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ABSTRACT OF THE DISSERTATION

Elucidating the Genetic Architecture of Complex Traits with Variance Component Models

by

Juhyun Kim

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2021

Professor Hua Zhou, Chair

Variance component models are a fundamental topic in statistical genetics. These models

enable us to estimate the underlying heritability of a phenotype, adjust for confounding in

association testing, and assess the strength of effects of a set of genetic markers on a pheno-

type. Under the overarching theme of variance component models, this dissertation aims to

elucidate the genetic architecture of complex diseases and traits by developing and applying

variance component model-based methods to analyze high-dimensional genomic data. In

the first half of the dissertation, we propose a variance component selection framework that

jointly models and prioritizes a set of genetic markers that are associated with quantitative

traits. The second half of the dissertation is devoted to quantifying the heritability of di-

abetes complications. We use various heritability estimation methods, some of which are

based on variance component models.
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CHAPTER 1

Introduction

Proposed by R. A. Fisher (1918), variance component models have been a fundamental

topic in statistical genetics. These models enable us to estimate the genetic contribution

to variation in a phenotype (e.g., height, weight, blood pressure, test score), adjust for

confounding in association testing, assess the strength of effects of a set of genetic markers

on a phenotype, and compute genetic correlations. The idea behind variance components

lies in the decomposition of the overall variance of the outcome into particular sources.

Consider the following standard variance component model where y is a n × 1 vector of

quantitative measurements taken from n individuals and X is a n× p matrix of p covariates

(e.g., intercept, sex, age). Denoting G to be a genetic relationship matrix or a kernel matrix,

depending on the context, and In to be a n× n identity matrix, we assume the following:

y ∼ N(Xβ, σ2
gG+ σ2

eIn), (1.1)

where β is a p × 1 vector of fixed effects parameters and σ2
g and σ2

e are scalar parameters

representing genetic and environmental variances, respectively. Because the overall variance

of our quantitative trait, Var(y), is divided into genetic and environmental components, σ2
g

and σ2
e are called variance components. This model is general and flexible in it can easily

incorporate other covariance terms such as sample relatedness or shared environment effects.

Under the overarching theme of variance component models, this dissertation aims to

understand the genetic contributions to complex diseases and traits by developing and ap-

plying methods involving variance component models to analyze high-dimensional genomic
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data. We address two main scenarios in which variance component models are employed:

(i) testing for an association between a set of genetic markers and a phenotype and (ii)

estimating the underlying heritability of a trait.

The first scenario arises from genetic association studies, which aim to find genetic vari-

ations contributing to a particular complex disease or trait. Traditional genome-wide asso-

ciation studies (GWAS) test one variant at a time for association with a disease. Despite

the deluge of discoveries, common (minor allele frequency (MAF) > 0.05) genetic variants

(usually single nucleotide polymorphisms (SNP)) identified in GWAS remain insufficient

for explaining much of the genetic contribution to complex traits. One hypothesis behind

this so-called “missing heritability” problem posits that low-frequency and rare variants

(MAF ≤ 0.05) can explain the remaining disease risk or trait variability. When faced with

low-frequency or rare variants, however, the classical single marker test is seriously under-

powered. One strategy to alleviate the power issue is a gene- or region-based test, in which

SNPs within a gene or region are aggregated and tested for the joint effect of variants on

the risk of complex disease (for review, see Lee et al., 2014). The use of variance compo-

nent models is widely accepted in the SNP-set analysis. One popular variance component

model-based method for such analysis is the score-based Sequence Kernel Association Test

(SKAT) method (Wu et al., 2011). Under this framework, testing for association corresponds

to testing the null hypothesis σ2
g = 0 in the notation of (1.1).

The SKAT gave rise to a plethora of methods for rare variant association analyses in

various settings. Gene Association with Multiple Traits (GAMuT; Broadaway et al., 2016),

Dual Kernel-based Association Test (DKAT; Zhan et al., 2017) and Multi-SKAT (Dutta

et al., 2019) allow multiple phenotype test for rare variants with kernels for genotypes and

phenotypes. Methods that can incorporate gene-environment interactions are available as

well (Chen et al., 2014; Lin et al., 2016; Lim et al., 2020). However, these methods are

marginal testing procedures that are limited to inspecting one SNP-set at a time. Chapters 2

and 3 address the limitations of marginal testing approaches and introduce methods that
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jointly model multiple SNP-sets and identify the sets that are relevant to quantitative trait(s).

The other scenario that demonstrates the utility of variance component models in quan-

titative genetics is heritability. The narrow-sense heritability, typically referred to simply as

the “heritability,” is defined as the proportion of phenotypic variance that can be attributed

to additive genetic variance. In the notation of (1.1), heritability equals to

h2 =
σ2
g

σ2
g + σ2

e

.

Estimating the heritability of a trait is often an initial step for understanding complex traits

with many contributing factors. Heritability can suggest researchers how much to consider

hereditary influences when they want to learn about causes for a particular trait. In the

absence of genetic data, heritability has historically been estimated based on family or twin-

based designs. However, the studies based on family relationships had severe flaws and were

subject to confounding by shared environment effects (Keller and Coventry, 2005; Tenesa

and Haley, 2013).

Advances in array-based and whole-genome sequencing techniques have led to the estima-

tion of single-nucleotide polymorphism (SNP) heritability using large-scale genetic datasets

(Yang et al., 2010). SNP heritability measures the degree to which a given set of measured

SNPs explains the phenotypic variance. Yang et al. (2010) used a single variance compo-

nent to capture all common array SNPs. However, common genetic variants do not capture

all the variation in heritability, as mentioned earlier. In order to incorporate dense genetic

markers from imputed data or whole genome sequencing data, multiple variance component

approaches were adopted (Yang et al., 2011b, 2015). In the multiple-component approach,

SNPs are binned into different SNP-property categories (e.g., MAF, Linkage Disequilibrium

(LD)), and the heritability estimate is obtained by summing estimates across the categories.

In addition to stratifying SNPs based on their properties, methods have been developed to

partition the heritability based on SNP functional annotations (Finucane et al., 2015; Zhou,
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2017; Hao et al., 2018). Of note, stratified LD score regression (S-LDSC) uses summary

statistics from GWAS to compute heritability and heritability enrichment in functional cat-

egories. Since the heritability of complex traits is not distributed evenly across the whole

genome (Maurano et al., 2012; Trynka et al., 2013), examining regions enriched for heri-

tability can provide insights into functional categories that contribute to heritability. We

partake in this endeavor to understand complex traits by quantifying the SNP heritability

of diabetes complications in Chapter 4.

The contents of Chapter 2 and Chapter 3 are adapted from the following manuscript:

Kim, J., Shen, J., Wang, A., Mehrotra, D. V., Ko, S., Zhou, J. J., and Zhou, H.

(2021). VCSEL: Prioritizing SNP-set by penalized variance component selection.

(under review)

Chapter 4 is adapted from:

Kim, J., Jensen, A., Klimentidis, Y. C., Sun, Y., Zhou, H., Reaven, P., and Zhou,

J. J. (2021). Systematic heritability and heritability enrichment analysis for

diabetes complications in ACCORD and UK Biobank Studies. (in preparation)

The remainder of this dissertation is organized as follows: Chapter 2 presents a majorization-

minimization (MM) algorithm that identifies relevant variance components given a multi-

variate response model with potentially many variance components. In Chapter 3 we extend

the method introduced in Chapter 2 to incorporate interaction terms in a univariate response

setting. Chapter 4 shifts the focus from MM algorithms and investigates the genetic compo-

nents behind the development and progression of diabetes complications. This is achieved by

quantifying heritability and heritability enrichment through different approaches, including

the variance component model-based method. We conclude this dissertation with Chapter 5.
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CHAPTER 2

Variance component selection

for multivariate response model

2.1 Introduction

The limited success of genome-wide association studies (GWAS) has diverted attention away

from common genetic variants, usually denoted by minor allele frequency (MAF) > 0.05.

Instead, rare variants (MAF ≤ 0.05) are believed to play an important role in elucidating

many common diseases and complex traits (Bodmer and Bonilla, 2008; Manolio et al., 2009;

Bansal et al., 2010; Rivas et al., 2011; Gibson, 2012; Gudmundsson et al., 2012; Zuk et al.,

2014; Lee et al., 2014). Although association test for common variants in a GWAS analysis

is often conducted one variant at a time, this approach results in low statistical power in

rare-variant association studies due to their prevalence and extremely low frequency (Li and

Leal, 2008; Madsen and Browning, 2009; Zuk et al., 2014). As a remedy, many have proposed

single nucleotide polymorphism (SNP) set analysis, also known as gene set, pathway, or

region-based analysis (Wu et al., 2010; Dering et al., 2011). In these analyses, variants are

binned into a biologically relevant unit such as a gene, pathway, or sliding window, and

tested for association with complex traits. Compared to the classical single-variant-based

approach, SNP-set analysis enjoys increased power as it reduces multiple comparison burden

and aggregates weak signals (Rivas and Moutsianas, 2015).

In addition to the high polygenicity—influenced by a large number of genetic variants

with small effects—many complex traits are inherently multi-phenotypic. For example, blood
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pressure is evaluated by both systolic and diastolic pressure measurements. Obesity is deter-

mined not only by body mass index but also by waist circumference and body fat percentage.

As one indicator may reveal one susceptibility gene over other indicators, it is important to

jointly analyze multiple phenotype data in the analysis (Suo et al., 2013). In addition, GWAS

have unveiled that many loci affect more than one trait or disease—a phenomenon known

as pleiotropy (Sivakumaran et al., 2011; Solovieff et al., 2013). Testing one phenotype at a

time, albeit simple and intuitive, fails to exploit the underlying shared genetic architecture

of multiple phenotypes and is also subject to multiple testing penalties. On the other hand,

multi-trait analyses can increase statistical power to detect association and provide impor-

tant insights into pathways that certain traits or diseases share (Suo et al., 2013; Hackinger

and Zeggini, 2017).

A plethora of marginal test based methods are available to detect associations of a SNP-

set with multiple traits, which are termed cross-phenotype associations. For example, Maity

et al. (2012); Lee et al. (2017b); Wu and Pankow (2016); Broadaway et al. (2016); Zhan

et al. (2017); Dutta et al. (2019) take region-based approaches, in which variants are grouped

based on pre-specified criteria and tested for cross-phenotype effects. Notably, Multi-SKAT

(Dutta et al., 2019) provides a general mixed effect model-based framework for joint analysis

of multiple continuous phenotypes, unlike most methods that make specific assumptions

about the effects of the variants on multiple phenotypes. However, to our best knowledge,

no existing methods investigate sets of genetic variants simultaneously.

Here we propose a method for jointly modeling multiple SNP-sets and selecting groups

that are relevant to multiple traits while adjusting for covariates. Suppose we have observa-

tions from n individuals with d continuous phenotypes, represented by n× d matrix, and m

SNP-sets. Multivariate response model with n × d response matrix Ỹ and n × p covariate

matrix X assumes a multivariate normal model

vec Ỹ ∼ N(vec(XB),Σ1 ⊗ Ṽ1 + · · ·+ Σm ⊗ Ṽm + Σ0 ⊗ In), (2.1)
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where B is the unknown p × d fixed effects parameters matrix, Σi are unknown d × d

positive semidefinite variance component matrices, and Ṽi are known n× n kernel matrices

for genotypes. The vec Ỹ operator in (2.1) creates an nd × 1 vector from a matrix Ỹ by

stacking its column vectors, and ⊗ indicates Kronecker product.

As our interest lies in estimating variance components, we adopt the restricted (or resid-

ual) maximum likelihood estimation (REML) approach (Thompson et al., 1962; Patterson

and Thompson, 1971; Harville, 1977; Khuri and Sahai, 1985; Robinson, 1987; Searle et al.,

1992). In the notation of (2.1), REML first projects Ỹ to the null space of X and then

estimates variance components based on the projected responses. If the columns of the

matrix A span the null space of XT and ATA = I, then REML estimates parameter

Σ = (Σ0,Σ1, . . . ,Σm) by maximizing the log-likelihood of the redefined response matrix

Y = AT Ỹ whose distribution is as follows:

vecY ∼ N(0,Σ1 ⊗ V1 + · · ·+ Σm ⊗ Vm + Σ0 ⊗ In−p). (2.2)

where Vi = AT ṼiA, i = 1, . . . ,m. Note that fixed effects have been eliminated.

As there are no closed-form expressions for the REML, we rely on numerical techniques.

There are several iterative optimization methods for finding MLE and REML, including New-

ton’s method (Lindstrom and Bates, 1988), Fisher’s scoring algorithm, and the expectation-

maximization (EM) algorithm (Dempster et al., 1977; Laird and Ware, 1982; Laird et al.,

1987; Lindstrom and Bates, 1988; Bates and Pinheiro, 1998). Despite their respective ad-

vantages, they suffer from either numerical instability, high computational cost or slow con-

vergence. Zhou et al. (2019) address this issue with a minorization-maximization (MM)

algorithm that is simple to implement and numerically efficient. Zhai et al. (2018) imple-

ments an MM algorithm for penalizing variance components in microbiome data analysis,

but it is limited to lasso penalty and a univariate response. The recent paper (Schaid et al.,

2020) applies a similar method as Zhai et al. (2018) to the genetic association setting, but
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still restricted to the univariate response setting.

Since SNPs within a gene/pathway/moving window are treated as a unit, this can be

considered a group selection problem with each set being a group and SNP being a variable.

Several methods have been proposed to take advantage of grouping structures in variables.

Group lasso method (Bakin, 1999; Yuan and Lin, 2006) allows group selection by either

including or excluding all variables in the group in the model. Bi-level selection or sparse

group method (Huang et al., 2009; Breheny and Huang, 2009; Zhou et al., 2010; Simon

et al., 2013) enables both group-wise and within group sparsity. However, these approaches

are designed for selecting mean, or fixed effects, hence inappropriate when genetic effects are

modeled as random effects.

There exists a considerable body of literature on random effect selection. Lin (1997)

proposes score tests to detect the significance of individual variance components. To select

important random effects, each component is tested separately, followed by some stepwise

procedures. Chen and Dunson (2003), Bondell et al. (2010), Fan and Li (2012), and Peng

and Lu (2012) consider random effect selection for longitudinal models where observations

are divided into independent subjects with a vector of random effects corresponding to each

subject. The vectors of random effect are independent and identically distributed with a

covariance matrix, which could be a function of one variance component. For these methods,

selecting important random effects is essentially limited to within one variance component

as it removes rows or columns of covariance matrix or selects components within random

effect vectors. No existing method performs a simultaneous selection of random effects at

group level to our best knowledge.

In this chapter, we develop a novel penalization method for group selection where each

group is treated as random effects. To that end, we devise a general MM-based optimization

framework that incorporates both convex and non-convex penalties into variance component

models and applies to the analysis of univariate and multivariate traits, respectively.

The remainder of this chapter is organized as follows: Section 2.2 introduces the multi-
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variate response variance component model. In Section 2.3, we present the VCSEL algorithm

that selects variance components in the realm of multivariate response (VCSEL-M). We illus-

trate the performance of our methods with simulation studies in Section 2.4 for VCSEL-M

and defer the details for the univariate response VCSEL methods to Appendix A.1. In

Section 2.5, the proposed methods are applied to the UK-biobank whole exome sequencing

study data.

2.2 Multivariate response variance component model

Consider the model (2.2) where V1, . . . ,Vm are known positive semidefinite matrices. Here

Vi is a genotype kernel matrix for the i-th variance component. Different choices of kernels

can be readily incorporated in Vi. As defined in Dutta et al. (2019), one popular choice

would be GiWiWiG
T
i where Gi is a genotype matrix corresponding to i-th SNP group and

Wi = diag(w1, . . . , wq) contains the weights of q variants in Gi. It corresponds to SKAT

and implies that the effects of SNPs in i-th SNP-set are independent. Another choice is

GiWi11TWiG
T
i , which corresponds to the Burden test and implies that the effects of SNPs

in i-th SNP set are in the same direction. Note that 1 denotes a vector of ones. In our

simulation studies and real data analysis, we adopt the SKAT genotype kernel and/or the

Burden test genotype kernel.

We denote the overall covariance matrix in the model by Ω, i.e.

Ω(Σ) = Σ1 ⊗ V1 + · · ·+ Σm ⊗ Vm + Σ0 ⊗ In−p,

and assume it to be positive definite. To find estimates of Σ = (Σ0,Σ1, . . . ,Σm), we take a
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penalization approach by minimizing the penalized negative log-likelihood function

− L(Σ0,Σ1, . . . ,Σm) +
m∑
i=1

Pλ(
√

tr(Σi))

=
1

2
ln det Ω +

1

2
(vecY )TΩ−1vecY +

m∑
i=1

Pλ(
√

tr(Σi)),

(2.3)

where Pλ is a penalty term imposing sparsity on variance components for a given tuning

parameter λ. Below we derive iterative procedures for lasso (Tibshirani, 1996) and mini-

max concave penalty (MCP) (Zhang et al., 2010); only a slight modification is needed to

accommodate other penalty functions. In practice, we normalize Vi to have unit Frobenius

norm to put the kernel matrices on the equal footing in penalty because the varying number

of variants involved in each Vi leads to higher magnitude for sets with a large number of

variants compared to those with a small number of variants.

While Vi measures genetic similarity between subjects in the i-th SNP group and is

assumed fully known, it is worthwhile noting that no assumptions have been made about

Σi, which resides in the phenotype space and reflects how effect sizes of each variant on each

phenotype are correlated. Different choices of Σi have been proposed in Dutta et al. (2019).

