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PREFACE

The investigations summarized in this report were developed over a
considerable length of time. In the initial phases of the investigation
dealing with the static aspects of the analysis, Dr. Z. A. Lu, a fofmer
graduate student, performed the theoretical derivations and wrote the
corresponding computer program. The investigation of the dynamic analysis
and the writing of the expanded computer program were carried out by Mr.
H. Y. Chow, a Graduate Student. Both phases of the above research have
been published in detail previously [References (1) and (4)]. Mr. John
Abel, a Graduate Student, was responsible for assembling the material into
the present unified form for practical application.

The work was carried out under the supervision and technical responi-
bility of Egor P. Popov, and during the initial phases azlso of Joseph
Penzien, both Professors of Civil Engineering, Division of Structural
Engineering and Structural Mechanics, University of California, Berkeley,
California.

All the work is a part of the research sponsored by the National
Aeronautics and Space Administration under NASA Grants No. NsG 274-62 and
No. NsG 274 S-1 and S-2,

Mr. M. Khojasteh-Bakht and Mr. S. Yaghmai, Graduate Students, read

the manuscript and made helpful suggestions.

Mr. B, Kot prepared the drawings and Mrs. M. French typed the final report.
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SYNOPSIS

A FORTRAN IV listing and a flow chart of a computer program for the
static and dynamic small deflection analysis of axisymmetric thin shells of
revolution is presented in this report. The program permits free and forced
vibration- investigation as well as static analysis. Although the program is
not completely general as far as shell geometry and boundary conditions are
concerned, enough theoretical information is presented to enable a potential
user to assemble a program general enough for his particular needs. This
information includes an entire chapter summarizing the theoretical bases
for various aspects of the problem and a set of appendices giving useful

formulae.
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SYMBOLS USED IN REPORT

A = force transformation matrix

a = radius of sphere or cylinder

B = displacement transformation matrix

b = slope length along cone from apex to the centroidal circle

of an element

C = transformation matrix

C = vector of constants

E = modulus of elasticity

E(s) = matrix kernel for integration leading to element mass matrix

e = change in meridional length of a cylindrical or conical element
or in height of an annular ring element

£ = element flexibility matrix in local co-ordinates

H,N = gtress resultants per unit nodal length in local coordinates

i,J = subscripts designating upper and lower ends of element
respectively

K = overall assemblage stiffness matrix,; bending stiffness of

shell section

K.E. = kinetic energy of a shell element at a given time

k = element stiffness matrix in local co-ordinates

Kk = element stiffness matrix in globsasl co-ordinates

klm = partitioned portion of K matrix (l,m = 1,2)

ﬁlm = partitioned portion of k matrix (l,m = i,j)

j = length of element; § = (at)l/z/(12(1_v2) )1/4 for a spherical
cap

M = overall assemblage mass matrix; moment per nodal length in

local co-ordinates

viii



k1l

B1

k1l

ix

element mass matrix in local co-ordinates; unit mass of element

element mass matrix in overall co-ordinates

i

partitioned portion of M matrix (k,1 1,2); partitioned portion

of m matrix (k,1 = 1,3)
partitioned portion of m matrix (k,1 = i,j)

th
superscript designating the n element; subscript designating
the n® node

subscript indicating the spherical cap or disc for end closure
vector of nodal load amplitudes

vector of generalized forces

total horizontal and vertical forces at node (glcbal co-ordinates)

vector of distributed moment, normal load and meridional load
on an element

stress resultants per unit nodal length in global co-ordinates
vertical force per unit nodal length for cap or disc
vector of element displacements in local co-ordinates

vector of all total nodal forces; vector of known total nodal
forces at unrestrained nodes; radius of sphere

vector of all nodal displacements; vector of known displacements
at supports

Sj/si for conical elements, 1 for cylindrical elements and

r./ri for annular flat plates

horizontal radius of element as function of slope length
horizontal radii at top and bottom of element

horizontal radius of disc or of cap node

vector of element stress resultants per unit nodal length in
local co~ordinates
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A;é

vector of element stress resultants per unit nodal length due
to inertial joint loads (local co-ordinates)

distance from apex of cone to point of question on element
distance along cone from apex to top and bottom of element
total moment at node in global co-ordinates

thickness of shell element

vector of unknown nodal displacements

vector of element displacements in local co-ordinates; meridional
displacement of element in local co-ordinates

vector of inertial joint loads in global co-ordinates
normal displacement of element in local co-ordinates
vector of unknown total reactions at supports

ro/z for spherical cap

matrix whose rows represent linearly independent coefficients
of a displacement state of an element

boundary condition matrix
2 1/4 i/2 2
2(3(1-v) ) / (2 tan o/t) / sl/

subscript indicating portion of dynamic response due to
static effects

subscript indicating portion of dynamic response due to
acceleration
angle of inclination of element

angle from the horizontal of @ line joining the center of the
arc and the top of the first element

translation of nodes

normal co-ordinates



0,%

rotation of nodes
4
31-vHaZ/eH Y

Mz/a for cylindrical element

Poisson's ratio

= radius of gyration of section of shell element

mgtrix whose columns are the normal modes (eigenvectors)
semi-angle of spherical cap or disc

rotation of element at a given point in local co-ordinates
natural frequency in radians per unit time (square root of
eigenvalue)

column vector

row vector

rectangulary matrix

square matrix with non-zero terms occurring only on the
principal diagonal

xi



INTRODUCTION

This report presents a computer program which has been developed in the
course of a continuing investigation into the structural analysis of thin
shells of revolution. More detailed presentations of the theoretical develop~
ment of procedures have been published under separate cover [References (1),
(3) and (4) ]. The purpose of the present report is to give the results of
the investigations to date in a form suitable for practical application.

No attempt has been made to assemble a computer program that will account
for all possibilities or all options of structural analysis. Rather it is
hoped that a potential user, employing the program herein as a model and
the summary of theory as a tool, will be able to assemble a program suited
to his particular needs. The program has been written in FORTRAN IV for the
IBM 7094 computer at the University of California. However, since it is
accompanied by a flow chart, there should be no difficulty to the user
caused by this restriction.

The first chapter of the following is a summary of the theory, accompanied
by tabulation of the relevant equations in the appendices. The second
chapter contains a description of the program, a glossary of terms used in

the program, the flow chart and the program listing.



CHAPTER I. SUMMARY OF THEORY

A, General

Many of the shells of revolution used in flight structures and other
applications are continuous assemblages of rings, cylinders, conical segments,
spherical segments and other axisymmetric shapes, often of varying thickness.,
It has been found that the displacement (or stiffness) method of analysis
employing matrix methods with an electronic digital computer is a satis-
factory approach for structural analysis of such assemblages.

Of the various displacement techniques available, the computer program
herein utilizes the finite element approach in which the three displacements
of selected circular nodes are the unknowns. The features of this particular
finite element technique are:

(1) Axisymmetric loading, small displacements and isotropic
linear elastic materials are assumed. (In principle, extension
to non-symmetric loading is possible but has not been
carried out in thig investigation.)

(2) The shape of the assemblage is approximated by simple
axisymmetric elements connecting the circular nodes.

Each element is of constant thickness but different
elements may have different thicknesses to account for
continuous or discontinuous variations in the assemblage.

(3) The basic finite element chosen is the truncated conicsl
segment and in the limiting cases this element becomes

a spherical cap or flat plate at one extreme and a



cylindrical segment at the other.

(4) The approximate stiffness matrix for the overall
assemblage is constructed from exact formulations
of the structural stiffnesses of the assumed simple
finite elements. The overall mass matrix is con-
structed from element mass matrices derived from

assumed approximate displacement fields.

The finite element method is advantageous because it is easy to formulate
geometrically and because the formulation is readily adaptable to the matrix
algebra required for solution. In addition, boundary conditions, elastic
restraints and actual geometric discontinuities (e.g., discontinuity in
curvature) often occur on transverse circular sections, leading to a natural
corresponding choice of circular nodes. Moreover the method not only admits
modifications for local changes of properties but also allows adaptations
permitting dynamic, thermal and large displacement analysis as well as the
basic static small displacement analysis. Finally, the particular advantage
of the use of exact stiffnesses for individual elements is that for portions
of the overall assemblage where a basic element is the geometric duplicate
of the structure the number of elements required is minimized.

Static solution by the stiffness method utilizes the force displacement

equation

{R} = [K] {r} (1)



Here {R} is the vector of total nodal static forces, {r} is the vector of
nodal displacements and [K] is the overall stiffness matrix which is singular.
The stiffness matrix can be constructed from the element stiffnesses by
requiring equilibrium and compatibility conditions to be satisfied at the
nodes. The nodal force vector can be approximated or calculated from energy
considerations. Construction of these two matrices will be treated later.

In order to carry out the solution the matrices of Equation (1) are

partitioned to get

= e —— (2)

where {R} are the known total loads at the unrestrained nodes, {X} are the
total unknown reactions at the nodes of support, {U} are the unknown nodal
displacements and {r} are the known displacements at supports., Here [kllj
is the non-singular stiffness matrix for the nodal degrees of freedom of the

assemblage so we may solve for all unknowns by writing

0y = 0,07 { Y - Do, 061 ) (32)

and

{x3

il

[1<21J {ul + [k22] {r} (3b)
When all nodal displacements and forces are known, the static problem is

essentially solved.



The dynamic analysis by the stiffness method employs the matrix formu-

lation of the equations of motion

[m, ] U} + [k,] U]} = {R(D)} (4)

where the above notation applies. Here [mll] and [kllj, the mass and
stiffness matrices for the nodal degrees of freedom, are symmetric and
positive definite., The solution of these differential equations is carried
out using the normal-mode superposition approach. This method not only gives
accurate results for forced vibration problems, but alsc entails solution
for the free vibration characteristics which are a desirable supplement to
dynamic solutions if not an end in themselves.

Equations (4) must be rewritten in terms of normal co-ordinates. This
can be accomplished if the mode shapes and frequencies are established such
that

T

(o] [m ] [e] = [T] (5a)

™1

Fu (5b)

Il

(01" [k, [0]

where [¢] is the square matrix whose columns are the mode shapes (eigen-
vectors) corresponding to the lowest eigenvalues, w29 in ascending order of
value. [I] is an identity matrix and Ew2j is a diagonal matrix of the
eigenvalues. The results in Equations (5) can be attained by first finding

the eigenvalues and eigenvectors of [mll] so that

(51" [n ] [3) = &7 (6)



and then modifying [kll] as follows

- - -1

(K] = [® !

- T - -1 :
J01 [ 0 (8] Mo (7)
Then the natural frequencies are obtained by calculating the eigenvalues and

eigenvectors of [K] thus

(317 (K] (6] = P (8)

Finally, the mode shapes are calculated using the relation
- e =
[¢] = [¢o] fw 7 [o] . (9

The derivation of these results is detailed in Reference (4) and can be
verified by application of standard numerical analysis procedures.

Since the columns of [¢] are the normal modes, the unknown displacements
in overall (or global) co-ordinates can be expressed in terms of the normal

co-ordinates {7T(t)} by

fue)} = [¢] {3, (10)
Hence substituting Equation (10) into the equations of motion (4) and
premultiplying by [¢]T, one gets

oo 2 ) T * )

e} + Tod IO} = [¢] RO} = {P (D)} (11)

which are the uncoupled equations of motion in normal co-ordinates and
%
where {P (t)} is the generalized load vector. This vector may be expressed

as the product of a nodal-load amplitude vector and a function of time

{P*(t)} = {P} £(t), (12)



The uncoupled equations represented in Equation (11) can be integrated
directly with respect to time as an initial value problem. As many modes
as desired can be used since it may not be necessary to use as many shapes
as there are degrees of freedom. 1In any case, the final result calculated
will be the superposition of the responses in all the modes chosen. The
integration formulae used in this program are given in Appendix A. It should
be noted that the time increment for integration for a3 particular mode must
be sufficiently smaller than the period for that mode in order to get
accurate results. The accompanying computer program asutomatically reduces
that increment if necessary. Once the displacements are known at any given
time, the reactions can also be found using Equation (3b) and the dynamic
response is essentially solved.

With all the nodal displacements and forces known in both static and
dynamic problems, it is an easy matter to utilize the known elastic and
geometry properties of the elements to solve for the internal stresses and/

or strains. The equations for such calculation are given in Appendix B.

B. Construction of Element Stiffness Matrices

For the construction of the required element stiffness matrix the known
homogeneous bending and membrane solutions of a uniform thin shell of
corresponding configuration are used to formulate the element flexibility
matrix, The element stiffness is then merely the inverse of the flexibility.
In each case, before inverting the flexibility, it is modified to ensure

that correct symmetry properties are exhibited. The stiffnesses generated



by this computer program are referenced to a local co-ordinate system
oriented to the particular element.

Computation of the conical element flexibility and of the spherical
cap flexibility requires the use of Thomson functions. The necessary series
and asymptotic formulae for evaluating these functions are given in Appendix
C and the criteria for various methods of computation are given in Appendix
D. Although the program provides correct values of the Thomson functions,
it should be noted that for some arguments the magnitude of the Thomson
function values exceeds the capacity of the computer. To counteract this,
equal negative or positive powers of ten must be taken from the appropriate
groups of functions so that the capacity is not exceeded. The resulting
stiffnesses are not impaired since each flexibility co-efficient involves
a product of a ber-group function and a ker-group function and thus the

opposite powers of ten cancel.

