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Abstract 

The experiment reported here investigated the neural correlates 
of predictive processing of angry and neutral speech. Twenty-
six participants listened to recordings of angry and neutral 
conversation segments, as well as to speech-shaped noise, 
while their EEG was recorded. Oscillatory power in the gamma 
band (30–80 Hz) and the N400 component of event-related 
potentials (ERP) to sentence-final words were analyzed. In 
comparison to neutral words, negative emotional valence 
significantly reduced the amplitude of the N400 elicited by 
sentence-final words. Furthermore, there was larger gamma 
power during exposure to angry speech in comparison to 
neutral speech. The results generally suggest increased 
prediction and facilitated semantic integration in negative as 
compared to neutral speech. To date, the predictability effects 
on gamma power have been reported with relation to the 
semantic-lexical content of words. The present findings 
demonstrate that gamma power is also modulated by the 
emotional content of speech. 

Keywords: emotional speech; neural oscillations; gamma 
power; N400; predictive processing 

Introduction 

Emotional speech plays an important role in everyday social 

interactions. The rapid decoding and successful 

comprehension of emotional speech is necessary for 

detection of threats or life-sustaining opportunities, as well as 

maintaining interpersonal relationships and achieving social 

goals. Therefore, from an evolutionary perspective, it is 

highly relevant that processing resources are oriented 

towards an emotionally salient speech signal, and that 

mechanisms facilitating speech comprehension are 

employed. 

In spoken interactions, emotional significance can be 

expressed via two channels: the verbal channel that conveys 

explicit information about the semantic content, and the vocal 

channel that carries the acoustic information about the 

rhythm, pitch, intensity, and voice quality. While these two 

channels are typically integrated in natural interactions, 

studies show that each single channel on its own does elicit 

an emotional percept in the listener (Ben-David et al., 2016; 

Pell et al, 2009; Pell & Kotz, 2011; Van Bezooijen et al, 

1983). 

Findings from previous neuroimaging studies which used 

either written or spoken stimuli have revealed enhanced 

perceptual processing (Johnstone et al., 2006; Sander et al., 

2005) and motivational evaluation (Fields & Kuperberg, 

2016) of emotional words, as well as automatic attentional 

capture by emotional relative to neutral words (Wang & 

Bastiaansen, 2014). For example, color naming is slowed in 

an emotional Stroop task when the presented word has an 

emotional meaning (Williams et al., 1996), indicating that the 

emotional connotation leads to attentional disengagement 

from the task. Using an Affective Lexical Decision Task, 

Carretié et al. (2008) demonstrated that highly arousing 

negative taboo words lead to poorest performance, indicating 

an interference with the task due to attentional capture. While 

causing poorer performance on associated tasks, it is very 
likely that the arousal and/or the attentional capture 

associated with emotional speech facilitates the processing of 

the (emotional) speech itself.   

The literature indeed shows that the emotional salience of 

words extends the semantic context of a sentence and has the 

ability to serve as an additional contextual resource which 

might serve to support the integration of incoming words into 

sentence context. 

Previous studies investigating the effect of high-arousing 

context on the processing of neutral target words suggest that 

arousing words affect the attentional allocation for 

subsequent lexical processing (Hinojosa et al., 2012; Ding et 

al., 2015) and that emotional context influences the 

prediction of upcoming words (Ding et al, 2020). 

At the level of neural language processing, semantic 

prediction, semantic integration, and contextual analysis of a 

word is relatively robustly indexed by the N400 component 

of event-related potentials (Berkum et al., 1999; Kutas & 

Hillyard, 1980). Using electroencephalography, the N400 is 

recorded as a negative-peaking component occurring 

approximately 400 ms after stimulus onset. Leaving the 

emotional dimension aside, the less predictable a word is 

given the lexical (or visual) context, the stronger N400 

response it elicits. With respect to emotional stimuli, Zhang 

et al. (2021) demonstrated the effect of congruent emotional 

context on sentence comprehension. They used visually 

presented two-sentence discourses where negative emotion 

was conveyed either by both sentences or by neither sentence; 

followed by a target word, emotionally congruent with the 

preceding sentential context. In the former scenario, i.e. in 

congruent negative discourse, the target word elicited a 
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smaller amplitude of the N400 than did a neutral target word 

in neutral discourse (i.e. the latter scenario). This suggests 

that emotional context might facilitate the semantic 

integration of an emotionally congruent word in a sentence, 

and that it might be easier to predict an emotional word in an 

emotionally congruent sentence context than a neutral word 

in a neutral sentence context.  

