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Abstract

Encoding externally and internally accredited value in prefrontal cortex
by
Chung-Hay Luk
Doctor of Philosophy in Neuroscience
University of California, Berkeley
Professor Jonathan D. Wallis, Chair

Given the prefrontal cortex (PFC) is involved in tracking consequences from both one’s
environment and actions, this work attempts to characterize the involved neuronal processes.
In the first portion of this thesis, we focus on internally accredited value, namely the value
of actions. We recorded the spiking activity from single neurons of two subjects while they
performed a task that required them to monitor relationships between their actions and
resulting outcomes on a trial-by-trial basis. We contrasted the activity from two brain
areas known to have projections to motor areas but different limbic and attentional roles:
dorsolateral prefrontal cortex (PFdl) and medial prefrontal cortex, dorsal to the cingulate
sulcus (PFcs). During the epoch after the first action-outcome (AO) association was revealed
to the subject, nearly twice as many PFdl neurons encoded the action compared to the
outcome. Conversely, more PFcs neurons encoded the outcome as compared to the action. In
both brain areas, information about action and outcome were separated in two populations:
few neurons encoded action and outcome. When the subjects learned a subsequent AO
association, that outcome was encoded relative to the first, i.e., better or worse, rather than
as the identity of the outcome, i.e., apple juice or quinine. Again, PFcs had more reward
encoding than PFdl at this time. These data support past studies that implicate PFcs in
monitoring the value of actions for value-based decision making.

The second portion of this work contrasts neuronal representations of AO associations
with that of stimulus-outcome (SO) associations. Lesion and imaging studies have suggested
that AO encoding relies on PFcs and SO encoding on orbitofrontal cortex (PFo). We hy-
pothesized similar dissociation at the neuronal level. To test this idea, we trained the same
two subjects on two tasks, one that relied on AO associations to solve and another that re-
lied on SO associations. The SO task was analogous to the aforementioned AO task, except
that pictures, rather than actions, were associated with the delivery of juice rewards. While
the subjects performed these tasks, we recorded the neuronal activity from PFcs and PFo.
Both areas had neurons encoding stimuli, actions, and outcomes across the tasks. There



was only a subtle bias for PFo neurons preferring the SO task. Most notable was the promi-
nent action selectivity in PFo for the action the subject would perform to select his more
preferred reward in the SO task. No such bias was seen in the AO task. Collectively, this
work implicates PFcs and PFo as key regions in goal-directed behavior given their ability
to flexibly represent value as it is attributed to either external cues or internally generated
motor actions.
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Chapter 1

Introduction

We live in a dynamic world, and things are constantly changing. For us to successfully nav-
igate such an environment, we must keep track of the numerous meanings of environmental
cues, other people’s actions as well as our own actions. We quickly learn that an order of
chips in England yields you thick, fried wedges of potato (French fries) but thin, fried slices
of potato in America. Kissing on the cheek is a welcomed gesture in France, but frowned
upon in Japan. For more complex scenarios, we may learn connections between a cue, an
action, and a subsequent outcome. Suppose you move to Hong Kong for work and see the
sign “ AL ” on your office door for the first time. You deduce it to mean either push or pull.
But until you have executed one of those actions, you do not know the association between
that particular stimulus, action, and outcome. Hence, you decide to apply force on the door
and realize that it does not budge. “ 7 7 must mean pull then, you conclude as you test
that out. After months of associating * 7 with the action pull, you have mastered this
Chinese character.

How exactly does your mind learn to associate items in the environment with actions
and consequences? One of the areas in the brain that may be critical in this learning is
the prefrontal cortex (PFC). PFC is important in novel situations [Schoenbaum et al., 2002;
Wallis and Miller, 2003b; Antzoulatos and Miller, 2011]. It can encode diverse aspects of the
environment, such as objects [Wilson et al., 1993; Rao et al., 1997; Wallis and Miller, 2003b],
faces [Tsao et al., 2008], spatial location of stimuli [Funahashi et al., 1993; Rao et al., 1997;
Kennerley and Wallis, 2009], sounds [Fuster, 1973; Fuster et al., 2000] and odors [Eichenbaum
et al., 1983; Schoenbaum et al., 1998]. PFC also carries action information [Matsumoto et
al., 2003; Matsumoto et al., 2007; Furuyashiki et al., 2008; Tsujimoto et al., 2009]. Lastly, it
is well known for having a rich representation of outcomes, capturing physical components
of rewards [Thorpe et al., 1983; Tremblay and Schultz, 1999], effects of satiety [Gottfried
et al., 2003; Bouret and Richmond, 2010], how reliable an outcome is [Behrens et al., 2007;
Kennerley et al., 2009], economic value [Breiter et al., 2001; Glimcher, 2003], as well as
emotional and social components [Damasio, 1994; Rudebeck et al., 2006]. In order to form
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associations between stimuli, actions, and outcomes, these pieces of information need to
be store across periods of time [Fuster, 1973] and integrated together in a goal-relevant
manner [Miller and Cohen, 2001], both of which are characteristic functions of PFC.

1.1 OQutline of thesis

The thesis consists of four chapters beyond this current one. The following Chapter 2
describes the procedures and equipment used across experiments. Afterward, each of the
two experiments is described in full. The first experiment is in Chapter 3 and addresses the
neuronal signatures of AO associations in medial and lateral PFC. The second experiment is
in Chapter 4 and contrasts the encoding of AO associations with SO associations in medial
and orbital PFC. Lastly, Chapter 5 closes with conclusions for each experiment and future
directions.

In the remainder of this chapter, we introduce concepts for understanding PFC and
its role in learning associations between stimuli, actions, and outcomes. We begin with
background on the anatomy of the three PFC regions, starting with medial PFC, then lateral
PFC, and lastly orbital PFC. We also introduce specific subsections of these regions, which
are the subsequent foci of our experiments. Next we provide a theoretical framework for
studying stimulus-action-outcome (SAQO) associations. Specifically, we explain two functions
of PFC necessary for learning SAO association. Then we describe the functionality of the
brain areas in relation to SAO encoding. Lastly, we show parallels between SAO learning
and the clinical problem of addiction.

1.2 Anatomy of the prefrontal cortex

The prefrontal cortex (PFC) occupies the front portion of the frontal lobe just anterior to
the motor regions of the brain. The border between PFC and the adjacent premotor cortex
is approximately at the arcuate sulcus in the monkey [Barbas and Pandya, 1989] but lacks a
dividing landmark in the human [Semendeferi et al., 2002]. Rats also lack a clear landmark,
because they do not have sulci. Consequently, the generally accepted method for defining
the prefrontal region across species is to locate the projection zone from the mediodorsal
nucleus of the thalamus [Rose and Woolsey, 1948]. From so doing, PFC occupies nearly a
third of the human neocortex [Fuster, 1997]. It is the slowest region to develop and reaches
full maturation only after a person enters their twenties [Giedd et al., 1999]. Likewise, in the
monkey, prefrontal development is slow relative to the other cortices [Fuster, 2001]. PFC has
connections with subcortical structures, motor areas and all higher-level sensory areas. Thus,
it is central for integrating information [Modha and Singh, 2010]. Further, the connections
are comparable across monkey and human [Croxson et al., 2005; Klein et al., 2010]. As
illustrated in fig. 1.1, PFC can be separated into three regions — medial, lateral, and orbital
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Figure 1.1: Medial, lateral, and orbital views of the prefrontal

cortex in monkey and human.
Brain"outlines taken from [Carmichael and Price, 1996; Petrides and Pandya, 1999] for monkey
and [Ongiir and Price, 2000] for human.
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— all of which are further subdivided into areas based on cytoarchitecture [Brodmann, 1909;
Petrides and Pandya, 1994; Carmichael and Price, 1996; Ongﬁr and Price, 2000]. Each area
is addressed individually in the following sections with descriptions of its composition and
morphology across species, as well as patterns of connectivity with other brain areas. In
discussing connectivity, it is important to note that, unless otherwise stated, connections are
always reciprocal between areas.

1.2.1 Anatomy of medial prefrontal cortex

The medial prefrontal region occupies the medial wall of the prefrontal cortex and overlaps
with the anterior end of the anterior cingulate cortex (ACC). In monkeys, it consists of the
medial portions of areas 9 and 8 at the dorsal extent. Ventral to those are areas 32 and 24.
The most ventral part of the medial wall consists of area 25 and medial portions of areas 14
and 10 (Figure 1.1). Moving rostrocaudally along the cingulate sulcus, the cytoarchitecture
transitions from agranular lamination (tissue lacks layer IV) to dysgranular (tissue with
a poorly defined layer IV) lamination. Medial PFC in humans is comparable with subtle
differences. It contains similar divisions with the notable difference that area 10 is greatly
expanded [Ongiir et al., 2003]. Cytoarchitecture follows the monkey for the most part,
though area 24 in the cingulate sulcus has noticeably larger pyramidal neurons in layer V,
which is not shared by monkeys or rats [Nimchinsky et al., 1996]. Large pyramidal neurons in
layer V may provide strong efferents from the area, similar to Betz cells in the primary motor
cortex that project to the spinal cord. Compared to monkeys and humans, medial PFC in
rats is more rudimentary. It contains fewer divisions and simpler cell morphology. Medial
PFC subregions are infralimbic and prelimbic cortices, dorsal and ventral ACC, and medial
precentral cortex [Ongiir and Price, 2000]. Dorsal and ventral ACC can also be referred to
as areas Cgl and Cg2, while prelimbic area can be referred to as Cg3 [Zilles and Wree, 1995].
Furthermore, the cytoarchitecture in rodent medial PFC is completely agranular. In fact,
the entire rat PFC consists of agranular tissue.