1. Conical Element Stiffnesses

For the conical element shown in Figure 1, the element displacements

are related to the element forces by the flexibility matrix as follows

_ - oA
X N £ M
XJ i21 °°°°°°°°°° f25 Mj

9% ¢ - 31 35 T8 (13)
5. £, £, H,

\e ) _551 ,,,,,,,,,,, f5§‘ LNJ¢




or in matrix notation
{vli=[2] {8} (14

where {S} are the nodal forces per unit nodal length. The formulae for the
elements of the 5x5 flexibility matrix are given in Appendix E and are
derived in Reference (1), Thus the stiffness matrix is the inverse of the

flexibility matrix and satisfies

(s} = [£17" {v} = [k] {v} . (15)

Since the element forces are all quantities per unit length, the flexibility
matrix is not symmetrical. Elements of the matrix representing displacements
due to forces on opposite edges of the element will bear a ratio of
r = Sj/si to each other, reflecting the ratio of circumferences. However,
the matrix does satisfy Betti's law and since engineers commonly use
expressions involving action per unit length, this terminology is maintained.
However, since the overall stiffness matrix must be symmetric for eigenvalue
calculations, the element stiffnesses are made symmetrical during the con~
struction of the overall stiffness. This will be discussed below,.
Investigations have shown that the first 4x4 portion of the flexibility
matrix is nearly perfect for almost any case provided the length of the
element exceeds the thickness, but as ¢ approaches 90O (as tan ¢ becomes
infinite} the cylindrical element should be used. In addition the fifth
o

row or fifth column diverges from proper values as o approaches 90O or O

respectively. To reduce discrepancies the program was written such that
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for o < 300 or o > 150O quantities of the fifth row are used to establish

those of the fifth column (by multiplication with appropriate factors) and
o} 0 . .

that for 60 < o « 120 the opposite is done.

For conical elements with 90O < o < 1800, by taking the larger slant
distance as Si and the smaller as gj we can use the same formulae to
construct [f]., MHowever, a sign change must be applied to all third and
fourth column quantities (fij for i = 1 to 5, j = 3,4) and to £ and

35 45

to counteract the sign change of cos ¢ and also to f55 to counteract the

sign change in 1n r (see Appendix E).

2. Cylindrical Element Stiffness

Similarly, for the cylindrical element shown in Figure Z the dis-

placement-force equation is

{v}=[£] {8} . (14
The formulae for the elements of this 5x5 symmetrical flexibility matrix

are given in Appendix F and are derived in Reference (1).

3. Spherical Cap Stiffness

A spherical cap element may be used to approximate the end closure of
a shell of revolution. A cap is shown in Figure 3. Depending on the manner
in which the cap is held in vertical equilibrium, there are two cases of
interest.

The Case with Singularity. If the cap is supported by a con-

centrated force P at the apex, then with the condition that the apex is =a

fixed reference point, 6V represents the increase in height of the cap.
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A 3x3 flexibility matrix is appropriate in this case satisfying the relation

O
X [ ¢
o 11 flz
8y f = To1 22
O
5, fgy f3g
. ©J L

or in matrix notation

v} = [£,] (s}

The formulae for the elements of this symmetrical 3x3 flexibility matrix
may be found in Appendix G and are derived in Reference (1).
the stiffness matrix obtained from inverting this flexibility yields

satisfactory results except for locsl inaccuracies near the singularity.

le
f23

33

The Case Without Singularity.

The use of

(16)

(17)

When the vertical edge force of the

cap is balanced by some distributed pressure rather than by a single force,

only the first 2x2 portion of the matrix should be retained.

It is possible

to invert this 2x2 matrix and use the result as the cap stiffness, treating

the vertical force and displacement components separately.

placement-force equation is

o -
o 11 12
5 = f
< h_ > 21 f22
O
8 f
v 31 fsz
L J L

Thus the dis-

(18)
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where the upper left submatrix of [fO] is inverted for the 2x2 stiffness
matrix, The formulae for the elements of the 2x2 flexibility matrix may be

found in Appendix G and are derived in Reference (1).

4, Flat Plate Element Stiffness

There are two possible flat plate elements -- an annular ring element

and a disc for end closure,

Annular Ring Element. This element as shown in Figure 4 might be

suitable for an open end of an assemblage or for any intermediate section
of the assemblage where  approaches OO or 180O for the conical element,
Like the conical and cylindrical elements, this annular ring element has a

5x5 flexibility matrix and the displacement-~force equation is

{vl = [£] {s]. (14)

The formulae for the elements of this non-symmetrical flexibility matrix
are given in Appendix H and are derived from References (5) and (6). The
ratio relating displacements due to forces on opposite edges of the

element is r = rj/ri° Note that the case given in Figuvre 4 is for o = 0O

0
For o = 180  an analogous set of formulae are necessary to construct the

flexibility matrix. These are also given in Appendix H.

Disc for End Closure. For end closures that are flat or nearly

flat, a circular disc element as shown in Figure 5 can be used. For the

case with singularity, i.e., when the vertical edge forces are balanced by



a concentrated load at the center, the result is a 3x3 symmetrical

flexibility matrix and the displacement-force equation is

(v} = [2,] (s} amn

The formulae for the elements of this flexibility matrix are given in
Appendix H and are derived from References (5) and (6). For the non-singular

case, the first 2x2 portion of Equation (17) is used.

C. Construction of Element Mass Matrices

It is possible to express the displacements at any point in a shell

element by the relationship

y(s)
fa(s)} = <w(s) p> = [Y(s)] {c} (19)
v{(s)

Here the displacement at any value of s (si < s =< Sj) in local co~ordinates
are {q(s)} as indicated in Figures 1, 2, 4 and 5. [Y(s)] is the matrix
whose rows represent linearly independent coefficients of a displacement
state and {c} is a vector of constants. The vector of constants can be
determined from the six boundary conditions by evaluating Equation (19) at

both ends of the element as follows

Y(s.) o a(s)) ~
{c} = = [¥] {a} . (20)

Y(Sj) q(sj)
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Substituting this expression for the vector of constants into Equation (19),

one obtains

{a(s)} = [Y(s)] [Y] {a} (21)

In the dynamic problem the displacements are of course time dependent so

Equation (21) would be rewritten to get

fa(s,©)} = [¥(s)] [¥Y] {a(D)} . (22)

Then at any instant of time the kinetic energy of the shell element can be

written as
1 2 .2 ) .9
K.E. = 5 m P, P(s,t) + mv (s,t) + mw (s,t) 2nr(s) ds (23)
S £

where m is the mass per unit surface area of the element, QA is the radius
of gyration of the section of a shell element and r(s) is the shell radius
measured normal to the axis. Substituting the displacement formulation (22)
into (23), the expression for the kinetic energy becomes

KE =:<a(t) > [F] ( J 21 [E(s)] r(s) ds ) [¥] {40} (24)

8

where

2
[Eij(s)] = mpA {Yli(s)} <Y1j(s) >4 m {YQi(S)} < YZJ(S) >

4+ m {YSi(s)} <Y3j(s) > for i,j = 1,2,...6 (25)
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<Y, {s) > <Y_ {s) »and <Y_ (s) > are the row vectors identical to the
iJ 23 33
first, second and third rows of the matrix [V(s)]|. By comparing Equation

(24) with the usual expression for kinetic energy

K. = 3 <4(t) > [n] {4(0) (26)

it is apparent that the element mass matrix is given by

[m] = [?]TJ on [E(s)] r(e) ds [¥]. (27)

8
The question remains what displacement state, [Y(s)], to use in

formulating the mass matrix for the element. It would be possible to employ
the static homogeneous (exact) solution such as used to determine the element
flexibility matrix above. However, for conical elements these involve VEry
complicated expressions in terms of Thomson functions and their derivatives,
and the integration in Equation (27) is prohibitive. It has been found that
satisfactory results can be obtained from an assumed displacement field in
the simplest possible polynomial form, neglecting rotational inertia. The
resulting "'consistent” mass matrix, is superior to the mass formulation

based on the tributary areas.

1. Open-ended Elements

For conical, cylindrical and annular plate elements, the assumed
polynomial displacement field used to construct the distributed mass

matrix is
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0 1 28 352 0 0
[(Y(s)] = i s 52 53 0 0 (28)
0 0 0 [¢] 1 s

When this matrix is evaluated zt both ends of the element, the result is

ol
bt
Lo
n
W
0]
<
=}

i i
1 s s? s? 0 0
i i i
-1 Y(sl) 0 0 0 0 1 Si
[Y] o e e e o W e e e e ey 2 mmmmm ( 29)
Y(s ) 0 1 2s 3s 0 0
J J
1 s s? s 0 0
J J J
0 0 0 0 1 s
- 3

The formulae for the element mass matrix, neglecting rotational inertia,

are given in Appendix I,

2. End Closure Elements

For end-closure elements, i.e., elements having only a single node,
the distributed mass matrix of s disc shaped element is used. Here the

appropriate displacement field is given by

o
o
n

<

[Y(s)] = |1 s 0 (30)
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and the boundary condition matrix in this case is

"6 2r ] ]
(e}
S | . 2
Y] = = [Y(r)] = |1 r 0 (31)
O 0 r
S— O,...

The formulae for the element mass matrix, neglecting rotational inertia, are

given in Appendix J,

D. Construction of Transformation Matrices

In order to relate forces and displacements in both local and global
systems and to enable the construction of overall mass and stiffness matrices

by the direct stiffness method, certain transformation matrices are necessary,

1. Displacement Transformation Matrices

The displacement transformation matrix [B] relates the displacements
in the local co-ordinate system of the element {v} to those of the overall

agssemblage (global) co-ordinate system {r} according to the relation

{vli=[B] {r} . (32)

By comparing the displacements {v} indicated in Figures 3 and 5 with {r}
in Figure 7, it is apparent that for the disc and spherical cap, Equation (32)

may be written as
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(33)

Similarly, by comparing Figures 1 and 2 with Figure 7, for the cylindrical

and conical cases Equation (13) may be rewritten as

Finally,

-1

. 0

~CO8

comparing Figure 4 with Figure 7,

sin ¢

for

I
[
[
|
|
[
[
[
|
!
I
|
!
\

COS8

~-8in ¢

(34)

(35)
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For the case o = 1800, the signs of elements 882 and 845 must be changed,
Application of this displacement transformation for construction of the
overall assemblage stiffness matrix is described below.

The transformation matrix [C] relates the displacements in the local

co~ordinate system {q} to those of the overall assemblage co-ordinate system

{r} according to the relation

fal = [c] {r} (36)

By comparing the displacements {q} indicated in Figures 1, 2 and 4 with the
displacements {r} in Figure 7, it is apparent that Equation (36) may be

rewritten as

]
95 €, 19 ¥y
fa} = &0 = LA Lt (37
d. 0 1 C T,
J | 1 J
where
-1 0 0
[Ci] = 0 sin COS @ (38)
0 -COS ¥ sSin o

From Figure 5 it is apparent that for the disc element {d} and {r} are
identical. Application of this transformation matrix for construction of

the overall assemblage mass matrix and of the load vector is described below,

3. Force Transformation Matrix

The force transformation matrix [A] relates the nodal forces per unit

nodal lengh in global co-ordinates {Q} to the element forces {S} as follows
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f@} = [a] {s}

Analogous to the derivation of

may be rewritten for the three

r -
T 1
o]

< =
oy pho > o

P 0
VO |

..

and

and

relevant cases
0 0 M
Ie)
1 0}l < H ¢
o
0o -1 Q
B B o)
-1 0
] 4]
A1 6] 0
- {8} =
Aj 0 1
O 0
0 0]

Equations (33),

(39)

(34) and (35), Equation (39)

as

0
-r cos o
r gin 16%

0

cos
-81in v

(40)

> (41)

(42)
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For the case o = 18009 Equation (42) must be adapted by changing the sign

A and A

on elements A,., A, A, 55°

Application of the force transformation
matrix for construction of the overall assemblages stiffness matrix is

described below.

E. Calculation and Construction of Joint Load Vectors

In order to solve for the unknown nodal displacements and forces, it is
necessary to construct the vector of nodal loads {R} as employed in Equations
(2) and (3). This section presents the necessary procedures to accomplish
this construction for static loads. For dynamic loads the difference is

merely that all loads are time dependent,

1. Joint Loads

If there are axisymmetric concentrated loads on the assemblage, it
is convenient and desirable to select nodal circles corresponding to these
loads, which then can be taken directly as joint loads by resolving them
into the proper components. Often however, a distributed load exists and

in this case there are two methods of calculating the necessary nodsl loads,

Tributary Joint Loads. Using the tributary areas adjacent to each

node, distributed loads can be converted to the appropriate components of
_th . . . .
nodal loads, Thus, for the n element shown in Figure 6, the contribution

to the nodal loads as shown in Figure 7 are given by
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{ 1
R(n)} ’ [b 2mr(s) {p(s)}ds
i P s
w9 - o5 = eyt et (43)
R i Js,
o ‘bJ 2mr(s) {p(s) lds

where {p(s)} is the 3x1 vector of distributed moments, normal loads and
meridional loads in the ¢, w and v directions respectively. For a disc or
spherical cap, loads are assumed to be entirely concentrated at the single

adjoining node.

Consistent Joint Loads. When the element sizes are relatively

small, tributary loads give satisfactory results. However, as the element
sizes increase it becomes more advantageous to use consistent joint loads,
These are constructed so that in a virtual displacement the work done by the
actual load is equal to the work done by the consistent joint loads. The

final result for the nth element as derived in Reference (8) is given by

= el D ST G [c]T[§]T J [Y(s)]T {p(s)} 2nr(s) ds

R g : (1)
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where the notation is the same as in Equation (43) above, These are
"consistent” joint loads because their caleculation employs the assumed

displacement field.

2. Load Vector

The contributions of the various elements must be combined to get the
vector of nodal loads for the overall assemblage. In both cases of load
calculation there is a contribution from each of the two neighboring elements
to the joint loads at each node. Using subscripts to indicate the node and
superscripts to indicate the element in the assemblage, from Figure 7 it is

apparent that the total nodal load is

s VY
Tgn} + Tgn D
€ J
(n) (n-1) - {n) (n-1J). .
=< i ey
R, =7 Pn *Pny o B0} + (R, } (45)
P(n) . P(n~l)
| vi v J

Then the load vector can be assembled by combining the nodal loads directly

as follows

R} =¢ °© ¢ (46)
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F., Construction of Overall Assemblage Stiffness and Mass Matrices

The overall stiffness and mass matrices are assembled according to
the 'direct stiffness' method, First the element stiffnesses and mass
matrices are transformed from the local to the global co-ordinate system.
Then these transformed matrices are partitioned and the submatrices are
added to the appropriate parts of the overall matrices. Finally these overall
matrices are rearranged so they may be partitioned as in Equation (2).