If one does have a priori knowledge about phenotype structure, the algorithm simplifies to

the univariate case. For example, if effect sizes of each variant in a SNP-set on different

phenotypes are assumed homogeneous, we may write Σi = σ2
i 1d1

T
d , where σ2

i is a scalar-

valued i-th variance component and 1d is a d× 1 vector of 1’s. Then Ω =
∑m

i=1 σ
2
i (1d1

T
d ⊗

Vi) + σ2
0(1d1

T
d ⊗ In−p), where σ2

0 is a scalar-valued residual variance component. Since

(1d1
T
d ⊗Vi) is a known covariance matrix for i-th group, the problem amounts to estimating

σ2
i , i = 0, 1, . . . ,m.
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2.3 Estimation algorithm

The MM principle involves majorizing the objective function f(θ) by a surrogate function

g(θ | θ(t)) around the current iterate θ(t) of a search (Lange et al., 2000; Hunter and Lange,

2004; Lange, 2016). The superscript t indicates the iteration number. Majorization is defined

by the following two conditions

f(θ(t)) = g(θ(t) | θ(t))

f(θ) ≤ g(θ | θ(t)), θ 6= θ(t).

In other words, the surface θ 7→ g(θ | θ(t)) lies above the surface θ 7→ f(θ) and is tangent

to it at the point θ = θ(t). Construction of the majorizing function g(θ | θ(t)) constitutes

the first M of the MM algorithm. The second M of the algorithm minimizes the surrogate

g(θ | θ(t)) rather than f(θ). If θ(t+1) denotes the minimizer of g(θ | θ(t)), then this action

forces the descent property f(θ(t+1)) ≤ f(θ(t)). This fact follows from the inequalities

f(θ(t+1)) ≤ g(θ(t+1) | θ(t)) ≤ g(θ(t) | θ(t)) = f(θ(t)),

reflecting the definition of θ(t+1) and the tangency condition. Monotonicity of MM iterates

obliterates the need for line search and lends itself to the remarkable numerical stability of

the MM algorithm.

We derive a majorizing function of the penalized loss function (2.3) by working on its

three individual terms separately. For the penalty term, we first specialize to the lasso

penalty then indicate the generalizations to other penalties.

1. Log-determinant term. The concavity of the map X 7→ ln detX and the supporting

hyperplane inequality establish the majorization

ln det Ω(t) + tr[Ω−(t)(Ω−Ω(t))] ≥ ln det Ω. (2.4)
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2. Quadratic form term. When Vi for all i are positive definite, hence invertible, convexity

of the matrix function (X,Y ) 7→XTY −1X where Y � 0 implies

Ω(t)Ω−1Ω(t) = m

(
1

m

m∑
i=0

Σ
(t)
i ⊗ Vi

)(
1

m

m∑
i=0

Σi ⊗ Vi

)−1(
1

m

m∑
i=0

Σ
(t)
i ⊗ Vi

)

� m

m∑
i=0

1

m
(Σ

(t)
i ⊗ Vi)(Σi ⊗ Vi)−1(Σ(t)

i ⊗ Vi)

=
m∑
i=0

(Σ
(t)
i Σ−1i Σ

(t)
i )⊗ Vi, (2.5)

or equivalently

Ω−1 � Ω−(t)

[
m∑
i=0

(Σ
(t)
i Σ−1i Σ

(t)
i )⊗ Vi

]
Ω−(t). (2.6)

For symmetric matrices A and B, A � B means B −A is positive semidefinite. The

equality (2.5) follows from the identities (A⊗B)−1 = A−1⊗B−1 and (A⊗B)(C⊗D) =

(AC) ⊗ (BD). The nonsingularity assumption on Vi can be relaxed by substituting

Vε,i = Vi + εIn for Vi and sending ε to 0.

3. Lasso penalty term. The majorization on the lasso penalty

√
trΣ

(t)
i +

1

2

√
trΣ

(t)
i

(trΣi − trΣ
(t)
i ) ≥

√
trΣi (2.7)

follows from the concavity of the map x 7→
√
x and the support hyperplane inequality.
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Merging (2.4), (2.6) and (2.7) generates the overall majorizing function

g(Σ | Σ(t)) =
1

2

m∑
i=0

{
tr
[
Ω−(t)(Σi ⊗ Vi)

]
+ (vecR(t))T

[
(Σ

(t)
i Σ−1i Σ

(t)
i )⊗ Vi

]
(vecR(t))

}
+

1

2

m∑
i=1

λ√
trΣ

(t)
i

trΣi + c(t),

(2.8)

where vecR(t) = Ω−(t)vec(Y ) with R(t) being a matrix of size n × d and c(t) is a constant

impertinent to the parameters Σi. Parameters Σi are nicely separated in (2.8) so we only

need to minimize m individual functions

g
(t)
i (Σi) =

1

2

tr
[
Ω−(t)(Σi ⊗ Vi)

]
+ tr(R(t)TViR

(t)Σ
(t)
i Σ−1i Σ

(t)
i ) +

λ√
trΣ

(t)
i

trΣi


=

1

2

tr
[
Ω−(t)(Σi ⊗ Vi)

]
+ tr(Σ

(t)
i R

(t)TViR
(t)Σ

(t)
i Σ−1i ) +

λ√
trΣ

(t)
i

trΣi


(2.9)

to update Σi. The first equation follows from the Kronecker identities (vecA)TvecB =

tr(ATB) and vec(CDE) = (ET ⊗C)vec(D). The first trace in the second equation of (2.9)

is linear in Σi with the coefficient of entry (Σi)jk equal to

tr(Ω
−(t)
jk Vi) = 1Tn (Vi �Ω

−(t)
jk )1n,

where Ω
−(t)
jk is the (j, k)-th n × n block of Ω−(t) and � is the Hadamard (elementwise)

product. The matrix Mi of these coefficients can be written as

Mi = (Id ⊗ 1n)T [(1d1
T
d ⊗ Vi)�Ω−(t)](Id ⊗ 1n).
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Setting the derivative of (2.9) to zeros yields the stationarity condition

Mi +
λ√

trΣ
(t)
i

Id = Σ−1i Σ
(t)
i R

(t)TViR
(t)Σ

(t)
i Σ−1i , (2.10)

which is a Riccati equation admitting the explicit solution

Σ
(t+1)
i = L

−(t)T
i [L

(t)T
i (Σ

(t)
i R

(t)TViR
(t)Σ

(t)
i )L

(t)
i ]1/2L

−(t)
i

in terms of the Cholesky factor L
(t)
i of the matrix on the left hand side of (2.10).

Algorithm 1 summarizes the MM algorithm for lasso penalized multivariate variance

components model (VCSEL-M-lasso). Each iteration computes m + 1 Cholesky factoriza-

tions and symmetric square roots of d × d positive semidefinite matrices. In most applica-

tions, d is a small number. Our convergence criteria are based on the change in objective

function (2.3) (the penalized negative log-likelihood function) values. The procedure is re-

peated until the relative change in the objective function value is less than a tolerance

value (10−6×[|objective function value at the current iterate| + 1] by default). For tuning

parameters, we first locate the tuning parameter λ value, after which all variance component

estimates turn zero—which we denote maximum λ. Then we create a solution path using a

set number of equidistant tuning parameter values from 0 to maximum λ.

Nonconvex penalties reduce the bias by applying less shrinkage to the large nonzero

components. As an example, we illustrate with the MCP. An extra tuning parameter γ > 1

controls the concavity of the penalty. In our case where
√

tr(Σi) is nonnegative, MCP is

defined as

Pγ(
√

tr(Σi);λ) =


λ
√

tr(Σi)− tr(Σi)
2γ

, if
√

tr(Σi) ≤ γλ

1
2
γλ2, if

√
tr(Σi) > γλ

. (2.11)

MCP converges to lasso penalty as γ →∞. When
√

tr(Σi) > γλ, (2.11) is a constant that
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Input : Y , V1, . . . ,Vm, λ
Output: Σ̂0, Σ̂1, . . . , Σ̂m

1 Initialize Σ
(0)
i positive definite, i = 1, . . . ,m

2 repeat

3 Ω(t) ←
∑m

i=1 Σ
(t)
i ⊗ Vi + Σ

(t)
0 ⊗ I

4 R(t) ← reshape(Ω−(t)vecY , n, d)
5 for i = 1, . . . ,m do

6 Cholesky L
(t)
i L

(t)T
i ← (Id ⊗ 1n)T [(1d1

T
d ⊗ Vi)�Ω−(t)](Id ⊗ 1n) + λ√

trΣ(t)

i

Id

7 Σ
(t+1)
i ← L

−(t)T
i [L

(t)T
i (Σ

(t)
i R

(t)TViR
(t)Σ

(t)
i )L

(t)
i ]1/2L

−(t)
i

8 end

9 Cholesky L
(t)
0 L

(t)T
0 ← (Id ⊗ 1n)T [(1d1

T
d ⊗ In)�Ω−(t)](Id ⊗ 1n)

10 Σ
(t+1)
0 ← L

−(t)T
0 [L

(t)T
0 (Σ

(t)
0 R

(t)TR(t)Σ
(t)
0 )L

(t)
0 ]1/2L

−(t)
0

11 until objective value converges ;

Algorithm 1: VCSEL algorithm for lasso penalized multivariate response variance
component model (2.3) (VCSEL-M-lasso).

does not involve
√

tr(Σi). Focusing on the region
√

tr(Σi) ≤ γλ and using the concavity of

the map x 7→
√
x, we obtain a majorization of the MCP penalty

Pγ(
√

tr(Σi);λ) = λ
√

tr(Σi)−
tr(Σi)

2γ

≤ λ

√tr(Σ
(t)
i ) +

1

2

√
tr(Σ

(t)
i )

[
tr(Σi)− tr(Σ

(t)
i )
]− tr(Σi)

2γ

=
1

2

 λ√
tr(Σ

(t)
i )

− 1

γ

 tr(Σi) + c(t).

(2.12)

Inequalities for log-determinant (2.4) and quadratic form terms (2.6) and (2.12) produce a
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majorizing function for MCP penalty

g(Σ | Σ(t)) =
1

2

m∑
i=0

{
tr
[
Ω−(t)(Σi ⊗ Vi)

]
+ tr(Σ

(t)
i R

(t)TViR
(t)Σ

(t)
i Σ−1i )

}

+
1

2

m∑
i=1


(

λ√
trΣ(t)

i

− 1
γ

)
trΣi if

√
tr(Σi) ≤ γλ

γλ2 if
√

tr(Σi) > γλ

,

(2.13)

which admits an analytical update similar to that for lasso. Algorithm 2 summarizes the MM

algorithm for MCP penalized multivariate response variance component model (VCSEL-M-

MCP).

Input : Y , V1, . . . ,Vm, λ, γ
Output: Σ̂0, Σ̂1, . . . , Σ̂m

1 Initialize Σ
(0)
i positive definite, i = 1, . . . ,m

2 repeat

3 Ω(t) ←
∑m

i=1 Σ
(t)
i ⊗ Vi + Σ

(t)
0 ⊗ I

4 R(t) ← reshape(Ω−(t)vecY , n, d)
5 for i = 1, . . . ,m do

6 if

√
tr(Σ

(t)
i ) ≤ γλ then

7 Cholesky

L
(t)
i L

(t)T
i ← (Id ⊗ 1n)T [(1d1

T
d ⊗ Vi)�Ω−(t)](Id ⊗ 1n) +

(
λ√

trΣ(t)

i

− 1
γ

)
Id

8 else

9 Cholesky L
(t)
i L

(t)T
i ← (Id ⊗ 1n)T [(1d1

T
d ⊗ Vi)�Ω−(t)](Id ⊗ 1n)

10 end

11 Σ
(t+1)
i ← L

−(t)T
i [L

(t)T
i (Σ

(t)
i R

(t)TViR
(t)Σ

(t)
i )L

(t)
i ]1/2L

−(t)
i

12 end

13 Cholesky L
(t)
0 L

(t)T
0 ← (Id ⊗ 1n)T [(1d1

T
d ⊗ In)�Ω−(t)](Id ⊗ 1n)

14 Σ
(t+1)
0 ← L

−(t)T
0 [L

(t)T
0 (Σ

(t)
0 R

(t)TR(t)Σ
(t)
0 )L

(t)
0 ]1/2L

−(t)
0

15 until objective value converges ;

Algorithm 2: VCSEL algorithm for MCP penalized multivariate response variance
component model (2.3) (VCSEL-M-MCP).
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2.4 Simulation studies

We conduct simulation studies to examine the selection performance of the proposed meth-

ods. We compare with R package Multi-SKAT (Dutta et al., 2019) for multivariate response

model. Multi-SKAT is a marginal approach that tests one SNP-set at a time and makes a

formal inference. This contrasts with our method that encompasses multiple SNP-sets in

a joint model and provides rankings. For readers interested in the results on a univariate

response, we summarize the results in Appendix A.2, in which we compare the selection

performance of VCSEL to the group lasso. The group lasso is a group selection method de-

signed for selecting fixed effects. Interestingly, the proposed penalized variance component

model outperforms group lasso even when the data is generated from a fixed effects model,

not to mention under a variance component model.

Both the lasso and MCP penalties are demonstrated for multivariate trait and interaction

models. Unless otherwise specified, γ = 2.0 is used for the MCP penalty. We use the area

under the Precision-Recall curve (auPRC) to evaluate performance. Similar to Receiver

Operator Characteristic (ROC) curves, Precision-Recall (PR) curves (recall on the x-axis

and precision on the y-axis) illustrate the tradeoff between precision and recall for varying

cutoff values (Manning and Schütze, 1999; Raghavan et al., 1989). Precision is defined as

the number of true positives over the total number of declared positives, while recall is

defined as the number of true positives over the number of true positives plus the number

of false negatives. A PR curve closer to the upper right corner, which corresponds to 100%

precision and 100% recall, generally represents a better classifier. Since we want to take the

influence of all cutoff values into account, we report auPRC, which is an aggregate measure

of performance across all tuning parameter values and has a range of [0, 1]. An auPRC

close to 1 indicates that the classifier returns accurate results (high precision) and most of

all positive results (high recall).

Although ROC curves are the most popular metric for binary classifiers, PR curves
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are more suitable when the class distribution is highly skewed, usually negative instances

outnumbering positive instances (Davis and Goadrich, 2006; Saito and Rehmsmeier, 2015).

In fact, PR curves have been cited as an alternative in unbalanced datasets (Craven and

Bockhorst, 2005; Bunescu et al., 2005; Davis et al., 2005; Goadrich et al., 2004; Kok and

Domingos, 2005; Singla and Domingos, 2005). As we expect the number of positive variance

components to be greatly exceeded by that of zero variance components, we deem auPRC

to be an appropriate metric.

For the marginal testing method, we calculate the auPRC by ranking all genes by their

p-values and assuming that each gene enters the solution path from smallest to largest. For

example, the gene with the smallest p-value enters the solution path first, and the gene with

the largest value would be the last one to enter the solution path.

For a sample of size n, we form genotype matrix G by randomly pairing 2n haplotypes

drawn from a haplotype pool (SKAT.haplotypes in the SKAT R-package). The genotype

values in matrix G are coded as 0, 1 and 2, representing the number of minor alleles while

an additive genetic model is assumed. Assuming that there are m SNP-sets, we partition G

into m submatrices of pre-specified window length:

G =

[
G1

∣∣∣∣G2

∣∣∣∣ · · · ∣∣∣∣Gm

]
,

where Gi ∈ Rn×qi , i = 1, . . . ,m, represents the i-th SNP-set.

We fix the number of positive variance components, excluding the residual variance com-

ponent, to be 5. We calculate each auPRC over 100 tuning parameter values and report the

average auPRCs along with their standard errors across 20 replicates.
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2.4.1 Simulation studies for multiple traits

Here we compare selection performance of Algorithm 1 and MultiSKAT (Dutta et al., 2019)

package in R. We generate three phenotypes (n = 2000, d = 3) from the following:

vec(Y ) = vec(XB) +LΩε, ε ∼ N(0, Ind), (2.14)

where LΩ is the lower triangular Cholesky factor of Ω =
∑m

i=1 Σi⊗Vi+Σ0⊗ 1√
n
In. Depend-

ing on the genotype kernel, Vi equals to 1
||GiWiWiGT

i ||F
GiWiWiG

T
i (SKAT genotype kernel)

or 1
||GiWi11TWiGT

i ||F
GiWi11TWiG

T
i (Burden test genotype kernel) where Wi is diagonal ma-

trix whose entry equals to the weights wk = Beta(MAFk; 1, 25) with MAFk being the minor

allele frequency of the k-th genetic variant (Wu et al., 2011). We use this weight since it is

the default version in MultiSKAT package. We set X to be a n×1 matrix of 1s and B to be

a 1× d matrix of 0.5s. For non-zero variance components Σi, we incorporate two structures

proposed in Dutta et al. (2019). The first choice is Σi = 1d1
T
d , which implies that effect sizes

of a variant on d different phenotypes are homogeneous. Hence it is called homogeneous

kernel. The second structure is Σi = Id, also known as heterogeneous kernel, which assumes

that effect sizes of a variant on different phenotypes are heterogeneous or independent. Non-

zero variance component matrices are spread across all m groups to create a scenario of low

linkage disequilibrium (LD) between causal SNP-sets or variance components:

Σi =



1d1
T
d or Id if i = 1, 10, 20, 30, 40 (m = 40)

if i = 1, 25, 50, 75, 100 (m = 100)

Id if i = 0

0 else.

In this case, causal genes, or signal variance components are dispersed, hence there is little

correlation among causal genes. One notable difference between VCSEL-M and Multi-SKAT
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Figure 2.1: The auPRCs of VCSEL-M-lasso, VCSEL-M-MCP and Multi-SKAT under 40 and
100 genes and different genotype kernels for models with 6 non-zero variance components
and 3 simulated traits (d = 3), using haplotype data from the SKAT R-package. The left and
right panels assume Σi = 1d1

T
d and Σi = Id, respectively, for non-zero variance components.

is that Multi-SKAT does not estimate Σi while VCSEL-M estimates Σi. In fact, Multi-SKAT

requires one to provide phenotype kernel structure, which is Σi in our notation, for testing

association between a SNP-set and multiple phenotypes. In our simulations, we supply

the ground truth Σi, whether it be 1d1
T
d or Id, when calling Multi-SKAT, hence giving an

advantage to the Multi-SKAT method.

Figure 2.1 and Table 2.1 describe simulation results. Overall, our methods perform as

well as Multi-SKAT, if not better. Despite having the ground truth Σi as an input argument,

Multi-SKAT does not perform well when phenotype kernel has a homogeneous structure, as

seen in the left panel of Figure 2.1.