To date, most primate electrophysiological studies have focused on a single area of me-
dial PFC: the region surrounding the portion of the cingulate sulcus anterior to the genu
of the corpus callosum [Matsumoto et al., 2003]. This is, in part, because this region is
most accessible for electrophysiological studies. It lies close to the surface of the brain and
is sufficiently lateral to avoid any accidental contact with the central sinus. We refer to this
prefrontal subregion as PFcs due to its location within the cingulate sulcus. Although PFcs
can be easily defined by landmarks, it lacks clear classification based on cytoarchitecture.
In such studies, monkey PFcs is classified as either area 9 [Vogt et al., 2005], 32 [Petrides
and Pandya, 1994], 9/32 [Paxinos et al., 2000], or 24b [Carmichael and Price, 1994]. Con-
sequently, we will place more weight on functional differences based on connectivity for our
study of PFcs.

Medial PFC has strong connections with limbic areas, motor-related areas, and other



Chapter 1. Introduction
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Figure 1.2: Dual networks in the monkey prefrontal cortex - “medial prefrontal network” and
“orbital prefrontal network” from [Carmichael and Price, 1996].

parts of PFC. Of the limbic areas, the amygdala, a key structure for processing affective
value and emotion [Adolphs et al., 1994], is the prominent structure that connects with
the medial most portions of areas 24a, 24b (PFcs) and 32 [Carmichael and Price, 1995a).
As for motor connectivity, PFcs strongly connects to the area immediately posterior to it -
cingulate motor area (CMA) - which has direct projections to the spinal cord for arm and leg
movements [Dum and Strick, 1991; Dum and Strick, 1996]. CMA is also connected with the
supplementary motor area (SMA), and together their spinal projections make up 40% of all
corticospinal projections in the frontal lobe [Dum and Strick, 1991]. Aside from controlling
muscle movements, medial PFC processes motor-related information. Area 24 shares similar
connectivity patterns as premotor cortex (area 6). Both have inputs from sensory association
areas, but not from primary auditory or visual cortices. They are interconnected: area 24c
connects with the ventral portion of the premotor cortex (areas 6va and 6vb) [Carmichael
and Price, 1995b]. Lastly, both are interconnected with lateral PFC. Area 24 does differ from
the premotor cortex in how balanced its interconnectivity with lateral PFC is though. Area
24 sends stronger inputs to lateral PFC than lateral PFC sends back [Passingham, 1995].
Aside from lateral PFC, medial PFC forms a “medial prefrontal network” within itself and a
few subregions of orbital PFC (Figure 1.2). Its complement, the “orbital prefrontal network”
mostly interconnects orbital regions and has few connections with medial areas. The two
networks converge at areas 120, 13a, 13b and 14c [Carmichael and Price, 1996]. Given the
numerous connections between areas in medial PFC, limbic areas, and motor areas, the
“medial prefrontal network” is also referred to as the “visceromotor network”.
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1.2.2 Anatomy of lateral prefrontal cortex

Lateral PFC covers the lateral surface of the anterior side of the brain. In monkeys and
humans, lateral PFC has several subregions: areas 9, 9/46, 46 at the dorsal end and areas
44, 45, 47/12 at the ventral end. These areas are flanked by the frontopolar cortex (area 10)
at the anterior extent and the frontal eye fields (area 8) at the posterior extent [Petrides and
Pandya, 1999]. The tissue is largely granular, and more subtle details in tissue lamination
have been used to isolate out the specific areas. In rodents, it is difficult to locate a ho-
mologous lateral region, since their PFC is strictly agranular. However, based on structure
and function, Uylings and colleagues claim portions of rat PFC, particularly the dorsome-
dial shoulder region, parallel the dorsolateral portion of primate lateral PFC [Uylings et al.,
2003]. This thesis focuses on that dorsolateral analog in monkey: area 9/46 surrounding the
principal sulcus. We abbreviate it as PFdl. The equivalent region in humans is the middle
frontal gyrus [Petrides and Pandya, 1999).

In terms of connectivity, PFdl receives inputs from sensory and motor areas. Polysensory
information enters from the superior temporal sulcus [Passingham, 1995]. Visual information
from inferotemporal cortex (IT) and V5 (also known as MT) provide it high-level visual
signals related to object recognition and location, respectively. PFdl also gets additional
projections carrying abstract visual information from posterior parietal cortex, particularly
area Ta, 7b and the medial portion of area 7. Projections from IT enter ventrolateral PFC,
while parietal projections enter PFdl [Petrides and Pandya, 1984]. Based on diffusion-
weighted imaging tractography, a sizeable portion of the human parietal cortex also connects
with PFdl [Croxson et al., 2005]. This implies that lateral PFC can represent complex
and integrated stimuli information. As for motor connectivity, PFdl is interconnected with
premotor cortex and frontal and supplementary eye fields. These motor areas contain high-
level motor representations rather than low-level signals controlling muscle movement. The
aforementioned connections with areas in the parietal cortex further include regions that
integrate body position with visual space [Mountcastle et al., 1975]. Together with the
sensory inputs, PFdl has rich connections that can integrate sensory and motor information.

In contrast, PFdI has little limbic connectivity. It has some reciprocal connections with
the hippocampus [Goldman-Rakic et al., 1984], which gives it the ability to process memory-
related information. Much of the limbic connectivity it gets instead derives from other
regions in PFC. It interconnects with medial prefrontal area 32 [Passingham, 1995} and non-
motor regions in area 24 [Bates and Goldman-Rakic, 1993]. Both of these areas connect
directly to limbic areas. Moreover, there is directionality in the connectivity between area
24 and PFdl: more projections go from area 24 to PFdIl than the other way around. This
asymmetry suggests an order in information processing that starts in medial PFC (i.e.,
area 24) and then goes to PFdl. PFdl also gets limbic information secondhand from its
interconnections with orbital prefrontal areas 13, 14, and particularly area 11 [Petrides and
Pandya, 1999]. Collectively, these anatomical connections suggest that PFdl gets highly
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processed information related to memory and motivation rather than direct information
from the subcortical structures.

1.2.3 Anatomy of orbital prefrontal cortex

Orbital PFC occupies the ventral surface of PFC, right above the orbits, the eye cavities
in the skull. It includes Brodmann areas 10 through 14 in primates. The cytoarchitecture
varies along the anterior-posterior axis. The anterior end consists of granular tissue, the
middle dysgranular tissue and the posterior agranular tissue [Morecraft et al., 1992]. Human
orbital PFC has similar cellular pattern [Mackey and Petrides, 2010]. In contrast, rat orbital
PFC lacks clear homologous Brodmann areas. Its subregions are ventrolateral PFo, lateral
PFo, and agranular insular cortex [Ongiir and Price, 2000]. We refer to orbital PFC as PFo.
PFo has few connections with motor regions. Ventral premotor cortex connects to areas 12m
and 131, as well as to the posterior end of medial PFC, area 24c¢. Area 24c in turn connects
to ventromedial PFC at area lal. Eye-related information from the supplementary eye field
enters area 12, though at different subregions: 121, 120, and 12r [Carmichael and Price,
1995b]. Finally, PFo can also indirectly affect motor behavior through its interconnections
with lateral PFC. These connections suggest a limited role of PFo in motor processing and
execution.

PFo has an array of connections with sensory areas. All senses converge in PFo. Infer-
otemporal cortex (IT) provides visual information mostly to area 121. Regions in the superior
temporal cortex (i.e., TPg, STGa and STGp) send polysensory information to PFo. Sec-
ondary somatosensory cortex and anterior infraparietal area (AIP) send tactile information
about the face, hand, and forelimb mostly to areas 12m, 13m and 13l. Meanwhile, insula
and opercular cortex provide taste information, while pyriform cortex provides olfactory
information. Most of these inputs enter in lateral PFo. More medial regions have fewer sen-
sory afferents [Passingham, 1995; Carmichael and Price, 1995b]. Subtle regional differences
aside, PFo in general has the ability to process a rich array of sensory signals.Adding to the
sensory afferents, PFo has a plethora of connections carrying reward-related and emotional
signals. It has far more limbic connectivity compared to either medial or lateral PFC. All
limbic structures (amygdala; hippocampus; temporal pole; entorhinal, perirhinal, parahip-
pocampal, and cingulate cortices) connect to central orbital areas 11m, 13a, 13b, and medial
orbital areas 14c and 14r [Carmichael and Price, 1995a]. The amygdala, a key structure for
processing value information [Murray and Izquierdo, 2007], has most abundant connections
with medial PFo across both monkey and human [Croxson et al., 2005]. The lateral portion
of PFo lacks such diverse limbic inputs and is limited to having mostly projections from
amygdala, temporal pole, and cingulate cortex [Carmichael and Price, 1995a]. Despite the
differences within PFo, the overall region has diverse limbic information.
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1.2.4 Closing remarks on anatomy

PFC can be divided into three general regions: medial, lateral and orbital [Fuster, 1997], each
of which has its own specialization. The medial portion may be particularly important for
encoding action-outcome (AQO) information, as it receives robust limbic inputs and connects
with motor areas. Lateral PFC also connects strongly with motor areas, but has fewer
limbic connections compared to medial PFC. The information it receives is abstract, which
suggests lateral PFC has a higher-order cognitive role than medial PFC. The first experiment
in this thesis will assess whether medial PFC is preferentially involved in encoding AO
associations relative to lateral PFC. The second experiment will contrast medial PFC with
orbital PFC. Both areas have plenty of limbic connections. What differentiates the areas
is their connectivity with sensory and motor areas. Medial PFC connects to various motor
areas and the spinal cord, whereas orbital PFC has limited motor connections. Rather
orbital PFC receives information from all sensory modalities. Given these striking anatomical
differences, the second experiment will investigate the extent to which orbital PFC encodes
SO associations and medial PFC encodes AO associations. We now turn to some of the
theory that underpins how such associations may be learned.