Substituting Equation (32) into Equation (15) gives

{8} = [x] [B] {r} (47)

and inserting this equation into Equation (39) and converting from forces

per unit length to total forces produces

{R} = 2n [A] [k] [B] {r} = [k] {r} . (48)

| I
Comparing the result with Equation (1) it is apparent that Equation (48)

is the force-displacement equation for a single element in the overall

co-ordinates and that [k] is the symmetric element stiffness in the global
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co-ordinates. This formulation provides the basic building blocks for
constructing the overall stiffness matrix. Using the partitioned forms
of Equations (34}, (35), (41) and (42), it is possible to rewrite the

element stiffness in Equation (48) as

w1

(k] [B, 1 BJ.] . (49)

It is evident from Equation (49) how the force transformation and displacement

transformation matrices are used to formulate the 3x3 portions of [ﬁ]

(k)= 2m [A] (k] (B, 1,m=1,5. (50)

Im
In a completely analogous procedure, substituting Equation (36) into

Equation (26) gives

KB =2 <20 >[c] [n] [c] {¥(0)]. (51)

It is obvious from Equation (51) that the element mass matrix in global

co-ordinates is

(m] = [c]" [m] [c] (52)
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and from Eguations (27) and (37) that this may be partitioned as follows

ek

(R] = |-~—d-== R e N EEE =g (53)

Thus the 3x3 submatrices of [ﬁ], which are the basic building blocks for the

overall mass matrix, are gotten using the transformation matrix [c]

- T .
[(mq1=10¢] [myl e k1=1,3. (54)
To see how the mass and stiffness submatrices are to be added to the

. . . th ,
overall matrices, the equation of motion for the n element can be written