A bit more recently, the neural processing of (not only 

semantic) information has been studied through analyzing the 

neural oscillatory activity during speech processing. Neural 

oscillations reflect the synchronized spiking of neuronal 

populations in cortical and subcortical areas of the brain. 

They are crucial for communication across different brain 

networks and support information transfer in different brain 

regions through the coordinated alternation of excitatory and 

inhibitory phases of firing neurons (Buzsaki & Draguhn, 

2004).  

With regard to speech processing, the oscillatory activity 

in the low, delta and theta bands (0.5–4 Hz, and 4–8 Hz, 

respectively) is predominantly responsible for speech 

segmentation along the word and syllable rates (Tune & 

Obleser, 2022). Higher, gamma band oscillations (at 

frequencies above 30 Hz) are related to sentence-level 

semantic processing and as such they reflect the predictability 

of the incoming words based on the preceding sentence 

context (Bastiaansen & Hagoort, 2015, Mai et al., 2016; but 

note that gamma band activity, and particularly gamma phase 

coupling to the amplitude of lower-rate oscillations seems to 

be linked also to phonetic/phonological, segmental or 

subsegmental level of processing, Attaheri et al. 2022). Hald 

et al. (2006) observed an increase in the gamma band power 

during the processing of semantically correct sentences, 

which might suggest that gamma oscillations support 

semantic unification operations, and that larger gamma 

power could index more integrated semantic processing. That 

is, more predictable context seems to be reflected in greater 

gamma power. According to Wang et al. (2012) gamma 

power increase could be related to the agreement between the 

pre-activation of the neural representations of the predicted 

word and the actually incoming word.  

However, it is important to note that oscillatory activity in 

the delta, theta, and gamma band has also been related to 

other cognitive, domain-general, processes. For instance, 

theta, delta, and gamma activity are considered to be involved 

in lexical memory retrieval (Osipova et al., 2006), attention 

(Pulvermüller et al., 1997), and concentration (Harmony, 

2013). 

While the N400 has been researched both in the context of 

semantic language processing and emotional speech, the 

gamma oscillatory activity has been studied only with respect 

to the processing of linguistic information as such. The 

processing of emotional speech is underresearched in the 

brain-rhythm literature in general; only a few studies have 

investigated the oscillatory dynamics associated with the 

processing of individual emotional words (Chen et al., 2013; 

Ku et al., 2022; Wang & Bastiaansen, 2014). 

Here we aim to investigate whether both the N400 and the 

gamma activity index the integration or predictability of 

emotional content in conversational speech. Based on prior 

studies on the N400, we predict that in emotionally congruent 

sentential context, emotional (negative) words will elicit a 

smaller N400 than non-emotional (neutral) words. This is 

because a negative word is more predictable in negative 

context than a neutral word is in neutral context. In line with 

the literature on neural speech tracking, which suggests that 

gamma oscillations are stronger for semantically predictable 

contexts than for nonpredictable contexts, we predict in 

emotionally congruent sentential context, gamma power will 

be greater while listening to the emotional (negative) speech 

than while listening to non-emotional (neutral) speech. 

 As the emotional condition, we chose anger. This is 

because across emotion recognition studies, anger is the least 

misclassified emotion based on a speaker’s voice (Fenster et 

al., 1977; Scherer et al., 2001), and several studies have 

shown that the emotional modulations are more pronounced 

in negative compared to positive stimuli (Fields & 

Kuperberg, 2012; Huang & Luo, 2006; Ito et al., 1998; Scott 

et al., 2009). 