1.3 Theoretical considerations underlying credit assighment

Taking from the field of artificial intelligence, the credit assignment problem addresses how
specific outcomes get correctly paired with their causes [Sutton and Barto, 1998]. The credit
assignment problem is an important problem to resolve, because it provides an agent with
the understanding of how the world operates so as to better behave in it. Suppose you teach
your robot or dog a trick, it must first realize that it is to learn something new. Then it
must sort through all the gestures you make and all the actions it tries to determine which
components are important, i.e., may be potential causes of the desired outcome. From
the important components, it has to deduce the underlying temporal structure so as to
complete its learning. This problem becomes particularly difficult if the agent is in a dynamic
environment. The amount of information to track can grow dramatically, and the agent
becomes more prone to falsely evaluating a random component as important. Additionally,
the amount of information may exhaust memory capacity. The credit assignment problem is
a general framework. From the example, you may have noticed that causes can be separated
into those external to the agent (stimuli) and those internal to the agent (actions). Also,
the agent could easily be a machine (robot) or animal (dog). Given such flexibility, the
credit assignment problem can be applied to biological contexts. In our case, the credit
assignment problem becomes a study of how the agent — the brain area, PFC — combines
stimuli, actions, and outcomes into meaningful relationships via neural mechanisms. In
this form, the credit assignment problem becomes similar to a division of psychology called
animal learning theory [Pearce, 1997].
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In animal learning theory, learning that one event predicts another is termed associative
learning. There are two methods of evoking this type of learning: pavlovian conditioning
and instrumental conditioning. Pavlovian conditioning is used to associate a neutral stimulus
such as the Starbucks logo with a motivationally relevant stimulus such as a cup of freshly
ground coffee. The neutral stimulus is the one being conditioned; hence it is referred to
as the conditioned stimulus (CS), whereas the motivating stimulus is the unconditioned
stimulus (US). The US follows with a reflexive action, such as approaching the stimulus,
Starbucks in the example. After much iteration over time, this action becomes conditioned
and linked with the CS. At that point, merely presenting the CS automatically prompts
execution of the action, formally known as the conditioned response (CR). In the example,
approaching the stimulus Starbucks is also referred to as a pavlovian approach response.
The approach response is an automatic event following the CS. Studies have found that
subjects with PFo lesions exhibit this approach response despite motivational changes to the
US. These impaired subjects will continue to touch pictures on a touch screen previously
associated with reward even after the reward has been removed and dissociated from the
picture [Rolls et al., 1994; Pears et al., 2003]. These results suggest that PFo may be
necessary for monitoring these pavlovian associations. In contrast, instrumental conditioning
handles voluntary actions. It is used to associate an action an animal willfully makes such
as rolling over with its outcome such as a dog treat. An SO association can be thought
of as the learnt product of pavlovian conditioning, whereas an AO association is the learnt
product of instrumental conditioning.

SO and AO associations can be combined. Often a stimulus precedes an AO association,
and the fully associated sequence becomes SAO. Returning to the example, a dog may learn
that rolling over only upon seeing a hand gesture yields a treat. This process of learning
the SAO association involves a pavlovian-instrumental interaction that can be broken down
into a couple components. First, the pavlovian CS (hand gesture predictive of reward)
motivates the animal to respond. This response (approaching) can be slowly shaped into
an instrumentally conditioned action (rolling over). Second, the pavlovian CS serves as a
response-cueing signal. Only when the dog sees that particular hand gesture does he act in
hopes of reward. After much rehearsal of the SAO association, the dog automatically rolls
over upon seeing the hand gesture without a need for the treat. At this point, his behavior
has become habitual and governed by the SA association (more commonly referred to as a
stimulus-response [SR| association). Neural signatures of this transition have been found:
lateral PFC neurons encode SR associations more strongly as the associations become more
learned [Pasupathy and Miller, 2005]. The transition has also been modeled as an outcome-
sensitive system (that uses value iteration in a Bayesian tree-search) switching behavioral
control over to a habit-like system (that uses Bayesian Q-learning) [Daw et al., 2005]. As a
generalization, SA associations can be thought of as rules, how one behaves within a specific
context. Rule learning, in addition to SO and AO associations, plays an important role
in prefrontal research. They are incorporated into many experimental paradigms used to
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investigate prefrontal function in rodents [Balleine and Dickinson, 1998; Pickens et al., 2003;
Ostlund and Balleine, 2007], monkeys [Pears et al., 2003; Wallis and Miller, 2003b; Rudebeck
et al., 2008], and humans [O’Doherty et al., 2003; Valentin et al., 2007].

Neural representations of AO and SO contingencies could follow the anatomical limita-
tions of the prefrontal brain areas. Since medial PFC connects with motor and limbic areas,
it can potentially encode the conjunction between action and outcome. Although lateral
PFC has fewer limbic connections and equally strong motor connections, it receives strong
projections from medial PFC. Therefore, we might still see it encode AO associations. Dif-
ferentiating the two brain areas’ ability to encode AO associations will be the objective of
the first experiment in this thesis. Orbital PFC does not have many connections with motor
areas. Hence, it may not encode AO associations. Instead, given its numerable sensory and
limbic connections, it may encode associations between stimuli and outcomes. The second
experiment will address this hypothesis.In order to learn associations, the agent must track
all potentially useful pieces of information. A common method of retaining those pieces of
information would be to place them in memory. However, most of the information becomes
useless after the agent discovers the exact pieces necessary for learning an association. Hence,
it is energy-efficient to keep all of those pieces of information in a short-term memory buffer
rather than storing them in more permanent ways. In the brain, this memory buffer is called
working memory.

This ability to hold and manipulate information in mind across short periods of time is not
well understood, despite its relatively long history. During the 1930s, Carlyle Jacobsen ob-
served that a lesion in PFC limited a subject’s memory. Jacobsen had chimpanzees perform
a delayed response learning task, where the subject saw two bowls. One bowl contained food,
the other nothing. After seeing which bowl had food, lids were placed on top of both bowls.
Then a delay was enforced, after which the subject could select the bowl it preferred. Animals
with lesions could not remember the bowls even when delays were one second long [Jacob-
sen and Nissen, 1936]. The neuronal signature for this process was not observed until forty
years thereafter when Fuster observed sustained firing in PFC neurons after removing a
stimulus from the environment [Fuster, 1973]. We now know that many brain areas display
working memory capacity: PFC, parietal cortex [Jonides et al., 1993], anterior cingulate cor-
tex [Jonides et al., 1993], and basal ganglia [McNab and Klingberg, 2008]. Within PFC, the
details on how different regions maintain sustained activity instantiating working memory
remains unclear. One theory says that different areas encode different types of information
in working memory based on their anatomical connections [Goldman-Rakic, 1987]. Another
says that prefrontal neurons adapt to task demands [Miller and Cohen, 2001] and hence may
exhibit working memory if needed in the task. Regardless, of all prefrontal areas, PFdl is
most frequently studied for its robust working memory capabilities [Funahashi et al., 1993;
Miller et al., 1996; Romo et al., 1999; Rowe, 2000]. In short, both PFdl and PFcs, which
is part of the anterior cingulate cortex, have been shown to encode information in working
memory. However, PFdl may have a stronger capacity to do so, given the numerous studies
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regarding its role in working memory studies. Hence, to measure the extent to which PFdl
can encode AQO associations, we should characterize its ability to encode AO associations in
working memory. This is what we do in the first experiment (Chapter 3).

1.4 Functional properties of prefrontal regions

PFC is regarded as the center for executive control. It has functions related to organizing
and planning, motivation and attention, rationalizing and processing emotions, as well as
personality. In the realm of planning, PFC tracks goals and helps determine what potentially
appropriate actions there are for achieving each goal. It promotes the appropriate one, while
inhibiting the less appropriate options. It also partakes in rule acquisition, which can be
thought of as the acquisition of SA associations [White and Wise, 1999], as well as the more
abstract forms: category learning [Freedman et al., 2001; Antzoulatos and Miller, 2011] and
language acquisition [Opitz and Friederici, 2003]. Beyond affecting actions, PFC can control
voluntary attention in scenarios, where you need to seek out a particular stimulus (like your
run away puppy in a crowd) or ignore distracting elements (like a fender-bender while driving
in a new city). PFC also keeps emotions in check and affects moral judgment [Koenigs et
al., 2007]. It is further implicated for fluid reasoning, the ability to think logically in novel
situations. Additionally, information can be stored in PFC across short periods of time in
working memory for manipulation [Funahashi et al., 1993; Rainer et al., 1998; Constantinidis
et al., 2001]. Subregions specialize in different aspects of the aforementioned diversity of
functions. In the following sections, these specializations within PFcs, PFdl, and PFo will
be described.