Genotype kernel Phenotype kernel No. genes VCSEL-M-lasso VCSEL-M-MCP MultiSKAT

GiWi1qi1
T
qiWiG

T
i

(Burden)

Σi = 1d1
T
d

100 (2kb/gene) 0.82 (0.019) 0.82 (0.020) 0.52 (0.032)
40 (5kb/gene) 0.82 (0.020) 0.82 (0.021) 0.48 (0.034)

Σi = Id
100 (2kb/gene) 0.84 (0.021) 0.84 (0.021) 0.65 (0.035)
40 (5kb/gene) 0.87 (0.012) 0.88 (0.012) 0.63 (0.029)

GiWiIqiWiG
T
i

(SKAT)

Σi = 1d1
T
d

100 (2kb/gene) 0.86 (0.017) 0.86 (0.017) 0.48 (0.041)
40 (5kb/gene) 0.87 (0.018) 0.87 (0.018) 0.42 (0.030)

Σi = Id
100 (2kb/gene) 0.88 (0.008) 0.88 (0.009) 0.62 (0.031)
40 (5kb/gene) 0.90 (0.005) 0.90 (0.005) 0.48 (0.038)

Table 2.1: The auPRCs of VCSEL-M-lasso, VCSEL-M-MCP, and Multi-SKAT across vary-
ing size and number of genes, using SKAT.haplotypes data from the SKAT R-package. In
parentheses are standard deviation/

√
no. replicates.
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2.5 Real data analysis

To test the multivariate response model, we apply our methods to the genetic data from

the UK Biobank exome sequencing study (Sudlow et al., 2015). By doing so, we aim to

identify genes associated with two quantitative lipid traits: high-density lipoprotein choles-

terol (HDL-C) and low-density lipoprotein cholesterol (LDL-C). For the analysis, we only

use measurements from the initial assessment visit. We regress each phenotype separately

on age, age2, sex, and the top five principal components and inverse normal transform re-

spective residuals. The transformed residuals are used as our response variables. For our

samples, we extract self-reported white British individuals (data field 21000: Ethnic back-

ground) with no genetic kinship to other participants (data field 22021: Genetic kinship to

other participants) and without any medication for cholesterol, blood pressure, diabetes or

exogenous hormones at baseline (data field 6153 and 6177: Medication for cholesterol, blood

pressure, diabetes, or take exogenous hormones). After removing individuals with missing

values, we have 18,020 samples and genotype information of 8,959,608 variants, which are

grouped into 26,395 genes based on the annotation information from SnpEff software (Cin-

golani et al., 2012) with GRCh38 human reference genome. We then remove monoallelic

variants, common variants with MAF > 0.05, variants in sex chromosome from the analysis.

Finally, we have the data of 18,020 individuals and genotype information of 4,312,036 low-

frequency/rare (MAF ≤ 0.05) variants in 25,460 genes with at least three of those variants

in each gene. Because the number of genes is too large, we first screen 25,460 genes down

to 200 genes according to their p-values from Multi-SKAT omnibus approach that combines

results across three pre-specified phenotype kernels (homogeneous, heterogeneous, and phe-

notype covariance kernels). Then we carry out a penalized estimation of the 200 variance

components in the joint model (2.1) using the Burden test genotype kernel. This is akin

to the sure independence screening strategy by Fan and Lv (2008), which entails large-scale

screening accompanied by moderate-scale variable selection. Genes are ranked according to

the order they appear in the solution path. Figure 2.2 illustrates the solution paths obtained

21



Figure 2.2: Solution paths of VCSEL-M-lasso (left) and VCSEL-M-MCP (right) methods in
the analysis of 200 genes and two lipid measurements (HDL-C, LDL-C).

from VCSEL-M-lasso and VCSEL-M-MCP methods, along with their corresponding lists of

the top ten genes in the order they appear in the solution path. Table 2.2 lists the top 10

genes together with their marginal p-values from Multi-SKAT. Most genes that are highly

ranked by VCSEL methods—PCSK9, PVR, LPL, APOC3, CELSR2, LIPG, CD300LG, and

APOB in the top 10 list—have their marginal test p-values under the false discovery rate

(FDR) < 5% threshold and/or are known to play a role in modulating lipid levels (Benn

et al., 2005; Cohen et al., 2005; Heid et al., 2008; Abifadel et al., 2009; Wallace et al., 2008;

Tachmazidou et al., 2013; Lange et al., 2014; Holmen et al., 2014; Surakka et al., 2015).

VCSEL methods identify genes that are not deemed significant by marginal testing but have

association evidence in the literature. HAPLN4 has been shown significant association with

LDL-C and total cholesterol levels (Southam et al., 2017) and APOC4 with HDL-C, LDL-C

(Hoffmann et al., 2018; Wojcik et al., 2019).

2.6 Discussion

We defer the discussion until the end of Chapter 3.
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Lasso Rank MCP Rank Gene Marginal p-value # Variants
1 1 PCSK9 3.37× 10−20 353
2 2 PVR 3.56× 10−20 111
3 4 LPL 5.73× 10−18 198
4 3 APOC3 2.04× 10−7 61
5 5 CELSR2 4.05× 10−13 986
6 6 LIPG 2.36× 10−13 225
7 7 CD300LG 6.56× 10−10 189
8 9 HAPLN4 2.86× 10−3 141
9 8 APOB 5.33× 10−11 947
10 10 CATIP-AS1 2.81× 10−3 16
11 11 APOC4 1.34× 10−4 74

Table 2.2: Top genes selected by the lasso and MCP penalized variance component model
are tallied with their marginal p-values from the Multi-SKAT omnibus test in an association
study of 200 genes and bivariate trait: HDL-C and LDL-C.
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CHAPTER 3

Variance component selection

for models with interaction terms

3.1 Introduction

Adverse drug reactions (ADR) pose a serious threat to public health, responsible for as many

as 100,000 deaths and an estimated $136 billion annually in the United States according to

U.S. Food & Drug Administration (2018). ADRs may occur from misuse–for example, inap-

propriate dosage, prolonged administration of a drug, or polypharmacy. Another important

factor contributing to ADRs is genetics (He and Allen, 2010, and references therein).

Genomic differences among people place some individuals at grave risk of harm from

certain medication while others may benefit from the same drug. For that reason, detect-

ing those genetic variants that contribute to variability in treatment responses is the main

objective in pharmacogenetic (PGx) studies. A number of methods have been proposed

to test interaction effect or jointly test the genetic main effect and the interaction effect

(Broadaway et al., 2015; Chen et al., 2014; Zhao et al., 2019; Yang et al., 2019; Zhang et al.,

2020). However, they are limited to testing a single SNP-set. Hence, in this chapter, we

outline an algorithm to incorporate SNP-set-treatment or -environment interaction terms in

a univariate trait variance component model, motivated by pharmacogenomic studies.

If there are m genes under consideration, we have 2m+ 1 variance components in total,

including the residual variance component, because each gene is associated with two variance

components, one for the gene itself and the other for the interaction between gene and
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treatment. For the i-th SNP-set, σi1 and σi2 denote the genetic effect and interaction effect

variance components, respectively. Let Gi be the corresponding genotype matrix and T =

diag(t1, . . . , tn) be a diagonal matrix where ti ∈ {0, 1} indicates treatment status. Then linear

weighted kernels associated with σi1 and σi2 are Vi1 = GiWiG
T
i and Vi2 = TGiWiG

T
i T

T

respectively. The matrix Wi = diag(w1, . . . , wq) contains the weights of the q variants in

the i-th SNP-set. We remind readers that linear weighted kernels can be readily replaced by

other choices of kernels. Note that T matrices are not limited to binary values. For example,

one can swap diagonal entries in T matrix with environmental variable values, which are

often continuous. Simulation studies 3.3 demonstrate this option of continuous values.

For a given response vector y, the penalized loglikelihood augmented by group penalty

on two variance components of each gene can be written as

f(σ) =
1

2
log det Ω(σ) +

1

2
yT [Ω(σ)]−1y +

m∑
i=1

Pλ(σi1, σi2), (3.1)

where Ω(σ) =
∑m

i=1 (σ2
i1Vi1 + σ2

i2Vi2) + σ2
0In and σ = (σ0, σi1, σi2, i = 1, . . . ,m) collects all

2m + 1 variance components. We introduce two routes to constructing interaction models:

1) include/exclude main effects and interaction term together as a pair (VCSEL-I) and

2) enforce hierarchy restriction that only allows interaction term into the model when the

corresponding main effect is included (VCSEL-Ih).

3.2 Estimation algorithm

3.2.1 All-in/all-out (VCSEL-I)

Often in the discovery phase, genetic main effect and gene-treatment interaction effect are

jointly tested. This approach examines association between the trait of interest and genetic

marker while accounting for gene-treatment interaction. To majorize the group lasso penalty

on a pair of variance components, we apply the support hyperplane inequality to the concave
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map x 7→
√
x

Pλ(σi1, σi2) = λ
√
σ2
i1 + σ2

i2 ≤
λ

2

σ2
i1 + σ2

i2√
σ
(t)2
i1 + σ

(t)2
i2

+ c(t),

where c(t) is an irrelevant constant. Combining with the univariate case of inequalities (2.4)

and (2.6), the surrogate function given t-th iterate σ(t) is

g(σ|σ(t)) =
m∑
i=1

2∑
j=1

σ2
ij

2
tr(Ω−(t)Vij) +

1

2

σ
4(t)
ij

σ2
ij

yTΩ−(t)VijΩ
−(t)y + λ

σ2
ij

2

√
σ
(t)2
i1 + σ

(t)2
i2


+
σ2
0

2
tr(Ω−(t)) +

1

2

σ
4(t)
0

σ2
0

yTΩ−2(t)y.

Then the update σ
(t+1)
ij for i = 1, . . . ,m and j = 1, 2 is

σ
(t+1)
ij = σ

(t)
ij

 yTΩ−(t)VijΩ
−(t)y

tr(Ω−(t)Vij) + λ/

√
σ
(t)2
i1 + σ

(t)2
i2

1/4

.

Algorithm 3 summarizes the VCSEL algorithm for the all-in/all-out interaction with lasso

penalty (VCSEL-I-lasso). A similar algorithm for MCP penalty (VCSEL-I-MCP) is sum-

marised in Algorithm 4.

Input : y, V11,V12, . . . ,Vm1,Vm2, λ
Output: σ̂2

0, σ̂
2
11, σ̂

2
12, . . . , σ̂

2
m1, σ̂

2
m2

1 Initialize σ
(0)
0 , σ

(0)
ij > 0, i = 1, . . . ,m, j = 1, 2

2 repeat

3 Ω(t) ←
∑m

i=1(σ
2(t)
i1 Vi1 + σ

2(t)
i2 Vi2) + σ

2(t)
0 I

4 σ
(t+1)
ij ← σ

(t)
ij

(
yTΩ−(t)

VijΩ
−(t)

y

tr(Ω−(t)
Vij)+λ/

√
σ
(t)2
i1 +σ

(t)2
i2

)1/4

, i = 1, . . . ,m, j = 1, 2

5 σ
(t+1)
0 ← σ

(t)
0

(
yTΩ−2(t)

y

tr(Ω−(t)
)

)1/4

6 until objective value converges ;

Algorithm 3: VCSEL algorithm with lasso penalty for selecting main effect and
interaction effect variance components as a pair (VCSEL-I-lasso).
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Input : y, V11,V12, . . . ,Vm1,Vm2, λ, γ
Output: σ̂2

0, σ̂
2
11, σ̂

2
12, . . . , σ̂

2
m1, σ̂

2
m2

1 Initialize σ
(0)
0 , σ

(0)
ij > 0, i = 1, . . . ,m, j = 1, 2

2 repeat

3 Ω(t) ←
∑m

i=1(σ
2(t)
i1 Vi1 + σ

2(t)
i2 Vi2) + σ

2(t)
0 I

4 for i = 1, . . . ,m, j = 1, 2 do

5 σ
(t+1)
ij ←


σ
(t)
ij

 y′Ω−(t)
VijΩ

−(t)
y

tr(Ω−(t)
Vij)+

λ√
σ
(t)2
i1

+σ
(t)2
i2

− 1
γ

1/4

, if

√
σ
(t)
i1 + σ

(t)
i2 ≤ γλ

σ
(t)
ij

(
y′Ω−(t)

VijΩ
−(t)

y

tr(Ω−(t)
Vij)

)1/4

, otherwise

6 end

7 σ
(t+1)
0 ← σ

(t)
0

(
yTΩ−2(t)

y

tr(Ω−(t)
)

)1/4

8 until objective value converges ;

Algorithm 4: VCSEL algorithm with MCP penalty for selecting main effect and
interaction effect variance components as a pair (VCSEL-I-MCP).

3.2.2 Hierarchical interactions (VCSEL-Ih)

In the confirmation phase of gene-drug testing, interest lies in detecting gene-treatment

interaction. Choi et al. (2010) argue that for easier interpretability, interaction terms should

be included only if all corresponding main effects are in the model. We integrate this idea

by assuming interaction effect variance component to be a constant multiple of genetic effect

counterpart, i.e. σ2
i2 = γiσ

2
i1. Whenever the variance component for i-th gene σi1 is equal

to 0, the interaction variance component σi2 is automatically set to 0. Following Choi et al.

(2010), we penalize both variance component σi1 and interaction parameter γi. Then our

objective function with lasso penalty becomes

f(σ) =
1

2
log det Ω +

1

2
yTΩ−1y + λ1

m∑
i=1

σi1 + λ2

m∑
i=1

γi,

where Ω =
∑m

i=1(σ
2
i1Vi1 + σ2

i2Vi2) + σ2
0I =

∑m
i=1(σ

2
i1Vi1 + γiσ

2
i1Vi2) + σ2

0I. Both λ1 and λ2

are tuning parameters controlling the strength of the penalty terms.
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The already familiar majorizations (2.4), (2.6) and (2.7) yields the surrogate function

g(σ | σ(t)) =
m∑
i=1

[
σ2
i1

2
tr(Ω−(t)Vi1) +

γiσ
2
i1

2
tr(Ω−(t)Vi2) +

1

2

σ
4(t)
i1

σ2
i1

yTΩ−(t)Vi1Ω
−(t)y

+
1

2

γ
2(t)
i σ

4(t)
i1

γiσ2
i1

yTΩ−(t)Vi2Ω
−(t)y +

λ1

2σ
(t)
i1

σ2
i1 + λ2γi

]

+
σ2
0

2
tr(Ω−(t)) +

1

2

σ
4(t)
0

σ2
0

yTΩ−2(t)y.

We adopt the block update strategy to decrease the objective value of g(σ | σ(t)). Given

γi = γ
(t)
i , we update σi1 by

σ
2(t+1)
i1 = σ

2(t)
i1

√√√√yTΩ−(t)Vi1Ω
−(t)y + γ

(t)
i y

TΩ−(t)Vi2Ω
−(t)y

tr(Ω−(t)Vi1) + γ
(t)
i tr(Ω−(t)Vi2) + λ1/σ

(t)
i1

, i = 1, . . . ,m.

Given σi1 = σ
(t+1)
i1 , we first update the covariance matrix

Ω̃
(t)

=
m∑
i=1

(
σ
2(t+1)
i1 Vi1 + γ

(t)
i σ

2(t+1)
i1 Vi2

)
+ σ

2(t+1)
0 I,

then update the i-th interaction parameter by

γ
(t+1)
i = γ

(t)
i

√√√√ yT Ω̃
−(t)
Vi2Ω̃

−(t)
y

tr(Ω̃
−(t)
Vi2) + 2λ2/σ

2(t+1)
i1

.

Summary of the algorithm for this hierarchical interaction selection method with lasso

penalty (VCSEL-Ih-lasso) is provided in Algorithm 5.

3.3 Simulation studies

Here we compare selection performance of Algorithm 3, 4 and rareGE (Chen et al., 2014)

package in R. Unlike the proposed method that models multiple SNP-sets, rareGE is a
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Input : y, V11,V12, . . . ,Vm1,Vm2, λ1, λ2
Output: σ̂2

0, σ̂
2
11, σ̂

2
21, . . . , σ̂

2
m1, γ̂1, . . . , γ̂m

1 Initialize σ
(0)
0 , σ

(0)
i1 > 0, i = 1, . . . ,m

2 repeat

3 Ω(t) ←
∑m

i=1(σ
2(t)
i1 Vi1 + γ

(t)
i σ

2(t)
i1 Vi2) + σ

2(t)
0 I

4 σ
2(t+1)
i1 ← σ

2(t)
i1

√
y′Ω−(t)

Vi1Ω
−(t)

y+γ
(t)
i y′Ω−(t)

Vi2Ω
−(t)

y

tr(Ω−(t)
Vi2)+λ1/σ

(t)
i1

, i = 1, . . . ,m

5 σ
2(t+1)
0 ← σ

2(t)
0

√
y′Ω−2(t)

y

tr(Ω−(t)
)

6 Ω̃
(t)
←
∑m

i=1

[
σ
2(t+1)
i1 Vi1 + γ

(t)
i σ

2(t+1)
i1 Vi2

]
+ σ

2(t+1)
0 I

7 γ
(t+1)
i ← γ

(t)
i

√
y′Ω̃

−(t)

Vi2Ω̃
−(t)

y

tr(Ω̃
−(t)

Vi2)+2λ2/σ
2(t+1)
i1

, i = 1, . . . ,m

8 until objective value converges ;

Algorithm 5: VCSEL algorithm for selecting variance components, incorporating
hierarchy of interaction terms (VCSEL-Ih-lasso).

marginal approach that tests one SNP-set at a time and makes a formal inference. As

explained in Section 2.4, we use the auPRC as a metric to compare the proposed method

and the rareGE. We generate a phenotype from

y = Xβ +LΩε, ε ∼ N(0, In)

where n = 500. Here covariate matrix X is a 500× 3 matrix whose first column is a vector

of 1’s, second column is generated from N(50, 52), and third column from N(25, 42), which

mimic covariate matrix in simulation studies of Chen et al. (2014). LΩ is the lower triangular

Cholesky factor of Ω =
∑2

j=1

∑m
i=1 σ

2
ijVij +

σ2
0√
n
In. Following the default option of rareGE

package, we set

Vi1 =
1

||GiWiGT
i ||F

GiWiG
T
i

Vi2 =
1

||EGiWiGT
i Ei||F

EGiWiG
T
i E,
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where Wi diagonal matrix whose entry equals to to the commonly used weights
√
wk =

Beta(MAFk; 1, 25) with MAFk being the MAF of the k-th genetic variant (Wu et al., 2011).

