition 4.1.10. ([Ball0Oa]). We call a tensor-triangulated category X local if

any of the following equivalent conditions is satisfied:

1. Spc(X) is a local topological space: for every open cover Spc(K) = U, Ui,
there exists ¢ € I with U; = Spe(X).

2. Spc(XK) has a unique closed point.
3. X has a unique minimal prime.
4. For all z,y € K, if x ® y = 0 then z or y is ®-nilpotent.

Remark 4.1.11. For any prime ideal P € Spc(X), the Verdier quotient K/P is
local because the ideal (0) = P/P is prime in K/P.

Definition 4.1.12. The local category Ky at the prime P € Spc(XK) is the
idempotent-completion of the Verdier quotient K/P. We write gy for the canonical

tt-functor K — K P — Ksp.

4.2 Separable rings in tensor-triangulated categories

Definition 4.2.1. A tt-category X is an essentially small, idempotent-complete
tensor-triangulated category. A tt-functor X — £ is an exact monoidal functor.

We call a commutative, separable ring in X a tt-ring, after [Ball3] Ball4h].

Throughout the rest of this chapter, X will denote a tt-category.

Theorem 4.2.2. ([Ballll, Cor.5.18]). Suppose A is a (not necessarily commu-
tative) separable ring in K. Then the category of A-modules A—Modyx has a
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unique triangulation such that the extension-of-scalars Fq : K — A—Mody and

the forgetful functor Uy : A—Mody — K are exact.

The above theorem shows that tt-rings preserve tt-categories:

Remark 4.2.3. If A is a tt-ring in X, then (A—Mody,®4,14) is a tt-category,

extension-of-scalars F4 becomes a tt-functor and Uy, is exact.

Example 4.2.4. Let R be a commutative ring and A a commutative finite étale
(lat and separable) R-algebra. Then X := DPf(R), the homotopy category of
bounded complexes of finitely generated projective R-modules, is a tt-category.
We already saw in Example [I.1.2] that the category of A-modules A—Mody is
equivalent to the tt-category DP(A). What is more, Spc(X) and Spc(A—Mody)

recover Spec(R) and Spec(A), respectively.

Proposition 4.2.5. ([Ball4b, Th.3.8]). Suppose A is a tt-ring in K. If the tt-ring
qp(A) has finite degree in Ky for every P € Spc(K), then A has finite degree and

deg(A) = MaXpeSpe(K) deg(Q{P(A))

Proposition 4.2.6. ([Ball4bl Cor. 3.12]). Let K be a local tt-category and A, B
tt-rings of finite degree in K. Then the rings A ® B and A X B have finite degree
with deg(A x B) = deg(A) + deg(B) and deg(A ® B) = deg(A) - deg(B).

Remark 4.2.7. Suppose A is a tt-ring of finite degree d in K. Propositions [4.2.5
and show that A** has degree dt.

Lemma 4.2.8. ([Ball4bl Th. 3.7]). Suppose B is a tt-ring in K with supp(A) C
supp(B). Then dengModx (Fp(A)) = degy(A).

Definition 4.2.9. For any tt-ring A in K, we can consider the continuous map
fa:=Spc(Fa) : Spc(A—Modyx) — Spc(K)

induced by the extension-of-scalars Fy : X — A—Mody.
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The study of f, is the topic of [Ball3]. We recall some of its properties here.

Lemma 4.2.10. For any tt-ring A in X,

(a) fi'(supp(z)) = supp(Fa(z)) C Spe(A—Mody) for every x € X
(b) fa(supp(y)) = supp(Ua(y)) C Spc(K) for every y € A—Mody
(c) The image of fa is supp(A).

Theorem 4.2.11. ([Ball3| Th.2.14]). Let A be a tt-ring of finite degree in K.
Then

fi
Spe((A ® A)—Modyx) — Spe(A—Mody) — 2 supp(4)  (4.2.12)

f2

is a coequaliser, where f1, fo are the maps induced by extension-of-scalars along

the morphisms 1@n andn®1: A — A® A respectively.
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CHAPTER 5

Quasi-Galois theory for tt-categories

In this chapter, we consider Galois extensions in a tt-category X, and study how
our results from Chapter [3| interact with the geometry of Spc(X). Recall that a
topological space is called Noetherian if its closed subsets satisfy the descending

chain condition.

Lemma 5.0.1. Any tt-category K with Noetherian spectrum Spc(K) is nice (see

Def. ZT1).

Proof. Let A be a separable ring of finite degree in K. If A is not indecomposable,
we can find nonzero A°-modules A;, Ay € K with A = A; & Ay as A°-modules.
By Lemma [2.1.2] A; and A, admit ring structures so that A = A; x A, as
rings. We prove that any ring decomposition of A in KX has at most finitely
many nonzero factors. Suppose there is a sequence of nontrivial decompositions
A=Ay X By, By = Ay X By,..., with B, = A,;1 X B,,1 for n > 1. Seeing
how supp(B,,) 2D supp(B,+1) and Spc(K) is Noetherian, there exists kg > 1 with
supp(B,,) = supp(B,+1) whenever n > kqo. By Proposition we moreover
know that deg(qp(B)) > deg(qp(Bn+1)) for every P € Spe(K). In other words,
supp(B,[f]) 2 supp(B,[f]Jrl) for every i > 0. So, there exists k > 1 with supp(Bg]) =
supp(B,[le) for every i > 0 and n > k. In particular, this means deg(gp(By)) =
deg(gp(By+1)) for every P € Spe(X). Proposition [4.2.6] shows that gp(Ag1) =0
for all P € Spe(X). In other words, supp(Axs1) = 0 and Agyq is ®-nilpotent.
In fact, Axy1 = 0 seeing how every ring is a direct summand of its ®-powers, a

contradiction. O
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Ezample 5.0.2. Let X be a Noetherian scheme. Then DP*(X), the derived cate-

gory of perfect complexes over X, is nice.