1.4.1 Properties of medial prefrontal cortex (PFcs)

Consistent with its anatomical connections to motor and limbic areas, PFcs carries both
action and outcome information. Actions and their predicted outcomes appear to be encoded
by separate but intermingled populations of neurons [Hayden and Platt, 2010]. PFcs not
only integrates those pieces of information, but monitors changes to them. Neurons have
higher activity monitoring outcomes of executed actions when monkeys are learning by trial
and error which action yields reward [Matsumoto et al., 2003]. Other studies have found that
PFcs signals erroneous actions [Carter et al., 1998], probabilistic or unexpected changes to the
reward [Ito et al., 2003, and uncertainty in the environment affecting choice [Behrens et al.,
2007]. Lesions to PFcs render rats [Balleine and Dickinson, 1998; Dias and Aggleton, 2000]
and monkeys [Hadland et al., 2003] incapable of adjusting their actions based on changes
to the actions’ associated outcomes. Building upon this role in monitoring and adjusting
behaviors based on AO associations, PFcs is also known to encode prediction errors of action
values (e.g., signals capturing the difference in the reward the subject actually received and
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Figure 1.3: Accuracy in selecting the better action or stimulus that yielded more reward. A,
Average number of trials in which the monkeys selected the action associated with more reward.
Monkeys with PFo lesions (blue line) performed as well as controls (black line), whereas the
monkeys with PFcs lesions (green line) were impaired. B, In the stimulus-outcome task, monkeys
with PFo lesions were impaired, but those with PFcs lesions were not. From [Rudebeck et al.,
2008].

the reward the subject thought the action would yield him) in monkeys [Seo and Lee, 2007;
Matsumoto et al., 2007] and humans [Ribas-Fernandes et al., 2011].

In regards to SO associations, PFcs does have the ability to process information related
to stimuli, given its inputs from sensory association areas. It can encode the value of visual
cues that predict different magnitudes of reward [Kennerley et al., 2009; Kennerley and
Wallis, 2009], the likelihood of receiving a fixed amount of reward [Knutson et al., 2005;
Kennerley et al., 2009], or the physical effort needed to obtain the reward [Walton et al., 2002;
Kennerley et al., 2009; Croxson et al., 2009]. But compared to PFo, PFcs is slower to encode
rewards that are instructed by a visual cue [Kennerley and Wallis, 2009]. As for monitoring
changes to SO contingencies, PFcs may not be necessary. As shown in fig. 1.3, monkeys with
PFcs lesions can still monitor changes in SO associations. Specifically, if they are presented
with different pictures, each of which has a different likelihood of receiving reward, they can
track changing SO associations and select the picture associated with more reward [Rudebeck
et al., 2008]. To date, it remains unknown whether PFcs neurons are involved in choice
tasks that rely solely on SO associations.These studies collectively implicate PFcs in having
a strong role in assigning value to actions and tracking changes in the value. Its role in
representing the value of stimuli may be minimal, based on lesion studies, but remains
largely inconclusive, based on electrophysiological studies. Hence, Chapter 4 of this thesis
will characterize the neuronal mechanisms related to PFcs’ role in encoding SO associations
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and contrast that with its encoding of AO associations. We expect stronger encoding of AO
associations.

1.4.2 Properties of dorsolateral prefrontal cortex (PFdl)

PFdl processes high-level cognitive information given its connections with associative sensory
and motor areas and general lack of limbic afferents. Studies suggest that it keeps track of
rules in the form of stimulus action (SA) associations. PFdl neurons show one activity
pattern to a stimulus when it instructs a particular action and a different activity pattern to
the same stimulus when it instructs a different action [Asaad et al., 2000; Wallis et al., 2001;
Wallis and Miller, 2003al. When a monkey is performing a task that requires both SA
and AO associations, PFcs neurons tend to encode the AO association while PFdl encodes
the SA association [Matsumoto et al., 2003]. Human studies suggest less clear distinctions
between the two brain areas. Both areas have been shown to activate when subjects needed
to suppress prepotent SA associations in a Stroop task, i.e., suppress reading aloud the
word that was the name of a color and rather say aloud the font color of the word [Duncan
and Owen, 2000]. Yet others find that only PFdl is involved in this suppression during a
Stroop task [MacDonald et al., 2000].Studies, however, tend to agree that one of PFdl’s
distinguishing feature is its ability to store and manipulate these rules in working memory.
Neurons sustain activity following a stimulus even after it has been extinguished [Miller
et al., 1996; Asaad et al., 2000; Constantinidis et al., 2001]. PFdl neurons also maintain
delay activity with integrated information about the reward value of the stimulus and its
corresponding action [Leon and Shadlen, 1999; Wallis and Miller, 2003b]. Aside from just
maintaining information over a short period of time, information in working memory can be
computed within a population of neurons. For example, in a task, where monkeys see a visual
cue which instructs a delayed response of either a saccade to the target or an anti-saccade to
a target 180 degrees away, many PFdl neurons encode the location of the visual cue across
the delay. On anti-saccade trials, those neurons subsequently suppress their activity for the
cue location during the delay, while other neurons encoding the correct action increase their
activity [Funahashi et al., 1989].With PFdl’s preferential role maintaining representations in
working memory, the contribution of PFdl in decision-making may be better characterized
when information related to the valuation of choice options needs to be held in working
memory. Most working memory studies probing PFdl, however, lack a decision-making
component. Tasks do not require determining the motivational value of either stimuli or
actions. Take Jacobsen’s delayed response task where the monkey needed to remember over
a short period of time which covered bowl contained a food reward. This task does not
require remembering either a specific SO or AO association, because the qualities of the
food outcome are unnecessary for selecting the better bowl. The animal merely needs to
remember the rule of the task and keep track of the bowl with more stuff, which is a simple
perceptual discrimination. Other studies lacking associative learning include the n-back
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memory task. In this task, subjects must recall the piece of information they had already
experienced that was the nth piece counting backwards in time. The motivational value of
the pieces of information is irrelevant. Simpler memory recall tasks, i.e., remembering stimuli
that had been shown briefly, also require no value-based decision-making. All these tasks
activate PFdl, yet do not provide us with insight into PFdl’s role in evaluating outcomes of
stimuli or actions.

Similarly, value-based decision-making tasks often do not require working memory com-
ponents. Most studies keep contingencies between choice options and reward outcomes the
same across long periods of time. Matsumoto and colleagues had monkeys perform lever
movements guided by AO contingencies that were held constant across blocks of many tri-
als. They found that PFcs and not PFdl neurons tended to carry information about AO
associations [Matsumoto et al., 2003]. By limiting the variability, subjects could rely on
long-term memory processes rather than working memory processes that strongly engage
PFdl [Funahashi et al., 1989; Miller et al., 1996; Fuster, 1997], more so than PFcs [Mac-
Donald et al., 2000]. Consequently, PFd]l may not appear to encode AO contingencies. To
ensure memory demands rely on working memory, our first experiment in Chapter 3 will re-
quire AO associations change trial to trial. Changing AO contingencies often should require
that contingencies to be stored in working memory, thereby involving PFdl. We hypothesize
that PFdl will store strong AO representations in working memory. Consequently, its AO
representations, in contrast to past studies, may be more similar to that of PFcs.

1.4.3 Properties of orbitofrontal cortex (PFo)

Value processing is a central function of PFo, owning to its rich projections from the lim-
bic system. Value appears to reflect computations regarding specific rewards rather than
a generalized level of motivation [Baxter et al., 2000; Roesch and Olson, 2004]. Specifi-
cally, neurons can encode the value of choice options, as well as the value of the chosen
option [Padoa-Schioppa and Assad, 2006]. PFo carries context information, which gives
rise to its ability to represent relative values of outcomes [Tremblay and Schultz, 1999;
Padoa-Schioppa and Assad, 2008], as well as hypothetical outcomes [Kang et al., 2011;
Abe and Lee, 2011]. Similar conclusions hold in humans and often with an additional
emotional component. For instance, control subjects feel regret to negative hypothetical
outcomes. In other words, controls become upset over their decision even when they win
money if they discover that they would have won even more money had they chosen the
alternative option. Patients with PFo damage, on the other hand, do not feel the emo-
tional effect of the hypothetical option and only feel the immediate valence of their choice
(whether or not they won or lost money) [Camille et al., 2004]. Given that PFo also has
sensory inputs from all modalities, in addition to limbic inputs, it has the infrastructure for
processing SO relationships. It is not necessary for learning the simple association between
a stimulus and an outcome like a novel light predicting food [Pickens et al., 2003]. Rather it
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is important for updating the value of stimuli. Monkeys with PFo lesions can still discrim-
inate between pictures, as well as select between familiar foods presented in front of them.
They are instead impaired at selecting among two or more options the stimulus yielding the
most reward when the rewarded option changes between the options [Izquierdo et al., 2004;
Rudebeck et al., 2008]. PFo lesions produce similar value updating impairments in ro-
dents [Pickens et al., 2003] and humans [Rolls et al., 1994]. PFo can also monitor value
across time [Sul et al., 2010], thereby enabling it to associate a stimulus with the expected
value of a probabilistic reward [Kennerley et al., 2009]. Collectively, these studies empha-
size PFo’s key role in gauging changes to various types of SO associations.With its scant
anatomical connections to motor regions, PFo has a minor role in tracking AO associa-
tions. To begin, many primate studies find almost zero action encoding [Padoa-Schioppa
and Assad, 2006] or only a moderate amount compared to other types of encoding or to
other brain areas [Wallis and Miller, 2003b]. Lesions in rodent and primate PFo do not
produce any impairment in instrumental conditioning. Subjects with such lesions will stop
executing motor actions if the associated rewards are made less desirable, e.g., food reward
is spoiled [Ostlund and Balleine, 2007]. Furthermore, monkeys with PFo lesions can track
how valuable several actions are even when the values change across time. They are quick to
find the action that yields the most reward and switch to a different action when the values
have changed to favor the other action. See figure 1.3 for illustration [Rudebeck et al., 2008].
Human studies also report PFo encoding when subjects choose between different stimuli of
different values regardless of what actions were used to indicate choice [Arana et al., 2003;
Valentin et al., 2007]. Thus there is consistency across species that PFo selects for SO
pairings and not AO pairings.