E is a diagonal matrix whose entries coincide with that of the second column in X. Gi

is a submatrix of genotype matrix we form from haplotypes data in R SKAT package, as

explained in Section 2.4. We restrict Gi to only include SNPs with MAF less than 0.05 for

fair comparison with rareGE method. This constraint leads to the number of SNPs ranging

from 18 to 51 with a median of 33 for groups with window length of 5kb and that ranging

from 3 to 29 with a median of 13 for groups with window length of 2kb. We set the effect

strength of non-zero variance components to be 2.236. Two scenarios are simulated. The

first is low LD setting:

σi1 = σi2 =



2.236 i = 1, 11, 20, 30, 40 (m = 40)

i = 1, 26, 50, 75, 100 (m = 100)

1.0 i = 0

0.0 else.

. (3.2)

The second is high LD setting, where the first 5 variance components are set to be non-zero:

σi1 = σi2 =


2.236 i = 1, 2, 3, 4, 5

1.0 i = 0

0.0 else.

(3.3)

In Supplementary Materials A.3, we quantify the correlations between SNP-sets in these

high/low LD settings via the canonical correlation analysis. The true fixed effects parameter

values are set to be β = (0.5, 0.1, 0.05)T .

As seen in Figure 3.1, VCSEL-I method is competitive against rareGE. The outperfor-

mance of VCSEL-I method is more dramatic under the low LD scenario, probably because
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Figure 3.1: The auPRCs of VCSEL-I-lasso, VCSEL-I-MCP and rareGE under 40 and 100
genes for models with 6 non-zero variance components, using haplotype data from R SKAT
package. True variance component values in the left panel mimic low LD scenario (3.2) while
those in the right panel mimic high LD scenario (3.3).

the marginal test rareGE is not able to jointly model the multiple SNP-sets.

3.4 Real data analysis

Next, we apply our methods to the GWAS of Ezetimibe response in IMPROVE-IT (IM-

Proved Reduction of Outcomes: Vytroin Efficacy International Trial), which is a phase

3b, multicenter, double-blind, randomized study to establish the clinical benefit and safety

of Vytorin (Ezetimibe/Simvastatin tablet) versus Simvastatin mono-therapy in high-risk

subjects (Cannon et al., 2015). In this PGx study using IMPROVE-IT clinical data, we

are interested in discovering genes associated with 1) the efficacy of Vytorin treatment for

2,808 European patients who receive a greater benefit compared with the Simvastatin mono-

therapy and 2) the joint efficacy of Ezetimibe/Simvastatin treatment and the Simvastatin

mono-therapy treatment for 5,661 European patients. The endpoint for this gene-based vari-

ance component selection analysis is LDL-C fold-change at 1-month. The standard GWAS

quality control and SNP imputation are conducted. We focus on the low frequency vari-

ants (0.01 ≤ MAF ≤ 0.05) after imputation (with imputation quality scores r2 > 0.5) and

putatively functional variants with consequences as non-synonymous, splice-site, non-sense,

and frameshift variants annotated from the GEMINI software (Paila et al., 2013). Missing
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Figure 3.2: Solution paths of VCSEL-I-lasso (left) and VCSEL-I-MCP (right) methods in
the analysis of 200 genes and the LDL-C response of all the patients receiving the Vytorin
(Ezetimibe/Simvastatin tablet) treatment and Simvastatin mono-therapy in the IMPROVE-
IT PGx study.

genotypes are imputed by their column mean. In total, there are 208,123 low frequency

variants in 2,572 genes with at least two low frequency variants in each gene. The covariate

matrix includes age, gender, prior lipid lowering therapy, early Acute Coronary Syndrome

(ACS) trial, high risk ACS diagnosis, and the top five principal components calculated from

the GWAS data to adjust for population structure. Because the number of genes is too

large, we first screen the 2,572 genes down to 200 genes according to their marginal p-values

from SKAT-O (Lee et al., 2012) for the analysis of Vytorin treatment effect and the other

200 genes according to their marginal p-values from the Composite Kernel Association Test

(CKAT) (Zhang et al., 2020) for the analysis of Ezetimibe/Simvastatin treatment and the

Simvastatin mono-therapy treatment joint effects. Then we analyze the two sets of the 200

genes by penalized estimation of the 200 variance components respectively.

Figure 3.2 illustrates the solution paths from VCSEL-I-lasso and VCSEL-I-MCP meth-

ods, along with their corresponding lists of the top ten genes in the order they appear in

the solution path for the analysis of Ezetimibe/Simvastatin treatment and the Simvastatin

mono-therapy treatment joint effects. The top five genes selected by the VCSEL-I-lasso
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method are TTN, MUC16, CBLC, APOB and TNXB, and those selected by the VCSEL-

I-MCP method are MUC16, CBLC, APOB and TNXB and OSBPL6. CBLC and TNXB

are selected by both methods and have been shown to associate with statins response in

literature. More specifically, similar as the BCAM gene, CBLC gene, close to BCAM gene,

has been shown to associate with the response to statins (LDL-C change) and multiple non-

drug-response LDL-C related traits as well (Postmus et al., 2014; Deshmukh et al., 2012). In

addition, TNXB gene also shows significant association with the non-drug-response LDL-C

trait in the literature.

3.5 Discussion

Chapter 2 and 3 provide a variance component selection framework for identifying SNP-

sets associated with quantitative traits, particularly for multivariate traits and SNP-set-

treatment interactions. Simulation studies and real data analyses have testified to the com-

petitiveness of the proposed methods, compared to the traditional marginal tests.

Additionally, our VCSEL methods can adjust for sample relatedness by augmenting the

model with a kinship matrix. More precisely, borrowing the notation of (2.2), the model

becomes

vecY ∼ N(0,Σ1 ⊗ V1 + · · ·+ Σm ⊗ Vm + Σg ⊗Φ + Σ0 ⊗ In−p),

where Φ is the kinship matrix, and Σg is a matrix describing the shared heritability between

the phenotypes. Along with the residual variance component Σ0, coheritability variance

component Σg would remain in the model without any regularization.

While chiefly motivated by association testing in genetics, we envision the VCSEL meth-

ods to be applicable beyond genetics. For instance, in random effects ANOVA with many

factors, each represented by a variance component, one may wish to select factors that are
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relevant to the response. This ANOVA scenario has been alluded in Appendix A.2.

There are some limitations to the proposed methods, however. First, it is difficult to

conduct formal inference on the selected SNP-sets. Second, it does not apply to biobank-

scale data. We recommend this method for datasets of size up to n×d = 50, 000 where n is the

number of samples and d is the number of traits. This is because VCSEL methods involve

inverting the covariance matrix Ω in each iteration, which is computationally expensive.

Additionally, we do not suggest jointly fitting all 20,000-25,000 genes in the human genome

using our method. We recommend that the number of genes is reduced before fitting the

model by the sure independence screening strategy, which has been extensively studied and

investigated (Fan and Lv, 2008).

For the VCSEL methods, we focus on the ranking of genes and report the overall selection

performance by auPRC. In practice, the tuning parameters can be chosen according to the

extended Bayesian information criteria (Chen and Chen, 2008). Future research for VCSEL

methods should entail post-selection inference and investigation of the algorithms’ theoretical

properties and address the limitations mentioned in.
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CHAPTER 4

Systematic heritability and heritability enrichment

analysis for diabetes complications in ACCORD and

UK Biobank studies

4.1 Introduction

Diabetes-related complications, which involve longstanding damage to microvascular and

macrovascular systems, are a significant cause of morbidity and mortality among individ-

uals with diabetes and impose a substantial burden on both the individual and society.

Macrovascular complications, particularly atherosclerotic cardiovascular disease (CVD), are

the leading cause of mortality among people with diabetes (American Diabetes Association,

2018). Microvascular complications affect kidney, eyes, or nerves and can lead to blindness,

renal failure, or amputation, in addition to the devastating impact on quality of life. Long

duration of diabetes and poor glycemic control are two primary risk factors for vascular

complications (American Diabetes Association, 1998; Diabetes Control and Complications

Trial Research Group, 1993). However, the development and progression of complications

are heterogeneous even in individuals with comparable glucose control and diabetes duration

(Bowden, 2002).

Early heritability studies have implicated genetic factors to explain the remaining het-

erogeneity in the development of diabetes-related complications. Among other diabetes-

associated diseases, diabetic kidney disease (DKD) has been extensively studied in family
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clustering studies. Diabetic siblings of probands with DKD had approximately 2-4 times

the risk of developing DKD than diabetic siblings of probands free of DKD (Borch-Johnsen

et al., 1992; Quinn et al., 1996; Harjutsalo et al., 2004). Heritability analysis of renal com-

plication in type 1 diabetes estimates that 34–59% (adjusted for sex, diabetes duration, and

age at diabetes onset; 24-42% unadjusted) of the variance is explained by common genetic

variants, depending on the stages or phenotype definitions of DKD (Sandholm et al., 2017).

A similar unadjusted analysis of DKD in individuals with type 2 diabetes estimates SNP

heritability to be 8-12%, probably because of the phenotypic heterogeneity of kidney disease

in type 2 diabetes (Van Zuydam et al., 2018).

Diabetic retinopathy is the leading cause of blindness in American adults aged 18-64 years

(Centers for Disease Control and Prevention, 2020). Early family and twin studies suggested

high concordance of diabetic retinopathy between family members (Diabetes Control and

Complications Trial Research Group, 1997; Leslie and Pyke, 1982). Of note, genetic compo-

nents for the risk of diabetic retinopathy appear related more to its severity of retinopathy,

rather than to the simple presence or absence of retinopathy (Diabetes Control and Com-

plications Trial Research Group, 1997; Hallman et al., 2005). Heritability estimates from

family studies range from 18% to 52% (Looker et al., 2007; Hietala et al., 2008; Arar et al.,

2008), while SNP heritability of severe diabetic retinopathy due to common genetic variants

is estimated at 7% (Meng et al., 2018).

Little is known about the genetic contributions to CVD heritability among individuals

with diabetes. The heritability of coronary artery disease in the general population is esti-

mated to be between 40% and 60% in family and twin studies (Zdravkovic et al., 2002, 2007;

McPherson and Tybjaerg-Hansen, 2016) and around 30% in studies of unrelated individuals

using common genetic variants (Simonson et al., 2011). However, the only heritability-based

studies for CVD in the diabetes population come from small family studies of quantitative

traits, including coronary artery calcification (Wagenknecht et al., 2001), C-reactive protein

levels (Lange et al., 2006), and carotid intima-media thickness (Lange et al., 2002).
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Although previous studies have demonstrated genetic components to diabetes compli-

cations, they were limited to small sample sizes and lacked dense genetic markers, which

neglected the potential contribution of low-frequency or rare variants (minor allele frequency

(MAF) < 0.05). Genetic components reported using only family relationships had severe

flaws and were subject to confounding by shared environmental effects (Tenesa and Haley,

2013). Early genetic studies were also characterized by differential definitions of complica-

tions due to phenotypic complexity, leading to a patchwork of findings.

In the present study, we conduct a systematic heritability analysis using two well-characterized

cohorts—The Action to Control Cardiovascular Risk in Diabetes trial (ACCORD) and the

UK Biobank (UKB) study—with high-quality imputed genetic markers to investigate ge-

netic components involved in the development and progression of diabetes complications.

The ACCORD study is a double-blind randomized clinical trial with clinically adjudicated

complication outcomes, while the UKB provides an opportunity to adopt a prospective co-

hort study with larger sample size. In addition to estimating heritability using genotype and

imputed data, we partition heritability by functional annotations using Stratified Linkage

Disequilibrium Score regression (S-LDSC; Finucane et al., 2015). Since the heritability of

complex traits is not distributed evenly across the whole genome (Maurano et al., 2012;

Trynka et al., 2013), examining regions enriched for heritability can provide insights into

functional categories that contribute to heritability. As the rising prevalence of diabetes

has led to more people at an elevated risk of serious complications, elucidating the genetic

component (i.e., heritability) to the development and progression of complications in a sys-

tematic manner can provide the rationale for genetic studies, which will ultimately enhance

our ability to use precision medicine to tailor disease prevention/treatment.
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4.2 Research design

4.2.1 Study design and participants

The ACCORD study is a double-blind, two-by-two factorial, randomized controlled, parallel

treatment trial. In the trial, 10,251 participants were assigned intensive treatment targeting

an HbA1c concentration of less than 6.0% (42.1 mmol/mol) or standard treatment targeting

HbA1c of 7.0-7.9% (53-62.8 mmol/mol), in addition to assignments to distinct blood pressure

and lipid interventions arms (Ismail-Beigi et al., 2010; Action to Control Cardiovascular Risk

in Diabetes Study Group, 2008). It was designed to evaluate the effectiveness of a more

aggressive treatment target to reduce the rate of macro and microvascular complications

(Zoungas et al., 2017). The ACCORD study included type 2 diabetes participants with

HbA1c concentrations of 7.5% (58.5 mmol/mol) or more, and who were aged 40-79 years with

a history of cardiovascular disease or 55-79 years with evidence of significant atherosclerosis,

albuminuria, left ventricular hypertrophy, or at least two risk factors for cardiovascular

disease (dyslipidemia, hypertension, smoking, or obesity). Details of the design and principal

results of the ACCORD trial were reported previously (Ismail-Beigi et al., 2010; Action to

Control Cardiovascular Risk in Diabetes Study Group, 2008).

The UKB study recruited approximately 500,000 individuals aged between 40 and 69 in

2006-2010 from the general population across the United Kingdom. Participants answered

detailed demographic, socioeconomic, and health-related questions using a touch screen ques-

tionnaire. Blood, urine, and saliva samples were collected, and physical measurements were

taken from participants. Historical and follow-up information is provided by linking health

and medical records. Genome-wide genotype data have been collected on all participants,

creating many opportunities to discover new genetic associations and the genetic bases of

complex traits (Fry et al., 2017; Bycroft et al., 2018). This large-scale cohort study with

linked health and medical records enables studying of diabetes complication incidence under

a prospective study design.
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Within UKB, we curate a diabetes cohort based on the following categories: (A) base-

line (2006-2010) and repeated assessments (2012-2013) at UKB assessment centers using

questionnaires, physical measurements, and biological samples; (B) health-related records:

hospital inpatient, death register, algorithmically-defined outcomes, first occurrences, and

primary care data. Diabetes mellitus cases were ascertained according to the criteria: (A)

first occurrence provided with fields 130706, 130708, and 130714. These fields take the first

date of any of the following: International Classification of Disease, Ninth and Tenth Revision

(ICD-9 and ICD-10) codes for type 1, type 2, and unspecified diabetes mellitus; self-report of

diabetes mellitus at a UKB Assessment center along with the interpolated date from the age

of diagnosis; and a limited number of primary care codes mapped to the three-digit ICD10

code: E10, E11, and E14; (B) the first occurrence of a more extensive list of diabetes-related

primary care codes. Pregnancy or malnutrition-related diabetes was excluded. After exclud-

ing individuals with non-European ancestry, a total of 26,387 non-Hispanic white (NHW)

diabetes patients were identified between the ages of 49 and 82 years as of 2020. We refer to

it as the UKB-Diabetes cohort (Figure 4.2). Among the UKB-Diabetes cohort, we defined

the first diabetes diagnosis as the index date and the incident case to be the first occurrence

of the event after the index date.

4.2.2 Outcome definitions

In the ACCORD trial, all outcomes were pre-specified and adjudicated by the outcome com-

mittee. The pre-specified ACCORD primary cardiovascular (CVD) outcome (i.e., 3-point

Adverse Cardiovascular Events (MACE) including CVD mortality, nonfatal MI, and nonfa-

tal stroke) was the first occurrence of nonfatal myocardial infarction (MI) or nonfatal stroke

or death from cardiovascular causes. We expanded this primary CVD outcome by includ-

ing individual outcomes of new or worsening congestive heart failure (CHF), total stroke,

and major coronary heart disease (CHD). For microvascular complications, we included a

broader combination of microvascular outcomes from more severe (e.g., Neph3 and Retin1)
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to less advanced conditions. The following outcomes record incident cases.

• Neph1: Doubling of baseline serum creatinine or 20 mL/min per 1.73 m2 decrease in

estimated GFR.

• Neph2: Development of macroalbuminuria. UACR 33.9 mg/mmol.

• Neph3: End-stage renal disease (ESRD, i.e., initiation of dialysis or a rise of serum

creatinine to 3.3 mg per deciliter (292 mol/L)).

• Neph4: Development of Neph1, Neph2, or Neph3.

• Neph5: Development of microalbuminuria. UACR 3.4 mg/mmol.

• Retin1: Retinal photocoagulation or vitrectomy to treat retinopathy.

• Retin2: Eye surgery for cataract extraction.

• Retin3: Three-line change in visual acuity.

• Retin4: Severe vision loss (Snellen fraction 20/200).

A detailed description of the pre-specification of the ACCORD outcomes was documented

previously (Ismail-Beigi et al., 2010; Action to Control Cardiovascular Risk in Diabetes Study

Group, 2008).

Among the UKB-Diabetes cohort, we defined incident cases as the first occurrence of the

event after the first diabetes diagnosis. For each type of incident cases, we excluded (A)

individuals with documented occurrences of the event before the diagnosis of diabetes (B)

individuals with no HbA1c measures after a diabetes diagnosis. We defined control cases as

those with no event of interest occurred during the entire observation period with at least

five years of follow-up. Key phenotypes are detailed below:

• CVD: Composite for CVD. Either MI, Ischemic stroke, unstable angina, or PCI.
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• MI: Myocardial infarction from self-reported, primary care, hospital admissions, or

death records. Controls were required to have no evidence of certain cardiovascular

diseases.