5.1 Rings of constant degree

In what follows, X denotes a tt-category. We will only consider tt-rings
of finite degree. As of now, we have not met a tt-ring of infinite degree and it

is unclear if they actually exist.

Definition 5.1.1. We say a tt-ring A in K has constant degree d € N if the degree
degy., g»(A) equals d for every P € supp(A4) C Spe(XK).

Remark 5.1.2. For any tt-ring A, we know supp(AP?) C supp(A) because Al =
A®cone(ns) in K. Now, a tt-ring A of degree d has constant degree if and only if
supp(All) = supp(A), seeing how P € supp(A¥) if and only if g(A) has degree d.

Ezxample 5.1.3. Let R be a commutative ring with no idempotents but 0 and 1.
If A is a commutative projective separable R-algebra (see Example 2.1.6)), then A
has constant degree in K = DP*{(R) by [DI71], Th.1.4.12].

Lemma 5.1.4. Let A be a tt-ring in K and F : X — £ a tt-functor with F(A) # 0.
If A has constant degree d, then F(A) has constant degree d. Conversely, if F(A)

has constant degree d and supp(A) C im(Spc(F)), then A has constant degree d.

Proof. By Proposition [2.1.7(a), we know that deg(F(A)) < deg(A). Now, if A

has constant degree d,

supp(F(4)) = supp(F(A)) = Spe(F) " (supp(A)) = Spe(F) " (supp(4))

= supp(F'(4)) # 0

shows that F'(A) has constant degree d. On the other hand, suppose supp(A) C
im(Spc(F)) and F(A) has constant degree d. Seeing how supp(Al™)) C im(Spc(F)),

52



0 = supp(F (A1) = Spe(F)~ ! (supp(Al4H1)) implies supp(Al4T]) = (), so A has

degree d. Moreover,

Spe(F) ™ (supp(A®)) = supp(F(A™)) = supp(F(A)) = supp(F(A)) = Spc(F) " (supp(4))

together with supp(A) C im(Spc(F)) shows supp(A¥) = supp(A), so A has

constant degree d. O

Remark 5.1.5. Let A and B be tt-rings in X with supp(A4) N supp(B) # 0. The
above lemma shows that if A has constant degree d, then Fp(A) has constant

degree d. Conversely, if Fp(A) has constant degree d and supp(A) C supp(B),
then A has constant degree d by Lemma [4.2.10(c).

Lemma 5.1.6. Let A be a tt-ring in K. Then A has constant degree d if and

only if there exists a tt-ring B in K with supp(A) C supp(B) and such that
Fp(A) = 157

Proof. If A has constant degree d, we can let B := Al¥ and use Proposition [2.1.7(c).
The other direction follows from Remark [B.1.51 O

Proposition 5.1.7. Suppose the tt-ring A has constant degree, supp(A) is con-
nected and there are nonzero rings B and C such that A = B x C. Then B and

C' have constant degree too and supp(A) = supp(B) = supp(C).

Proof. Assuming A has constant degree d, we claim that for every 1 <n < d,

supp(A) = supp(B™) |_|supp(C1H).

Fix 1 < n < d and suppose P € supp(BM™) C supp(A). This means that

deg(gp(B)) > n. By Proposition deg(gp(C)) < d —n and hence P ¢
supp(C9="*1). On the other hand, if P € supp(A)—supp(BM), we get deg(gr(B)) <
n — 1 and deg(g»(C)) > d —n+ 1. So, P € supp(Cl 1)) and the claim follows.

Now, if A has connected support, the case n = 1 and the case n = d

give supp(A4) = supp(B) = supp(C). The case n = deg(B) gives supp(B) =
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supp(A) = supp(B™) so B and C have constant degree n and d — n respec-
tively. O

Recall that for a tt-ring A and an A-algebra B in K, we write B for the

corresponding tt-ring in A—Modx. In other words, we have B = Uy (B).

Proposition 5.1.8. Let A be a tt-ring and B an A-algebra with supp(B) =
Spc(A—Mody). If A and B have constant degree, then B has constant degree and

degy(B) = degAfModx (E) - degy(A).

Proof. We first prove the case A = 1*¢. Then, B € A—Modyx = K x ... x X
has the form (By,..., By) for some B; in X and B = By X ... X By. Suppose
B has constant degree ¢ on its support Spc(A—Mody) = | |Spc(X). In other
words, B; has support Spc(XK) and constant degree t for every 1 < ¢ < d. For
every P € Spc(XK), we then see that deg(gp(B)) = Zfil deg(gp(B;)) = dt by

Proposition |4.2.6| Hence B has constant degree dt.

Now, let A be any tt-ring of constant degree d. For C' := Al we know
A = Fo(A) = 12% by Proposition m (c). We also note that supp(B) =
fa(supp(B)) = fa(Spc(A-Mody)) = supp(A) = supp(C) by Lemma(b), (c).
Remark then shows that it is enough to show that B := Fo(B) € X =

C —Mody has constant degree dt when B has constant degree ¢.