Method 

Participants 

Twenty-six native speakers of Czech participated in the 

experiment (18 females, 8 males, mean age = 22.12 years, 

age range = 19–27 years). All subjects were right-handed and 

reported normal hearing. None of the subjects suffered from 

any psychiatric disease nor had any neurological impairment. 

The experiment was approved by the ethics committee of the 

Institute of Psychology, Czech Academy of Sciences. 

Stimuli 

Speech material For the speech material we created a list of 

100 conversation segments (50 in the angry and 50 in the 

neutral condition). Each segment consisted of two sentences 

that were formulated in a way that the speaker is talking to 

another person. The last word of the second sentence was 

either a negative or a neutral word, according to the 

condition, emotionally congruent with the preceding context. 

An example of a neutral segment was Nemusíš nic nastavovat 

manuálně. Tohle čidlo to všechno kontroluje. “You don't 

have to set anything manually. This sensor controls 

everything,” and an example of an angry segment was 

Přestaň na mě takhle blbě čumět. Ten tvůj přiblblej ksicht mě 

irituje. “Stop staring at me like that. This dumb face of yours 

is annoying me.” The sentences, as well as the segment-final 

words (in bold font in the examples above), in the angry and 

neutral conditions were cross-matched for syllable count. The 

conversation segments were recorded by a female speaker 

with acting experience. The average intensity of each of the 

100 individual conversation segments was equalized across 

segments using Praat (Boersma & Weenink, 1992–2024). 
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Pilot rating tasks The materials were rated on several scales 

in two pilot experiments, administered online (using 

Psychtoolkit, Stoet, 2010, 2017) with native speakers of 

Czech (different individuals than in the subsequent EEG 

experiment). The first pilot was a judgement task with written 

representation of the conversation segments in which 

participants rated valence, arousal, plausibility, and 

categorized the conversation segments selecting from the six 

basic emotion categories, namely, anger, disgust, fear, 

sadness, happiness, surprisal. After the first pilot, 12 out of 

original 112 segments were excluded from the materials (as 

outliers in valence or plausibility). The second pilot was a 

judgment task with the actual audio recordings in which a 

different group of pilot participants judged the segments on 

valence (on a three-point scale -1, 0, +1) and naturalness (on 

a 7-point scale between 1 and 7). The 50 neutral and the 50 

negative conversation segments were perfectly separated on 

valence, and were comparable in naturalness, as shown in 

Figure 1. 

 
Figure 1: Valence and naturalness ratings per conversation 

segment and condition. Dots represent mean ratings pooled 

across 32 participants. 

 

Speech-shaped noise The recorded conversation segments 

were resynthesized into speech-shaped noise using Praat and 

its native functions (Boersma & Weenink, 1992–2024, using 

the materials provided by ListenLab, 2023). First, we 

calculated a long-term average spectrum for the two 

corresponding speech segments from the neutral and the 

angry condition (i.e. the two sentences from the neutral 

segment and the two sentence from the corresponding angry 

segment) and filtered a white noise signal with that spectral 

object. Then we converted each speech segment (this time, 

for the neutral and the angry condition separately) to an 

intensity and subsequently to an amplitude tier. And finally, 

we multiplied the filtered noise (common for the neutral and 

the respective angry segment) with the amplitude tier 

(specific to the neutral or to the angry segment). With this 

procedure, for each speech segment in each condition we 

obtained a speech-shaped noise that had the same envelope 

as the corresponding angry or neutral speech stimulus but 

spectral content that was identical between the angry and the 

neutral speech stimulus.  

A block of speech-shaped noise segments always preceded 

the speech block. The speech-shaped noise stimuli served as 

a baseline condition allowing to compare the semantically 

rich speech condition to rhythmically similar but non-speech 

like stimuli. (The noise condition, crucially, allows to assess 

neural tracking of emotional prosody in particular, which will 

be analyzed and presented elsewhere). 

Procedure 

The order of the conversation segments was randomized, 

with each conversation segment being repeated twice (not 

immediately after itself) within the presentation block. This 

resulted in a total of 100 trials per block. The trials were 

presented with an inter-trial interval randomly jittering 

between 390 and 410 ms. 