• PCI: Percutaneous coronary intervention.

• Stroke any: Either ischemic, hemorrhagic, or unspecified stroke.

• Stroke infarct: Ischemic stroke.

• DKD: Chronic/diabetic kidney disease in self-reported, primary care, hospital or death

records.

• DR: Composite for diabetic eye disease in self-reported, primary care, or hospital

admission records.

• Macroalbuminuria: Urine ACR 33.9 mg/mmol at either UKB visit.

• Microalbuminuria: Urine ACR 3.4 mg/mmol at either UKB visit.

A complete list of codes and data fields used in the definition of diabetes mellitus, diabetes

complications, and their date of the first occurrence are found in Appendix B.1.

4.2.3 Genotyping and imputation in ACCORD and UKB

Detailed accounts on DNA extraction, genotyping, and quality control (QC) procedures

in ACCORD were reported previously (Shah et al., 2016). After retrieving the ACCORD

genetic study data from dbGap (Study Accession: phs001411.v1.p1), we used genetic variants

genotyped on Affymetrix Axiom Biobank chips from the University of North Carolina (UNC)

and merged data under two different institutional review board (IRB) protocols—HMB-IRB

(73941) and DS-CDKD-IRB (73944). There were 6,291 (2,335 females and 3,956 males)

with 546,800 SNPs in the merged dataset. Based on self-reported ethnicity, there were 4,369
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NHW, 935 African-Americans (AA), 381 Hispanics, and 606 others. After pre-imputation

QC steps, imputation was performed on the genotype data using a two-step approach: pre-

phasing genotype calls and imputation. After discarding imputed SNPs with R2 < 0.3 and

MAF < 0.0003, the total number of SNPs was 25,667,109. Additional details on imputation

procedures are provided in Appendix B.2.1 and B.2.3.

We analyzed the genotyping and imputation (version 3) data released by the UKB in 2017.

Details on genotyping and imputation have been extensively described elsewhere (Bycroft

et al., 2018). In summary, genome-wide genotyping was performed on all UKB participants

using the UK Biobank Axiom array. Around 850,000 variants were directly genotyped, and

more than 90 million variants were imputed using the merged UK10K and 1000 Genomes

Phase 3 reference panels (1000 Genomes Project Consortium, 2015). Only autosomal SNPs

were included for both genotype and imputed data analyses. In the analyses involving

imputation data, we discarded SNPs with imputation info score > 0.3, missing genotype

rate > 0.05, Hardy-Weinberg equilibrium test p < 1 × 10−6 and MAF < 0.0001, yielding a

total of 33,932,888 autosomal SNPs.

4.3 Statistical analysis

4.3.1 Overview of methods

First, we computed a Genetic Relationship Matrix (GRM) from all autosomal SNPs in

genotype data using the Relatedness Estimation in Admixed Populations (REAP) approach

(Thornton et al., 2012). Then we selectively excluded one of any pair of individuals with an

estimated kinship greater than the separation between full and half-siblings (estimated kin-

ship (1/2)5/2 = 0.1768) in a way to maximize the remaining sample size (Manichaikul et al.,

2010). This step was done to avoid inflation caused by cryptic relatedness. After the pruning

step, we estimated heritability on the NHW samples. Based on the GRM constructed from

the REAP, heritability was computed using the GREML-SC (single component GREML)
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approach (Yang et al., 2010) via the software package Genome-wide Complex Trait Analysis

(GCTA) (Yang et al., 2011a). We adjusted for relevant covariates such as the top genetic

principal components, age, or sex. Additionally, we measured genetic correlations among

binary traits using the GCTA software (Yang et al., 2011a).

Next, we used several approaches to calculate the narrow sense heritability of diabetes

complications from imputed datasets. First, we applied GREML-LDMS-I (Yang et al.,

2015), the multiple variance components approach that bins SNPs by MAF crossed by their

individual levels of linkage disequilibrium (LD). We selected this approach over other mul-

ticomponent approaches such as GREML-LDMS-R, which allocates SNPs by the MAF and

regional LD, since GREML-LDMS-I was shown to be the least biased method (Evans et al.,

2018). For the GREML-LDMS-I approach, we followed the design laid out in Evans et al.

(2018). First, we calculated segment-based LD scores using the default settings in the GCTA

software and stratified SNPs into high LD and low LD score groups using the median as a

threshold. In each LD group, SNPs were further partitioned into four MAF bins. Then

GRMs were computed for each of the eight groups of SNPs. Finally, we estimated the

heritability of each binary phenotype with fixed covariates.

We also applied S-LDSC (Finucane et al., 2015, 2018), a method for partitioning heri-

tability from genome-wide association study (GWAS) summary statistics. After acquiring

statistics from logistic regression, we performed none cell type-specific and tissue type-specific

heritability enrichment analyses. In none cell type-specific analyses, we used 53 overlapping

functional categories used in Finucane et al. (2015). In tissue-type specific analyses, we used

the specifically expressed gene annotations generated by Finucane et al. (2018) with the

Genotype-Tissue Expression (GTEx) project (GTEx Consortium, 2015). For all S-LDSC

analyses, we used 1000 Genomes Project Phase 3 (1000 Genomes Project Consortium, 2015)

European population SNPs as an LD reference panel. All annotations and reference panel

data were obtained from Alkes Price’s group data repository (see URLs in Appendix B.4).

For more details on methods, see Appendix B.2.
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Characteristic N=4318
Age at baseline, years* 63.2 ± 6.4
Years since diabetes diagnosis* 10.7 ± 7.4
HbA1c at baseline, %* 8.2 ± 1.0
Sex, %

Female 34.4
Male 65.6

Smoked cigarettes in last 30 days, %
Yes 12.4
No 87.6

Smoked >100 cigarettes during lifetime, %
Yes 50.4
No 37.9
NA 11.7

CVD history at baseline, %
Yes 36.1
No 63.9

Glycemic treatment arm, %
Intensive 49.8
Standard 50.2

Table 4.1: Sample characteristics of the non-Hispanic white participants used in the AC-
CORD analyses. * Denotes mean ± standard deviation.

Characteristic N=26387
Age in 2010, years* 60.9 ± 7.0
Age of first DM, years* 56.4 ± 12.4
BMI* 31.5 ± 5.7
HbA1c at initial visit, mmol/mol* 48.8 ± 13.3
HbA1c at repeat visit, mmol/mol* 48.6 ± 11.1
Sex, %

Male 61.4
Female 38.6

Current/former smoking, %
Yes 56.1
No 43.4
Missing 0.5

DM Type
Type 1 2.9
Type 2 69.0
Unspecified 28.1

Table 4.2: Sample characteristics of the non-Hispanic white participants used in the UKB
analyses. The initial visit indicates anytime between 2006 to 2010, depending on the indi-
vidual. * Denotes mean ± standard deviation. DM, Diabetes mellitus.
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Figure 4.1: Diagram depicting a flow of participants used in the ACCORD analyses. DM,
diabetes mellitus; NHW, none-Hispanic white.

Figure 4.2: Diagram depicting a flow of participants used in the UK Biobank analyses. DM,
diabetes mellitus; NHW, none-Hispanic white.
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4.4 Results

Table 4.1 and Table 4.2 describe characteristics of the NHW samples used in the ACCORD

and the UK Biobank analyses, respectively. Figure 4.1 and 4.2 show a breakdown of partic-

ipant flow in the ACCORD and UKB analyses, respectively.

4.4.1 Heritability

First, we computed the heritability of phenotypes from the SNPs on the genotyping ar-

ray using the GREML-SC approach (Yang et al., 2010). After pruning related individuals

and extracting NHW samples, there remained 4,318 samples for the ACCORD and 26,387

samples for the UKB.

For the ACCORD data, we adjusted for sex, age at baseline, history of CVD at baseline,

and the top five principal components. Heritability estimates for the ACCORD data are

displayed as purple bars in Figure 4.3 (also see Table 4.3). Except for the phenotype primary,

heritability estimates of the phenotypes are below 0.2. The estimate for the composite

nephropathy outcome among type 2 diabetes (Neph4), calculated from the SNPs on the

genotyping array, is 0.129 (SE 0.091), which is comparable with estimates from a similar

analysis (0.12 for chronic kidney disease and 0.08 for diabetic kidney disease among type

2 diabetes subjects) (Van Zuydam et al., 2018). We also ran an additional GREML-SC

analysis that includes interaction with intensive glycemic treatment arm (see Figure B.6 in

Appendix B.3.

For the UKB data, the following covariates were accounted for: sex, age in 2010, and

the top ten principal components. Heritability estimates from the UKB genotype data are

illustrated as purple bars in Figure 4.4 (also see Table 4.4). Heritability estimates from

the UKB genotype data tend to have smaller error bars than those from the ACCORD

genotype data due to the larger sample size in the UKB dataset. We also observe that

some corresponding phenotypes have quite disparate estimates. While the composite CVD
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Figure 4.3: Heritability estimates and standard errors of diabetes complications using the
ACCORD data. Estimates from genotype data are obtained using the GREML-SC approach.
Estimates from the imputed data are using the GREML-LDMS-I method. Following covari-
ates are adjusted for: sex, age at baseline, CVD history at baseline, and the top five genetic
principal components.

phenotype from the ACCORD (primary) is 0.248 (SE 0.093), the composite CVD outcome

from UKB is 0.081 (SE 0.028). This may stem from the discrepancy in sample characteristics

between the two cohorts. While the UKB-Diabetes cohort is younger and relatively healthy,

the ACCORD group is at high risk of CVD with a longer duration of diabetes.
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Figure 4.4: Heritability estimates and standard errors of diabetes complication outcomes
using the UKB data. Estimates from genotype data are obtained using the GREML-SC ap-
proach. Estimates from the imputed data are using the GREML-LDMS-I method. Following
covariates are adjusted for: sex, age in 2010, and the top ten genetic principal components.
Note that the estimates are on the observed scale.

Phenotype Proportion of cases
in the sample

N V(G)/V(p) (SE)
GREML-SC GREML-LDMS

Primary 0.106 4318 0.248 (0.093) NA
Total mortality 0.066 4318 0.013 (0.088) NA
CVD mortality 0.028 4318 0.094 (0.089) NA
Nonfatal MI 0.071 4318 0.102 (0.090) 0.110 (0.192)
Nonfatal stroke 0.015 4318 0.112 (0.090) NA
Total stroke 0.018 4318 0.179 (0.091) NA
Major CHD 0.129 4318 0.090 (0.089) 0.118 (0.181)
Neph1 0.591 4318 0.123 (0.090) NA
Neph2 0.070 3866 0.106 (0.101) 0.409 (0.201)
Neph3 0.028 4318 0.000 (0.082) NA
Neph4 0.616 4318 0.129 (0.091) NA
Neph5 0.241 2912 0.160 (0.132) 0.596 (0.254)
Retin1 0.084 4318 0.139 (0.088) 0.288 (0.183)
Retin2 0.158 4318 0.044 (0.083) 0.063 (0.169)
Retin3 0.360 4318 0.002 (0.084) NA
Retin4 0.068 4318 0.000 (0.089) 0.328 (0.174)

Table 4.3: GREML-SC and GREML-LDMS estimates using the ACCORD genotype and
imputed data, respectively. NA under GREML-LDMS, the GREML analysis failed to run
due to the small sample size. V(G)/V(p), proportion of phenotypic variance explained by
genotypes, i.e., heritability, as observed in the study population. SE, standard error.

48



Phenotype Proportion of cases
in the sample

N V(G)/V(p) (SE)
GREML-SC GREML-LDMS

CVD 0.159 17540 0.081 (0.028) 0.183 (0.093)
MI 0.094 16310 0.097 (0.031) 0.256 (0.100)
PCI 0.090 16252 0.107 (0.031) 0.136 (0.100)
Stroke any 0.087 16002 0.041 (0.030) 0.348 (0.101)
Stroke infarct 0.042 15429 0.000 (0.029) 0.283 (0.106)
DKD 0.256 7707 0.108 (0.064) 0.291 (0.196)
Macroalbuminuria 0.029 13246 0.001 (0.034) 0.000 (0.119)
Microalbuminuria 0.238 13246 0.110 (0.037) 0.250 (0.119)
DR 0.541 11739 0.110 (0.041) 0.166 (0.130)

Table 4.4: GREML-SC and GREML-LDMS estimates using the UKB genotype and imputed
data, respectively. V(G)/V(p), proportion of phenotypic variance explained by genotypes,
i.e., heritability, as observed in the study population. SE, standard error.

Note that the h2 estimates are on the observed scale, which does not take population

prevalence into account. We display observed scale estimates because ACCORD and UKB-

Diabetes studies are intervention or study with a prospective design, not ascertained case-

control studies, in which the proportion of cases are often overrepresented. In fact, the sample

proportion of cases and prevalence do not deviate much from each other for phenotypes with

population prevalence available in the literature. For example, the proportion of DKD cases

in the UKB-Diabetes cohort is 0.256, which is similar to the prevalence of any diabetic kidney

disease among US adults with diabetes (0.262; 95% CI, 22.6-29.9) reported in Afkarian et al.

(2016). The proportions of incident cases for primary CVD outcome and total stroke in

the ACCORD group are 0.106 and 0.018, respectively, while hospital discharges record in

2016 reported that 75.3 and 13.6 per 1,000 adults with diabetes had major CVD and stroke,

respectively (Centers for Disease Control and Prevention, 2020).

Estimates of the genetic correlation between selected traits are presented in Table 4.5 for

the ACCORD. The standard errors are large for most pairs of traits, leading to confidence

intervals including 0 and suggesting a lack of power. Despite the large standard errors, we

observe high correlation estimates between Retin1 and Neph2/Neph5, which agree with the

finding that links diabetic retinopathy with renal function (Xu et al., 2012). For the UKB

estimates, see Table B.1 in Appendix B.3. We observe some inconsistencies between the
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Neph1 Neph2 Neph4 Neph5 Retin1
primary -0.54 (0.41) 0.12 (0.43) -0.53 (0.40) 0.14 (0.42) -0.52 (0.39)
Neph1 0.47 (0.62) 0.96 (0.05) 0.25 (0.57) 0.19 (0.50)
Neph2 0.49 (0.57) 0.11 (0.62) 0.70 (0.67)
Neph4 0.33 (0.56) 0.32 (0.51)
Neph5 0.52 (0.59)

Table 4.5: Genetic correlation estimates and the standard errors between selected phenotypes
using the ACCORD genotype data. Adjusted for sex, CVD history at baseline, age at
baseline, and the top five genetic principal components.

results of the two datasets. While the genetic correlation between the CVD composite out-

come and retinopathy outcome from the ACCORD data (primary-Retin1) shows a negative

correlation, that from the UKB data (CVD-DR) shows a positive correlation. This is most

likely due to the difference in phenotype definition.

On the imputed datasets, we employ the GREML-LDMS-I method. Heritability esti-

mates of the phenotypes are provided as green bars in Figure 4.3 and 4.4 for the ACCORD

and the UKB, respectively (also see Table 4.3 and Table 4.4). The heritability of diabetic

kidney disease is estimated to be 0.29. Microalbuminuria estimates range from 0.24 to

0.60, while macroalbuminuria estimates are up to 0.41. Heritability estimates of diabetic

retinopathy range from 0.06 to 0.33, depending on the definition of phenotype. Although

less than family study estimates for broad-sense heritability—0.27 for diabetic retinopathy

(Arar et al., 2008) and as high as 0.52 (SE 0.31) for proliferative retinopathy among adults

with type 1 diabetes (Hietala et al., 2008), our estimates are still comparable to pedigree

heritability estimates.

Of note, we observe higher estimates with more advanced retinopathy: 0.29 and 0.33

for Retin1 (retinal photocoagulation or vitrectomy) and Retin4 (severe vision loss), respec-

tively, as opposed to 0.06 and around 0 for Retin2 (cataract extraction) and Retin3 (three-line

change in visual acuity), respectively. On the other hand, diabetic nephropathy phenotypes

do not exhibit such a pattern. While the heritability of macroalbuminuria phenotype from

ACCORD is estimated at 0.41, that of microalbuminuria from ACCORD is at 0.60, re-

50



spectively. Estimates for either Neph1 or Neph3 are unavailable despite larger sample sizes

(4,318 for both Neph1 and Neph3; 3,866 and 2,912 for Neph2 and Neph5, respectively).

This pattern or lack thereof is consistent with earlier heritability studies that insinuated

genetic components to the severity of diabetic retinopathy and presence/absence of diabetic

nephropathy (Diabetes Control and Complications Trial Research Group, 1997; Hallman

et al., 2005). Although we cannot confirm the trend of diabetic retinopathy in the UKB

data (due to the absence of granular outcome definition for diabetic retinopathy), estimates

for diabetic nephropathy from the UKB study (0.25 for microalbuminuria and close to 0 for

macroalbuminuria) are in accordance with the pattern seen in the ACCORD study.

Heritability analyses using imputed data reveal a substantial contribution of low fre-

quency/rare variants to the predisposition for complications. While the heritability of severe

diabetic retinopathy from common genetic variants among individuals with type 2 diabetes

was estimated to be 0.07 in a previous study (Meng et al., 2018) and up to 0.14 in our analysis

(see GREML-SC results of Retin1 and Retin4 in Table 4.3), we observe higher heritability

estimates of advanced diabetic retinopathy among type 2 diabetes individuals (0.29 and 0.33

for Retin1 and Retin4 in ACCORD) calculated from directly typed and imputed genetic

markers. The distribution of heritability across the MAF spectrum for other complication

phenotypes, including retinopathy, is found in Figure 4.5. Notably, the UKB results (Fig-

ure 4.6) show a more pronounced contribution pattern with small error bars and heritability

heavily concentrated in very rare variants (0.0003 ≤ MAF < 0.0025).
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Figure 4.5: GREML-LDMS estimates using the imputed ACCORD data. GRM with eight
bins (2 LD bins for each of the 4 MAF bins).