By Proposition there exists a tt-functor Fr : A—Modyx — A —Modz
such that U gF_c = FoUy in the diagram

Fa
" A—Modx

X
Ua
~ Fz

K ——— A—Mody.
Uz

~

Writingﬁ := Fo(B), wesee that Uz(B) = Fe (Ua (B)) = Fo(B) = B. Lemmalp.1.4

shows that B has constant degree t when B does. Finally, supp(ﬁ) = (Spc F¢) " (supp(B)) =
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(Spe Fo)~H(Spe(A—Mody)) = Spc(A\—Modec). By the special case, B has constant
degree dt indeed. O]

5.2 Quasi-Galois theory and tensor-triangular geometry

Lemma 5.2.1. Let A be a tt-ring in X and suppose (A,T) is quasi-Galois. Then
A has constant degree |I'| in XK.

Proof. Given that Fy(A) = ]ljm, the lemma follows from Lemma m O

Let A be a tt-ring in X and I' a finite group of ring morphisms of A. Re-
mark shows I acts on A—Mody and on its spectrum.

Theorem 5.2.2. Suppose (A,T") is quasi-Galois in K. Then,

supp(A) = Spc(A—Modg)/T.

Proof. Let (A,T") be quasi-Galois in K. Diagram yields a diagram of spectra

Spc(A—Mody)
N g1

f2 g2

Spc((A ® A)—Mody)

~IR

» Spe([ [, er Ay —Mody)

where fi, f2, g1, 92,1 are the maps induced by extension-of-scalars along the mor-
phisms 1®n, n® 1, 1, ¢ and A respectively (in the notation of Definition |3.0.1]).
So, the coequaliser |4.2.12| becomes

g1
Ll er Spe(A, —Mods) ! Spe(A—Mody) —fa supp(A),
g2
where ¢, incl, is the identity and g- incl, is the action of v on Spc(A—Mody). O

Remark 5.2.3. We call a tt-ring A in X nil-faithful when any morphism f in K
with Fi4(f) = 0 is ®-nilpotent. This is equivalent to saying supp(A) = Spc(XK),
see [Ball3, Prop.2.15]. The above proposition thus recovers Spc(X) as the I'-orbits
of Spc(A—Mody) when (A,T') is nil-faithful and quasi-Galois in K.

%)



Remark 5.2.4. If the tt-ring A in X is faithful, that is when F)y is a faithful

functor, being quasi-Galois really is being Galois over 1 in the sense of Auslander

and Goldman (see Introduction). Indeed, [Ball2, Prop.2.12], implies that
1—"— A % A®A

is an equaliser. Under the correspondence in diagram [3.0.2 this becomes

1
n
1 AT 3@ Ay,

where 1 and ¢ where defined by pr., ¢1 =14 and pr., o2 = for all vy € I,
The following lemma is a tensor-triangular version of Lemma [3.2.3

Lemma 5.2.5. Let A be a separable ring in K that splits itself. If Ay and As are

indecomposable ring factors of A, then supp(A;) Nsupp(Az) =0 or A; = A,.

Proof. Suppose A splits itself and let A;, Ay be indecomposable ring factors of A
with supp(A;) Nsupp(As) # 0. We know that Fyu, (A) = Ilfhdeg(A) because A splits
itself, and thus Fi4,(Az) = 17! for some ¢ > 0, seeing how Fy, (A;) is a ring factor
of Fa,(A). In fact ¢t > 0, because supp(A; ® Ay) = supp(A4;) N supp(A4z) # 0.
By Proposition this means there exists a ring morphism f : Ay — Aj.
Lemma shows that f is an isomorphism. O

Proposition 5.2.6. Suppose X is nice. When a tt-ring A in X has connected

support and constant degree, the splitting ring A* of A is unique up to isomorphism

(see Def. . What is more, supp(A) = supp(A*) and A* is quasi-Galois in XK.

Proof. Let d := deg(A) and write A as a product of indecomposable rings
Al = A} x ... x A,. Note that supp(A4) = supp(A¥) is connected and Al
has constant degree d! by Remark [3.2.2] Hence, Proposition [5.1.7] shows that
supp(A) = supp(4;) for all 1 < i < n. By Lemma [5.2.5] it follows that 4; = A;
for all 1 < 4,5 < n, so the splitting ring A; is unique (up to isomorphism) and

supp(A) = supp(A4;). Corollary shows A* is quasi-Galois in K. O
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Remark 5.2.7. In the following proposition and theorem, we will consider a tt-
ring A with connected spectrum Spc(A—Mody), implying A is indecomposable.
When the tt-category A—Mody is strongly closed (see Def. , the spectrum
Spc(A-Mody) is connected if and only if A is indecomposable, see [Bal07, Th.2.11].

Proposition 5.2.8. Suppose X is nice and let A be a tt-ring in K with connected
spectrum Spc(A—Mody). Suppose B is an A-algebra with supp(A) = supp(B) C
Spe(X). If (B,T) is quasi-Galois in K, then B splits A. In particular, the degree

of A in X is constant.

Proof. Since B is quasi-Galois, all of its indecomposable components are quasi-
Galois by Corollary [3.1.3] What is more, supp(B) = fa(Spc(A—Mody)) is con-
nected, so the indecomposable components of B have support equal to supp(B)
by Proposition [5.1.71 Thus it suffices to prove the proposition with B inde-
composable. Now, F4(B) is quasi-Galois by Lemma and supp(Fa(B)) =
f1'(supp(B)) = f;'(supp(A)) = Spc(A—Mody) is connected. Let d := deg(B)
and write B for the tt-ring in A —Mody that corresponds to the A-algebra B
in K. Since B is an indecomposable ring factor of F4(B), Proposition and
Lemma m show that F(B) = B in A—Mody for some ¢ > 1. Forgetting
the A-action, we get A ® B = B*' in K and Fp(A ® B) = F(B*') = 1%
in B—Modg. On the other hand, Fg(A® B) & Fg(A) ®@p 154 = (Fg(A))*4. Tt
follows that Fp(A) = 1}, with ¢t = deg(A) by Lemma . Hence, B splits A

and Lemma [5.1.6| shows that the degree of A is constant. O]