Before the experiment, participants signed an informed 

consent form and filled out the Positive and Negative Affect 

Schedule (PANAS; Watson et al., 1988) questionnaire 

measuring their current affective state (the data from which 

is not part of the present analysis). Participants were tested in 

a quiet room, seated in a comfortable chair approximately 1 

m away from a frontally located computer screen. Two 

loudspeakers were placed in 30° angles next to the monitor, 

and stimuli were presented at 65 dB SPL measured at the 

location of the participant’s head.  

Participants were presented with the four blocks of stimuli, 

with short intervening breaks between blocks for relaxation 

and refreshment. A noise block was always presented first 

and was followed by the speech block from the same 
condition, all participants heard blocks from both the neutral 

and the angry condition, and the order of the two conditions 

was counterbalanced (through random assignment) across the 

participants. For the speech-shaped noise blocks participants 

were asked to passively listen to the recordings. For the 

speech blocks, participants were instructed to listen 

attentively as in some of the trials they were to answer a 

question about what the speaker said; these comprehension 

checks occurred in ~1/10 of trials and were included to ensure 

the participants were paying attention to the semantic content 

of the recordings.  

EEG Recording & Preprocessing 

EEG was recorded from 19 scalp electrodes placed according 

to the international 10/20 system, with an additional FCz 

electrode serving as an online reference. Two external 

sensors were placed at left and right mastoid, one at the outer 

canthi of the right eye, one below the right eye, and one on 

the nose. The signal was recorded at a 200-Hz sampling 

frequency, impedances were kept below 10 kΩ. 

The EEG data were preprocessed using the EEGLAB 

toolbox (Delorme & Makeig, 2004) in Matlab (The 

Mathworks Inc., 2022). The signal was bandpass filtered at 

0.1 and 80 Hz and re-referenced to the nose. The epoching 

and artifact rejection steps for the ERP and power analysis 

are described below. 

 

ERP data analysis For the ERP analysis, the filtered data 

were epoched from -0.1 s to 1 s relative to target word onset 

(i.e., the final word in each conversation segment). The 

epochs were baseline-corrected to the 100-ms pre-stimulus 
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interval. Epochs in which the absolute amplitude exceeded 

100 μV were automatically rejected as artifacts. Subjects that 

had more than 70 % of rejected epochs were excluded from 

further analyses (n = 2).  

For each subject, an average ERP waveform was computed 

for the angry and the neutral condition separately. A grand-

average negative peak per condition (i.e. across all 

participants) was determined between 200 ms and 500 ms 

after word onset. In the per-participant average waveform, 

the N400 amplitude was then quantified as the mean 

amplitude in a 100-ms window centered at a grand-average 

negative peak, for the Cz and the Fz electrode separately. 

 

Time-frequency analysis For the analysis of total power, the 

EEG data were segmented into 10-s epochs (leaving out cases 

in which the 10-s interval would have been interrupted by a 

comprehension question). This segmenting procedure 

yielded a total of 74 epochs in each speech condition and 98 

epochs in each speech-shaped noise condition, per participant 

(the 10-s epochs allowed us to analyse the low, delta 

frequency range). Epochs in which the absolute amplitude 

exceeded 210 μV were automatically rejected as artifacts. 

Participants who had more than 60 % of rejected epochs 

would have been excluded from further analyses (n = 0). The 

epoched data were decomposed using a Morlet wavelet 

transform across 200 sliding windows (with the newtimef 

function in EEGLAB; which gradually adapts the number of 

wavelet cycles across the analyzed frequency range). The 

transformation was calculated in 0.1-Hz steps between 0.2 

and 80 Hz, with 1 cycle at the lowest frequency and 

increasing by a factor of 0.5 for the higher frequency bins. 

For each subject, total power in the gamma band (30–80 

Hz) was computed across all epochs for each condition. The 

average total power in the noise epochs was then subtracted 

from the average total power in the corresponding speech 

epochs. 

Statistical analysis 

The data were analyzed in R (R Core Team, 2024) with linear 

mixed-effects models (packages lme4, Bates et al., 2015, 

lmerTest, Kuznetsova et al., 2017). One model was fitted for 

the N400 amplitude and one model for the gamma power. 