Figure 4.6: GREML-LDMS estimates using the imputed UKB data. GRM with eight bins
(2 LD bins for each of the 4 MAF bins).
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4.4.2 GWAS

Association results identified multiple significant peaks (p < 5×10−8) in the UKB-diabetes

cohort. For macrovascular complications in the UKB-diabetes cohort (CVD, MI, and PCI),

variants on chromosome 9p21 reached genome-wide significance. Association of the regions

on chromosome 9p21 with type 2 diabetes and progression of CVD was seen previously

(Helgeland et al., 2015). For DR in UKB-diabetes cohort, 22 variants on 6p21 reached

genome-wide significance (p < 5×10−8) with rs9273367 (p = 1.23×10−9, OR = 1.18). These

variants were in or near HLA regions, whose previous associations with type 1 diabetes have

been well documented (Noble and Erlich, 2012). For DKD, 17 variants had p < 5×10−8.

Eleven of these SNPs were on chromosome 3q26.31, and six were in UMOD and PDILT (lead

SNP rs77924615 with p = 7.82×10−9, OR = 0.75) on chromosome 16p12.3. UMOD was

previously associated with eGFR in the meta-analysis combining type 1 and type 2 diabetes

patients of European and Asian ancestry (Van Zuydam et al., 2018). Although some variants

were below the genome-wide significance threshold in the ACCORD cohort, they were not

as prominent as in the UKB-diabetes cohort. Figures B.4 and B.5 in Appendix B.3 show

Manhattan and quantile-quantile (QQ) plots for GWAS.

4.4.3 Heritability enrichment by functional annotations

We applied S-LDSC to identify disease-relevant tissues and cell types. Results for the selected

ACCORD phenotypes are illustrated in Figure 4.7 (for the results on more phenotypes, see

Figures B.7 and B.8 in Appendix B.3). Renal failure or ESRD phenotype (Neph3) exhibit

skin-specific (sun-exposed skin p = 4.82 × 10−4; non-sun-exposed skin p = 4.29 × 10−3)

and brain-specific enrichments (brain cerebellar hemisphere p = 1.99 × 10−3). The enrich-

ment mentioned earlier captures dermatologic manifestations of ESRD (47). Macrovascular

complications (primary and major CHD) show enrichments in EBV transformed lympho-

cytes (p = 1.38 × 10−3 and p = 2.25 × 10−3, respectively). This finding of macrovascular
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complications reflects their mechanism involving inflammatory cells (e.g., monotypes and T

lymphocytes) (48). Despite the larger sample size, no tissues are enriched for heritability of

diabetic complications from the UKB (see Figures B.9 and B.10 in Appendix B.3). We note

that the lack of significant enrichment findings from S-LDSC methods may stem from the

difference in cohort characteristics (healthier participants from UKB and non-adjudicated

outcomes from biobank studies).

We also conducted the S-LDSC analysis partitioning heritability into 53 (overlapping)

categories that are not specific to any cell type. The annotations were derived from the ‘full

baseline model’ in Finucane et al. (2015). Figure 4.8 illustrates enrichment estimates for

selected annotations and traits from the ACCORD data. None of the categories for any phe-

notype passed the Bonferroni significance threshold (threshold p = 0.05/53 = 9.43× 10−4).

Given the small sample size we had for phenotypes (e.g., ranging from 2,912 samples for

Neph5 to 4,318 samples for primary), we were aware of the power limitations. Some cate-

gories are still noteworthy, however. Promoter region showed enrichment in the retinopathy

phenotype (Retin1;p = 2.82 × 10−2) and H3K27ac showed enrichment in the composite

nephropathy phenotype (Neph4; p = 4.64× 10−2).

Figure 4.9 reports enrichment estimates from the UKB data. Only the coding region

passed Bonferroni-corrected significant enrichment (threshold p = 0.05/53 = 9.43 × 10−4)

in the diabetic kidney disease phenotype (DKD; p = 6.55 × 10−4). Though only nominally

significant, H3K9ac is enriched in microalbuminuria phenotype (p = 0.04). H3K9ac enrich-

ment agrees with the findings from Salem et al. (2019) that the top signal (TAMM41) for

microalbuminuria is close to the histone marks—H3K27ac, H3K9ac, H3k4me1.
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Figure 4.7: Enrichment of the selected ACCORD phenotypes in tissue-specific gene ex-
pression annotations used in Finucane et al. (2018). The black dashed lines indicate the
Bonferroni significance threshold (p < 0.05/53).
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Figure 4.8: Enrichment estimates for selected annotations and traits using the ACCORD
imputed data. The dashed line represents no enrichment (enrichment=1). One asterisk
indicates nominal significance at p < 0.05. TFBS, Transcription factor binding site.

Figure 4.9: Enrichment estimates for selected annotations and traits using the UKB imputed
data. The dashed line represents no enrichment (enrichment=1). One asterisk indicates
nominal significance at p < 0.05, while two asterisks denote significance at p < 0.001. DHS,
DNase I hypersensitivity sites.
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4.5 Discussion

We have used two independent studies with imputed data to estimate the heritability for dia-

betes complications. Although a meta-analysis from the two studies would have increased the

sample size, we conducted two separate analyses to reduce the risk of phenotypic heterogene-

ity. Our analyses show some discordance in findings between the two data sets. Heritability

estimates obtained from the GREML-LDMS-I using imputed datasets tend to be larger in

the ACCORD study than the UKB study despite a larger sample size in the UKB-Diabetes

cohort. Additionally, no tissue enrichment is observed from the UKB-Diabetes cohort. In-

herent differences in the two studies may provide a basis for the discordant findings. First,

the ACCORD is a clinical trial that offers adjudicated outcomes in a well-controlled clinical

trial setting. In contrast, UKB studies are conducted within a real-life cohort and based on

electronic medical records, which are known for high noise and potential for bias. Second,

the ACCORD cohort consisted of adults at increased risk for CVD with a longer duration

of diabetes and higher glycated hemoglobin level (Table 4.1). On the other hand, the UKB

participants were younger and relatively healthy (Table 4.2).

Notwithstanding these limitations, this heritability analysis still represents the first sys-

tematic investigation of SNP heritability for diabetes complications. It adds to the existing

heritability analyses primarily based on family or small cohort studies.
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CHAPTER 5

Conclusion

In this dissertation, we have developed and applied variance component model-based method-

ology for understanding the genetic architecture of complex traits and diseases. Chapter 2

introduced a method that prioritizes SNP-sets in a joint multivariate variance component

model. Each SNP-set corresponded to a variance component, and model selection was

achieved by incorporating either convex or non-convex penalties. We extended this approach

to incorporate SNP-set-treatment or -environment interactions in Chapter 3. The algorithms

we devised were based on the majorization-minimization (MM) principle. Through simula-

tion studies, we demonstrated the competitiveness of our methods in model selection perfor-

mance, compared to the commonly used marginal testing and group penalization methods.

We also applied our methods to a real whole exome sequencing study and a real pharma-

cogenomics study. As we saw that some top ranked genes by our methods were detected

as insignificant by the marginal testing, our methods can provide alternative insights for

biologists to prioritize follow-up studies and develop polygenic risk score models.

For the proposed VCSEL methods, two future directions come to mind. One direction

is to develop post-selection inference procedures. In Chapters 2 and 3, we only focused on

the ranking of genes and reported the overall selection performance by the area under the

Precision-Recall curve. Inference tools would allow us to assess the strength of the model

after penalization. Another direction is to scale the methods to accommodate biobank-

scale data. The computational bottleneck of the current VCSEL methods is arises from an

inversion of the covariance matrix at each iteration. Computationally efficient approaches
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that can handle large-scale data would widen the applicability.

Chapter 4 surveyed the SNP heritability of diabetes macrovascular complications and

microvascular complications. Heritability estimates of diabetic retinopathy ranged from

0.06 to 0.33, depending on the definition of phenotype. The heritability of diabetic kidney

disease was estimated to be 0.29. Microalbuminuria estimates ranged from 0.24 to 0.60

while macroalbuminuria estimates were up to 0.41. Heritability analyses using imputed data

revealed a substantial contribution of low-frequency/rare variants to the predisposition for

complications. This analysis represents the first systematic investigation of SNP heritability

for diabetes complications. It adds to the existing heritability analyses primarily based on

family or small cohort studies.
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Appendix A

A.1 Simulation studies for univariate trait

In Section 2.4, we presented simulation results for the multivariate trait model. Here we

present more details on the simulation results for univariate trait model. For univariate

response, we compare with the group lasso and SKAT, using R packages gglasso (Yang and

Zou, 2014) and SKAT (Lee et al., 2017a), respectively. In implementing VCSEL algorithm,

we employ the lasso (Chen et al., 2001; Tibshirani, 1996), adaptive lasso (Zou, 2006) and

MCP (Zhang et al., 2010) penalties, which are denoted as VCSEL-lasso, VCSEL-adlasso, and

VCSEL-MCP, respectively. For the adaptive lasso penalty, we take the two-stage approach:

the initial estimation of σ̃ is made using no penalty, which in turn generates weights wi =

|σ̃i|−1, i = 1, . . . ,m that are held constant across all values of tuning parameter λ.

We simulate univariate phenotype vector y ∈ Rn×1 from

y = LΩε, ε ∼ Nn(0, In),

where LΩ is the lower triangular Cholesky factor of Ω = σ2
1V1 + · · · + σ2

mVm +
σ2
0√
n
In. For

simplicity, we adopt the linear kernel function for Vi and divide the kernel by its Frobenius

norm. In other words, Vi = 1
||GiGT

i ||F
GiG

T
i , i = 1, · · · ,m, where || · ||F is the Frobenius norm.

Throughout simulations, we set the residual variance σ0 = 1.0. Furthermore, we fix

sample size n to be 500 and the number of positive variance components, excluding σ0, to

be 5. Those positive variance components are spread evenly across all m sets to create a

scenario of low linkage disequilibrium between causal variants.
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We exploit two different haplotype pools: one from SKAT.haplotypes in the SKAT R

package and the other simulated from the cosi2 simulator (Shlyakhter et al., 2014). The

former contains predominantly rare variants while the latter consists of common and rare

variants in similar proportions.
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Figure A.1: Histogram of MAFs for the 3,845 SNPs in haplotype matrix from the SKAT R
package.

Haplotype dataset from the SKAT R package

Generated by the calibration coalescent model (COSI) mimicking the linkage disequilibrium

structure of European ancestry, the haplotype matrix in the SKAT R package contains 10,000

haplotypes over 200kb region. Most SNPs in the matrix are rare, with 82% of variants having

MAF ≤ 0.005 and 8.7% having MAF > 0.05. Figure A.1 illustrates the distribution of MAFs

for all SNPs in the pool.

We define one set to be 5kb, 2kb, or 1kb long, which translates to 40, 100, or 200 groups,

respectively. Suppose this set represents a gene, then each gene of length 5kb, 2kb, and

1kb contains approximately 42, 17, and 8 non-monomorphic SNPs on average, respectively

(Table A.1).
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Min. Mean Max.
1kb/gene 1 8 24
2kb/gene 6 17 31
5kb/gene 24 42 69

Table A.1: The minimum, mean, and maximum numbers of SNPs that are not monoallel-
ically expressed within a gene for SKAT haplotype data when a gene is defined to be 1kb,
2kb, or 5kb long.

Table A.2: The auPRCs of VCSEL-lasso, VCSEL-adlasso, VCSEL-MCP, group-lasso and
SKAT. We set the number of replicates as 20 and number of tuning parameters as 100. In
parentheses are standard deviation /

√
no. replicates. For VCSEL-MCP, γ = 2.69 is used.

no. genes VCSEL-lasso VCSEL-adlasso VCSEL-MCP group-lasso SKAT
40 (5kb/gene) 0.76 (0.02) 0.82 (0.02) 0.76 (0.02) 0.27 (0.02) 0.40 (0.03)
100 (2kb/gene) 0.69 (0.04) 0.72 (0.04) 0.68 (0.04) 0.21 (0.02) 0.24 (0.02)
200 (1kb/gene) 0.56 (0.04) 0.65 (0.03) 0.56 (0.04) 0.12 (0.01) 0.17 (0.02)

We set the effect strength of non-zero variance component to be 2.236. In other words,

σi =



2.236 i = 1, 11, 20, 30, 40 (m = 40)

i = 1, 26, 50, 75, 100 (m = 100)

i = 1, 51, 100, 150, 200 (m = 200)

1.0 i = 0

0.0 else.

The simulation results are summarized in Figure A.2 with boxplots and Table A.2 with the

average auPRCs and standard errors. Overall, we observe VCSEL-adlasso > VCSEL-MCP

> VCSEL-lasso � SKAT > group-lasso in terms of selection performance.

Haplotype pool generated from the cosi2 simulator

The haplotype matrix in this section is generated by cosi2 simulator (Shlyakhter et al., 2014).

It contains 1,200 haplotypes over 10Mb region. Proportions of common and rare variants

are more or less equal: 38.5% of those have MAF > 0.05, 31.9% have MAF ≤ 0.005, and
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Figure A.2: The auPRCs of VCSEL-lasso, VCSEL-adlasso, VCSEL-MCP(γ = 2.69), group-
lasso, and SKAT under different number of genes for models with 5 non-zero variance com-
ponents, using haplotype data from the SKAT R package. Three different numbers of groups
are compared: m = 40, 100, 200.

Min. Mean Max.
10kb/gene 435 540 673
20kb/gene 932 1080 1230
50kb/gene 2414 2704 3041

Table A.3: The minimum, mean, and maximum numbers of SNPs that are not monoallel-
ically expressed within a gene for cosi2 haplotype data when a gene is defined to be 10kb,
20kb or 50kb long.

the rest (29.6%) have MAF between 0.005 and 0.05. Figure A.3 illustrates the distribution

of MAFs for all SNPs.

As before, we vary the number of genes and gene sizes. We consider three cases where

there are 50, 100, and 200 genes, in which each gene is 20kb, 10kb, or 50kb long, respectively.

On average, genes of size 20kb, 10kb, and 50kb long contain 1080, 540, and 2704 non-

monomorphic SNPs, respectively (Table A.3). We set the effect strength of non-zero variance
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Figure A.3: Histogram of MAFs for 553,862 SNPs in haplotype matrix generated from the
cosi2 simulator.

component to be 2.236. In other words,

σi =



2.236 i=1, 13, 26, 38, 50 (m=50)

i=1, 26, 50, 75, 100 (m=100)

i=1, 51, 100, 150, 200 (m=200)

1.0 i=0

0.0 else.

The simulation results are summarized in Figure A.4 with boxplots and Table A.4 with

the average auPRCs and standard errors. We again observe a similar pattern as in Sec-

tion A.1 in terms of selection performance, but the difference between our method and

competing methods is not as drastic. We attribute this discrepancy to different proportions

of common/rare variants and different gene sizes. Advantages of our method appear to be

amplified when there are more rare variants present and gene sizes are smaller.
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no. genes VCSEL-lasso VCSEL-adlasso VCSEL-MCP group-lasso SKAT
50 (20kb/gene) 0.83 (0.02) 0.82 (0.02) 0.83 (0.02) 0.81 (0.02) 0.70 (0.02)
100 (10kb/gene) 0.72 (0.03) 0.79 (0.02) 0.72 (0.03) 0.62 (0.03) 0.57 (0.04)
200 (50kb/gene) 0.67 (0.05) 0.67 (0.04) 0.67 (0.05) 0.59 (0.05) 0.60 (0.05)

Table A.4: The auPRCs of VCSEL-lasso, VCSEL-MCP, and Multi-SKAT across varying
size and number of genes, using haplotype data from the cosi2 simulator. We set n = 500,
number of replicates = 20, number of tuning parameters = 100. In parentheses are standard
deviation /

√
no. replicates.

Figure A.4: The auPRCs of VCSEL-lasso, VCSEL-adlasso, VCSEL-MCP, group-lasso, and
SKAT under different number of genes for models with 5 non-zero variance components, using
haplotype data from the cosi2 simulator. Three different numbers of groups are compared:
m = 50, 100, 200.
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A.2 Simulation studies for univariate response model - extra re-

sults

In this section, we further expand the simulations for the univariate response model to

address two questions. First, besides the genetic association study setting, how does VCSEL

perform in random effects ANOVA (factorial analysis of variance) model with many factors?

In the ANOVA model, the effects of each factor is modeled as random effects and correspond

to one variance component. Second, how does VCSEL perform in the group selection in the

fixed effects models, for both genetic association studies and factorial ANOVA.

In this section we only compare selection performance of the VCSEL method to group

lasso (Yuan and Lin, 2006), a group selection method, given data generated from different

univariate response models. We simulate n×1 response vector y both from a random effects

model,

y ∼ N(0n,Ω), (A.1)

where Ω =
∑m

i=1 σ
2
iVi + σ2

0In and Vi = 1
||XiXT

i ||F
XiX

T
i , and a fixed effects model,

y ∼ N(Xβ, In). (A.2)

For random effects model (A.1), we set true variance components to be σ2
0 = 1.0, σ2

i = 9.0

if i = 1, 2, 3, and 0.0 if else. For fixed effects model (A.2), true parameter β are generated

from normal distribution, β[(qi+1):(qi+q)] ∼ N(0, 9I), i = 0, 1, 2, where q denotes group size.

The rest of values in β are set to be 0. Two simulation designs are motivated by genetics

and analysis of variance (ANOVA) scenario and are distinguished by a n×mq matrix

X =

[
X1

∣∣∣∣X2

∣∣∣∣ · · · ∣∣∣∣Xm

]
,

where Xi ∈ Rn×q, i = 1, . . . ,m. In both settings, we fix n = 100 and experiment with 6
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different groups (m = 10, 20, 30, 50, 70, 100) and 4 different group sizes (q = 40, 50, 70, 100).

We generate 50 replications and obtain 50 area under Precision-Recall curve (auPRC) values

at each combination of group size, number of groups, and method. We remind readers that

auPRC value ranges from 0 to 1, and higher auPRC value signals both high precision (low

false positive rate) and high recall (low false negative rate).

In genetics scenario, X is a matrix of genotype data with allele counts, which we obtain

from SNP_data29a.bin in option 24 example of Mendel software (Lange et al., 2013). Here

each Xi represents i-th SNP-set which includes q variants. The results from the data gener-

ated by a random effects model are summarized in Table A.5 and Figure A.5. Similarly, the

results from the data generated by a fixed effects are model are displayed in Table A.6 and

Figure A.6.