Theorem 5.2.9. (Quasi-Galois Closure). Suppose K is nice and let A be a tt-ring
of constant degree in K with connected spectrum Spc(A—Mody). The splitting
ring A* (see Prop. 1s the quasi-Galois closure of A. That is, A* is quasi-
Galois in K, supp(A) = supp(A*) and any A-algebra morphism B — A* with B

quasi-Galois and indecomposable in K, is an isomorphism.
Proof. Proposition shows that A* is quasi-Galois in X and supp(A) =
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supp(A*). Suppose there is an A-algebra morphism B — A* with B quasi-
Galois in K and indecomposable. Seeing how supp(A*) C supp(B) C supp(A),
Proposition [5.2.8] shows that B splits A. Thus B — A* is an isomorphism by
definition of the splitting ring A*. O

Remark 5.2.10. Proposition [5.2.8] shows that the assumption A has constant de-

gree is necessary for A to have a quasi-Galois closure A* as in Theorem [5.2.9]
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CHAPTER 6

Quasi-Galois theory and descent

In this chapter, we consider the theory of descent for ring objects, and look at
what happens when the ring is a quasi-Galois extension. We do not mean to
give an overview of the theory of descent and refer to [Mes06] (or [Ball2] in
the triangular setting) for some examples and a concise history. We will briefly
recount the terminology of monads, and refer to [Mac98]| for more explanations and
related ideas. We assume (X, ®, 1) is an idempotent-complete symmetric

monoidal category.

6.1 Monads, comonads and descent

Definition 6.1.1. A monad (M, pu,n) on X is an endofunctor M : X — K
together with natural transformations p : M? — M (multiplication) and 7 :

idy — M (two-sided unit) such that the diagrams

M3 e g2 MM g2
PM lﬂ and an \ lu
M2 2 s M M?2 2 s M

commute. An M-module (z, ) in K is an object = in K together with a morphism

0: M(z) — z (the M-action) in K such that the following diagrams commute:

M2(z) 5 M(a v —" s M(z)
J» g l and \ |
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If (z, 01) and (y, 02) are M-modules, a morphism f : z — y is said to be M -linear

if the diagram

o |

M(y) —==y
commutes. We denote the category of M-modules and M-linear morphisms in
K by M —Modg. Every object x € K gives rise to a free M-module Fy(x) =
(M(z), o) with action given by o : M?*(x) £ M(x). The extension-of-scalars
Fy o X — M—Mody is left adjoint to the forgetful functor Uy, : M —Modg — K

which forgets the M-action. This adjunction

X
Fy || Unm
M —Mody .

is called the Filenberg-Moore adjunction.

Remark 6.1.2. If (A, pa,n4) is a ring object in K, then (M, u,n) = (A® —, s ®
—,Na ® —) defines a monad on X, with M —Mody = A—Mody.

Definition 6.1.3. A comonad (N,k,€) on X is an endofunctor N : X — K

together with comultiplication x : N — N? and counit ¢ : N — idg such that the

diagrams
N —5 5 N? N —5 5 N?
lm J/,‘QN and lﬁ\ J/Ne
N2 e, N3 N2 N N

commute. An N-comodule (x,d) is an object = in K together with a morphism

d:x — N(x) (the N-coaction) in K such that the following diagrams commute:

r —>— N(z) r— s N(x)
oo e N
N(z) — N*(x) T.
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A morphism of N-comodules f : (x,0;) — (y,d2) is a morphism f : x — y in K
such that the diagram

x—2 N(z)

lf lN(f)

y—"= N(y)
commutes. We write N —Comody for the category of N-comodules in K. The
free-comodule functor FV : K — N —Comod 4 pod, sends z to (N(x), ;). The
functor UY : N—Comody — K which forgets the N-coaction is left-adjoint to F'V.

We call this the co-Filenberg-Moore adjunction:

N —Comodg

UN14{FN
X.

Remark 6.1.4. ([Mac98, Thm.VIL.3.1]). Every adjunction L : X = £ : R with unit
n :idx — RL and counit € : LR — id; induces a monad (M := RL,u := Rel,n)
on X and a comonad (N := LR,k := LnR,€) on L. We say the adjunction L 4 R

realizes the monad M and comonad N. The (co-)Eilenberg-Moore adjunctions

in Definitions [6.1.1] and [6.1.3] show that any (co)monad can be realized by an

adjunction. Actually, Fiy F Uy and UY = FV are the final adjunctions that
realize the monad M and comonad N, respectively. That is, given an adjunction
L:X <= L : R realizing the monad M = RL on X and comonad N = LR on L,
there exist unique functors P : £ — M —Modyg and @) : X — N —Comod, such
that PL = Fy;, UyP =R, QR = FN and UNQ = L:

M
Q Q
X X > N—Comodg .
/ w and R UN
R Fur P N
L 5 M —Mody L

Ly,
N
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The functor P is given by P(z) = (R(z), R(e;)) and P(f) = R(f) for objects x
and morphisms f in £. Similarly, Q(z) = (L(x), L(n,)) and Q(f) = L(f) if = is

an object and f is a morphism in X.

Definition 6.1.5. Let (M, i, n) be amonad on X. The descent category Descy (M)
for M in X is the category of comodules over the comonad L™ on M —Mody,

where LM is realized by the adjunction Fy; - Uy,

MK @ > Descy (M ):= LM —Comod s pody
UM UL]\l
Fu LM
M —Mody
U
LM.=F\; U

In the above picture, UL" = FL" is the co-Eilenberg-Moore adjunction for the
comonad LM on M —Modsy, and @ is the comparison functor from Remark [6.1.4]
In particular, ULMQ = Fyy and QUy; = FLY.