In short, PFo plays a major role in monitoring outcomes as they relate to stimuli. It has
far less importance encoding the value of actions. Hence, we hypothesize that PFo will be
engaged while subjects rely on SO associations to guide their decisions. We will test this
speculation and describe the results in Chapter 4.

1.4.4 Closing remarks on functionality

The introduction has set up two contrasts between pairs of prefrontal areas. Firstly, PFcs and
PFdl both have rich connections with motor regions in the brain and therefore may readily
encode values of actions. Indeed PFcs studies have found that area to represent AO associa-
tions. In contrast, many PFdl studies implicate PFdl in representing information in working
memory. To more accurately measure PFdl’s involvement in encoding AO associations, we
need to involve working memory. Hence, our first experiment will compare the encoding
of AO associations in working memory across PFcs and PFdl. We hypothesize that PFcs
will be strongly selective of AO associations and consistent with past studies. Furthermore,
we anticipate that PFdl will be selective for AO associations particularly during portions
of the task requiring memory storage.Our second contrast will be between PFcs and PFo.
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Both areas have strong connections with the limbic system that provides reward-related in-
formation. Hence, these areas can encode value information. Studies have found that PFcs
selects for AO associations, whereas PFo selects for SO associations. However, it remains
unknown what neuronal mechanisms underlie this dissociation. Our second experiment will
characterize the activity from PFcs and PFo neurons while subjects perform an AO task and
an SO task in alternation. We expect a majority of PFcs neurons to represent actions and
outcomes and a majority of PFo neurons to represent stimuli and outcomes.

1.5 Clinical implications in addiction

Several studies have found evidence of PFC dysfunction in addicts [Volkow et al., 1992;
Biggins et al., 1997; Bolla et al., 1998; Catafau et al., 1999]. There is a decrease in PFC
volume in human polysubstance abusers [Liu et al., 1998], while in rats, structural changes
in the dendrites of PFC pyramidal neurons have been observed after extended cocaine self-
administration [Robinson et al., 2001]. PFo activity is associated with craving for a variety
of drugs, including nicotine [Brody et al., 2002], cocaine [Grant et al., 1996], and heroin [Sell
et al., 2000]. Finally, addicts show a variety of neuropsychological disorders that they share
with patients with PFC damage such as difficulty making decisions, myopia, apathy, and
altered personality [Bolla et al., 1998; Bolla et al., 2003]. Together these studies illustrate
the importance of PFC dysfunction in addictive behavior. Furthermore, addiction is often
characterized as a transition from outcome-directed behavior to stimulus-driven habitual
behavior, as addicts develop cravings upon seeing stimuli associated with drug-taking [Everitt
and Robbins, 2005]. This dissertation aims to understand the neuronal mechanisms that
might underlie the instantiation of these processes within PFC. We will focus on the outcome-
directed behavior and compare specific mechanisms in PFdl, PFcs, and PFo that are used
to track contingencies between actions and outcomes, and stimuli and outcomes. By so
doing, we contribute to the scientific foundation that may lead to the development of novel
therapeutic strategies for breaking addictions and habits.
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Chapter 2

General Methods

2.1 Overview

This chapter will describe the methods used in performing all experiments in this thesis.
Specific details related to each experiment will be included in the chapter describing that
experiment.

2.2 Behavioral training materials and methods

2.2.1 Subjects

We used the same two male rhesus monkeys (Macaca mulatta) for both experiments. During
neuronal recording for experiment 1: AO task contrasting PFcs and PFdl, subject H was
5 years old and weighed 7.5 kg, while subject J was 5 years old and weighed 9.8 kg. For
experiment 2: AO and SO encoding across PFcs and PFo, subject H was 6 years old and 7.5
kg, while subject J was 7 years old and 12.5 kg. Subjects were housed in pairs as part of a
14-member colony living within a large room. They were fed twice a day and obtained daily
enrichment. They experienced a 13-hour long light cycle that begins each day at 7 am. The
subject’s fluid intake was regulated so as to maintain motivation on the tasks.

2.2.2 Behavioral training

We trained the subjects to perform the behavioral tasks using positive reinforcement. They
sat in front of a video monitor and chose pictures to get a juice reward. The subject continued
to do this until he received as much reward as he wanted. Once the subject had learned the
task, we started the recording sessions. Training was typically carried out for 5 or 6 days a
week.
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2.2.3 Materials and methods for training

Subjects performed tasks seated in a primate chair facing a 19-inch LCD computer screen
placed 50.5 cm from the chair. A system of computers controlled the display of behavioral
events (Figure 2.1). They ran the NIMH Cortex program for data acquisition and experimen-
tal control (http://www.cortex.salk.edu/) over the timing and presentation of stimuli. The
central ‘Cortex’ computer sent commands via a COM port to a receiving computer, which
then presented the visual stimuli on the LCD screen. The stimuli were mirrored via a video
splitter onto a third screen in the sound-attenuating boxed room, in which the monkey sat.
By mirroring the display, we could monitor exactly what the subject saw without disturbing
him as he worked. The ‘Cortex’ computer handled compiling and running timing routines,
as well as interfacing with various external devices via a PCI-DAS1602/12 data acquisition
(DAQ) card (Measurement Computing, Norton, MA). Each behavioral event in the trial was
marked with a code that was sent as an 8-bit number from the DAQ to the MAP system
(see section 2.3). The MAP system read in this number and recorded a time stamp of when
it occurred along with its value. Its time stamp was stored along with neurophysiological
data in a single ‘.plx’ data file. The ‘Cortex’ computer ran with a single interrupt routine
that triggered every 1 millisecond and updated both a software clock and sampled all data
lines. Thus, the control of the behavioral contingencies, the presentation of stimuli and
the monitoring of behavioral events all took place with a 1 ms resolution. Visual stimuli
in the SO task were isoluminant as measured by the Spyder luminance-meter (Datacolor,
Lawrenceville, NJ).

Actions of the subjects were registered using a 4-TPS-E1 Touch Sensor Module (Crist
Instrument, Damascus, MD) connected to the digital input port of the DAQ card. The touch
sensor was a contact sensitive device designed to send a 5-volt TTL pulse when a grounded
subject touched it. Actions were executed by the subject via custom-made joysticks that
connected to the Touch Sensor Module. The joystick was constrained, such that the subject
could only make left and right movements.

Eye position was recorded using an infrared eye monitoring system (ISCAN, Burling-
ton, MA). An infrared camera focused on the subject’s eye and visualized the results using
proprietary image tracking software. The software tracked the center of the subject’s pupil
as x and y coordinates, in addition to the pupil diameter. These three measures were fed
separately to three DAQ analog input channels and recorded for the duration of the session.

Juice rewards were delivered by commands from the DAQ digital output ports to the juice
pump and a particular juice’s corresponding solenoid valve. The ISMATEC-IPCS8 peristaltic
juice pump (ISMATEC SA, Glattbrug, Switzerland) took a 5-V TTL pulse that delivered
fluid at 0.62 mL/s during the duration of the TTL pulse. To deliver one juice at a time,
we built a custom circuit that opened a single specified solenoid valve in response to a TTL
pulse from the DAQ card. The valve circuit could deliver four lines of juice, of which we used
three. Those three lines ended at a custom-made mouthpiece with separate cannulae. When
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one juice line was delivering juice to the subject, the other two lines routed their respective
juices back into their juice containers.

2.3 Neurophysiological techniques

2.3.1 Isolation of recording sites

To determine the exact location for performing neuronal recordings, we began by placing
recording chambers over the brain areas of interest. Magnetic resonance images (MRIs) of the
subjects brain were taken at the U.C. Davis Center for Imaging Sciences with a 1.5 T scanner
prior to the animal’s arrival at Berkeley. Those digital images were then imported into
commercial graphics software (Adobe Illustrator CS5, San Jose, CA), where we calculated
stereotactic coordinates for the chamber. We verified the correspondence between the MRI
scans and electrode placement by mapping the position of sulci and the boundaries of gray
and white matter during recording sessions. Upon completing data collection, we plotted the
electrode positions and sulci and created an unfolded cortical map of our recording locations
and positioning of task-selective neurons.

In experiment 1: AO task contrasting PFcs and PFdI, both subjects were each implanted
with one recording chamber through which we could reach PFdl and PFcs. The chamber in
subject H was over the left hemisphere centered at 29 mm anterior of the interaural line (i.e.,
AP 29) and 1.3 mm lateral of the mid-sagittal plane (i.e., LM 1.3) on the skull and angled
at 22 degrees outward from the vertical (Figure 2.2). Subject J also had one chamber over
the left hemisphere. It was centered at AP 24, LM 1.3 with a 25-degree angle tilt outward
from the vertical.