On the other hand, in ANOVA scenario, Xi represents i-th factor with q levels, and

its k-th row indicates which level k-th subject belongs to in factor i. Interactions are not

considered for simplicity. The results from the data generated by a random effects model

are summarized in Table A.7 and Figure A.7. Similarly, the results from the data generated

by a fixed effects are model are displayed in Table A.8 and Figure A.8.

In both scenarios, we observe that auPRC values decrease with increasing number of

groups and group size, which translates to increasing number of parameters. The overall

performance trend in all scenarios is VCSEL-adlasso > VCSEL-lasso > group-lasso. This

trend is reasonable for data generated from random effects model since group-lasso assumes

fixed effects model. On that note, it is interesting to point out that VCSEL methods remains

competitive even under the scenario where data are generated from fixed effects model.
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Figure A.5: The auPRCs of VCSEL-lasso, VCSEL-adlasso, and group-lasso under different
number of groups (m = 10, 20, 30, 50, 70, 100) and group size (q = 40, 50, 70, 100), given the
data generated from the random effects model (A.1) in genetics setting.

q Method m = number of groups
10 20 30 50 70 100

30 VCSEL-lasso 0.78 (0.01) 0.74 (0.02) 0.71 (0.02) 0.65 (0.02) 0.61 (0.02) 0.57 (0.02)
VCSEL-adlasso 0.79 (0.01) 0.75 (0.02) 0.74 (0.02) 0.71 (0.02) 0.66 (0.02) 0.65 (0.02)
group-lasso 0.67 (0.02) 0.61 (0.02) 0.58 (0.02) 0.52 (0.02) 0.49 (0.02) 0.45 (0.02)

50 VCSEL-lasso 0.72 (0.02) 0.69 (0.02) 0.62 (0.02) 0.57 (0.03) 0.51 (0.03) 0.45 (0.03)
VCSEL-adlasso 0.77 (0.01) 0.72 (0.02) 0.70 (0.02) 0.61 (0.03) 0.55 (0.04) 0.52 (0.04)
group-lasso 0.57 (0.02) 0.49 (0.02) 0.46 (0.02) 0.38 (0.03) 0.34 (0.03) 0.29 (0.03)

70 VCSEL-lasso 0.70 (0.02) 0.61 (0.03) 0.54 (0.03) 0.43 (0.03) 0.39 (0.03) 0.35 (0.03)
VCSEL-adlasso 0.70 (0.02) 0.61 (0.03) 0.54 (0.03) 0.45 (0.03) 0.38 (0.03) 0.34 (0.03)
group-lasso 0.53 (0.02) 0.42 (0.02) 0.36 (0.03) 0.29 (0.03) 0.24 (0.02) 0.19 (0.02)

100 VCSEL-lasso 0.63 (0.02) 0.51 (0.03) 0.47 (0.03) 0.38 (0.03) 0.31 (0.02) 0.26 (0.02)
VCSEL-adlasso 0.64 (0.02) 0.54 (0.03) 0.50 (0.03) 0.41 (0.03) 0.36 (0.03) 0.30 (0.03)
group-lasso 0.48 (0.02) 0.37 (0.02) 0.32 (0.02) 0.25 (0.02) 0.19 (0.02) 0.16 (0.01)

Table A.5: The mean auPRCs across 50 replications under different number of groups
(m = 10, 20, 30, 50, 70, 100) and group size (q = 40, 50, 70, 100), given data generated from
random effects model (A.1) in genetics setting. In parentheses are standard deviation
/
√

no. replicates.
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Figure A.6: The auPRCs of VCSEL-lasso, VCSEL-adlasso, and group-lasso under different
number of groups (m = 10, 20, 30, 50, 70, 100) and group size (q = 40, 50, 70, 100), given data
generated from fixed effects model (A.2) in genetics setting.

q Method m = no. of groups
10 20 30 50 70 100

30 VCSEL-lasso 0.83 (0.00) 0.81 (0.01) 0.82 (0.00) 0.79 (0.01) 0.80 (0.01) 0.80 (0.01)
VCSEL-adlasso 0.83 (0.00) 0.83 (0.00) 0.83 (0.00) 0.77 (0.02) 0.83 (0.00) 0.83 (0.00)
group-lasso 0.72 (0.01) 0.72 (0.01) 0.70 (0.02) 0.68 (0.02) 0.67 (0.02) 0.66 (0.02)

50 VCSEL-lasso 0.81 (0.01) 0.81 (0.01) 0.80 (0.01) 0.78 (0.01) 0.76 (0.01) 0.75 (0.02)
VCSEL-adlasso 0.82 (0.01) 0.82 (0.01) 0.81 (0.01) 0.80 (0.01) 0.80 (0.01) 0.79 (0.01)
group-lasso 0.66 (0.02) 0.62 (0.02) 0.60 (0.02) 0.56 (0.02) 0.52 (0.02) 0.49 (0.02)

70 VCSEL-lasso 0.81 (0.01) 0.76 (0.02) 0.74 (0.02) 0.70 (0.02) 0.66 (0.02) 0.62 (0.03)
VCSEL-adlasso 0.82 (0.00) 0.79 (0.01) 0.78 (0.01) 0.75 (0.02) 0.71 (0.02) 0.66 (0.02)
group-lasso 0.66 (0.02) 0.59 (0.02) 0.57 (0.02) 0.49 (0.03) 0.46 (0.03) 0.40 (0.03)

100 VCSEL-lasso 0.72 (0.02) 0.67 (0.03) 0.62 (0.03) 0.52 (0.03) 0.50 (0.03) 0.45 (0.03)
VCSEL-adlasso 0.78 (0.02) 0.74 (0.02) 0.70 (0.02) 0.62 (0.03) 0.60 (0.03) 0.53 (0.03)
group-lasso 0.53 (0.02) 0.47 (0.02) 0.42 (0.02) 0.36 (0.02) 0.32 (0.02) 0.27 (0.02)

Table A.6: The mean auPRCs across 50 replications under different number of groups
(m = 10, 20, 30, 50, 70, 100) and group size (q = 40, 50, 70, 100), given data generated
from fixed effects model (A.2) in genetics setting. In parentheses are standard deviation
/
√

no. replicates.
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Figure A.7: The auPRCs of VCSEL-lasso, VCSEL-adlasso, and group-lasso under different
number of groups (m = 10, 20, 30, 50, 70, 100) and group size (q = 40, 50, 70, 100), given data
generated from random effects model (A.1) in ANOVA setting.

q Method m = no. of groups
10 20 30 50 70 100

30 VCSEL-lasso 0.71 (0.01) 0.73 (0.02) 0.70 (0.02) 0.71 (0.01) 0.75 (0.02) 0.74 (0.01)
VCSEL-adlasso 0.71 (0.01) 0.72 (0.01) 0.64 (0.02) 0.69 (0.02) 0.75 (0.01) 0.72 (0.02)
group-lasso 0.69 (0.02) 0.71 (0.02) 0.65 (0.02) 0.62 (0.02) 0.70 (0.02) 0.68 (0.01)

50 VCSEL-lasso 0.76 (0.01) 0.78 (0.01) 0.73 (0.02) 0.74 (0.02) 0.70 (0.02) 0.67 (0.02)
VCSEL-adlasso 0.75 (0.01) 0.77 (0.01) 0.75 (0.02) 0.73 (0.02) 0.71 (0.02) 0.68 (0.02)
group-lasso 0.67 (0.02) 0.67 (0.02) 0.61 (0.02) 0.63 (0.02) 0.54 (0.02) 0.50 (0.03)

70 VCSEL-lasso 0.77 (0.01) 0.67 (0.02) 0.71 (0.02) 0.66 (0.02) 0.64 (0.02) 0.59 (0.03)
VCSEL-adlasso 0.77 (0.01) 0.69 (0.02) 0.73 (0.02) 0.65 (0.03) 0.67 (0.02) 0.57 (0.03)
group-lasso 0.67 (0.02) 0.51 (0.02) 0.51 (0.02) 0.50 (0.03) 0.47 (0.02) 0.44 (0.03)

100 VCSEL-lasso 0.72 (0.02) 0.70 (0.02) 0.63 (0.02) 0.55 (0.03) 0.44 (0.03) 0.39 (0.03)
VCSEL-adlasso 0.71 (0.02) 0.71 (0.02) 0.64 (0.02) 0.56 (0.03) 0.45 (0.03) 0.42 (0.04)
group-lasso 0.60 (0.02) 0.58 (0.03) 0.50 (0.02) 0.41 (0.03) 0.32 (0.03) 0.28 (0.02)

Table A.8: The mean auPRCs across 50 replications under different number of groups
(m = 10, 20, 30, 50, 70, 100) and group size (q = 40, 50, 70, 100), given data generated
from fixed effects model (A.2) in ANOVA setting. In parentheses are standard deviation
/
√

no. replicates.
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q Method m = no. of groups
10 20 30 50 70 100

30 VCSEL-lasso 0.77 (0.01) 0.72 (0.02) 0.74 (0.01) 0.76 (0.02) 0.75 (0.01) 0.73 (0.02)
VCSEL-adlasso 0.77 (0.01) 0.74 (0.02) 0.75 (0.02) 0.75 (0.02) 0.74 (0.02) 0.77 (0.01)
group-lasso 0.72 (0.02) 0.65 (0.02) 0.68 (0.02) 0.67 (0.02) 0.63 (0.02) 0.61 (0.02)

50 VCSEL-lasso 0.76 (0.01) 0.74 (0.02) 0.75 (0.02) 0.69 (0.02) 0.65 (0.03) 0.61 (0.03)
VCSEL-adlasso 0.77 (0.01) 0.73 (0.02) 0.76 (0.02) 0.74 (0.02) 0.66 (0.03) 0.67 (0.03)
group-lasso 0.67 (0.02) 0.63 (0.02) 0.62 (0.02) 0.59 (0.03) 0.49 (0.03) 0.44 (0.03)

70 VCSEL-lasso 0.78 (0.01) 0.72 (0.02) 0.62 (0.02) 0.6 (0.03) 0.62 (0.03) 0.52 (0.03)
VCSEL-adlasso 0.77 (0.01) 0.75 (0.02) 0.66 (0.03) 0.64 (0.03) 0.65 (0.03) 0.58 (0.04)
group-lasso 0.66 (0.02) 0.59 (0.02) 0.53 (0.03) 0.44 (0.02) 0.46 (0.02) 0.41 (0.03)

100 VCSEL-lasso 0.74 (0.02) 0.65 (0.02) 0.57 (0.03) 0.49 (0.03) 0.41 (0.03) 0.41 (0.03)
VCSEL-adlasso 0.75 (0.02) 0.66 (0.02) 0.57 (0.03) 0.50 (0.03) 0.43 (0.03) 0.44 (0.03)
group-lasso 0.61 (0.02) 0.51 (0.02) 0.42 (0.02) 0.36 (0.03) 0.32 (0.02) 0.31 (0.02)

Table A.7: The mean auPRCs across 50 replications under different number of groups
(m = 10, 20, 30, 50, 70, 100) and group size (q = 40, 50, 70, 100), given data generated from
random effects model (A.1) in ANOVA setting. In parentheses are standard deviation
/
√

no. replicates.

A.3 Canonical correlations of SNP-sets in simulation studies

In this section, we conduct a canonical correlation analysis to quantify the linkage equilibrium

(LD) in the high/low LD settings in Simulation Studies in Section 3.3 and A.1. Recall that

we construct a genotype matrix G for 500 observations from the haplotype matrix in the

SKAT R package and then partition G into submatrices or SNP-sets. For simplicity, we

look at the case where the constructed genotype matrix G is broken into 40 submatrices

Gi, i = 1, . . . , 40 by 5 kb region. In the low LD setting, we set causal SNP-sets to be

distanced (i = 1, 11, 20, 30, 40) while causal SNP-sets are neighboring in the high LD setting

(i = 1, 2, 3, 4, 5). To justify the claim that causal SNPs are in a high/low LD, we calculate

canonical correlations of causal SNP-sets Gj and Gk where j, k ∈ {1, 2, 3, 4, 5} in high LD

and j, k ∈ {1, 11, 20, 30, 40} in low LD, respectively. We choose canonical correlation since

it measures the associations among two sets of multidimensional variables. For both high

LD and low LD cases, we repeat the calculations over 10 replicates of varying G matrix and

obtain the mean canonical correlation values, which are illustrated through heat maps in

Figure A.9 and A.10. By visual comparison, we observe that heat maps of causal SNP-sets

in low LD setting are in general lighter than those in high LD setting, which suggests higher
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Figure A.8: The auPRCs of VCSEL-lasso, VCSEL-adlasso, and group-lasso under different
number of groups (m = 10, 20, 30, 50, 70, 100) and group size (q = 40, 50, 70, 100), given data
generated from fixed effects model (A.2) in ANOVA setting.

correlation in causal SNP-sets in high LD setting.
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Figure A.9: Heat maps of the mean canonical correlations between SNP-sets Gi and Gj

where i, j ∈ {1, 2, 3, 4, 5} across 10 replicates. From top left in counterclockwise order, each
heat map corresponds to canonical correlation for the first to the eighth canonical variate
pair. Darker color represents higher canonical correlation.

73



Figure A.10: Heat maps of the mean canonical correlations between SNP-sets Gi and Gj

where i, j ∈ {1, 11, 20, 30, 40} across 10 replicates. From top left in counterclockwise order,
each heat map corresponds to canonical correlation for the first to the eighth canonical
variate pair. Darker color represents higher canonical correlation.
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Appendix B

B.1 UKB phenotype definition

Myocardial infarction (MI). Cases of MI were identified by the International Classifica-

tion of Disease, Ninth and Tenth Revision (ICD-10) code family I21 (Acute MI). The primary

source for this code was UKB’s field 131298 (Date I21 first reported). This field gathers in-

formation from hospital admissions, death records, primary care, and self-reported outcomes

from surveys taken at UK Biobank assessment centers at initiation into the study and maps

them to three-digit ICD-10 categories. To obtain the most up-to-date information, we also

gathered this ICD-10 code family directly from hospital admission and death records. We

also included cases of MI identified through UKB’s algorithmically defined outcome (field

42000). Controls were required to have no evidence of certain cardiovascular diseases. Un-

stable angina. Cases of unstable angina were identified by the ICD-10 code I20.0, extracted

from hospital admissions and death records.

Ischemic stroke (Stroke infarct). Cases of ischemic stroke were identified in a manner

similar to MI, using a combination of UKB’s first occurrence field 131366 (Date I63 first

reported (cerebral infarction), the algorithmically defined outcome for ischemic stroke (field

42008), and the ICD-10 code I63 in hospital admission or death records. Controls were

required to have no evidence of cerebrovascular disease (ICD10 codes I6*, G45*, G46*).

Stroke (Stroke any). Stroke was taken to be the first occurrence of either ischemic or

hemorrhagic stroke, or of unspecified stroke via UKB fields 42006 (algorithmically defined

stroke), 131368 (unspecified stroke), or ICD10 code I64. Controls were required to have no

evidence of cerebrovascular disease (ICD10 codes I6*, G45*, G46*).
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Percutaneous coronary intervention (PCI). Cases of PCI were identified through

OPCS4 codes K40, K41, K42, K43, K44, K45, K46, K483, K49, K501, K75, K76, and UKB

self-report codes 1070 (coronary angioplasty) and 1095 (coronary bypass grafts). Controls

were not to have self-reported any non-coronary revascularization procedures.

Composite CVD (CVD). A composite CVD event consisted of either MI, ischemic stroke,

unstable angina, or PCI. The first date of CVD was taken as the first date of any of these

events. Controls were required to satisfy all of the conditions for each component outcome.

Macroalbuminuria/Microalbuminuria. Urine Albumin:Creatinine ratio (UACR) was

calculated using UKB fields 30700 (urine creatinine), 30500 (urine microalbumin), and 30505

(reason for missing urine microalbumin). UACR above 33.9 was considered macroalbumin-

uria, while above 3.4 was considered microalbuminuria. In cases where urine microalbumin

was below detectable levels, albuminuria status was inferred from urine creatinine where

possible.

Chronic/Diabetic kidney disease (DKD). DKD was identified through UKB’s algo-

rithmically defined end-stage renal disease (field 42026, previously described), ICD10 codes

E1*.2 (diabetes mellitus with renal complications), E18[0345] (chronic kidney disease stage

3-5, end-stage), N08.3 (glomerular disorders in diabetes mellitus) in hospital or death records,

self-reported diabetic kidney disease, two or more consecutive eGFR (EPI creatinine) < 60

mL/min/1.73m2 measured 90+ days apart from either UK Biobank Assessment Center or

primary care data. The date of the first DKD was taken as the first occurrence of any of

the previous codes/events. Controls were required not to have micro/macroalbuminuria or

a list of exclusion codes. Controls were required to have at least five years of follow-up since

their diabetes diagnosis, and cases were required to have more than five years between their

date of diabetes diagnosis and first DKD.

Diabetic eye disease (DR). DR was determined using the ICD10 codes E1*.3 (diabetes

mellitus with ophthalmic complications), H36.0 (diabetic retinopathy), and H28.0 (Diabetic

Cataract), as well as a set of primary care codes. Since most cases were identified through
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primary care data, controls were required to have this data available in order to reduce

misclassification. Controls were also required not to have any glaucoma, cataract, or non-

diabetic/unspecified retinopathy.

B.2 Methods

B.2.1 Genotyping in ACCORD and UKB

After downloading data from dbGap, we used genetic variants genotyped on Affymetrix

Axiom Biobank 1 chips from the University of North Carolina (UNC) and merged data

under two different institutional review board (IRB) protocols—HMB-IRB (73941) and DS-

CDKD-IRB (73944). There were 6,291 (2,335 females and 3,956 males) with 546,800 SNPs

in the merged dataset. Based on self-reported ethnicity, there were 4,369 non-Hispanic

whites (NHW), 935 African-Americans (AA), 381 Hispanics, and 606 others. We checked

the validity of self-reported ethnicity by running the ADMIXTURE software (Alexander

and Lange, 2011) with K=4, categorizing each individual into a group with the highest

probability, and comparing the categories against self-reported ethnicity (see Figure B.1). We

can infer that the ADMIXTURE ancestry groups 1, 2, 3, and 4 represent NHW, AA, Other,

and Hispanic, respectively. Considering that Hispanics are a highly genetically heterogeneous

admixed group, the distribution in ADMIXTURE ancestry group 4 (Figure B.1) appears

reasonable.