Definition 6.1.6. [Mes06] Let M be a monad on K. We say M satisfies effective

descent when the comparison functor @ : K — Descy (M) is an equivalence.

We refer to [Mes00, Section 3] for necessary and sufficient conditions for X to

satisfy effective descent. We simply herald the easy-to-state

Theorem 6.1.7. [Mes06, Cor. 3.17] Let (M, p,n) be a monad on XK. If the natural
transformation n : idx — M is a split monomorphism, then M satisfies effective

descent.

Recall that we call a ring A in K faithful when F4 is a faithful functor.

Theorem 6.1.8. [Ball2, Cor. 3.1] Suppose X is an idempotent-complete tensor-
triangulated category and (A, p,n) a ring object in K. Then A satisfies effective
descent if and only if A is faithful.
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Remark 6.1.9. Let (A, u,n) be a ring object in X, and consider the monad M :=
A® — : K — K. The comonad LA := L™ : A—Modyx — A—Mody has
comultiplication given by A®x 14848l 4 & A and counit given by A®z % x
for every (z,0) € A—Modyx. We can describe the descent category Descy(A) :=
Descy (M) explicitly. An object (z, g,9) in Descy(A) is an object x in K, together

with an A-module structure o : A ® x — = and descent datum 6 : v — A® x, a

comodule structure on x, compatible with the A-module structure in the following

way:
ARA® el y A® 120 ARA®
p®1 (a) 0 (b) p®1
A@x 2 e d Az (6.1.10)
@l s (c) 191®1
x AR 190 AR AR

e

commutes (see [Ball2l Rem. 1.4]). A morphism f : (z,01,01) = (y,092,02) in

Descy(A) is an A-linear morphism in X that is compatible with the descent datum:

xLA@x

o e

y—2 s Ay

The comparison functor @ : KX — Descx(A) maps objects x € K to (A® z, 4 ®

1,14 ®n ® 1,) and maps morphisms f to 14 ® f.

6.2 A comonad induced by ring automorphisms

Notation 6.2.1. Let (A, p,n) be a ring in X and suppose I' is a group of ring
automorphisms of A. Seeing how A is commutative, any left A-module (z, 0) has

a right A-module structure given by r ® A ﬂ A®z S x. Let v € I'. Recall
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from Definition that we write A, for the A, A-bimodule A with (standard)
left A-action A® A 5 A and right A-action A® A 2% A® A% A. On the other

hand, for any left A-module (z, ), we can twist the left A-action on x as follows:

A®xL®1>A®x—g>x

and keep the (standard) right A-action z ® A W Agr S 2. We will de
note the resulting A, A-bimodule by z7. In particular, we have an equality of
A, A-bimodules (z7)7 = "7 for all 71,7, € T'. Finally, for any A, A-bilinear
morphism f : x — y, the morphism f7 := f : 27 — y” is still A, A-bilinear.

Remark 6.2.2. Let (x, 0) be an A-module in K. For every v € I', we note that the

maps v :x — x7 and p: AY ® v — 27 are left A-linear.

Proposition 6.2.3. Let (A, u,n) be a ring in X and suppose T is a group of ring
automorphisms of A. The endofunctor
N=N":= (@4 [[4): A-Modx — A—Mody : z —~ [[ 2"
~er ~vyel
defines a comonad (N, k,€) on A—Mody, with comultiplication
Ky Hlﬁ - H (x’h)’yz ~ H x’h“/z
vel Y1,72€l Y1,72€l

) = 1 1 — . 0%
gwen by pr., ., Ky = pr, ., and with counit €, := pry : H’yef 7 —x.

Proof. Let x € A—Modg. To check that comultiplication is coassociative, we

consider

ver V5,72€T

lﬁx lnw er(fe)?? PTyiv3,72
H (J;'Yl )71 H Y1372

7,7 €T 71,73,72€T
prvmﬁz\)

17372
PARCRER

([ er =71)

PIyq 9372
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which shows that

Py vs,70 (HN(J»‘))’% = Plmiya)re = Plyi(ysne) = Plyigsme (N () ) oo
for every ~1,79,7v3 € I'. Furthermore, € is a two-sided counit, because

H Y s R H 2

~er 71,72€l
. €z)72
llﬁ]l \ lH’Y2EF( z) pI‘l’,y

H :C'YI'YQ H x'y

€1y, er 1)

Y1,72€l ~er
pr,
pr'y,l x’y
shows that pr_(en(w))ks = pr.,; = pry, = pr. (N(e;))r, for every v € T O

Definition 6.2.4. The category (A—Modg)" has objects (z, o, (8, : @ — 7)., er),
where (z, ) is an A-module in X and (0, ),er is a family of left A-linear isomor-
phisms d, : x — 27, with §; = 1, and satisfying the cocycle condition

é
x%x'}/l

m l(%)ﬂ

xR = (1372)71

for any 71,7, € I'. Morphisms f : (, 01, (0y)yer) = (¥, 02, (By)yer) in (A—Modg)"
are A-linear morphisms f : (x, 01) — (v, 02) such that g, f = f76, for every v € I.

Proposition 6.2.5. Let (A, 1, n) be a ring in X and suppose I is a group of ring
automorphisms of A. The category (A—Modg )" is isomorphic to the category of

NT_comodules.