in partitioned form

s (s e [0) [

ij i iio¢p iJ i i
~~~~~~~ ————r 4 B A i e (55)
R N ) G R R R

33 J Ji 1 3J J J .

Alsc, maintaining the convention of superscripts and subscripts to indicate
elements and nodes respectively, the compatability requirement at the nth

node will be

(£}, = V1= 607V (56)

Thus from Equations (45), (55), and (56) the following recursion formula

can be obtained:
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n+1 ji
(57
~{(n)
* [kij ] { }n+1 - { }n

Using this recursion relation, the overall assemblage mass and stiffness
matrices are constructed. For example, dropping the intermediate brackets,

the overall stiffness matrix may be written as

BRI D)
(&7 R S I i
K1 =| (58)
(RS k) R
%) B

The overall mass matrix [M] is identical to the form in Equation (58) with

each k replaced by m.

G. Solutions for Internal Stress Response

In the static problem the element stress resultants {S} are easily
gotten from the element stiffness matrix once the nodal displacement are

known:
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(s} = [x] {v] = [k] [B] {r} . (47)

However, in dynamic problems Equation (47) yields highly insasccurate results
since acceptable computational errors in the displacement respone {r(t)}

are amplified by the element stiffness. Thus an alternate approach proposed
in Reference (9) must be adopted so that the degree of gccuracy of the stress
resultants {S(t)} will be of the same order as that of the displacements
{r(t)}. This approach is also detailed in Reference (4).

The essence of this altermate approach is to calculate the internal
stress response in two parts - - the response due to static application of
the loads {S(t)}I and the response due to the acceleration of the system
{S(t)}II, Since a limited number of approximate modes are used in cal-
culating the response, the static effect would not be completely accounted
for if Equation (47) were used. By considering the static portion of the
response separately, that portion is certain to be accurately determined.

The superposition of static and acceleration responses is expressed by
(8(v)} = {801+ {8()} . (59)
°1 1I
{S(t)}I is easily determined by using the static displacement response

{r(t)}I in Equation (47). To obtain {S(t)}II the uncoupled equation of

motion for the ith mode is considered

MO+ W M =P (D (60)



This equation can be rewritten in the form

-7, (0 P (1)
5 = ﬂi(t) - 3 . (61)
wi (l)i

This quantity represents the response due to the acceleration of the system
e . . L . th

when it is vibrating in its i mode. It can be accurately calculated
once ﬂi(t), the displacement response is normal co-ordinates for the
particular mode, is known. Furthermore, for each normal mode there is an
inertial joint load system which, when applied to the system, will cause it

. . . . o . th A .
to deform with a unit amplitude in that mode. For the i mode this inertial

Jjoint load vector is given by
W}, = o) {0 (62)
i i i

th th

where {@}i is the i normal mode of the system, i.e., the i column
of [¢]. Using this set of inertial joint loads the corresponding internal
stress resultants {Sw(t)}i are computed for each mode. These are then
amplified by the values of the acceleration response of the corresponding
modes to obtain the total response due to the acceleration of the system
ﬁi(t)

2
[UN

i

{s(t)}II = - % {sw(t)}i, (63)

where the summation is over the total number of modes used in calculating

the dynamic response.



CHAPTER II. COMPUTER PROGRAM

A, General

The computer program that follows is an example of the unification of
the principles outlined in Chapter I into a complete shell analysis routine
with various analysis options. The described program is restricted to certain
types of shell configurations and boundary conditions. A more general program
could be written. The possible modifications are left for completion by a
potential user. The appendices give the additional equations necessary for
assembling other programs.

A complete description of the program, including all input and output
quantities, follows. Then a flow chart of the program is given followed by
a FORTRAN listing., No examples of results are given here since they may be

found in References (1) and (4).

B. Description of Program

1. Purpose and Scope

The program will perform static, free vibration or forced vibration
small deflection analysis of axisymmetrically loaded thin shells of
revolution. Structural configuration is limited to shells open at both
ends or closed at only one end. Boundary conditions can occur only at
one nodal circle, but this may be at any of the nodes, interior or exterior.
The possible structural supports are three: a node completely fixed against
all three possible displacements, a hinged node or 2 hinged node free to

roll in a direction perpendicular to the axis of symmetry.

30
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The program employs only conical elements except when the shell has
a closed end. In that case, the closure is provided by a disc. The maximum
number of conical elements is 25. There are various options on methods of
inputing element geometry. One slternative is to provide x and y co-
ordinates for each node. Another is to provide the element angle ¢ and the
slope length co-ordinates for the element’s two nodes. Finally, if all the
shell elements fit a circular arc with either positive or negative Gaussian
curvature, specisl provision is made to use input geometry that utilizes
this fact.

Subroutines are included that calculate the element stiffness and mass
matrices, sssemble the overall assemblage stiffness and mass, compute the
frequencies and node shapes and find the static or dynamic nodal displacement
and internal stress resultant response. No provision is made to calculate
internal stresses or strains but see Appendix B for these formulae. Also,
the joint load vector is not computed internally, rather is read in as part
of the input data. This input may take the form of either applied loads or
applied accelerations. See Chapter I, Section E for discussion of methods

for formulating the joint loads.

2. Subroutines

The principal program, called MAIN, controls most of the inputing of
data and, depending upon the options indicated by the user, utilizes the
several subroutines to carry out the shell analysis. The primary sub-

routines perform the remainder of the data input and virtually all of the
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output of computed quantities. They also contrcl the necessary tape storage.

Following is a list of the primary subroutines and their functions:

L1 Computation of disc stiffness for end closure
1.2 Computation of conical element stiffnesses

L3 Computation of element mass matrices; assembly and rearrangement
of overall stiffness and mass matrices

14 Calculation of frequencies and mode shapes
L5 Numerical integration to get dynamic displacement response

1.6 Inversion of overall stiffness to get static displacement and
internal stress responses

L7 Solution for dynamic internal stress response

In turn, the primary subroutines employ various secondary subroutines
to carry out repeated basic calculation procedures. Following is a list of

the secondary subroutines and their functions:

THO Calculation of Thomson functions for two arguments
FLEKC@ Calculation of a single conical element stiffness

SHEMT Computation of element mass matrices; assembly of overall
stiffness and mass matrices

SHEKXM Rearrangement of overall mass and stiffness matrices according
to boundary conditions

MULT1 Multiplication of two conformable matrices
MULT2 Premultiplication of a matrix by the transpose of another matrix
RESPUN Numerical integration for dynamic displacement response

SRES Calculation of the static internal stress response.
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Finally, there are three standardized secondary subroutines which are drawn
from the SHARE library. Flow charts or FORTRAN listings will not be given
for these subroutines, since programs of their type are generally available.

These subroutines are:

INVERT Inversion of a square matrix
HAWF Computation of eigenvalues and eigenvectors of a matrix

PRINTM Printing a matrix

3. Input

Following are the input quantities necessary to indicate desired options
and to provide the required data, Included is the format in which the data
is to be provided and a brief description of the quantities. For a more
detailed definition, see the glossary below., Conditions on the need for

various input quantities are underlined.

N: number of conical elements (maximum 25)

NS: cone geometry input code
NS = O for input of S, S and
NS = 2 for input of x andJy of nodes

NS = 1 for circular arc, positive Gaussian curvature
N5 = -1 for circular arc, negative Gaussian curvature
: end closure code .
NS¢ o 614

NS@ = 1 for end closure
NS@ = 0 for no closure

NSD: static/dynamic code
NSD = 1 for static problem
NSD = 2 for dynamic problem

NFRSC: number of degrees of freedom of restrained node
NFRSC = O for fixed node
NFRSC 1 for hinged node
NFRSC = 2 for hinged horizontal roller

I

NAS: node number at which NFRSC applies (< N+1)
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(XPOIS(I),I = 1,N): conical element Poisson ratios

(XE(I),I = 1,N): conical element Young's moduli
’(HH(I),I = 1,N1): conical element thicknesses at nodes
If NS = + 1: HD, BETA, R: (see Figure 8)
(XA(I),I = 1,N): element arcs (O)
(XALPH(I),I = 1,N): element angles (O)
If NS = 2: (XN(I),I = 1, N1): x co~ordinates of nodes
(YN(I),I = 1,N1): y co~ordinates of nodes
If NS = 0: (XSI(I), XSJ(I), I = 1,N): Ly

(XALPH(I), I = 1,N): ¢ in degrees
If N3@ # 0: RR, T@, ALPHY, PYIS@, EG: disc data

If NS@ # O and NSD # 1: XW@: unit weight of disc

If NSD # 1: GA: acceleration of gravity
(XW(1), I = 1,N): unit weight of cones

NEP: number of modes to be used in mode
superposition ( < 3N + NFRSC)

NAF: dynamic force type code
NAF = 0 for free vibration
NAF = 1 for applied forces
NAF = 2 for applied accelerations
MM, NT: integration data
TIME: total time for integration
(AF(1), I = 1,NN): nodal load amplitudes

(FA(1), I = 1,MM1): force time factors

If£f NSD = 1: (AF(I), I = 1,NN): nodal loads

9F8.4

4E18.8

9F8.4

3E18.8

9F8 .4

9¥8.4

4E18.8

4E18.8

4E18.8

9F8.4

5E14.,7

E18.8

Ei8.8

4E18.8

214

214

E18.8

4E18.8

10F7 .4

4E18.8
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4. Output

The output guantities include echo prints of all the input data as
well as printed intermediate and final results. In each case, the output
is identified when printed. Any difficulties with interpreting the identi-
fication terminology can be resolved using the glossary below and by studying
the flow chart and program listing. Therefore, a listing of all output data

will not be provided here.

C. Glossary of FORTRAN Variable Names

Following is a partial glossary of the terms used in the computer program.
All input and output gquantities are included and alsoc those terms directly
relevant to the basic theory of the proposed method. Intermediate variable
names are not all defined since they are often mere computational entities
or temporary storage devices. The symbols used in the definitions are those

used in Chapter I and the Illustrations and are listed at the beginning of

the report.