Genome-wide genotyping was performed on all UK Biobank participants using the UK

Biobank Axiom Array.

B.2.2 Heritability estimation using genotype data

ACCORD. We calculated a Genetic Relationship Matrix (GRM) using SNPs from all auto-

somes. The GRM uses SNP data to measure the relatedness between each pair of individuals
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Figure B.1: Bar graph indicating the percentage of self-reported ethnicity groups categorized
into each ADMIXTURE bin. Each individual is binned based on the largest proportion from
ADMIXTURE.

Figure B.2: Estimated kinship coefficients from software packages GCTA, KING, and REAP.
Estimates from GCTA have been divided by 2 for comparability with those from other
packages.
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in our sample. This GRM replaces the known information about relatedness found in pedi-

grees. While the ACCORD trial did not deliberately recruit related individuals, we took

a step to avoid inflation caused by cryptic (i.e., unknown) relatedness. We selectively ex-

clude one of any pair of individuals with an estimated kinship greater than the separation

between full and half-siblings (estimated kinship (1/2)5/2= 0.1768) in a way to maximize

the remaining sample size (Manichaikul et al., 2010; Marvel et al., 2017). Initially, we used

the software package Genome-wide Complex Trait Analysis (GCTA) (Yang et al., 2011a)

to construct the GRM. However, the degree of relatedness calculated by GCTA appears in-

flated (see Figure B.2). The inflation may be mainly due to population heterogeneity in the

data. Next, we try Kinship-based INference for Genome-wide association studies (KING;

Manichaikul et al., 2010). As seen in Figure B.2, estimated kinship-coefficient values from

KING are systematically negative, which ultimately leads the GRM to be not positive semi-

definite. Finally, we use Relatedness Estimation in Admixed Populations (REAP; Thornton

et al., 2012), which produces more robust results. The REAP approach requires individual

ancestry proportions and allele frequencies for each ancestral population. Both proportions

were obtained using the ADMIXTURE software (Alexander et al., 2009), with the number

of ancestral populations specified as four (K=4). The number four was chosen because there

were four different self-reported ethnic groups (NHW, AA, Hispanic and other).

We only extract NHW samples after pruning related individuals, which leaves us with

4,329 samples. With the GRM constructed from REAP, heritability is estimated via GCTA

(Yang et al., 2011a) that uses a liability model (Falconer, 1965; Lee et al., 2011). We adjust for

sex, CVD history at baseline, age at baseline, and the top five genetic principal components.

An additional analysis that incorporates interaction with glycemic intensive treatment arm

(intensive=1, standard=0) is shown in Figure B.6. We also estimate the genetic correlation

between binary traits via the GCTA software (Yang et al., 2011a; Lee et al., 2011). The

following covariates are adjusted for: sex, CVD history at baseline, age at baseline, and the

top five genetic principal components.
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Figure B.3: Distribution of F (inbreeding) coefficients against clinical gender.

UKB. We extract the NHW diabetes cohort (n=26,387) and compute the GRM via

the REAP approach, for which necessary proportions are obtained from the ADMIXTURE

software with K=3. No individuals are pruned out under the relatedness threshold (0.1768).

We estimate heritability using the GREML-SC approach while adjusting for sex, age in 2010,

and the top ten genetic principal components. Also calculated using the UKB genotype data

are genetic correlations between phenotypes (see Table B.1).

B.2.3 Imputation

ACCORD. Prior to imputation, we perform quality control steps on the data. First, we

check if there are mismatches between genetic gender and clinical gender. We run plinkv1.9

--check-sex option along with --split-x and make an F-statistic against sex-label plot

(see Figure B.3). As expected, we see a big tight clump near 1 for males while a more widely

dispersed set of values centered near 0 (Chang, 2020). Even though some individuals do not

pass the default threshold set in plink, we decide not to remove any individuals since the

data exhibit an expected pattern.

Next, following the procedure in Marvel et al. (2017), we compute HWE values for each

of the self-reported ethnicity groups: NHW, AA, Hispanic, and other. Any SNPs deviating
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from p value 1 × 10−5 in at least two of the four groups are excluded. This step reduces

the number of variants to 542,847. Additionally, we check alleles to allow only A, C, G, T

and exclude SNPs with a missing rate > 3% and monomorphic sites (MAF < 0.0000001).

We also exclude individuals with a genotype missing rate > 0.03. After the aforementioned

step, we retain 6,279 individuals and 465,011 variants.

Data imputation is done using a two-step approach where the genotype calls are pre-

phased using Eagle v2.4.1 (Loh et al., 2016), and then imputation is done using Minimac4

(Das et al., 2016) with default options. Both steps use the 1000 Genomes Project Phase 3

(1000 Genomes Project Consortium, 2015) as a reference panel. After discarding imputed

variants with R2 < 0.3 and MAF < 0.0003, we have a total of 25,667,109 imputed variants

for the downstream analyses. Additionally, we extract the NHW samples filtered from the

REAP approach earlier (n=4,329). With 11 out of 4,329 individuals have been removed

during the pre-imputation QC steps, we proceed with the downstream analyses with 4,318

NHW individuals.

UKB. We use the imputed datasets released by UK Biobank. On the imputed datasets, we

extract autosomal variants with imputation info score > 0.3 and remove multiallelic variants.

Also excluded are variants with missing genotype rate > 0.05, Hardy-Weinberg equilibrium

test p < 1×10−6, and MAF < 0.0001. After the filtering steps, we have a total of 33,932,888

variants.

B.2.4 GREML-LDMS

On the imputed datasets, we employ the GREML-LDMS method. For the GREML-LDMS-I

approach, we follow the design laid out in Evans et al. (2018). First, we calculate segment-

based LD scores using the default settings—200-kb block size with a 100-kb overlap—using

the GCTA software and stratify SNPs into high LD and low LD score groups using the

median as a threshold. In each LD group, SNPs are further partitioned into four MAF bins:

common (MAF ≥ 0.05), uncommon (0.01 ≤ MAF < 0.05), rare (0.0025 ≤ MAF < 0.01),
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and very rare (0.0003 ≤ MAF < 0.0025). Then GRMs are computed using SNPs stratified

into eight groups, hence creating eight GRMs. Finally, we run GREML analyses on each

binary phenotype with fixed covariates.

ACCORD. After filtering steps, the ACCORD imputed dataset contains 4,318 NHW in-

dividuals and 15,349,988 variants. Covariates adjusted are sex, age at baseline, history of

CVD at baseline, and the top five genetic principal components.

UKB. On the UKB imputed datasets, we adjust for sex, age in 2010, and the top ten genetic

principal components.

B.2.5 GWAS

ACCORD. GWAS for complications are performed in 4,318 NHW participants. After

filtration for variants with MAF 0.01, as done in Bulik-Sullivan et al. (2015), 8,480,081

SNPs form the GWAS panel. The association between each variant and each complication

is tested by logistic regression in PLINK2.0 (Chang, 2020), assuming an additive genetic

model and adjusting for sex, CVD history at baseline, age at baseline, and the top five

genetic principal components. Manhattan and quantile-quantile (QQ) plots are provided in

Figure B.4.

UKB. GWAS for complications is performed in 26,387 NHW samples. After MAF filtration

(MAF 0.01), 8,949,996 variants form the GWAS panel. We adjust for sex, age in 2010,

and the top ten genetic principal components. Manhattan and QQ plots are provided in

Figure B.5.
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Figure B.4: Manhattan and QQ plots of GWAS p-values for the ACCORD phenotypes. Red
line signifies genome-wide significance level (p = 5× 10−8) while the blue line is a suggestive
line (p = 1× 10−5).
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Figure B.5: Manhattan and QQ plots of GWAS p-values for the UKB phenotypes. Red line
signifies genome-wide significance level (p = 5× 10−8) while the blue line is a suggestive line
(p = 1× 10−5).

B.2.6 Stratified LD score regression (S-LDSC)

Here we partition SNP heritability, applying S-LDSC to GWAS summary statistics for the

trait of interest. In none cell type-specific analyses, we use the ‘full baseline model’ generated

by Finucane et al. (2015). The full baseline model is comprised of 53 overlapping functional

categories (including coding, promoter, enhancer, and conserved regions) and is not specific

to any cell type. In tissue-type specific analyses, we use the 53 specifically expressed gene

annotations curated from the Genotype-Tissue Expression (GTEx) project (GTEx Consor-
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tium, 2015) by Finucane et al. (2018). For all S-LDSC analyses, we use 1000 Genomes

Project Phase 3 (1000 Genomes Project Consortium, 2015) European population SNPs as

an LD reference panel. All annotations and reference panel data were obtained from Alkes

Price’s group data repository (see URLs in Appendix B.4).

B.3 Additional tables and figures

DKD Microalbuminuria DR
CVD 0.25 (0.28) -0.11 (0.24) 0.26 (0.25)
DKD 0.36 (0.27) 0.35 (0.35)

Microalbuminuria 0.07 (0.25)

Table B.1: Genetic correlation estimates and the standard errors between selected pheno-
types using the UKB genotype data. Adjusted for sex, age in 2010, and the top ten genetic
principal components.

Figure B.6: Heritability estimates and standard errors of diabetes complication outcomes
using the ACCORD genotype data and incorporating interaction with intensive glycemic
treatment. The grey bar represents the genetic plus interaction components, while the white
bar signifies the interaction component.

85



Figure B.7: Enrichment of the ACCORD macrovascular complication phenotypes in tissue-
specific gene expression annotations used in Finucane et al. (2018). The black dashed lines
indicate the Bonferroni significance threshold (p < 0.05/53).
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Figure B.8: Enrichment of the ACCORD microvascular complication phenotypes in tissue-
specific gene expression annotations used in Finucane et al. (2018). The black dashed lines
indicate the Bonferroni significance threshold (p < 0.05/53).
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Figure B.9: Enrichment of the UKB macrovascular complication phenotypes in tissue-specific
gene expression annotations used in Finucane et al. (2018). The black dashed lines indicate
the Bonferroni significance threshold (p < 0.05/53).
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Figure B.10: Enrichment of the UKB microvascular complication phenotypes in tissue-
specific gene expression annotations used in Finucane et al. (17). The black dashed lines
indicate the Bonferroni significance threshold (p < 0.05/53).
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B.4 URLs

Baseline LDSC annotations, https://data.broadinstitute.org/alkesgroup/LDSCORE/.

Finucane GTEx annotations, https://data.broadinstitute.org/alkesgroup/LDSCORE/

LDSC_SEG_ldscores/. LDSC, https://github.com/bulik/ldsc/wiki.
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Dobson, R. J., Marçano, A. C. B., Hajat, C., et al. (2008). Genome-wide association study

identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia.

The American Journal of Human genetics, 82(1):139–149.

Wojcik, G. L., Graff, M., Nishimura, K. K., Tao, R., Haessler, J., Gignoux, C. R., Highland,

H. M., Patel, Y. M., Sorokin, E. P., Avery, C. L., et al. (2019). Genetic analyses of diverse

populations improves discovery for complex traits. Nature, 570(7762):514–518.

Wu, B. and Pankow, J. S. (2016). Sequence kernel association test of multiple continuous

phenotypes. Genetic Epidemiology, 40(2):91–100.

Wu, M. C., Kraft, P., Epstein, M. P., Taylor, D. M., Chanock, S. J., Hunter, D. J., and Lin,

X. (2010). Powerful snp-set analysis for case-control genome-wide association studies. The

American Journal of Human Genetics, 86(6):929–942.

Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M., and Lin, X. (2011). Rare-variant association

testing for sequencing data with the sequence kernel association test. The American

Journal of Human Genetics, 89(1):82–93.

Xu, J., Wei, W. B., Yuan, M. X., Yuan, S. Y., Wan, G., Zheng, Y. Y., Li, Y. B., Wang, S.,

Xu, L., Fu, H. J., et al. (2012). Prevalence and risk factors for diabetic retinopathy: the

beijing communities diabetes study 6. Retina, 32(2):322–329.

107



Yang, J., Bakshi, A., Zhu, Z., Hemani, G., Vinkhuyzen, A. A., Lee, S. H., Robinson, M. R.,

Perry, J. R., Nolte, I. M., van Vliet-Ostaptchouk, J. V., et al. (2015). Genetic variance

estimation with imputed variants finds negligible missing heritability for human height

and body mass index. Nature Genetics, 47(10):1114.

Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., Madden,

P. A., Heath, A. C., Martin, N. G., Montgomery, G. W., et al. (2010). Common SNPs

explain a large proportion of the heritability for human height. Nature Genetics, 42(7):565–

569.

Yang, J., Lee, S. H., Goddard, M. E., and Visscher, P. M. (2011a). GCTA: a tool for genome-

wide complex trait analysis. The American Journal of Human Genetics, 88(1):76–82.

Yang, J., Manolio, T. A., Pasquale, L. R., Boerwinkle, E., Caporaso, N., Cunningham,

J. M., De Andrade, M., Feenstra, B., Feingold, E., Hayes, M. G., et al. (2011b). Genome

partitioning of genetic variation for complex traits using common SNPs. Nature Genetics,

43(6):519.

Yang, T., Chen, H., Tang, H., Li, D., and Wei, P. (2019). A powerful and data-adaptive

test for rare-variant–based gene-environment interaction analysis. Statistics in Medicine,

38(7):1230–1244.

Yang, Y. and Zou, H. (2014). gglasso: Group Lasso Penalized Learning Using A Unified

BMD Algorithm. R package version 1.3.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped

variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

68(1):49–67.

Zdravkovic, S., Wienke, A., Pedersen, N., Marenberg, M., Yashin, A., and De Faire, U.

(2002). Heritability of death from coronary heart disease: a 36-year follow-up of 20 966

swedish twins. Journal of Internal Medicine, 252(3):247–254.

108



Zdravkovic, S., Wienke, A., Pedersen, N. L., and de Faire, U. (2007). Genetic influences on

angina pectoris and its impact on coronary heart disease. European Journal of Human

Genetics, 15(8):872–877.

Zhai, J., Kim, J., Knox, K. S., Twigg III, H. L., Zhou, H., and Zhou, J. J. (2018). Vari-

ance component selection with applications to microbiome taxonomic data. Frontiers in

Microbiology, 9:509.

Zhan, X., Zhao, N., Plantinga, A., Thornton, T. A., Conneely, K. N., Epstein, M. P., and

Wu, M. C. (2017). Powerful genetic association analysis for common or rare variants with

high-dimensional structured traits. Genetics, 206(4):1779–1790.

Zhang, C.-H. et al. (2010). Nearly unbiased variable selection under minimax concave

penalty. The Annals of Statistics, 38(2):894–942.

Zhang, H., Zhao, N., Mehrotra, D. V., and Shen, J. (2020). Composite Kernel Associa-

tion Test (CKAT) for SNP-set Joint Assessment of Genotype and Genotype-by-treatment

Interaction in Pharmacogenetics Studies. Bioinformatics. btaa125.

Zhao, N., Zhang, H., Clark, J. J., Maity, A., and Wu, M. C. (2019). Composite kernel

machine regression based on likelihood ratio test for joint testing of genetic and gene–

environment interaction effect. Biometrics, 75(2):625–637.

Zhou, H., Hu, L., Zhou, J., and Lange, K. (2019). MM algorithms for variance components

models. Journal of Computational and Graphical Statistics, 28(2):350–361.

Zhou, H., Sehl, M. E., Sinsheimer, J. S., and Lange, K. (2010). Association screening of

common and rare genetic variants by penalized regression. Bioinformatics, 26(19):2375.

Zhou, X. (2017). A unified framework for variance component estimation with summary

statistics in genome-wide association studies. The Annals of Applied Statistics, 11(4):2027.

109



Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American

Statistical Association, 101(476):1418–1429.

Zoungas, S., Arima, H., Gerstein, H. C., Holman, R. R., Woodward, M., Reaven, P., Hay-

ward, R. A., Craven, T., Coleman, R. L., Chalmers, J., et al. (2017). Effects of intensive

glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-

analysis of individual participant data from randomised controlled trials. The Lancet

Diabetes & Endocrinology, 5(6):431–437.

Zuk, O., Schaffner, S. F., Samocha, K., Do, R., Hechter, E., Kathiresan, S., Daly, M. J.,

Neale, B. M., Sunyaev, S. R., and Lander, E. S. (2014). Searching for missing heritabil-

ity: designing rare variant association studies. Proceedings of the National Academy of

Sciences, 111(4):E455–E464.

110


	Introduction
	Variance component selection  for multivariate response model
	Introduction
	Multivariate response variance component model
	Estimation algorithm
	Simulation studies
	Simulation studies for multiple traits

	Real data analysis
	Discussion

	Variance component selection  for models with interaction terms
	Introduction
	Estimation algorithm
	All-in/all-out (VCSEL-I)
	Hierarchical interactions (VCSEL-Ih)

	Simulation studies
	Real data analysis
	Discussion

	Systematic heritability and heritability enrichment analysis for diabetes complications in ACCORD and UK Biobank studies 
	Introduction
	Research design
	Study design and participants 
	Outcome definitions
	Genotyping and imputation in ACCORD and UKB

	Statistical analysis
	Overview of methods

	Results
	Heritability
	GWAS
	Heritability enrichment by functional annotations

	Discussion

	Conclusion
	Appendix 
	Simulation studies for univariate trait
	Simulation studies for univariate response model - extra results
	Canonical correlations of SNP-sets in simulation studies

	Appendix 
	UKB phenotype definition
	Methods
	Genotyping in ACCORD and UKB
	Heritability estimation using genotype data
	Imputation
	GREML-LDMS
	GWAS
	Stratified LD score regression (S-LDSC)

	Additional tables and figures
	URLs