Proof. We define a functor N—Comod g4-niod,, — (A—MOde)F by sending objects
((x,0),8 : @ = N(z)) € N—Comod o-mod, t0 (7,0, (6,)rer) € (A—Mody)", with

(6:2—=[[era”) — (6,2 LAN 27 )er.
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Suppose ((z,0),d) € N—Comod 4 nod,- The following diagram

pr

vyel’
lé lnmw l‘m

IT 27 LN yye P Y172

~yel Y1,72€l T €l
lprnvz lpr“q 2 lpr"n
./L"Yl’YQ —_— x’Yl’Y2 —_— x’Yle
shows that (. ),er satisfies the cocycle condition (d,)?%0,, = 04,+,. What is more,

we know

N

T
and hence d; = 1, as desired. Now, suppose (z, g,9) and (y, ¢, ') are N-comodules

in A—Modg. An A-linear morphism f : x — y is a morphism of N-comodules if

[ e
5/

y—— ILer v’
commutes. This happens precisely when

5 Pry
Y Y
T —— [l ——z

b, T b
6/

pr

commutes for every v € I', so f : & — y is a morphism in (A—Modg)". O

6.3 Descent and quasi-Galois theory

Recall from Definition that we have an A, A-bilinear map A : A® A —
[[,er Ay given by pr, A = u(l ® 7). Furthermore, we will write ¢ = ¢4, :
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A®x — Fs(A)®ax for the Projection Formula isomorphism in X (Prop. [1.1.13)).

Lemma 6.3.1. Let (A, p,n) be a ring in K and suppose I is a group of ring
automorphisms of A. The map A\, : AQ x — H'yEF x7 defined by

Aot A@x —2 Fa(A) @40 5[] 0 Ay @aa =[]

is left A-linear for every xr € A—Modx.

Proof. Let (x,0) € A—Modyx. We note that A, is given by pr, A\, = o(y ® 1):

A®$L>(A®A)®A$MH76FA7®AIEL>H76F$

lw@lz l(:l@'}/)@A 1y lpr'y J/pr,y
AR —25 (AR A) @ar 245 A @2 = T,

o

in which the left square commutes because ¢, , is natural in y. It follows that
pr, A : Agr 225 prgr —2 s 1

is left A-linear for every v € I' (see Remark [6.2.2)). O

Let (A, u,n) be a ring in X. Recall that we defined the comonad L = LA =
F,U4 on A—Mody, with comultiplication given by A ® x R N - R-Y
and counit given by A ® z % x for every (z,0) € A—Modx (Def.[6.1.5). On

the other hand, for I" a group of ring automorphisms of A, we defined the monad

(N = N' k,€) on A—Modyg in Proposition [6.2.3]

Proposition 6.3.2. Let (A, pu,n) be a ring in K and suppose I is a group of ring

automorphisms of A. Then,
Aot L(x) =A@z —— [[ 27 = N(z)

defines a morphism X\ : L = N of comonads on A—Mody:

A—Mody — A %
\ J/FA
N
A—Modg{ .
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Proof. Recall that A, is given by pr, A, = o(y® 1) : A® x — 27 for every
(x,0) € A—Modx. To show that (A;)zeamod, IS natural, we note that the
diagram
Agr 2L Agr -2 sy
boor s |
ARy o4 Ry SLLIEN Y
commutes for every A-linear map f : (z,01) — (y,02). We still need to check

that (A\;)zeamod, defines an morphism of monads. That is, we check that the

diagrams
Agr 22 [[era”
\ lel:pn
x
and
Agr 2% Ao Agq
l)\z l/\N(z)(L()‘Z)):N()‘Z)AL(z)

Kx
H’YEF ! Hm 2€l T
commute. Commutativity of the first diagram is clear, because pr; A, = o(1®1).

To show the second diagram commutes, let us compute

N1 @n@1) = [[(he) Ml @n@1) :

vyel

the diagram

Y2
Ape Z A9 Ags 2225 [ (Ao ) e IL, pper @™
72®1 l72®1®1 pr, pr,,
Agr 2\ Ao Ay 2L (A®x)” i [[,eram™
1 (11®1)72 P,
(A® ) i T2

commutes, which shows

ey, (] AP A ace(1®@n@ 1) = 0(11 @ 1) (12 @ 1).

o€l
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On the other hand, we compute k,\, and find

Az Rg
A ® @ H'yEF z” H’u €l M
J'YWZ ®l lpr’vl 72 lpr'ﬂ 72
A ® xXr —>Q :L"YI’YQ _ .’I/"Yl’m
so that pr., . (5:)Ae = o(m ® 1) a

Corollary 6.3.3. Let (A,T') be quasi-Galois in K. The comonads L* and N* on

A—Modx are isomorphic and
Descy(A) = N' —Comod s yod, =~ (A—Mody)".

Proof. This follows immediately from Proposition [6.3.2]and Proposition[6.2.5 [

Corollary 6.3.4. Let A be a faithful ring in K and suppose (A, 1) is quasi-Galois.
Then K ~ (A—Modg)".

Proof. This follows from Theorem and Corollary [6.3.3] O
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CHAPTER 7

Quasi-Galois representation theory

Let G be a finite group and k a field with characteristic p dividing |G|. We write
kG —mod for the category of finitely generated left kGG-modules. Its bounded de-
rived category D°(kG—mod) and stable category kG —stab are nice tt-categories;
both have tensor ®; with diagonal G-action and the unit is the trivial represen-

tation 1 = k. Rickard [Ric89] proved there is an equivalence of tt-categories
kG —stab = D?(kG —mod) / K*(kG — proj).

The Balmer spectrum Spe(D?(kG —mod)) of the derived category is homeomor-
phic to the homogeneous spectrum Spec”(H*(G, k)) of the graded-commutative
cohomology ring H*(G, k). Accordingly, the Balmer spectrum Spc(kG —stab) of
the stable category is homeomorphic to the projective support variety Vg(k) :=
Proj(H*(G, k)), see [Bal05].