Experiment 2: AO and SO encoding across PFcs and PFo required access to more brain
areas. Both subjects were each implanted with two recording chambers through which we
could reach PFdl and PFcs in one and PFo in the other. The PFdl-PFcs chamber in both
subjects over the left hemisphere remained the same from experiment 1. The additional PFo
chamber in subject H was over the right hemisphere centered at AP 31 and LM 1.9 with an
angle of 23.1 degrees. In subject J the equivalent chamber was over the right hemisphere
located at AP 27, LM 1.6 with a 23-degree angle tilt from the vertical. Subject J fell ill due to
a possible infection during recording, and we took off his chambers to allow him to properly
heal. After about half a year, we re-implanted one chamber over the right hemisphere to
finish collecting neuronal data across all brain areas. The chamber was centered at AP 29,
LM 1.2 with a tilt of 25 degrees.

2.3.2 Surgery

After determining the locations of chambers, we performed two operations, one to implant
the chambers, then another to create the craniotomy, through which recording electrodes
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Figure 2.2: Examples of the recording sites A, Coronal brain slices are overlaid with electrode
tracks (blue lines) from where we recorded within each brain area. The six columns are separated
into three pairs of columns, one for each brain area. Within the pair of columns, MRI scans
from subject H and J are on the left and right, respectively. The rows refer to three different AP
locations of the brain slices with respect to the center of the recording region within each brain
area. B, A representative view of the span of recording sites across the subjects and experiments.
Black vertical lines roughly correspond to the AP position of the middle row of MRI scans in
A. Electrodes enter at the intersection points on the blue grids for the left and right images
pertaining to PFdl and PFo sites, respectively. The middle image shows electrode tracks in the
same format as the above MRI scans.

21



Chapter 2. General Methods

enter the brain. Prior to those surgeries, each subject underwent a surgery to implant
a custom-made titanium head-positioning post secured with titanium orthopedic screws.
This post kept the subject’s head immobile such that we could track the subject’s eye
position and have electrodes in the brain during neuronal recording. The following surgery
was to implant cylindrical titanium recording chambers on to the skull above the brain
area of interest. The chambers were secured via bone cement and titanium screws. The
final surgery was to create craniotomies within the chambers, thus enabling access to the
brain. Chambers were covered with a cap (made of either polypropylene CILUX from Crist
Instrument, Hagerstown, MD or polyetherimide Ultem®, custom-built that tightens via
screws. Before surgery, we anesthetized the animals with ketamine (10mg/kg IM). Xylocaine
or lidocaine spray (14%) or ointment was used as a local anesthetic to facilitate intubation.
During surgery, the surgical team monitored the animal closely, to ensure appropriate level
of analgesia. Anesthesia was maintained with isoflurane (2-4%). The level was monitored by
heartbeat (90-150 beats/min), respiration rate (17-23 breaths/min), temperature (36 —39°C)
and absence of responses to stimuli such as toe pinch. Blood oxygen saturation was also
monitored with a pulse-oxymeter. A lactated ringer IV drip (2-4 ml/kg/hr) was used during
surgery to ensure that the animal received sufficient hydration, and a heating pad and towels
were used to maintain body temperature. Following surgery, gas anesthesia was discontinued,
and once the animal showed signs of coming out of anesthesia, the intubation tube was
removed and buprenorphine (0.01-0.03 mg/kg SC or IM) or morphine (1-2 mg/kg SC) were
injected for relief of post-operative pain. Immediately after surgery the animal was checked
at least every half hour by members of the lab and veterinary staff, and the time between
checks was gradually lengthened as the animal recovered from anesthesia. After initial
recovery, the animal was checked several times per day at which time appropriate analgesics
and antibiotics were administered. Typically, buprenorphine (0.01-0.03 mg/kg SC or IM)
or morphine (1-2 mg/kg SC) was administered 2-3 times per day for 3-5 days. In general,
all appropriate measures were taken to minimize postoperative pain. To ensure adequate
control of post-operative pain, choice of analgesia and frequency of administration were
made in consultation with veterinary staff. All procedures were in accord with the National
Institute of Health guidelines and the recommendations of the U.C. Berkeley Animal Care
and Use Committee.

2.3.3 Recordings

We recorded neuronal activity from three brain areas: PFcs, the dorsal bank of the cingulate
sulcus anterior of the corpus callosum; PFdIl, the dorsal bank of the principal sulcus; and
PFo, areas 11-13, mostly between the medial and lateral orbital sulci. Activity from these
areas were simultaneously recorded by lowering tungsten electrodes (FHC, Bowdoin, ME)
attached to custom-designed screw microdrives that independently moved pairs of electrodes.
The microdrives were mounted to a custom-made plastic grid containing an array of 24-gauge
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holes spaced 1 mm apart. Stainless steel 24-gauge thin-wall hypodermic needles (Terumo,
Somerset, NJ) were glued to the bottom of the grid, such that the beveled tip of the needles
pointed out of the grid. These tips served to puncture the dura and guide the electrodes to
the desired recording location. Electrodes were lowered manually by handheld screwdriver
to depths predetermined from the MRI scans. When an electrode approached a cell layer,
we slowed the lowering and stopped when we isolated single neurons. After neurons were
located on most or all of the channels, we waited 1-2 hours for the brain to settle, thereby
ensuring stability during the recording session, which typically lasted 1.5 hours. Neurons
tended to stay the full duration of the recording session without much drift. We randomly
sampled neurons to ensure fairer comparison of neuronal properties between the different
brain regions. During the recording session, no changes to the channels were made, as that
would distract the subject from performing the task.

We cleaned the chambers both before and after the recording session to minimize in-
fection. The cleaning began by removing the cap or grid and sterilizing the outside of the
chamber with alcohol. Next under sterile conditions, the inside of the chamber was flushed
with sterile saline, then Nolvasan or povidone, an iodine antiseptic, followed again with ster-
ile saline. The tissue was then dabbed dry with a sterile cotton swab. If cleaning was prior
to recording, the plastic grid with microdrives and electrodes was fit on top of the chamber.
The grid was sterilized overnight in Cidex. If cleaning was after recording, a new sterilized
cap was placed on top of the chamber.

2.3.4 Materials and methods for neurophysiology

Voltage signals were taken from the tip of the electrodes with respect to the reference, the
head-positioning post affixed to the subject’s skull. Those neuronal signals were recorded and
amplified via hardware and software from Plexon Inc. (Dallas, TX) as shown in figure 2.1.
The signal was first amplified 20 times from an op-amp based circuit in the headstage,
which connected directly to the electrodes. The signal was then further amplified 1000 times
through a preamplifier and filtered for spikes in the 100 Hz - 8 kHz frequency band and
local field potentials (LFPs) in the 1 Hz - 300 Hz frequency band. Signals next fed into a
Multichannel Acquisition Processor (MAP system) for further amplification and filtering.
Spikes and LFPs were digitalized at 40 kHz with 12-bit resolution per channel. For the
spikes, thresholds were set to ensure that neuronal signals were a minimum of 4 standard
deviations above background noise (calculated over a 10s period immediately prior to record-
ing). When the spike waveform crossed a manually set threshold, the program recorded the
time stamp of the threshold crossing, along with the actual waveform in a 1400 us window
around the time of crossing. Waveforms that did not cross the threshold were discarded.
The digitized waveforms were then sorted offline, using Offline Sorter software (Plexon Inc.,
Dallas, TX). This constructed 2D or 3D plots of a subset of 12 waveform features includ-
ing the first three projections from principal components analysis, peak-valley difference
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Figure 2.3: Cluster isolation of neuronal waveforms. On the left are 24 channels, of which many
have neurons on them, i.e., detected waveforms. The channel highlighted in red is zoomed in
in the middle panel to reveal three distinct waveforms. Those waveforms are decomposed into
components in Plexon's offline sorter, and each waveform is plotted as a single dot in the right
panel. Clusters of waveforms are then isolated manually and entered into neuronal analyses.

and widths, and waveform energy. From those 2D or 3D plots, clusters of waveforms were
grouped together manually and classified as single units (Figure 2.3). We ensured the sepa-
ration of neuronal waveforms by rejecting channels where more than 0.1% of the waveforms
were separated by intervals of less than 1.5 ms or where neuronal ‘drift” occurred. Typically,
approximately 15% of the channels were discarded.

2.4 Statistical analysis

We used MATLAB (MathWorks, Natick, MA) to perform all analyses. Analyses were re-
stricted to correct trials, as there were typically too few error trials to permit a meaningful
analysis of activity on such trials. To characterize the selectivity of a neuron, we first calcu-
lated its mean firing rate in each trial during a defined time epoch. We compared differences
in firing rate between experimental conditions with the null hypothesis that the neuron did
not encode a given type of information. We specified the independent variables and sta-
tistical test in our description of the individual experiments. Once we had classified the
neurons according to the type of information they encoded, we assessed differences between
brain areas in the prevalence of these different types of neurons using chi-squared tests. We
also characterized strength and earliest latency of encoding in selective neurons. Specific
statistical analyses are described in detail in the experimental chapters.