A = portion of increment to velocity during integration
ACEL = acceleration at a given time during response

AF{( ) = amplitude vector for joint loads; static nodal loads
Al = floating value of index I

AIC,) ,Ad(,) = force transformation matrices

1

nodal forces at top and bottom nodes in global
co-ordinates for element in question (in L7, these
are for a particular time)

ATS( ) ,AJdS( )

AIX = floating value of IX

AL = 4= [{r, - r.)/cos o ]
J 1
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ALPH
ALPHA
ALPHY
AM
AMg
ANT
ATALP
B

BE

BERYI ,BEIYI,
BERYJ ,BETYJ

BER( )

BETA

BI(,),BJ(,)
C
CALP

CI(,)

CID( ),CJD( )

CcI18( ),CcIs( )

DBERYI ,DBERYJ,
DBEIYI,DBEIYJ

angle in degrees for element in question

angle in radians for element in question

semi~-angle of closure element in degrees

21t w/g for cone

nto wo/g for closure element

floating valut of NT

|tan «|

portion of increment to displacement during integration

1/2

y/ 2 for Thomson function computation

ber yi etc, for conical element

scaled down magnitudes of Thomson functions;
first computed value of Thomson functions (8x1)

angle in degrees from the horizontal of a line joining
the center of the arc and the top of the first

element (Figure 8)

displacement transformation matrices

non-integer index in Thomson function computation

cos

transformation matrix [Ci]

nodal displacements for top and bottom of element in
question in local co-ordinates (in L7, these are for

a given time) (3x1)

nodal forces for top and bottom of element in guestion

in local co-ordinates (in L7, these are for a given time)
(3x1)

ber‘yi etc. for conical element



DDY
DER(,)

DIC ),DJC )

DIsp
DT

DXERYI ,DXERYJ,
DXEIYI ,DXEIYJ

oDXP

DY

EK(,)

EKII(,) ,EKIJ(,),

EKJI(,) ,EKJJ(,)
EKg

EKT(,)

EQ
EVL( )
EVL1( )
EVT(,)
F(,)

FAC )

. -2 -
- vector of eigenvalues ® ; storage for vector of

37

3 . 2
Et /12(1-v ) for closure element
Thomson function array (2x8)

displacements at top and bottom of cone in global
co~ordinates (3x1)

displacement at a given time during response

- adjustable time increment for time integration

’ ker'yi etc. for conical element

increment of load time factor

horizontal distance from shell axis to center of
arc (Figure 8)

Young's modulus for element in question

- overall stiffness matrix; storage for eigenvectors

[¢]; inverted overall stiffness matrix; array of
joint inertial loads [M] [¢] [w?]; storage for
displacement response of each mode at each time

kii etc. for conical element in question

end closure element flexibility or stiffness

- T
= matrix of eigenvectors [¢]; storage for [¢]  [K];

storage for [¢] [XDEF],; storage for mode shapes
[¢]; storage for inverse of overall stiffness

- Young's modulus for closure element

. . 2
- vector of eigenvalues

1

matrix of eigenvectors [§]; storage for [@ | [¢]
element flexibility or stiffness

time factor of joint loads
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FREQ = arbitrary fraction (1/32nd) of period

FREQ( ) = vector of natural freguencies in cycles per second

GA = acceleration due to gravity

HD = horizontal radius at top of first conical element
(Figure 8)

HH( ) = thicknesses of conical elements at nodes

I, I1 = indices

2 .

INS = NS = code for cone geometry input

X = counter for change in time increment for integration

J = index

J@B = index

K = index

L = index

MAC(,) = modified power of 10 for scaled Thomson functions

MC(,) = power of ten by which Thomson functions are scaled

MJ ,MJM = indices for selecting proper displacements for conical
element

MM = number of time intervals at which response is to be
calculated

MN = MN/NT = number of time intervals at which response is

to be recorded for output; number of Thomson function
argumentg (MN = 1 or 2)

N = number of conical elements

NAF = nodal force/acceleration code

NAS = location (node number) of restrained node

NASA = 3(NAS - 1) + NFRSC = nodal degree of freedom number

after which there are no restraints
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NEP = number of modes to be used in the mode superposition
me thod

NFRSC = number of degrees of freedom at restrained node

NI, NJ = indices for selection of restraint location

NN = 3N + NFRSC = total number of degrees of freedom

N@UT = counter to indicate when response should be recorded

for output

NS = cone geometry input code

NSD = static/dynamic problem code

NS¢@ = end closure code

NT = frequency of time intervals at which response should

be recorded for output (e.g., NT = 3 for every third
interval calculated)

P ) = vector of natural frequencies in radians per second, @
PAIS = Poisson ratio for element in question

PII1S@ = Poisson ration for end closure element

P1(,) = array of element forces in local co-ordinates

due to static loading (Nx5)

P2(,) = array of element forces in local co-ordinates for a
particular unit mode due to inertial loading (Nx5)

P3(,) = array of amplified static element forces in local
co~ordinates at a particular time (Nx5)

T. . R
QKQ(,) = [o] [K][e] = [u?], as a check on eigenvalue
calculations

QT(,) = matrix of eigenvectors (normal mode shapes)
R = radius of element arc

RA = (y, -y )/(x, - x.) = tan @ for element in question
i J 1 J
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RI, RJ = horizontal radii at top and bottom of element,
r, and r,
1 J

R& = horizontal radius TO for end closure element
RR = radius of curvature of end closure element (Figures
3 and 5)
S( ) = element forces in local co-ordinates (5x1)
SALP = sin «
S1, SJ = slope lengths to top and bottom of element, Si and sj
SK& = ZﬂTO times end closure stiffness
s8pC ) = [k | {u } = end closure node moment and horizontal

fo%ce'( x%x1)

S@1( ) = end closure node moment and horizontal force due to
static load (2x1)

8@2( ) = end closure node moment and horizontal forces for a
particular unit mode due to joint inertial loads (2x1)

803( ) = amplified end closure node moment and horizontal
forces due to static effects at a particular time (2x1)

S8 = slope length to the middle of the conical element
in question

5502(,) = array of S@2 vectors for various unit modes (NEPx2)
TC ) = vector of times at which response is given
TIFS = amplification factor for static response at a

particular time

TIME = total time for which response is desired
9 = thickness of end closure element
TP(,) = for a given time, the total element force response

in local co-~ordinates due to inertial loads; for
a given time, the element force response in local
co-ordinates due to both static and inertial loads
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TS@( ) = force response at end closure node at a particular
time due to both static and inertial loads (2x1)

TS@2¢( ) = total force response at end closure node at a
particular time due to inertiasl loads (2x1)

T = average thickness of element in question =
{ti + tJ)/Z; time increment

TU(C ) = nodal displacements in global co-ordinates at g
particular time due to both static and inertial
loads (NNx1)

TU2( ) = total nodal displacements in global co-ordinates at
a particular time due to inertial loads (NNx1)

uld ) = nodal displacements in global co~ordinates due to
static loads (NNx1)

u2( ) = nodal displacements in glcbal co-ordinates for =
particular unit mode due to inertial forces (NNx1)

U3( ) = amplified static displacement response in global
co-ordinates at a particular time (NNx1)

V() = conlcal element displacements in local co-ordinates (5x1)
VEL = velocity at given time during integration

W = welight density for element in question

X = /2 = semi slope length of element

XAC ) = arcs of cones in degrees

XALPH( ) = cone angles in degrees

XBER( ) = Thomson functions (16x1)

XCALP( ) = co8 « for conical elements

XDEF(,) = displacement response of each mode at each time

XE( ) = Young's modulus for cones

XERYI ,XERYJ,
XEIYI XEIYJ = ker y  etc, for conical elements
i
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XEK(,) = element stiffness

XEKT(,) = gymmetrized element stiffness in local co-ordinates
xm(,) = overall mass matrix; storage for [K]

XMAF( ) = [M] {AF} where {AF} is acceleration input

XMIT(,) ,XMIJ(,) )

XMJILI(C,) ,XMIJIC,) = etc. for element

Ma(,) = end closure element mass matrix

XMTII(,) ,XMTIJ(,),

AMTII(, ), KMTII(,) =m ete, for element
XN(C ) = x co-ordinate of node
XNR(C ) = displacement response of all modes in normal co-ordinates

at a given time, i.e., {M(t)}

XNR1( ) = generalized force amplified and modified for a given
time, i.e., {P*(t)/u?}

XN2( ) = ~{ﬁ(t)/ug} for a given time, i.e., XNR - XNRI1

XP = time/factor of load at a given time during integration
XPAIS( ) = Poisson ratios for conical elements

XQFT( ) = generalized force vector ([¢]T {XMAF} if {AF} is

acceleration input; [¢]T {AF} if {AF} is force input

XRI( ) ,XRJ( ) =T and rj for conical elements
XSALP( ) = gin  for conical elements

X81( ),X8J3(C ) =8 and sj for conical elements

XW( ) = unit weights of conical elements
Xwd = unit weight of end closure element
XXEKT(, ,) = array of element stiffnesses

XX = Xi - Xj for element in question
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XXYY = length Of2e%ement in guestion = ((xi - xj)z +
vy —v0%
Y( ) = Thomson function arguments (1x2)
YI,YJ = Thomson function arguments for element in question
YN( ) = y co-ordinate of node
YY =V, T, for element in question
YS = floating value of NS

D. Flow Chart Symbols

Following are the conventions used for the flow chart in this report,
An attempt has been made to keep the flow chart as simple as possible without

loss of detail.

Symbol Meaning

Substitution statement;
subroutine call; basic
computational step; or tape
control statement

Input statement

Output statement

Read and echo print
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TAPE 8

TAPE 2
o
,//
oo
T
Q A < B }_’,
s
or
<0 - - >0
[ — ( A )w
e
vy~ ¢
10

-3

L

Input from tape

Output onto tape

Conditional control statement

Iterative control statement
(do loop)



RETURN

10

INITIALIZE SK22(L1,L2)

45

Unconditional control
statements

Drawing link

Statement label at junction
point

Statement label at substitution
statement

Set all elements of the L1xL2
SK22 array equal to zero, i.e.,

¥
I - 1.1\
| ~(L=rm
| ﬁ
| —— e ~»//}“: 1,L2 “\\
;’ N S
i
! -

,J SK22(1,J) = 0.0 ‘
]
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C(L1,L3)=A(L1,L2)¥B(L2,L3)

Perform the matrix (or vector)
multiplication [C] = [A][B], i.e.,

(@]
2
'
[
S
i

(@]
(@]

____ﬁ___T___
i
|
|
i
i
A
if
!
=

—
i
§
I
|
5
=
i
o
=
o]
A4

C(I,d) = C(1,J) +
A(I,K)*B(K,J)

L



E. Flow Chart

(ﬁ, NS, NS@, NSD, NFRSC, NAS

NI =N+ 1
NN = 3*N + NFRSC

AXPPIS(I),1=1,N)
(XE(I),I=1,N)
(HH(I) ,I=1,N1)

]

N, NS, NS@, NSD, NFRSC, NAS
(XPOIS(I),I=1,N)

(XE(I) ,I=1,N)

|

[ ins = Ns#*Ns l

(XN(1),I=1,N1)
(YN(I),I=1,N1)

400

HD, BETA, R
(XA(I) ,1=1,N)
(XALPH(I) ,I=1,N)

300
(XSI(I),XSJ(I),1=1,N)
I (XALPH(T) ,T=1,N)
310
i T
NSO = 0 ) >
F
i
/ T
NSD = 1 )
F
i
o ) e,
NSg = 0 ) -
12
<
\W
»

GA, (XW(I),1=1,N), |
[

| NEP, NAF

2
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MAIN{(continued)

<%>

CALL 11
CALL L2
CALL L3

NAF = 0

CALL L5

350 {

|carL 16 [

NSD = 1

SUBRZUTINE L1

|1N1T1ALLZE EKG(2,2)

NS@ = O ) L
T

P

Rg = RR*SIN(ALPHO/57,29578)

PYIM = 1.0 + POISQ

PGIM = 1.0 - P@ISE

DDg = E@*T@**3/(12,0%PYTIP*
PYIM)

EKO (1,1} = R@/DD@/PIP

EX0(2,2) = PYINM*RG/(EO*TQ)

1
H

|

/