Notation 7.0.1. Let H < G be a subgroup. We define the kG-module Ay =
A% = Kk(G/H) to be the free k-module with basis G/H and left G-action given
by ¢ - [z] = [gx]. We also define kG-linear maps p : Ay ®x Ay — Apy given for
every 7,7 € G/H by

v ify=o
0 ify#9

YRy ——

and n:1— Ay by sending 1 € k to }°. .5 /57 € k(G/H).
We will write X(G) to denote kG —mod, D°(kG—mod) or kG—stab and consider

the object Ay in each of these categories.
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Theorem 7.0.2. ([Ball5, Prop.3.16, Th.4.4]). Let H < G be a subgroup. Then,

(a) The triple (Ag, pu,n) is a commutative separable ring object in K(G).

(b) There is an equivalence of categories ¢ : K(H) = Ag —Modx ) sending
VeX(H) to kG @xy V € K(G) with Agy-action

0:k(G/H) @k (kG @xu V) — kG @y V

®uv ifge
gwen fory € G/H, g€ G andv eV byy®@ g v — g I 7.
0 ifgéy
(c) The following diagram commutes up to isomorphism:
(€
fK(H) i > AH—MOdg((G) .

The above shows that subgroups H < G provide indecomposable separable
rings Ay in K(G), along which extension-of-scalars becomes restriction to the

subgroup.

Proposition 7.0.3. The ring object Ay has degree |G : H]| in kG —mod and
D*(kG —mod) .

Proof. We refer to [Ball4b, Cor. 4.5] for K(G) = D’(kG —mod). The case
K(G) = kG —mod follows likewise from considering the fiber functor Res?l}. O

Lemma 7.0.4. Let X(G) denote D*(kG —mod) or kG —stab and consider the
subgroups K < H < G. Then supp(Ap) = supp(Ax) C Spc(K(G)) if and only if

every elementary abelian subgroup of H is conjugate in G to a subgroup of K.

Proof. This follows from [Eve91] Th.9.3.2], seeing how supp(Ag) = (Res$)*(Spe(K(H)))
can be written as a union of disjoint pieces coming from conjugacy classes in G

of elementary abelian subgroups of H. O
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Notation 7.0.5. For any two subgroups H, K < G, we write y[g]x for the equiv-
alence class of ¢ € G in H\G/K, just [g] if the context is clear. We will write

HY := g~'Hg for the conjugate subgroups of H.

Remark 7.0.6. Let H, K < G be subgroups and choose a complete set T' C G of
representatives for H\G/K. Consider the Mackey isomorphism

[T¢/xnH?) = G/K xG/H,

geT
sending [z] € G/(K N HY) to ([z]k, [rg 'x). The resulting ring isomorphism
in X(G) (see [Ball3, Constr. 3.1]),

A ® Ay = [ [ Axono (7.0.7)
geT
sends [z]x ® [y] g to [wk]knme, with g € T such that glg|x = gy 7|k and k € K
such that y~'zkg~! € H. This yields an Agx-algebra structure on Agxngy for every
y €T, given by
Ax =% Ak @ A = [ Axons 2 Axes,
geT

which sends [z]x € G/K to > [xk]lknry € Agnmy. In the notation of
[kleK/KNHY

Theorem [7.0.2(b), this just means Axnpy = (AR yy) in Ax —Mody ).

Lemma 7.0.8. For x,y € G we have g|x|gv = ulyluy if and only if glz] = uly].

Proof. If [z] = [y] in H\G/HY, there are h,h' € H with = = hy(y~'h'y) =
hh'y. ]

Corollary 7.0.9. Letx, 91,92, ..,9, € G and1 < i <n. Then g[x|gngon. . Amm =

H[Qi]HﬂHglﬂ..ﬂHgn if and only if H[l'] = H[gz]

Notation 7.0.10. We will write S C G to denote some complete set of repre-
sentatives for H\G/H. Likewise, for ¢i,92,...,9» € G we fix a complete set
So1.g9...9n C G of representatives for H\G/H N H" N...N HI.
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Lemma 7.0.11. Let 1 <n < [G: H|. In X(G), there is an isomorphism of rings

[n+1]
Ay = H Annm90..AHon

g1, - 9n

where the product runs over all g1 € S, g2 € Sq,, .., Gn € Sgi.gorgnr With
all, mlgil, - -, Blgn] distinet in H\G.

Proof. By Remark

Agp @ Ag = H Apnpe = A X H Annmo
ges ges
Hlgl#m[1]

so Proposition [2.0.4{ shows AE-_ZI] = J] Amgnws. Now suppose

geSs
Hlg1# ul1]

ATI]% H AHnH9 ... AH1

91 -5 9n—1

for some 1 < n < [G : HJ, where the product runs over all g, € S, gy €

Sgis s Gno1 € Sg1.gomgn_o With g1, Hlo1], ..., slgn—1] distinct in H\G. Then
g1 .-, 9n—1 91 s 9n—1 gnesgl,gz,m,gnil

by Remark [7.0.6, We note that every g, € Sg g, 9., With glg,] = u[l] or
ulgn] = mlgi] for 1 < i < n —1 provides a copy of AB?]. By Corollary [7.0.9} this

happens exactly n times. Hence,

Xn
A[ﬁ] ® Ap = (A[ﬁg X H Apnman..nHom,

g1, .., 9n
where the product runs over all g1 € S, g2 € Sg;, ..., gn € Sgi.g0,..9n1 With
All, mloi]s - - ., Hlgs) distinet in H\G, and the lemma now follows from Proposi-