24



Chapter 3

Action and outcome encoding in working
memory

3.1 Introduction

Two regions of frontal cortex are particularly implicated in goal-directed behavior: dor-
solateral prefrontal cortex (PFdl) and medial prefrontal cortex by the cingulate sulcus
(PFcs). Both regions have strong connections with motor areas [Dum and Strick, 1993;
Carmichael and Price, 1995b; Petrides and Pandya, 1999] and are activated by tasks requiring
high-level cognition [Duncan and Owen, 2000]. Several studies implicate PFcs in the control
of behavior via action-outcome (AQO) associations. Lesions of PFcs impair the ability to use
outcome information to guide behavior [Balleine and Dickinson, 1998; Hadland et al., 2003;
Rudebeck et al., 2008] and reduce the influence of past reward history on motor selec-
tion [Kennerley et al., 2006]. PFcs neurons tend to encode both rewards and the actions
that led to the rewards [Matsumoto et al., 2003; Williams et al., 2004]. The involvement of
PFdl in AO learning is less clear since studies of PFdl lesions in the primate typically focus
on cognitive tasks, such as those underpinning working memory [Funahashi et al., 1993;
Petrides, 1995] or rule learning [Halsband and Passingham, 1982; Petrides, 1982; Gaffan
et al., 2002]. From an anatomical perspective, whereas PFcs strongly connects with areas
processing reward, such as the amygdala, orbitofrontal cortex, and insular cortex, PFdl only
weakly connects with these areas [Carmichael and Price, 1995a; Carmichael and Price, 1996;
Cipolloni et al., 1999].

Studies directly contrasting the neuronal properties of PFdl and PFcs showed that the
latter is more important for encoding AQ associations [Matsumoto et al., 2003; Matsumoto
et al., 2007). However, in these tasks the outcome is the presence or absence of reward. Thus,
it is difficult to determine whether the neurons are encoding an association between a specific
action and a specific outcome, or whether the neuronal activity is reflective of a more general
cognitive process such as assessing the success or failure of an action [Brown and Braver, 2005;
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Modirrousta and Fellows, 2008]. To distinguish between these possibilities, we used a task
that required monitoring which of multiple possible outcomes occurred following a specific
action.

In addition, tasks in which reward-related contingencies are continually changing have
found strong encoding of rewards and actions in PFdl [Barraclough et al., 2004; Seo et al.,
2007]. This is consistent with the notion that PFdl is most implicated in cognitive control
when contingencies change on a trial-by-trial basis necessitating flexible, online control in
the form of working memory [Miller and Cohen, 2001; Rossi et al., 2007]. Thus, we trained
two subjects to perform a task that required them to associate a particular outcome with
a particular action on a trial-by-trial basis, while we recorded the activity of single neurons
from PFcs and PFdl simultaneously.

In summary, by having multiple potential outcomes associated with an action, we aimed
to test whether PFcs neurons encoded specific AO associations, and by constantly chang-
ing these contingencies on a trial-by-trial basis, we aimed to tax working memory, thereby
providing a stronger test of whether PFdl neurons encode AO information. We predicted
that even under these conditions, PFcs neurons would show a stronger encoding of AO
information than PFdl neurons.

3.2 Materials and methods

3.2.1 Behavioral task

Each trial consisted of a sampling phase and a choice phase. During the sampling phase,
the subject made two sample motor actions, each of which resulted in the delivery of a small
drop of one of three juices. During the choice phase, the subject then chose to repeat one of
the actions, and received a larger amount of the juice that was associated with that action
earlier in the trial. Thus, to receive juices that are more preferable at the choice phase of the
task, the subject had to remember which action produced which outcome during the sample
phases of the task. The AO contingencies changed on a trial-by-trial basis. All possible
pairings were equally likely to occur, and all juices were equally likely to be paired with
either movement.

A trial began with the subject fixating a central fixation spot for 1 s (Fig. 3.1). The
subject then made two sample responses by moving a lever, once to the left and once to
the right, with a delay separating the two movements. The lever consisted of a 4.5-cm-long
sprung joystick handle, which the subject needed to displace laterally by 1.5 cm to register
a correct movement. We organized trials into blocks of 30 trials each. Depending on the
block, the subject’s sample actions had to consist of either a leftward movement followed by
a rightward movement, or a rightward movement followed by a leftward movement. A cue
presented over the fixation spot indicated to the subject the current block of trials and the
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time at which to make the movement. We instructed the movements in this way to ensure
that during each task epoch we had sufficient conditions of each possible AO association. A
3 s intertrial interval separated each trial.

Over the course of a trial, the subjects made one of two different types of error. First,
their eye position had to remain within +2.5° of the fixation spot until the delivery of the final
reward. Otherwise they experienced a 5 s timeout (the screen turned red and the subject
had to wait) before the trial resumed from the point at which they had broken fixation.
Second, at the sample stages of the task, the subjects could make the wrong movement, i.e.,
making a rightward lever movement when they should have made a leftward movement and
vice versa. If this occurred, they experienced a 5 s timeout (the screen turned yellow) and
the trial resumed from the point at which the wrong action occurred. We excluded both
types of trial from our statistical analysis of the neurophysiological data.

We tailored the specific juices to each subject to ensure robust, stable preferences. For
subject H, we used orange juice (Minute Maid), apple juice (50% dilution, Safeway), and
quinine (1.1 mM, Sigma-Aldrich). For subject J, we used orange juice (50% dilution), apple
juice, and quinine (3.3 mM). We note that the quinine solution was sufficiently dilute that
it was not aversive: both subjects were willing to drink large quantities (>300 ml) of a more
concentrated solution of quinine (4.2 mM) from a water bottle. We tailored the quantities
of juice to ensure that each subject received their daily aliquot of fluid over the course of a
single session. For subject H, the sample juices lasted 0.4 s (0.25 ml) and the final reward
amount was 1.1 s (0.68 ml) on 75% of the trials (small reward trials) and 2.1 s (1.3 ml) on
25% of the trials (large reward trials). For subject J, the sample juices lasted 0.3 s (0.19 ml)
and the final reward amount was 1 s (0.62 ml) on 75% of the trials and 1.9 s (1.2 ml) on 25%
of the trials. The subjects had no way of knowing the volume of the final reward amount
until its delivery. Nevertheless, this variation in its size motivated the subject to work for
more trials.

3.2.2 Statistical methods

We excluded trials in which a break fixation occurred and trials in which the subject moved
the lever in the wrong direction during one of the sample responses. We constructed spike
density histograms by averaging activity across the appropriate conditions using a sliding
window of 100 ms. We quantified neuronal selectivity during the performance of the task
using several defined time epochs. We determined these time epochs based on where the
most prominent encoding of the action and the outcome was evident in the spike density
histograms. The presample epoch consisted of the 800 ms immediately preceding the sub-
ject’s first sample action. The first-outcome epoch consisted of an 800 ms period beginning
200 ms after the delivery of the first juice. The 200 ms offset allowed for the latency to
encode juice information in frontal cortex [Lara et al., 2009]. The second-outcome epoch
consisted of the equivalent period after the delivery of the second juice. The prechoice epoch
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Figure 3.1: A, lllustration of the sequence of events in the behavioral task. The subject made two
lever movements sequentially, indicated by the horizontal arrows, and received one of three juices
for each movement. At the choice phase, the subject repeated one of the movements to receive
the juice associated with that movement earlier in the trial. The two different blocks consist of
trials in which the subject either made a leftward followed by a rightward lever movement or a
rightward followed by a leftward lever movement. The block is signaled by a colored square, but
this provided no information about the specific AO contingencies. The figure illustrates trials for
subject H, who preferred orange juice to apple juice. In the two example trials, subject H receives
orange juice for the first movement and apple juice for the second movement and elects to repeat
the movement that led to orange juice at the choice phase of the task. B, Timeline indicating the
timing of behavioral events during the course of a single trial, as well as the corresponding epochs
that we used for statistical analysis. The vertical gray lines indicate the onsets of the visual cues,
and the vertical colored lines indicate the time of the subjects’ actions and the delivery of juice.
The precise timing of these events depends on how long it takes for the subject to initiate and
perform his action. For the purposes of illustration, we used the subjects’ median reaction times.
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consisted of the 800 ms immediately preceding the subject’s final choice action. We defined
two additional epochs at the choice phase of the task. The chosen epoch consisted of an 800
ms period beginning 200 ms after the delivery of the chosen juice, and the small-offset epoch
consisted of an 800 ms period beginning 200 ms after the offset of the juice on the small
reward trials. For each neuron, we then calculated its mean firing rate during each epoch on
every trial. We used statistical tests, assessed using an o level of 0.01, to determine whether
the neuron’s mean firing rate depended on the various experimental factors.

During the presample epoch, we wished to determine whether neurons encoded the di-
rection of the first sample movement. For each neuron, we performed a ¢ test with the
neuron’s firing rate during the presample epoch as the dependent variable and whether the
first sample action was a leftward or rightward lever movement as the independent variable.
We used x? tests to assess differences between PFcs and PFdl in the proportion of neurons
encoding the upcoming sample movement. In addition, we calculated a direction index of the
strength of encoding by subtracting the neuron’s mean firing rate on trials in which the first
sample action was a rightward lever movement from its firing rate on those trials in which
the first sample action was a leftward lever movement. We then normalized the resulting
value by dividing by the standard deviation of the neuron’s mean firing rate across all trials.
For example, a value of 1 on this index would indicate that the firing rate of the neuron was
1 standard deviation higher when the subject intended to make a leftward lever movement
than when the subject intended to make a rightward lever movement.