| CALL INVERT(EK®,2,2,M6,C6)
j

[ifEKO(EyJ)91:1§2)?J:¥f2)“.j

RETURN




SUBROUTINE L2

YS = NS
INS = NS*NS
¥
INS # 1 ) ;
F
]
( o ).
NS = 0 )
T
F
¥

DY = HD - R*YS*C@S(BETA/
57.29578)

Dy /////M//,,w/””

II11 = 11 + 1

PPIS = XPYIS(II)

E = XE(II)

TT = 0.5 (HH(II) + HH(II1))

RTP = SQRT(3.0%(1.0 - P@IS**2))

| FRT2 = 2.0*SQRT(RTP)

ALPH = XALPH(II)
ALPHA = ALPH/57.29578
CALP = C@S(ALPHA)
SALP = SIN(ALPHA)

RA = SALP/CALP

49

YY = YN(II) - YN(II1)

X% = XN(II) ~ XN{IIl)

XXYY = SQRT(YY*YY + XX*XX)
RA = YY/XX

CALP XX/XXYY

SALP YY/XXYY

ATALP = ABS(RA)

i

i

!me“\
(caLp <0 ) Lo
T

F

¥
ALPHA = ATAN(ATALP) ]

]

lALPHA = 3.1415926 ~ ATAN(ATALP*

30
1

ALPH = ALPHA*57.29578
XALP(II) = ALPH

XSI(II) = ABS(XN(II)/CALP)
XSJ(I1) = ABS(XN(II1)/CALP)
420

/

[ XCALP(II) = CALP
’XSALP(II) = SALP

A B
("1Ns = 1 e
N4 T \i
F
]
SI = XSI(I1)
SJ = XSJ(II)
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L2{(continued)

X = R*¥SIN(XA(II)/2.0/57.29578)
RX = R*C@S(XA(II)/2.0/57.29578)

S8 = (DY/SALP + RX¥YS)*RA
907
|
(}j&»{\ngﬂ - 90.0 :}-m«1:§>
< 0 > 0
=0
|
"THIS IS A CYLINDRICAL
ELEMENT" —
3
INS # 1 ) -
] T
F
1SI = 8S - X
ST = 88 + X
' XSI(II) = SI
XSJ(I1) = SJ
|
[YAT = FRT2¥SQRT(RA*2.0/TT) |
6

SJ = -85 -X
XSI(II) = SI
XSJ(11) = 8J

J

l

YAL = FRT2¥SQRT(-RA*2,0/TT)

6 ¥

V(1) = YAT*SQRT(SI)

Y(2) = SQRT(SJ)*YAI

CALL THO(Y,2,XBER)

CALL FLEKC@(XBER,Y,E,POIS,ST,
SJ,TT,ALPH,CALP , SALP  XEK)

-

XXEKT(11,J,K) = XEK(J, K}

088

REWIND 2

TAPE 2

(((XXEKT(I,J,K),I=1,N),J=1,5),
K=1,5)

(XCALP(I) ,1=1,N)
CXSALP(I)Flzle),///”/x/MM/N”ﬁ
/
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SUBROUTINE TH@(Y,MN ,XBER)

PI = 3.1415926
DELT = PI1/8.0

I

I |
SQRT(2.0) ! IJ =1 + 4

i

ROOT =
MNE = MN*8.0 MA(I) = MC(JOB,1) - MC(1,1)
T + 8
4 T MA(IJ) = MC(JOB,TJ) + MC(1,1)

<iY(MM) < 27.0j}~¢(§§> -8

I
<i 201 |
= [
J¥B = 1,MN | KJGB = K + (J@B - 1)%8
v ——-1 XBER (KJOB) = BER(K)*
10, O%*MA (K)

YD = Y(J@B)/ROGT

CCA = COS(SU(YD - DELT)) 4
SCA = SIN(SU(YD - DELT))
CCB = COS(SU(YD - DELT)) @
SCB = SIN(SU(YD - DELT))

BE = Y(JU@B) /ROOT

i
| CALL XXP(E,BE,NB)

80

!

Compute Thomson Functions by
the asymptotic formulation
(Appendix C.2) ufing E in
place of exp(y/22).

Continue according to Appendices
C and D. The remainder of the
subroutine is straightforward.

‘ IJ =1 + 4
- ———| CALL XC(MBA,BER(IJ) ,MC(J@B,IJ))
CALL XC(MB,BER(I),MC(J@B,I))

y
(BER(I) ,MC(JOB,I),I =

1
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SUBRQUTINE XC(MA,B,M)

|M = ma
y T
mm-<1§1:% 1.0 p—s
F

FUNCTI@N SU(ARG)

T
-w~m~¢{:ARG < 314150f>--*~w~_~w~

F‘

ARG = ARG - 3141.5926

-t ]

T
¥
M=M-1
B = 10.0%*B
L]

SUBROUTINE XXP(E,BE,MB)

B = BE/2.3025851
MB = FIX(B)

E = 10,0%*%(B - FLOAT(MB))

¥

SU = ARG

RETUR}



SUBR@UTINE FLEKC@(XBER,Y,E,
P@IS,S1,SJ,TH,ALPH,
C@SALP , SINALP, F)

BERYI = XBER({1)
BEIYI = XBER(2)
DBERYI = XBER(3)
DBEIYI = XBER(4)
XERYI = XBER(5)
XEIYI = XBER(6)
DXERYI = XBER(7)
DXEIYI = XBER(8)
BERYJ = XBER(9)
BEIYJ = XBER(10)
DBERYJ = XBER(11)
DBEIYJ = XBER(12)
XERYJ = XBER(13)
XEIYJ = XBER(14)
DXERYJ = XBER(15)
DXEIYJ = XBER(16)
YI = Y(1)

YJ = Y(2)

Compute the qguantities in
Appendix E, Equations (A5-5)
and the minors d and

the determinate g% Equation
(AB-4)

<:ABS(DEL) < 1.0E-18

F

|

Compute the quantities in
Equation (A5-3) and in turn
the flexibility coefficients
in Equation (A5-2)

| >0

<0
(::}ﬂw"{:goao - ALPHj>~—-><:i>

= 0

Y
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"THIS IS A CYLINDRICAL ELEMENT"

B |F(1,5) = -F(I,5)

DA(1) =
DA(Z2) =
DA(3) =
DA(4)
DA(5) =
DA(B) =
DA(7) =
EA(1) =
EA(2) =
FEA(3) =
EA(4) =

SJ/S1
F(1,2)/F(2,1)
F(3,2)/F(2,3)

= F(1,4)/F(4,1)

F(1,5)/F(5,1)
F(3,4)/F(4,3)
F(3,5)/F(5,3)
F(1,3)/F(3,1)
F(2,4)/F(4,2)
F(2,5)/F(5,2)
F(4,5)/F(5,4)

(DA(I) , I

"SYMMETRY CHECK"

(EA(I) ,I =

1,7)
1,4)

it

((F(I,J)

,d = 1,5),1 =
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FLEKCO (continued)

i,

®

F(1,3)
F(3,1)
F(2,4)
F(4,2)
F(1,2)
F(2,1)
F(3,2)
F(2,3)
F(1,4)
F(4,1)
F(3,4)
F(4,3)

ononon

il

won oy

I

(F(1,3)+F(3,1))/2
F(1,3)
(F(2,4)+F(4,2))/2
F(2,4)
(F(1,2)+DA(1)*F(2,1))/2
F(1,2)/DA(1)
(F(3,2)+DA(1)*F(2,3))/2
F(3,2)/DA(L)
(F(1,4)+DA(1)*F(4,1))/2
F(1,4)/DA(1)
(F(3,4)+DA(1)*F(4,3))/2
F(3,4)/DA(1)

v

<:ALPH

< 30.0“>~j:**%zj>

34
, T
(_ALPH < 120,02} -

F

] T
(iALPH >>150=c{>~ﬁ—*ﬁga>

F

l

PF(5,1) = F(1,5)/DA(1)
F(5,2) = F(2,5)
F(5,3) = F(3,5)/DA(1)
F(5,4) = F(4,5)

38
L ]

CALL INVERT(F,5,5,M5,C5)

v

T
31 |
F(1,5) = DA(L)*F(5,1)
F(2,5) = F(5,2)
F(3,5) = DA(1L)*F(5,3)
F(4,5) = F(5,4)
32
:E\
(_aLpH < 60.0
T

33
F(1,5) = (F1,5)+DA(1)*F(5,1))/2
F(5,1) = F(1,5)/DA(1)
F(2,5) = (¥F(2,5)+F(5,2))/2
F(5,2) = F(2,5)
F(3,5) = (F(3,5)+DA(1)*F(5,3))/2
F(5,3) = F(3,5)/DA(1)
F(4,5) = (F(4,5)+F(5,4))/2
F(5,4) = F(4,5)

((F(1,J),J = 1,5),1 =1,5)




SUBR@QUTINE L3

REWIND 2

TAPE 2

(((XXEKT(I,J,K),I = 1,N),J =
1,5),1 = 1,5)
(XCALP(I),I = 1,N)

(XSALP(I),I = 1,N)

I XRI(I) = ABS{XSI(I)*XCALP(I))
XRJI(I) = ABS(XSJ(I)*XCALP(I))

[REWIND 2 |

TAPE 2

(((XXEKT(I,J,K),I = 1,N),J =
1,5),K = 1,5)

(XCALP(1),I = 1,N)

(XSALP{1),I = 1,N)

(XRI(I),I = 1,N)
(XRJ(I),T = 1,N

T+ 1
—-—=J = L1,NN >
/

“[XM(IsJ)

| INITIALIZE XM@(3,3)

{ T
NS@ = 0 30
F

/
AM@ = 3.1415926*TQ*XWG,/GA
XM¢(1 1) = R@#**4%AMG/12.0
XM@(2,2) = RO**2%AN@/2.0
XM@(3,3) = R@*+*2%AMd
XM@(1,3) = -R@#k3%AMG/4 .0
XMZ(3,1) = XM@(1,3)

1
X
30

CALL SHKMT(XXEKT,XRI ,XRJ,XSALP,
XCALP ,XW,GA ,HH , EK@ , XM@ , RS ,
N,NSD, EK, XM, MN3 ,MAXN ,MN1 ,NS@)

/
[§v1 = Ny - 1

! T
NSD = 1 305

F
¥

CALL SHEKXM(XM,NFRSC,NAS,NN MN3)

v

(XM(T,J) + XM(J,1))/2.0

f

i
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L3 (continued)

I

|

| /

! 1

|

| /
f"mm J = 1,13 >
|

L

305

v

MN3)

CALL SHEKXM(EK,NFRSC=NAS NN,

|

1

—— e m— e ———
1
i
i
o
i

L Jm(r,0) = (BK(1,5)+EK(I,1)) /2.0

¥
—-———=>1 = 2,NN »
y

1o =1 -1 |

e e —
i
i
i
Oy
il
—t
i
U

SUBRQUTINE SHEMT(XXEKT,XRI,

XRJ ,XSALP | XCALP ,XW,GA , HH
EK@ , XM@ R ,N ,NSD, EK , XM,
MN3 ,MAXN ,MN1,NS@)

|n13

= (N + 1)*3 J

|INITIALIZE SK@(3,3) ’

T
NSg = 0 ) L

F

RN

S/

2
= 1

3
S

[

SE@(I,J) = ER@G(I,J)*2,0%

3.1415926%*RY

i

INITIALIZE XM(N13,N13)
INITIALIZE CI(3,3)
CI(1,1) = -1.0

)



SHEMT {continued)

INITIALIZE EK(N13,6N13)
INITIALIZE BI(5,3)
BI(1,1) = -1.0

BI(3,2) = -1.0
INITIALIZE BJ(5,3)
BJ(2,1) = 1.0
BJ(4,2) = 1.0

INITIALIZE AI(3,5)
AI(1,1) = -1.0
AI(2,3) = -1.0
INITIALIZE AJ(3,5)
AJ(1,2) = 1.0
AJ(2,4) = 1.0

i

RI = XRI(I)
RJ = XRJ(I)
CALP = XCALP(I)
SALP = XSALP(I)

57

27T
()
%
W o= XW(I)
AL=ABS({RJ - RI)/CALP)
11 = 1 + 1

TT = 0.5(HH(I) + HH(I1))
AM = 2.0%3.1415926%*TT+W/GA

|

Calculate the submatrices of the
element mags matrix,

XMTII, XMTIJ, XMTJI and XMTJJ,
by straightforward application
of Appendix I, Equations (A9-2)

XMTII, XMTIJ J
XMTIT, XMTJJ "

302

RI = RI*2.0%3,1415926
RJ = RJ*2.0%3,1415926

¥
L=1,5 >
/

XEKT(1,L) = RI*XEK(1,L)
XEKT(2,L) = RJI*XEK(Z,L)
XEKT(3,L) = RI®*XEK(3,L)
XEKT(4,L) = RJ*XEK(4,L)
XEET(5,L) = RJI*XEK(5,L)

XEK
RI, RJ —
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SHEMT (continued)

)

v

BI{5,2) = -CALP
BI(5,3) = SALP
BJ(5,2) = CALP
BJ(5,3) = ~SALP
A1(2,5) = -CALP
A1(3,5) = SALP
AJ(2,5) = CALP
AJ(3,5) = ~SALP

EKBI(5,3) = XEKT(5,5)%
BI(5,3)

m
EKBJ(5,3) = XEKT(5,5)%
BJ(5,3)

m
EKII(3,3) = AI(3,5)%
EKBI(5,3)

m
EKIJ(3,3) = AI(3,5)%
EKBJ(5,3)

m
EKJI(3,3) = AJ(3,5)%
EKBI(5,3)

m
EKJJ(3,3) = AJ(3,5)%
EKBJ(5,3)

EKII, EKIJ

1 .
NSD = 1 @

EKJI, ERKJS

k@;)

CI(2,2) = SALP
CI(3,3) = SALP
CI(2,3) = CALP
CI(3,2) = -CALP

!

+ m
XMCII(3,3) = CI (3,3)%
KMTII(3,3)

m
XMCIJ(3,3) = CI'(3,3)*
XMTIJ(3,3)

m
XMCJIT(3,3) = CI'(3,3)%
XMTJII(3,3)

t m

XMCJJ(3,3) = CI (3,3)%
XMTJIJ(3,3)

m

XMII(3,3) = XMCII(3,3)%

CI(3,3)

m
XMIJ(3,3) = XMCIJ(3,3)%¥
CI1(3,3)

m
XMJII(3,3) = XMCJI(3,3)*
CI(3,3)

m
XMJJ(3,3) = XMCJIJI(3,3)%
CI(3,3)

XMIT, XMIJ

X:NIJI 3 XM{E_T////M

SN



SHEMT (continued)

11T = (I - 1)*3 + J
I2J = I#*#3 + J

I2K = I#3 + K

XM(I1J,11K) = XM(I1J,I11K)
XMIT(J,K)

XM(I1J,12K) = XM(I1J,I12K) +
XMIJ(J,K)

KM(I2J,11K) = XM(I2J,11K) +
XMJI(J,K)

XM(I2J,12K) = XM(I2J,12K) +
KMIT(JT,K)

i

|
i
|
i
J
; I1K = (I - 1)*3 + K
|
|
}
|

e = XM T LK) = XMO(JT,K) o+ XMO(J,K)

: RETURN
P J =1 3 3

I1J = (1 - 1)%3 + J
I12d = 1#3 + J

|
1,3

i

I1K = (I - 1)*3 4+ K

I2K = I#3 + K

EK(11J,11K) = EK(I1J,11K)
EKII(J,K)

ER(I1J,I2K) = EK(I1J,12K)
EKIJ(J,K)

EK(IZJ,11K) = EXK(I2J,11K}
EXKJI(J,K)

EK(I2J,12K) = EK{I2J,11K)
ERKJJ(T,K)

+

e Hini
| ?

f

e

i
+

|

4

o
Ne]



SUBROUTINE SHEKXM(XM,NFRSC, SUBROUTINE L4
NAS ,NN,MN3)

NNN = -NN
NE = -NEP

[NAsa = (NAS - 1)*3 + NFRSC

”””“’<<E:E:E,NN |[REWIND 8

R

1
NASA = I }—— TAPE 8
. ((XM(I,J),I = 1,NN),J = 1,NN)

‘w/"

CALL H@WF (NN ,MN3 ,NNN,XM, EVL1,

- EKT,A,B,W1,W2)
— == J = 1,NN
TN

| (EVL1(I),I = 1,NN) 1
( NASA = T )
F

o
INF =J+ 3 - NFRSCI NJ = J| NN, MN3 , MN3 , MN3)

Y

CALL MULTZ(EKT,EK,XM,NN,NN, ‘

—y

lREWIND 9

iy

-
|
l
|
|
|
|
!
|
|
|
|
[
i
|
|
!
|
|
|
|
l
I
l
|
|
|

ﬁ_”_kM(Iﬂn = XM(NI,NJ) [

TAPE 9

((EK(I,J),I = 1,NN),J = 1,NN)

\\M—-_‘r//—__

CALL MULT1(XM,EKT,EK,NN 6NN,
NN,MN3 ,MN3 ,MN3)

L— —{EVL1(I) = 1.0/(SQRT(EVL1(I)))




L4{continued)

L _1XM(I,J) = EVLI(I)*EK(I,J)*
EVL1(J)

- —|xmcr,n = XM(I,J)/AX,

T

-1 = 1,NN£>>

R

I
[
|
|
|
[

gn__{%M(I,J) = (XM(I,0) + XM(JT,1))

/2.0
“‘C‘“ﬁ“/
g =1 -1 l

I

I

|

1

| w
J~~~—~<;g'::u1J >
| 1

l

-— P, D = w1 |

EVT, A

CALL HOWF(NN MN3,NE,XM,EVL,

,B,W1,W2) '

—1 = L
——— I = 1,NEP

I
l
I
[

- —{EVL(I) = EVL{I)*AX

§

| (EvL(1),

\\mm

— 1 =

—— - == J =

I =1,NEP)
SNEP)

A

1,NN >

1,NEP

/

|
———|EVT(1, D

= EVL1(D)*EVT(I,J) |

CALL MULTL(EKT,EVT,QT,NN,NN,
NEP ,MN3 ,MN3 ,MNEP)

é

A3

"THE FIRST NEP MODE SHAPESWAI

ARE
L\\__.

|caLL pr1

NTM(QT,NN,NEP ,MN3) |

]REWIND 9

[

TAPE

9 |

((EK(I,N1I

(€

AN
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L4(continued)

5

CALL MULT2(QT,EK,EKT,NN,NEP,
NN, MN3,MNEP,MN3)

CALL MULT1(EKT,QT,QKQ,NEP,
NN,NEP ,MNEP ,MN3 , MNEP)

CALL PRINTM(QKQ,NEP NEP MNEP)

[REWIND 8

]

TAPE 8

((XM(1,J),I = 1,8N),J = 1,NN)

I = 1,NEP >

y

P(I) = SQRT(EVL(I))
FREQ(I) = P(I)/6.2831852

:

(FREQ(I),I = 1,NEP
(P(1),I = 1,NEP)

SUBR@UTINE MULT2(A,B,C ,NIN2,
N3,MN1,MN2 MN3)

|
!

le(r,9 = 0.0

i
K = 1,NlL

|
!

A
C(I,J) = C(1,J) + A(K,I)*
B(K,J)

e

!
!

RETURN

SUBRGUTINE MULT1(A,B,C,N1,N2,
N3 ,MN1,MN2,MN3)

o g N
1= 1,N1
=y

I
I

a
|

!

|

I

|

|

-

|

}

[ _ e, d) = C(1,3) + A(L,K)*
B(K,J)
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SUBROUTINE L5

@
MM, NT
TIME [iiffPONSE FOR EACH M@DE ARE"

(MMl = mm o+ 1 | r
| CALL PRINTM(XDEF ,NEP,MN MNEP) |

\
(AF(1),I = 1,N8) ]

(FA(I),1 = 1,MM1) TAPE 9

(AF(I1),I = 1,NN)
(XMAF(I),I = 1,NN)

‘¥¥&§T ((XDEF(I1,J), I = 1,NEP),J = 1,MN)
(AF(I),I = 1,NN) (FACD, T = 1,MM1) ‘
(FA(I),I _ T—

EKT(NN,MN) = QT(NN,NEP)¥

A = FLpATGED XDEF (NEP ,MN)

TT = TIME/MM !

ANT = FLPAT(NT) o 1w O\

! I = 1,MN >
_ T ‘I' | |
NAF E @ | AT = FLOAT(I)
F T T T(I) = TTHAI®ANT
‘ J

XMAF (NN) = XM(NN,NN)FAF(NN)

) TT Mwﬂwﬂwj

‘ (T(I),I = 1,MN)
—— /

XQFT(NEP) = QT'(NN,NEP)% 7

! KMAF (NN) "DISP. RESP, ARE" ,,f-w’J‘
o \\..___.
1
39 CALL PRINTM({EKT,NN,MN MN3)
XQFT(NEP) = QT (NN ,NEP)¥ ’
AF(NN) TAPE 8
- (XMAF(I),I = 1,NN)

(XQFT(1) ,I = 1,NEP) "
CALL RESP@N(P,XQFT,FA,XDEF, h—
NEP ,NT,MM1, TT ,MNEP ,MAXP)

]MN = MM/NT ]

i




o
D

SUBR@UTINE RESP@N(W,XM,P,X NM,

NT,L,TT,MAXLD,MAXRP)

160
N = 1,NM

A

IX =1
DT = TT
FREQ = 2,0%3,1415926/W(N)/32.0
DT < FREQ 1 o
v
F
|
IX = IX*4
DT = DT/4.0
|
» |
Cl = DT /2.0
C2 = C1*DT/3.0
C3 = C2%2.0
K =1
NGUT = NT
C4 = W(N)**2
F=1,0+ C2%C4
DIsSP = 0.0
VEL = 0.0
ACEL = P(1)*XM(N)
IH =1 -1

AIX = FLOAT(IX)