Each model estimated the effect of condition, with a sum-to-

zero contrast -negative vs. +neutral, and random intercepts 

for channel and for participant. Marginal means were 

estimated using the package ggeffects (Lüdecke, 2018). 

Results 

N400 

The grand-average ERPs, averaged across Fz and Cz 

channels, are shown in Figure 2.  

 

 
Figure 2: Grand average ERPs for negative (red) vs. neutral 

(black) words. The obligatory auditory ERP components 

such as N1 or P2 are not clearly discernible because the 

waveform is computed from target words that were non-

repeating, 50 unique lexical tokens, embedded in a 

continuous stream of auditory speech. 

 

The N400 model detected a significant intercept (estimate = 

-2.702, SE = 0.539, df = 4.124, t = -5.015, p = 0.007) 

indicating that there was an overall negative ERP response. 

There was also a significant effect of condition (ß = -0.484, 

SE = 0.180, df = 70, t = -2.686, p = .009) showing that neutral 

words evoked a larger negative response (N400) than the 

emotional negative words. The estimated means and 

confidence intervals per condition are shown in Figure 3. 

 

 
Figure 3: The estimated N400 amplitude for negative and 

neutral words (means and 95% confidence intervals). 

 

Gamma power 

Figure 4 shows the grand-averaged total power in the range 

between 0 and 80 Hz in the angry and neutral condition.  

The model for the gamma power revealed a main effect of 

condition (ß = -0.722, SE = 0.248, df = 25, t = -2.908, p = 

.008) showing that gamma power was larger during angry 

compared to neutral speech; Figure 5 plots the estimated 

means and confidence intervals. 
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Figure 4: Grand-average total power in the angry (top) 

and the neutral (bottom) speech condition, as subtracted 

from the respective noise condition. 

 

 
 

Figure 5: Estimated gamma power in the angry and 

neutral speech condition (referenced to the respective 

speech-shaped noise condition). 

Discussion 

The present study focused on the perception of angry and 

neutral speech, measuring the oscillatory power in the gamma 

band and the ERP component N400, two indicators of 

prediction in speech comprehension. Participants listened to 

conversational two-sentence segments with either a negative 

or neutral valence and ending in words emotionally 

congruent with the preceding sentence context. Before each 

speech block, participants were exposed to speech-shaped 

noise.  

The emotional valence of the heard conversational speech 

impacted the total power in the gamma band; gamma power 

(referenced to the respective speech-shaped noise conditions) 

was significantly larger during exposure to angry speech than 

during exposure to neutral speech. Furthermore, the 

emotional valence influenced the N400 response to the 

segment-final words, resulting in a decreased amplitude in 

response to negative words compared to neutral words. 

N400 as an index of semantic-emotional access  

The present results contribute to the understanding of how 

N400 may index the processing the emotional content of 

words. The findings from previous studies investigating the 

N400 to emotional words are difficult to interrelate and 

interpret, as experimental paradigms and task demands seem 

to heavily affect the observed results. For example, some 

studies report an increased amplitude of the N400 when 

negative words are presented in a neutral context (De Pascalis 

et al., 2009; Grass et al., 2016; Herbert et al., 2008; Holt et 

al., 2009). This would suggest that the surprising valence of 

an emotional word after a preceding neutral context (where 

the context can be established by a preceding sentence or by 

the experimental task) might result in a deeper semantic 

evaluation or a more demanding semantic access, and thus 

also a larger N400. Other studies found a decrease in N400 to 

emotional words that are presented in an emotionally 

congruent context. In an attentional cueing paradigm, Kanske 

et al. (2011) reported that cues correctly predicting the 

emotional category of an upcoming word facilitate semantic 

integration such that the target emotional words that were 

preceded by a valid emotional cue caused a decreased 

amplitude of the N400. To make the picture even more 

complex, studies investigating emotional words presented in 

isolation report a reduced N400 to emotional words 
compared to neutral words, for example in a lexical decision 

task (Kanske & Kotz, 2007; Wang et al., 2019). Such reduced 

N400 to emotional words presented in lexical decision tasks 

has been interpreted as an index of facilitated lexical access 

for emotional compared to neutral words (Wang et al., 2019). 