tions [2.1.7|(c) and [2.0.4] O
Corollary 7.0.12. Let d := [G : H] and suppose K(G) is D’(kG —mod) or

kG —mod. There is an isomorphism of rings

d!
G

[d] ~ x [Ginorm ;]
AH':: Anmmg Ha

where norm$, == (| ¢g~'Hg is the normal core of H in G.
geG
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Proof. From the above lemma we know that Ag} = [T  Awngon.~mgoe:,
where the product runs over some gy, ... gq—1 € G with {;[11],;[211], oy Hlga—1]} = H\G.
So, Ag] = A:srmg for some ¢ > 1. Furthermore, deg(Anomg) = [G : norm%] and
deg(AEf}]) = d! by Remark |3.2.2| and Proposition [7.0.3 so ¢t = m by Re-
mark [£.2.71 O

Corollary 7.0.13. The ring Ay in D°(kG —mod) has constant degree [G : H] if
and only if norm$ contains every elementary abelian subgroup of H. In that case,
its quasi-Galois closure is A, ... Furthermore, Ay is quasi-Galois in Db(]kG—

normyy :

mod) if and only if H is normal in G.

Proof. The first statement follows immediately from Lemma [7.0.4] and Corol-
lary [7.0.12 By Proposition m the splitting ring of Ay is A,gmg, so the
second statement is Theorem [5.2.9] Since Ay is an indecomposable ring, it is
quasi-Galois if and only if it is its own splitting ring. Hence Ay is quasi-Galois if

and only if A

normé = Ap, which yields norm$ = H by comparing degrees. ]

Remark 7.0.14. Let H < G be a subgroup. Recall that Ay =2 0 in kG—stab if and
only if p does not divide |H|. On the other hand, The Mackey Formula shows
that Res Ind% (k) = k @ (proj) if and only if Ind%  ;, (Ik) is projective for every
g € G— H. Hence, Ay = k in kG —stab if and only if H is strongly p-embedded
in G, that is p divides |H| and p does not divide |H N HY| if g € G — H.

Theorem 7.0.15. Let H < G and consider the ring Ay in kG'—stab. Then,

(a) The degree of Ap is the greatest 0 < n < [G : H| such that there exist
distinct [g1], ..., [gn) in H\G with p dividing |H9 0 ... N H%™|.

(b) The ring Ay is quasi-Galois if and only if p divides |H| and p does not
divide |H N HY N H9"| whenever g € G — H and h € H — HY.

(c) If Ay has degree n, the degree is constant if and only if there exist distinct
(1], -, [gn] in H\G such that H9* N ...N H% contains a G-conjugate of
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every elementary abelian subgroup of H.

In that case, Ay has quasi-Galois closure given by Agon. Ao -

Proof. For (a), recall that deg(Ay) is the greatest n such that A[g] # 0, thus such
that there exist distinct g1], glg1], - - ., glgn—1] with |HNH N...NH-| divisible
by p. To show (b), we note that

Fay, (Ap) = HAHmHg = ﬂXdeg(AH)

geSs

corresponds to [],cg AR, =2 I dee(An) under the equivalence Ay—Modyg sean =
kH —stab (see Remark . So, Ay is quasi-Galois if and only if Ay # 0
and for every g € G, either A%, = 0 or AY_,, = k. By Remark [7.0.14]
this means either p { |[H N HY|, or p | |[H N HY| but p { |[H N H N H"| when
h € H — HY9. Equivalently, p does not divide |H N HY N H9"| whenever g €
G — H and h € H — HY. For (c), suppose Ay has constant degree n. By
Proposition , any indecomposable ring factor of A[g] is isomorphic to the
splitting ring A}, so Lemma [7.0.11] shows that the quasi-Galois closure is given
by A} = Apgoin. nmen for all distinet glg1], .. ., glgn] with |[H9*N...NH9| divisible
by p. Then, supp(Ag) = supp(A4};) = supp(Agoin. ags) so H* N ... N H™
contains a G-conjugate of every elementary abelian subgroup of H. On the other
hand, if there exist distinct [g1], ..., [¢gn] in H\G such that H9'N...NH9 contains
a G-conjugate of every elementary abelian subgroup of H, then Supp(AE?I}) =

supp(Agein..nmen ) = supp(Ag), so the degree of Ay is constant. O

Ezxample 7.0.16. Let p = 2 and suppose G = S3 is the symmetric group on 3
elements {1,2,3}. Consider the subgroup H := {(),(12)} = Sy of permutations
fixing {3}. Its conjugate subgroups in G are the subgroups of permutations fixing
{1} and {2} respectively, so norm% = {()}. Then, Ay is a faithful ring of degree 3
in D’(kG —mod) with supp(Ay) = Spc(D’(kG —mod)). On the other hand,

supp(A[g) contains only one point, so Ay does not have constant degree in D°(kG—
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mod). When considered in kG—stab however, the ring Ay is quasi-Galois of degree

1, since H is strongly p-embedded in G.

Ezxample 7.0.17. Let p = 2. Suppose G = S, is the symmetric group on 4 elements
{1,2,3,4} and H = Ss is the subgroup ((12), (123)) of permutations fixing {4}.
The intersections H N HY with g € G — H each fix two elements of {1,2,3,4}
pointwise, so H N HY = S,. Furthermore, the intersections H N H9 N HY% with
[1], [g1], [g2] distinct in H\G are trivial. So, the ring Ay in kG—stab has constant
degree 2 and A[fl} is a faithful A-algebra. The quasi-Galois closure of Ay in
kG —stab is Ag,, with Sy = {(), (12)} embedded in H.
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