ITX = 1IX + 1

:

160
I =1,10

I1 =1 + 1
DXP = (P(I1) - P(I))/AIX
XP = P(I) + DXP

A = VEL + CI*ACEL

B = DISP + DT*VEL + C3*ACEL
ACEL = (XP*XM(N))/F -~ (C4/F)*B
VEL = A + C1*ACEL

DISP = B + C2%ACEL

XP = XP + DXP

L B
Quwur 7 )"

F

!

X(N,K) = DISP
K=K+ 1
NGUT = NGUT + NT




SUBROUTINE L6

| REWIND 2

\
" TAPE 2

(((XXEKT(I,J,K),I = 1,N),J =
1,5),K = 1,5)

(XCALP(I),1 = 1,N

(XSALP(I),I = 1,N)

(XRI(I),I = 1,N)

(XRI(I),I = 1,N)

{ F
NSD‘M 1 T

|

65

AF(J) = XMAF(J)

310 3

CALL INVERT{EK,NN,MN3,6M4,C4)

i

UL(NN) = EK(NN,NN)¥AF(NN) |

¥

(U1(T),J = 1»§§2,m_l

1

CALL SRES(U1,XXEKT,XCALP XSALP,
EK@,NAS ,N,NFRSC,P1,S@1 ,MAXN,

MN3)

TAPE 8

((EK(I,J)I = 1,NN),J = 1,NEP)

(DT = 10,0 = 1)

Sg1

CALL PRINTM(F1,N,5,MAXN)

REWIND 9

]

TAPE 9

((EK(I,II = 1,NN),J = 1,NN}
(AF(I),T = 1,NN)

INITIALIZE AI(3,5), AJ(3,5)
AI(1,1) = -1.0
AT(2,3) = -1.0
AT(1,2)

1.0
AJ(2,4) = 1.0

(XMAF(I}, I = 1,NN}

&

NASM = NAS - 1
NASA = (NAS -1)#3 + NFRSC
NFRSCP = NFRSC + 1




L6 (Continued)

()
INITIALIZE CI(3,3) l
CI(1,1) = 1.0

710 > 800
J = 1,N B
ERLE RS TITD
1 s —

C1(3,2) = XSALP(J) nl {

CI1(3,3) = XSALP(J) } MJ = M + J*3

CI(2,3) = XCALP(J) L __IMJIM = M + JM*3

CI(3,2) = -XCALP(J) ‘DI(M) = UL{MJIM)

AI(2,5) = -XS8J(J)/XSI(J)*XCALP(J) CDI(M) = UT(MT)

AT(3,5) = XSJ(J)/XSI(J)*XSALP(J)

AJ(2,5) = XCALP(J)

AJ(3,5) = -XSALP(J) 95

AIS(3) = AI(3,5)%P1(J,5) (\<% ﬂﬂﬂﬂﬂﬂ SOQW >0
ey Pl STOP ja— J i@—.ﬁloe}

AJS(3) AJ(3,5)*P1(J,5) N N S

= 0

i
M=J -1 ‘

F——=( M =1,3
]
| MJ = NASA + M
——— DI(M) = DJ(M)
DI(M) = UL(MI)

|

N —KM = ;ﬁ /égt‘

{

| MIM o= M o+ JME3 |
DI(M) = U1(MJIM)

_._-»<M = 1,NFRSC :

! MJ = (J - 2)#3 + NFRSC + M}
l MJ = M + J*3 . IMJM = (J -1)%3 + NFRSC + M
L”"LJJ(M) — 1) ‘ DI(M) = UL(MJ)

T

T

M’




L6 (continued) SUBRGUTINE SRES (U1 ,XXEKT,
XCALP , XSALP ,EK® , NAS N,
NFRSC,P1,S@ MAXN ,MN3)

NASA = (NAS - 1)%3 + NFRSC

95 NFRSCP = NFRSC + 1
CIS(3) = C1(3,3)%a15(3)
S@(2) = EK@(2,2)%U1(2)
cIs(3) = c1(3,3)¥aI8(3)
CID(3) = CI(3,3)¥DI(3) INITIALIZE BI(5,3), BJ(5,3)
BI(1,1) = -1.0
CID(3) = ¢1(3,3)¥pI(3) BI(3,2) = -1.0
BJ(2,1) = 1.0
] BJ(4,2) = 1.0
(J,(CIS(K) ,K = 1,3),)CJIS(K),
K =1,3) \

/
(CID(K) ,K = 1,3) 10
(CID(K) ,K J=1,N
]

BI(5,2) = ~XCALP(J)
BI(5,3) = XSALP(J)

BJ(5,2) = XCALP(J)
BJ(5,3) = -XSALP(J)
TAPE 2 IM = J - 1

NASM = NAS - 1

< 0 __ | >0
@-~ J - NASM 102

= )

((P1(1,J),I = 1,N),J = 1,5)
(891(1),1 = 1,2)
(U1(1),1I = 1,NN)

MIM = M + JM*3
DI(M) = UL(MJIM)

)




SRES (continued)

= M = 1,NFRSC

| MJ = M + J*3

DI(M) = UL(MJ)

- M:}WMEPﬁ>>

1

———dbsaw = 0.0 VJ

MJ = M + J*3

MIM = M + JM*3
DI(M) = UL(MJIM)
DJ(M) = UL(MJ)

i

MJ = NASA + M
DI(M) = DJ(M)
DIJ(M) = UL(MJ)

106
Fo— =M = 1,3
I st S
[ r
: MJ = (J - 2)%3 + NFRSC + M
| MJM = (J - 1)%3 + NFRSC + M
T DI(MY = UMD
DJ(M) = U1 (MIM)
95 L
v(5) = B1(5,3)%D1(3) + !
v n |
BJ(5,3)*DJ(3) |
S(5) = XXEKT(J,5,5)%V(5) !

|

——rop = sw

-

10
CONTINUE
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SUBR@GUTINE L7

TAPE 2
[l = MM+ 1 (((XXERT(I1,J,K),I = 1,N),J
' = 1,5),K = 1,5)
(XCALP(I),I = 1,N)
TAPE 2 (XSALP(I),I = 1,N)
((ER(I,J),1 = 1,NN),J = 1,NN) (XRI(I),I = 1,N)
(XRIJ(1),I = 1,N)
((PL(I,3),1 = 1,N),J = 1,5)
(8@1(1),1 = 1,2)
REWIND 8 U1(I),I = 1,NN)
((ERT(T,J),I = 1,NN),d = 1,NN)
TAPE 8 y
EWIND
((XM(I,3),I = 1,NN),J = 1,NN) REWIND 8

(XMAF(1) ,I = 1,NN
(XQFT(1),I = 1,NEP)
((EKT(I,J),I = 1,NN),J = 1,NEP)

i

XM(NN,NN)Q
EKT(NN ,NEP)

EK(NN,NEP)

il

i

U2(NN) = EKT(NN,NN)*EK(NN,I)

CALL SRES(U2,XXEKT,XCALP,
XSALP,EK@,NAS N, NFRSC,
P2,S02 ,MAXN MN3)

TAPE 8
——=—|EK(J,I) = EK(J,I)*P(I)*P(I) ] ((P2(J,K),J = 1,N),K = 1,5)
‘ (U2(K) ,K = 1,NN)
/ o ““M,ﬂmwf””’ﬂﬂwmﬂwﬂnﬁm

[REWIND 2 J

———| 8802(1,J) = SG2(J)




/ TAPE 9

70

1.7 (continued)

((EK(I,J),I = 1,NEP),J =
MN)
(FA(I),I = 1,MM1)

INITIALIZE AI(3,5), AJ(3,5)

AI(1,1) = -1.0
A1(2,3) = -1.0
AJ(1,2) = 1.0
AJ(2,4) = 1.0

NASA = (NAS - 1)*3 + NFRSC
NFRSCP = NFRSC + 1
NASM = NAS - 1

INITIALIZE CI(3,3)
CI(1,1) = 1.0

|

I = 1,MN

IT = I#NT + 1
TIFS = FA(II)

]

1,NN >

SO——

U3(J) = UL(J)*TIFS

| 8@3(J) = TIFS*S@1(J)

= —| P3(J,K) = TIFS*P1(J,K)
o J = 1,NEP >
l
| J
l XNR(J) = EK(J,I)
L | XNR1(J) = XQFT(J)*TIFS/P(J)/
P(J)

XN2(J) = XNR(J) - XNR1(J)

5

INITIALIZE TP(N,5)
INITIALIZE TU2(NN)

A

| REWIND 8

§

507 N

J = 1,NEP




i
|
!
[

L7 {continued)

©

PR

~ TAPE 8

Loy = vz + TU2(dH

[((PZ(II,JJ)?II = 1,N),JJ = 1,5)

(U2(11),II = 1,NN)

XN2(J)

TSG2(2) = SSE2(NEP,2) PXN2(NEP)

4
é

- TS6(D) = TSP2(J) + SP3(I)

1

()

|

(TUCJY ,J = 1,NN)

"SHELL INTERNAL RESPONSES
ARE"
TS¢

¥

ICALL PRINTM(TP ,N,5 ,MAXN)

AI(2,5) = ~XSJ(J)/XSI(J)*
XCALP(J)
XSJT(J) /XSI(J) *
XSALP(J)
AJ(2,5) = XCALP(J)
AJ(3,5) = -XSALP(J)
CI(2,2) = XSALP(.J)
CI(3,3) = XSALP(J)
CI(2,3) = XCALP(J)
CI(3,2) = -XCALP(J)

AI(3,5) =

71
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L7 (cont

inued)

7

AIS(3) = A1(3,5)%*TP(J,5)

AJS(3) = AJ(3,5)%TP(J,5)
|

[om =3 -1

I
l
‘ g
b Jmam = Mo+ Jm#3
DI(M) = TU(MJM)
m———= = 1,NFRSC >
i
i
i
I e
DI(M) = TU(MJ)
- e NFRSCP,5>>
! w
|
!
L——-pJja) = 0.0

DI (M)
DJ (M)

Md = M + J*3
MJM = M + JM*3

TU(MIM)
TU(MT)

MJ =

b DI (M)

- ————

DJ (M)

NASA + M

DJ (M)
TU(MJ)

M= 1,3
MJ = (J - 2)*3 4+ NFRSC + M
|MJM = (J - 1)*3 + NFRSC + M
DI(M) = TU(MI)
DI (M) = TU(MJIM)




1.7 (continued)

95

I

CIS(3) = c1(3,3)PA15(3)

CIS(3) = c1(3,3)¥a35(3)

i

i

CID(3) = cI(3,3)¥D1(3)

cID(3) = ¢1(3,3)%pI(3)

i

A

K=1,3)

(CID(K),K
(CID(K) ,K

nn

205
CONTINUE

73
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i0¢
20

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

55 ]

FORTRAN Listing

4XE(25]

MATN
L&Méﬂx

Ngg Sdﬁ‘Sﬁy%%%bhﬁ¥HS?M% @"ﬁ N&Fyﬂ£X¥pﬁ%3 MM}9§%§D éﬁxpyﬁﬁy@%gﬁ?@

EH&96:?A RyRR,TO,ALPHO,POISO,EDy XW0E,6A,

IAM{ 7B TR JEKITB,78),P{T781,

FORMAT {614}
FLJ%{*?&T %*ﬂ‘kiﬂogf

FORMAT 15X, Z23HN NS, NS0, NSDy NFRS
FORMATIOX  AHXALPH=6E106.8/{11X
FORMATIB X HHXPUL aﬁﬂi§éaﬁf€iiX$hw
ibngQ%XQE”gﬁ

?3R@A?€§¥gfﬁX£ﬂ
FORMATIS5Ky 3HMH EZFQ 474

FORN Q?ﬁﬁig;wﬁﬁﬁgiifagi 5%7@

FORMATIOSX , 3HXA=LEL1H-8/ 18X, é*ig 7}
Jt)tiaaui€ﬂxyé?38
e Tl ALPHD,

FORMATIBHXST ¢ X5
FORMAT (55X 21HRR
FORMAT [(BX;4HAWO=EZ20.8)
FORMAT (5K 3HGA=E20.8)

FORMATI5X s 3HXW=06E18.8/(8X,6E18.81)

FORMAT [5XyBHNEP:NAF=2141]

FORMATISEX g 3HAN= Qtiomffﬁﬁég%t:Q
/IRA,6E18

FORMATIB K AHYN=6F18.8
FORMATIIHLY

PRINT 240

MAXN=25

MN3=T8

MNl=256

MNEP=T8

MAXP=T78

READ 10y NyNSNSOpNSD,NFRSCNAS

N1=N+1

NMN=N#3+NFRSC

READ 30, {(XPOIS{iisI=ly
READ 20, (XE{I¥sI=1,H)
READ 30, QHF§L%9§-§9%1§
PRINT 90y X?§S§\SL NSDy NF

PRINT 110, E&?digii?yixi\f

PRINT 120, [XElIYeI=1gN]
PRINT 130, (HH{I),I=1,N1]
INS=NS#NS

IF (INS .EQ. 1) GO TD 400

IF {NS EQ. ©) GO T4 300
READ 203 ixwii)?iilgmli
READ 20 LYNII};I=1,N1)
PRINT 2205 (XnN{L}yI=1.N1)
PRINT 230, (¥YNIT},1=1,N1}
GO TO 310

20, 1XS51I111}
160y (XSIHI
30, {(XALPHII
100y gK%LQH

S peed et h

T
¥

H

HH{ZO)?Xﬁi éJ}vaJi?b}9XﬁQ£5}&”K

1ME

XQLPH€2§§3X?B’S£2
{2521 XAL25),XN{26)



Yy

o

G0 7O 310
400 READ 40, HD,BETA,R
READ 3@?5XA{I??1§17%3
PRINT 140, HD,BETAR
FR;M? 15@9 (XAQi)yixigﬂ)
READ 30, (XALPHII},1=1,8}
PRINT 100, IXALPHII),I=1,N)
310 IF (NSO .EQ. 0O} GO 7O 320
READ 505 RR,TO,ALPHO,POISO,ED
PRINT 170:RRyTO, ALPHO,POISDED
320 IF (NSD -EQ. 1} 40 TO 340
I+ (NSO EQ. ©) GO0 TO 3220
READ 80, XWD
PRINT 180y %uWD
330 READ 6Dy Ga
READ 289 @X%EI??Z:%QM§
READ 70, NEP,NAF
PRINT 190, GA
?QE%? ZQGy QXW§§}$I:1YN§
PRINT 210 NEP,nNAF
340 CALL L1
CaiLl L2

CALL L3
IF (NSD -£Q. 1} GO 7O 350
CALL L&

IF INAF EQ. ©) GO TO 360
CaLL LS

350 CALL L&
IF (NSD -EQ. 1) GO TO 360

CaLe LY
360 GO TO 250
END

SUBRDUTINE (1
COMPUTATION OF DISC STIFFNESS FOR END CLOSURE
LCOMMON
lwg%SyN$UpNSDVN?RS£?%ﬁﬁgﬁﬂgﬁgpgNﬁFyM&XM?%ﬁEQ%Mig%Ngﬁg%£X?$%%9%
2HD?§§?Q9R§Q%?TgyAL?%QWPSiSG3§S9X%G$GA?Tiﬁgg )
3XMITB, 781 :EKITB, 7B} sP(78), AALPHIZD ) APOISI25
%XE&E%);HH{Z&?gXSIKEﬁEvXSJéQS?gxw(25}g%KG€292}ﬂX%€2§§9%%52&}gj%
DIMENSION Ma{21,0612)
DO 100 J=147
DO 100 K=1,7

100 EKD{JyKI=0.0
IF {NSO -EQ. 0} GO 70O 991
RO=RR#SIN{ALPHO/57.29578)
POIP=1.0+P0OI50
POIM=1.0-POISO
DDO=£0+T0%#3/(12.0sP0IP2POLIH)
EKO(1,1)¥=R0/DDO/7POIP
EKO{Z2 1=PDIM=RO/{EO=TD)
CALL INVERTIEKD;2,2:M6,06)

991 PRI%T 1309 (igKGizﬁé}siﬂiyZ}yJﬂlyzg
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{a) Element Forces and Geometry
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APPENDICES

A, Integration Formulae

th .
For the i normal mode, the equation to be integrated is

Rl 2 .
e feud * = B y -~

(0 w; T () = PE() P.f(D) (A1-1)
The time increment is chosen such that

At = (1/32) (2ﬂ/wi). (A1-2)
The initial values are

1,00 = 71.€0) = o; n.(0) = P £(0). (A1-3)
Then the general integration formulae are

s

2
(P, LECoAD) - 2(D] - 0 [1,(0) + At] (D + A 7 o]y

N (t+AD) =
@ 2 t as ae
(A0 = 7 (0 + &5 (100 + 7 (a0 ] (81-4)
@ Atz neo s
T, (t+AT) = m, (0 + AT, (1) + =5 [”ﬂi(t) + M, (t+AE) /2]
where
Atg w?
Fo=l+ ——

This integration method assumes a linear ascceleration distribution over

the increment At.

115
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B. Element Stress-Strain Formulae

Given the element forces in local co-ordinates, it is desirved to find
the stress resultants normally used in engineering. For a spherical cap,
these quantities are Mey Nea N¢9 Q@ and McD and the stresses and strains may

in turn be calculated from these using the equations

(A2-1)

N¢ M NQ M
g o =i + 1“2“@ ; o} 0 =T + ‘-"‘1’2*'@
t t
1 . 1
€ © B (,CTq) voe) b€y T F (Ge -y %)u

The subscripts ¢ and § represent meridional and circumferential directions
respectively. For a conical or cylindrical element, the desired resultants

are Ns’ Qs’ M59 M9 and Nen The stresses sad strains in this case are

(A2-2)

s 6M N 6M
o, = T & -z8 o, =~ + =9
s t tZ B + tz

1 1. )
ESME(OS' \)Ue) ; eemﬁ(@e '—vos)»

The subscripts s and § represent meridional and circumferential directions

respectively.

'
!

1. Stress Resultants for a Spherical Cap

The stress resultants for a spherical cap can be found from MO9 HO

and QO from the following formulae



117

Mq) = MO
N@ = Q081n @O + Ho cOs ¢O
Qo = QO cos ¢O - HO sin ¢o
bei'x
N, = (Bt/a) {[Cllmo + ClH + C Q] [ber x_ - - - o] +
b , EtﬂQO
‘ ) er'x "o
+ [CleO + Co H  + CZSQO] [bei x o+ = o] RN }
o xoz a
2 (A2-3)
L ET ber'x . g
M = C C - - t
5 2 HE My + Cpfy + G50, ) [A-w x o Y bei x,J +

bei'x

X
(6]

+ [C21MO + C + CZBQO] [(1-y) o +  ber xo] 1.

H
22 o
The Cij factors are the same as are used in ecalculating the element flexi-

bilities and expressions for these can be found in Appendix G.
2. OStress Resultants for a Conical Element

The stress resultants for a conical element can be found from Mi’ Mj’

Hi’ Hj’ Nj and Ni = r Nj from the following formulae
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NS = Nk + chos 104
k
M. =M
Sk k
Qs, = wH151na
1
Qs, = Hj31nu
J
M 2/ % {[A,  H A M AL H + A M ] [yy bei'y +
= + : i i i
B, Yk S o S P NS ¥ LA S
2 ber'y
- i 2 0er 3 A +
+ 2(1-y) (bei Vi * v, k)] - [ 21Hk + A22Mk
A __H A M ! 2(1- e
+ A H + A, lJ [Vykber Vi * 2(1-y) (ber Vi *
(A2-4)
_2bel Yy L (B H 4+ B M+ BH o+ B 7.
yk 11k 12k 1371 14 1
. . 2 kei'y, . .
' ot ARSI o
[vykkel Vi * 2(1-y) (kei Ve § k) ] [B2lHk +
+ B_.M + B__H + B 1 [v.ker'y, + 2(1~y) (ker vy . 2 kel yk)]}
22k 231 24 1 k k k- yk
N = -(c , :
6, {cot Qyzsk) {[AllHk + Ale + A13H1 + A14 1J fykber Vo
2 bei'y
- ey A H 4
2(ber Ve v, Wi+ [ 21 . A22Mk + Ayl LY
. 2 bei'y, - A
+ 24 1J[ykbe1 Yy 2(bei Vo ¥ v, k)] + LBllHk +
. 2 kel'y
a! 2 ¥ G o o
+ BlZMk + B H) 4 B14M1J [ykker Yy 2(ker Vi 5, k)] +

+ [BZlHk + B22Mk + B2SH1 + BZ4M1J Lykkel Vi

2 ker' ]
2(kei y, m~yer L1911 + p cot o s

{

K’
k