The studies reviewed above tell us about how contextual 

predictability (or a complete lack of it) influences the N400 

to an emotionally congruent or incongruent target word. 

But does emotional valence of the target words alone affect 

the N400 response in cases where the preceding context is 

always emotionally congruent with the target word? This is 

what we can answer with our results. We find that, in 

emotionally congruent conversational context, emotional 

(namely, negative) words systematically elicit a smaller 

N400 than neutral words. The present findings of smaller 

N400 to negative words in the angry conversation, compared 

to neutral words in the neutral conversation are in line with 

studies reporting a reduced amplitude of the N400 in response 

to emotional words preceded by an emotionally congruent 

context than to neutral words in a neutral context. With the 

present auditory conversational stimuli, we replicated the 

findings of Zhang et al. (2021) on a reduced N400 to 

orthographically presented negative words in congruent 

negative context compared to neutral words in neutral 

context.  

Gamma power as an index of facilitated prediction 

Besides the effects of emotional valence on the N400, we 

detected larger gamma power during the perception of angry 

speech compared to neutral speech. The literature indicates 

that the oscillatory activity in the gamma band is associated 

with the predictability of the incoming words based on the 
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preceding sentence context (Bastiaansen & Hagoort, 2015; 

Hald et al., 2006; Mai et al., 2016). To date, the predictability 

effects on gamma power have been researched with respect 

to the semantic-lexical content of words. To what extent the 

emotional content influences gamma power has been 

unknown. The present findings show that the emotional 

content of conversation, too, modulates gamma power. Our 

study finds larger gamma power in angry conversation than 

in neutral conversation. Considering the literature on greater 

gamma activity in semantically predictable contexts, one can 

conclude that the context of angry speech is generally more 

predictable, and that the additional dimension of emotional 

valence facilitates predictive and semantic unification 

processes. 

However, as noted in the Introduction, many studies have 

linked gamma activity to sustained attention (Pulvermüller et 

al, 1997), feature binding (Basar-Eroglu et al., 1996), as well 

as memory processes (Osipova et al., 2006). Therefore, 

another possible interpretation for the larger gamma power 

during exposure to angry speech is that listening to emotional 

speech results in a greater employment of attentional 

perceptual mechanisms. 

Concluding remarks  

Thus, our joint findings suggest that at both the sentence and 

word level, prediction and semantic integration is facilitated 
during angry speech perception. Prediction is one of the 

crucial mechanisms enabling speech comprehension in 

spoken interactions, and through continuous updating based 

on preceding context allows for the anticipation of upcoming 

information. Situationally, and from the evolutionary 

perspective, too, it is often highly relevant to correctly decode 

and comprehend emotional speech, because it carries 

important information that might have potential 

consequences for achieving or obstructing one’s goals. 

Emotional valence provides additional contextual 

information that facilitates comprehension and 

communication in general. Thereby, it might allow the 

individual to by-pass deeper semantic processing and re-

allocate processing resources towards motivational 

evaluation or decision-making processes. 

Future directions  

The data reported here are part of a larger experiment that 

investigates the effect of negative emotion on the cortical 

tracking of speech. It explores the oscillatory dynamics of 

emotional speech processing (at the sentence level), focusing 

on the lower frequency bands (namely theta and delta, 

associated with syllabic and prosodic word processing), as 

well as on oscillations in higher frequencies (>30 Hz, 

gamma). Comparing the accuracy and strength of neural 

speech tracking at those various times scales, in speech and 

rhythmically similar noise segments, will allow us to tease 

apart the contribution of the vocal (acoustic, prosodic) and 

verbal (lexical, semantic) channels to the processing of 

emotion in speech. In future analyses, we plan to include the 

data about participants’ affective state (measured by the 

PANAS questionnaire), as some previous studies indicate 

that mood might influence semantic processing and language 

comprehension (Chwilla et al., 2011). 
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