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where P, is the internal pressure and k = 1,j. When k = i then 1 = j and
vice versa. The Aij’ Bij and yk factors are the same as used in calculating

the element flexibilities and expressions for these can be found in Appendix E.

C. Thomson Function Formulae

Depending upon the magnitude of the argument y, there are three different
sets of formulae that are used to compute the Thomson functions [Reference (10) ].
Computation procedures outlining the application of the different sets are

given in Appendix D below.

1. Series Formulation

= m 4m
ber y = 3' __5;1_)____2, (32_1)
oo L(2Zm!]
; m 4m+2
m=0 [(2m+ 1) ! ]
-931 m m:-
ker y = -1ln (%) ber y + g'bei v o+ > (~1)__2 (g) $(2m+1)
m=0 [(2m)!]
% 4m+ 2
kei y = -1n (%) beiy - Tber y + Z) Gt D RS i y(2m+2) 51
4 2
m=0 [(2m+1) ! ]
0'3’ 4m-1 m
ber'y = Z zm (1) __;(.:,_1_2,__.2
= [(2m) ! ]
&= 4t 1 m
bei'y = E; (2m+1) (%) _mﬁlll,mmz
- [(2m+1) !]
ker'y = -1n (X) ber'y - ber y N E bei'y +
E: 2m (35 ) " wﬁlilﬁm y(2m+1)
m=1 [(Zm)ljz
dm+ 1 m
+ }: (2mr1) (L) _ (=1 o y(2m+2)
4 5 : =
m=0 f(2m+1) )]
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where { is the logarithmic derivative of the gamma function given by

1 1

f(m+l) = 1 + L TS eeee sy

(1)

2 3

=Y

Yy = Euler’s constant = 0.577215665...,

2, Asynptotic Formulation

ber

bei

ber’

bei’

ker

kei

ker'

kei'’

y

y

Y

y

y

y

y

y

it

li

il

A(y) [Alydcos @ - %(y) sin ]

in o]

wn

A(y) [x(y)cos o + A(¥)

n

A(y) [¢(y)cos B - Q(y) sin B]
A(y) [Qfy)cos B + ¢(y) sin g]
B(y) [A(~y)cos B + x(-y) sin B]
B(y) [x(-y)cos B - A(-y) sin g]

~B(y) [¢(-y)cos & + Q(~y) sin &]

-B(y) [Q{-y)cos @ - ¢(-y) sin o]

(A3-2)

(A3-3)
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where
1
2 L L _y/0%
ACy) e /(2my)E B(y) = (T/2y)% e y/2
1 1
o= y/2° - /8 ; B = y/2° + 1/8
S 11D (32 [-(2c-1)2]
AMy) = 1 + Zi < <8y)c“°‘ cos (Te/4)
o=
{A3-4)
g“ (-1 1%y (-3%) [—(2c«1)2]
X(y) = ZJ - —— sin (Tc/4)
c=1 ! (Sy)C
© DD (8D [-(2e-) 2] (2es D) (2e-1)
d(y) = 1 + Ei - ~ o < ot € cos (Tc/4)
c=1 c! (8y)°
N c .2 2 2.
aly) = E: (~-1) (-17)(-3 )..°[~(2§m3) 1(2¢+1) (2c-1) sin (Tie/4)
c=1 c!  (8y)

3. Modified Asymptotic Formulation
The quantities defined in Equations (A3-4) remain unchanged and the ker
group function in Equations (A3-3) remain the same. However, the ber group

function formulae are modified as follows
ber y = A(y) [Aly)cos @ - %(y) sin o] -(kei y)/T
bei y = A(y) [X(y)cos o + A(y) sin @] + (ker y)/m

(A3-5)
ber'y = A(y) [¢(y)cos B - Qy) sin R] - (kei'y)/m

+

bei'y = A(y) [Q(y)cos B+ ¢(y) sin B] + (ker'y)/m
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D. Thomson Function Computation Procedures

If v is the argument and N 1s the upper limit of summations in the

asymptotic methods then

F i T
< 27

7=

Thomson functions
by asymptotic method
with scaling of argu-

4

ments with SUBROUTINE Thomson

XP and of functions T functions

with SUBROUTINE XC F by series
method

Thomson func-
/ tions by modi-
fied asymptotic
method .

T F

l 4 F per group functions
IN = 15| M = 7| y < 20 by series method;
ker group functions

5 T by asymptotic method
IN = 30] [N = 2y] with N = 2y

<
A
[$e]
U

In the series method, calculations are continued until the magnitude of the

-8
calculated term is less than 10 times the current function value.

E. Conical Element Flexibility Formulae

Four fifths of the flexibility coefficients in Equation {(13) can be

expressed in terms of the functions

f = Cpq [a bn(yi) - arsbt(yi) + b mkn(yi) - brsktiyi)J

1m 1

f = Cpq [almbn(yi) + arsbt(yi) + blmkn(yi) + brskt(yi)J
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The individual flexibility coefficients are then given by the following

relationships

£, = -Fi; 151, 2, 25 2, 2, 1)
f.,="FG; 151, 4, 2; 2, 4, 1)
f13 = -F(i; 1; 1, 1, 2; 2, 1, 1
f,=-FG;1;1,3,2;2,3, 1
t, = (r cot @)/(Et)
£, =F(i; 1,1, 2, 25 2, 2, D)
fo, = F(33 1,1, 4, 25 2,4, 1)
fzs =F(j; 1; 1,1, 2; 2,1, 1)
£, = F(3; 1;1, 3, 25 2, 3, 1)
(A5-2)
f25 = —(cot o) /(Et)
fa, = -GGi; 3; 1, 2, 5; 2, 2, 6)
f32 = ~G(i; 3; 1, 4, 5; 2, 4, 6)
f33 = ~G(i; 3; 1, 1, 5; 2, 1, 6)
fa, = -G(i; 3; 1, 3, 5; 2, 3, 6)
f = (y 8., cos ®)/(Et)

35 J
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f41 =G(j; 3; 1, 2, 5; 2, 2, 6)
f42 = G(j; 3; 1, 4, 5; 2, 4, 6)
f43 =G(j; 3; 1, 1, 5; 2, 1, 6)
f44 = G(j; 3; 1, 3, 5; 2, 3, 6)
f45 = ~(y SJ, cos @)/(Et)
£, = G(j; 2; 1, 2, 9; 2, 2, 10) - G(i; 2; 1, 2, 9; 2, 2, 10)
f., =G(j; 2; 1, 4, 9; 2, 4, 10) - G(i; 2; 1, 4, 9; 2, 4, 10)
52 N H 2 9
f.o = G(J; 2,1, 1, 9; 2, 1, 10) - G(i; 2; 1, 1, 9; 2, 1, 10)
f., = G(J; 251, 3, 9; 2,3, 10) - G(i; 25 1, 3, 9; 2, 3, 10)
fog = (s In r)/(Et)
where
1
3D
_213(1-y cot o _ cot o _ cot & cos «
p, = oe? P Cpy =g Cpg = Et
®n Hmn dmn
=N form= 1,2 and n = 1,2,3,4 (A5-3)
d
bmn (m+2)n
2
o - = i o H = e =
Hyp = Hyy = sy8in 92 = “Hyy = ¥,/2
2
H = - = i . = -H =
23 H13 sj51n o H24 14 yj/2
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and dmn is the minor of item nm of the following determinate
b (yy) b, (y,) kl(yi) k,(y,)
b (y;)  =bg(y,) k,(v))  -kg(yy)

A= (A5-4)
bl(yj) bz(yj) kl(yj) k2(yj)

b - -
4(yj) b3(yj) k4(yj) k3(yj)
and the remaining quantities are given by

bei y + 2y—1ber'y

It

ber y - 2y-1bei‘y; bz(y)

bl(y)

kl(y) = ker y - 2y—1kei'y; kz(y) kei y + 2y—1ker‘y

i

b3(y) =y ber'y - 2(1—v)bl(y); b,(y) =y bei'y - 2(l—v)b2(y)

ka(y) =y ker'y - 2(1-wk (¥); k,(y) =y kei'y - 1(1-Wk,(y) (A5°5)
bo(y) = -5 [y ber'y - 2(1+Wb (y)]
bg(¥) = & [y bei'y - 2(1+W)b, ()]
ks(v) = & [y ker'y - 2(1+W)k ()]
k() = 5 [y kei'y - 2(0+ Wk, (y) ]
bg(y) = ber y - 2(1+v) ybﬁ1 bei'y
blO(y) = bel y + 2(1+v) y—1 ber'y
kg(y) = ker y - 2(1+v) y_l kei'y
ko) = keiy + 2(1+v) vy ! ker'y.
The definitions of y and r are
L 1 L1
y = 2(3(1—\)2))4 ((2 tan a)/t)g sg
(A5-6)

r =8./s.
Jj i,
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. Cylindrical Element Flexibility Formulae

Employing the following definitions

o L
K = (3(l—v2)az/t )< A= Kh/a
(A6-1)
Q =K/1a; P = ek; N = e A
L = cos )\ + sin )\ ; M= cos )\ - sin )\

the individual flexibility coefficients in Equation (14) for a cylindrical

element may be written

flk

fl5

f2k

f
25

fSk

f35

f4k

f45

f51

f5k

Here the C
mn

C
mn

mn

Q(Cyy - Cox = Csp - C4k) for k=1,2,3,4

0
Q(~NLClk + NMC2k + PMCSk + PLC4k) for k = 1,2,3,4
0

-C for k = 1,2,3,4

1k~ Csx
(va)/(Et) (A6-2)

N(cos)\Clk + 51nXC2k) + P(COSKCSk + 51nxc4k) for k = 1,2,3,4

-(va)/(Et)

f52 = 0; f55 = 4/ (Et)

K - . B — - - I o
(v/2K) (NM 1)clk + (NL 1)c2k (PL 1)C3k + (PM 1)c4k for k = 3,4

quantitites are given by

D 2
(-8 for m = 1,2,3,4 and n = 1,2
A 2 3 ? 3 3
2K ‘
D 3 (A6-3)
m+n nm a

i
w

form = 1,2,3,4 and n

>
w

2K
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where

A= (2 sinj) + P - N) (2 sin A ~ P + N)

. 2 .
D11 = cos 2A- sin 2\ - P, D21 = -L{P-N) - 2P sin }
2
D = - - i . = ~] - . si
31 p 1 sin 21 ; D41 (P-N) cos A 2P. sin A
D = Mz + 2 sinz A - PQ- D = ~(P-N) cos ) - (P+N) sin )
12~ » 22 7
D = 2 sin2 A D = ~(P-N) sin )
32 42 (AG-4)
D = ~N2 in 2)\ + s 2\ ; D = M(P-N) + 2N sin
13 ~ + si co ; b3 = s A
2
= - N -si ; = (P- - 2N si
D33 1 sin 2\ ; D34 (P-N) cos 2\ sin )\
D = N2 2 si 2 in 2\ 1 ;D = -(P-N) cos A - (P+N) sin)
14 © sin )\ sin v Doy =
D = 2 sin2 X D = -(P-N) sin )\
34 T T44 ’
G. Spherical Cap Flexibility Formulae
For a spherical cap element the following parameters are employed
3 2))% 3120102
4= (at)=/(12(1-y )= ; x, = r /b K= EtT/12(1-v7). (A7-1)
1. Case with Singularity
The individual elements of Equation (16) are given by
- \ 38 -
flk = (Clkber X, + Czkbel xo)/z for k¥ = 1,2
flS = flk (k=3) - (,@ro kei xo)/K
= b - it
£ (4/3) {Clk[xo er x_ (1+V) bei XO] +
(A7-2)
+ Czk[xobel X+ {1+ ber xo]} for k = 1,2
i = f_ (k=3) - ﬁsr [x kei x + (l+yker's + (1+v)/x |/akK
23 T2k s} 0 o} o} 0
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where

and

3k

33

11

12

13

21

22

23

2

M/QX - st [
82 o (1+v) [ Clkbel X+ C, ber xo] +
- Clkber XO - C2kbel xO for k=1, 2
ZZ 1
(k 3) - % [ -—o (1+v) (ker' LN . Y - kei X ]
a o
2
- L ber'x
AK
83X
- g [ber X - Si:ﬁl bei'x ]
ABt(a"+r” 2y o ©
2
1 b, (1-v)
= { = [ber x ker'x - ber'x ker x - —>%~ hei'x ker'x
A K o} o) o 0 xo o e}
3 3
0 a
+ (d-y) ber'x ker'x ] + ——— [ber x - (l V) be ] }
X o 2 )
o K(a +17) *o
o
(A7-3)
2
- fE bei 'x
a3 x
- ° [bei X, o+ Siiﬁl ber'xoj
AEt(a™+1r") o
2
1 br, (1-)
N { [bei x ker'x =~ bei'x ker x + —— her'x ker'x
A K o) o} 0 e} XO 0 e}
3 2
+ (1-v) bei'x kei'x | + L a [pei x + (=) ber'x ] }
X 2 2 o X o
o K(a +1r ) o
o
[bei x + (L-v) ber'x | [ber x =~ 1=y bei'x ]
x o o x o
o o
(A7-4)
bei' x ~ber'x
o o



2. Case Without Singularity
The first 2x2 portion of the flexibility matrix in Egquation (18) is

identical with the singular case. The additional coefficients required are

2 2
IS o !
. 3 ; N ) — ( ] ‘| - N
a1 AR [ber x ber'x + bei x_bei'x - ( B + 1) ber'x |
(A7~5)
3 2
a X x 4
N o 2 2 o] (1-v)
f32 = 55 { (ber X, o+ bei Xo) + [ 5 (1-y) - ]
Et(a +ro) a o

2
2 2
[ ber x bei'x - bei x ber'x ] - 4 (1-y7) [ber'™ x +
o o} o o) 2 o

2 2 a
X 4

O (1_V) P
5 + 1) [ber XoT T bei % ] } .

a (o]

+ bei'zx 1 =
o

H. Flat Plate Flexibility Formulae

1. Annular Ring Element with « = 0°
The individual flexibility coefficients in Equation (14) for a flat plate

o
element with & = 0 are given in terms of

- 3 2 2 2
r=1r./r. ; K= {Et)/(12(1-v)) ; Z =71, - 1,
J 1 J i
and are
2 2
ri fi rj _
" %z [(1~v) G ] bt Ty
:f::‘ :::-;
13 1a =05 s m v Iy
2 2
~2rjr§ rj rj 5
R T 1L R
21 (1-v2) K7 22 KZ (1-v) (1-+)
fog = B9y =05 fy5 =1y,
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31

33

41

44

51

53

foons el O f =
fag ™ I35 ’ 34 = T fy3
Yy
'E"t*i [I’ + T + \)Z_]
2
2rj ri
T =45 =0 T4 = - F
T, (AB~1)
- [rg + r? - 7 ]
EtZ J i -
2 2 - 2 2 -
T, r, Inr r, .r. lnr
i r i N 1 ] ) £ _ o d r i N 1 ]
K L (1-y2 201+ ’ “52 7 K | (1-y)% 2(1+vy)
-2 2
r, {ln 1) r%r,(1+v)
£ ~0- £ _d Jji (3+y) 7
54 ~ 7 55 K 27(1-v) 8(1++y)
2. Annular Ring Element with ¢ = 180O

All the non-zero elements from the case ¢ = 0O
the coefficients for the case @ = 1800.

negatives of the above formulae for ¢ = OO

£ are identical. I

can be used to construct

the

In all cases except element f55

are to be used. The formulae for

n other words

55
o o
180 0
f( ) = = f( ) for m, n = 1,2,3,4,5 except mn = 55
mn mn
(1809 _ (0% (A8-2)
55 T 755
3. Disc Element, Singular Case
For a disc element, the individual flexibility coefficients in Equation
(17) are
2
Yo Yo
f — . - . o e
117 Kary 0 T2 =9 T3 = (T 9k
(l'\))l"
£ 0; f_ =——2 ; £ _ =0 (A8-3)
21 ’ 22 Et ’ 23 ‘
2

(3+v)ro
f . . - . e ———
31 f13’ f32 0; f33 8(1+WK
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I. Open-Ended Element Mass Formulae

Adopting the following notation

4 = |(rY - r,)/cos | ; W=2mtgm ; V= 4 cos o, (A9-1)

the submatrices of the mass matrix in local coordinates for an open-ended

element may be written as follows

. _
B i v 2 11r, V3
( o5 T30 )4 - ( 210° * 50 ) £ 0
. 1w | ( e, v > , ( 13r, + 3V ) .
ii’ 7 210 60 35
i v
0 0 G 12
i v 2 13r, V
B ( 140 T 380 > 4 < 2201 * o > L0
r
13r. v i Vo
[m, ;] = [mji]T =W ( 420" * 70 9 ( 70 © 140 0 (49-2)
r
i v
B 0 0 G~ TEi
~- . _
i v 2 11ir, Vv
(1‘55*‘1‘5@‘)/5 (a’fal*'égﬂ 0
( llr, v > ( 13r, 2V > o
[mjj] - W 210 28 )Y \3 1+ 7
T
iV
| 0 0] (5"'+ a‘)~
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J. End Closure Element Mass Formulae

With the following notation

W = Ttm (A10-1)
O O O

the mass matrix for an end closure element may be written

W r4/12 0 ~-W r3/4
o o o o
- 0 w r2/2 0
[m 1 = o o (A10-2)
-W r3/4 0 w r2
o o o o
SN PO