To quantify selectivity during the first-outcome epoch, for each neuron we performed
a two-way ANOVA with the experimental factors of action (whether the subject had just
made a leftward or rightward sample movement) and outcome (which of the three juices was
delivered). We then classified neurons according to whether they encoded just the action,
just the outcome, or a combination of the two. We used x? tests to assess differences in
the proportion of selective neurons between the two brain areas. We also used the two-way
ANOVA to calculate the strength of selectivity. We did this by calculating the magnitude
of our statistical effects using n%2. This is equivalent to the percentage of explained variance
attributable to a specific experimental factor. We calculate its value by dividing the sum of
squares associated with the experimental factor by the total sum of squares in the analysis
and multiplying the result by 100%. In addition, for each neuron we calculated the direction
index in the same manner as for the presample epoch.

During the first-outcome epoch, we also examined the latency at which neurons first
began to encode the identity of the juice, by performing a “sliding” ANOVA analysis. For
each neuron, we took a 200 ms window of time, beginning 1000 ms before the delivery of the
first outcome, and performed a two-way ANOVA on the neuron’s mean firing rate during
that window, using the factors of action and outcome. We then calculated the percentage
of variance in the neuron’s firing rate that was attributable to the outcome factor. We
then moved the window forward by 10 ms, and repeated the analysis. We continued in this
manner until we had analyzed the entire first-outcome epoch. We defined the latency of
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selectivity as the time when the p value fell below 0.005 for three consecutive time bins.
We then compared neuronal latencies between brain areas using Wilcoxon’s rank-sum test.
We chose our criterion by comparing the results from the sliding ANOVA analysis for each
neuron with the selectivity evident in their spike density histograms. To verify that this
criterion resulted in a reasonable rate of type I errors, we examined how many neurons
would have reached the criterion in the 500 ms before the delivery of the juice (i.e., when
it would have been impossible for the neurons to encode the juice’s identity). Just 5/284
(1.8%) neurons reached criterion in this time, indicating that our choice of criterion indeed
yielded a reasonable rate of type I errors.

To quantify selectivity during the second outcome, we first separated the trials into
three sets depending on the identity of the first outcome. Then, for each neuron and each
set of trials in turn, we performed a t test using the neuron’s mean firing rate on each
trial as the dependent variable and the identity of the second outcome as the independent
variable. To examine the time course of this selectivity at the population level, we performed
a sliding analysis analogous to our analysis for the first out- come, to quantify the percentage
of variance in the neuron’s firing rate that was attributable to the identity of the second
outcome. With regard to the choice phase of the task, we analyzed neuronal activity during
three epochs. First, we analyzed data during the prechoice epoch in an analogous manner to
our analysis of neuronal activity in the presample epoch, although the independent variable
on which we focused was the direction of the subject’s choice action. Next, we analyzed
data during the chosen epoch. For each neuron, we calculated its mean firing rate during
both the chosen and small-offset epochs. For both epochs in turn, we then performed a
three-way ANOVA, with the neuron’s mean firing rate as the dependent variable, and juice
(whether the chosen juice was the most preferred or intermediately preferred), magnitude
(small or large reward trials) and action (whether the subject made a leftward or rightward
lever movement to choose the juice) as the independent variables.

3.3 Results

3.3.1 Behavior

Both our subjects exhibited clear preferences between the three available juices throughout
recording (Fig. 3.2A). Subject H preferred orange juice to apple juice, and preferred both
juices to quinine. Across 17 sessions, he performed a mean of 429 + 13 trials, and picked
orange juice over apple juice 98 & 0.6% of the time, apple juice over quinine 98 £ 0.6% of the
time, and orange juice over quinine 99 £ 0.2% of the time. Subject J preferred apple juice to
orange juice, and preferred both juices to quinine. Across 25 sessions, he performed a mean
of 434 + 10 trials, and picked apple juice over orange juice 96 £ 1.3% of the time, apple
juice over quinine 96 £ 1.7% of the time, and orange juice over quinine 85 & 3.2% of the
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Figure 3.2: A, Mean percentage of trials within a session in which the subject chose in a manner
consistent with his preferences for each of the three potential juice pairings. Subjects rarely made
choices that were not consistent with their preferences. B, Mean percentage of trials during each
quarter of a session in which the subject chose in a manner inconsistent with his preferences.
There was no evidence that the likelihood of an inconsistent choice varied across the course of
the recording session.

time. Moreover, both subjects maintained clear preferences across the course of individual
recording sessions. We divided each session into quarters and, for each quarter, calculated
the proportion of trials in which the subject chose the less preferred reward (Fig. 3.2B).
The percentage of choices that were inconsistent with the subjects’ preferences did not differ
between the session quarters for either subject (Kruskal-Wallis one-way ANOVA, p < 0.1 for
both subjects). Neither subject had a movement bias during the choice phase: both subjects
made leftward movements on 51% of the trials. Thus, both subjects appeared to perform the
task as we anticipated: they showed clear preferences between the outcomes, and monitored
which outcome occurred following each sample movement to ensure that they consistently
chose their preferred juice at the choice phase of the task.

We excluded two types of errors from our analysis of the neuronal data. The first was
when the subject failed to maintain fixation for the duration of the trial. For subject H, 5.0
+ 0.6% of the trials included break fixation errors, while for subject J, 12.5 £ 1.2% of the
trials included break fixation errors. The identity of the outcome did not affect the likelihood
of a break fixation for either subject in either delay (one-way ANOVA, F < 1,p > 0.1 in all
cases). The second type of error was when subjects made the wrong movement given the
current block of trials. Subject H made wrong movements on 5.3 4+ 0.5% of trials, while
subject J made wrong movements on 8.4 + 0.6%. Most of the wrong movements tended to
occur on the first trial of a block. For subject H, 47% of his wrong movements occurred on
the first trial of the block, while 38% did so for subject J. The remaining wrong movements
occurred throughout the remainder of the block. The identity of the juice delivered as the
first outcome did not influence the likelihood of making a wrong movement for sampling the
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second outcome. For subject H, the proportion of incorrect movements made in sample 2
was 31 + 7% following orange juice, 22 + 7% following apple juice, and 23 + 7% following
quinine. For subject J, the proportion of incorrect movements was 38 + 5% following apple
juice, 23 + 3% following orange juice, and 35 + 5% following quinine. These proportions did
not significantly differ from one another for either subject (Kruskal-Wallis one-way ANOVA,
p > 0.05 for both subjects). In summary, both subjects performed the task at a high level
of accuracy making errors on only a small proportion of trials.

For both subjects, the first sample action (H: median 402 ms, J: median 285 ms) was
significantly slower than the second sample action (H: median 319 ms, J: median 247 ms,
Wilcoxon’s rank-sum test, p < 1 x 1071 for both subjects). In addition, the second sample
action was significantly slower than the choice action (H: median 248 ms, J: median 231 ms,
Wilcoxon’s rank-sum test, p < 1x 107% for both subjects). The identity of the first outcome
did not affect subsequent reaction times for the second sample action (Kruskal-Wallis one-
way ANOVA, p > 0.1 for both subjects), nor did the identity of the second outcome affect
reaction times for the choice action (Kruskal-Wallis one-way ANOVA, p > 0.1 for both
subjects). Thus, the subjects’ responses became quicker as the trial progressed, but the
juices that they received did not affect their reaction times.

3.3.2 Neurophysiology

We recorded neuronal activity simultaneously from two brain areas, PFdl and PFcs, for a
total of 284 neurons. We recorded from 172 PFdl neurons (H: 77, J: 95) and 112 PFcs
neurons (H: 60, J: 52).

3.3.3 Comparison of action and outcome encoding across brain areas

Our initial characterization of the neuronal response properties focused on the first-outcome
epoch. It is in this epoch that the subject learns which outcome is associated with the
first sample action. We found that the majority of the neurons encoded either action-related
information or information about the reward the subject received for making that action. To
quantify this selectivity, for each neuron we performed a two-way ANOVA on the neuron’s
mean firing rate on each trial, using the factors of which action the subject made (the
leftward or rightward lever movement) and which outcome he received (orange, apple, or
quinine). Figure 3.3A illustrates a PFdl neuron that showed a significant main effect of
action evident as a higher firing rate when the subject had made a rightward as opposed to
the leftward action (F{(1427) > 562,p < 1 x 107%%), but no main effect or interaction with
outcome. Figure 3.3B illustrates a PFcs neuron that showed a significant main effect of
outcome (Fia392) > 61,p < 1 x 107'%), but no main effect or interaction with action. The
neuron showed its highest firing rate when the subject had just received quinine, a lower firing
rate when the subject had received apple juice, and its lowest firing rate when the subject
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Figure 3.3: A, Spike density histograms illustrating a PFd| action-selective neuron. The plots
are color-coded according to which movement the subject made for the first sample action and
which juice he received. Time along the x-axis is plotted from the onset of the juice delivery, and
the red tick mark indicates the offset of the juice. The gray shading illustrates the extent of the
first-outcome epoch that we used for statistical analysis. This neuron had a significantly higher
firing during the first-outcome epoch when the subject had made a leftward lever movement, but
did not discriminate between the delivery of the three different juices. B, A PFcs neuron that
had a higher firing rate to the delivery of quinine than to apple juice and a higher firing rate to
apple juice than to orange juice. This neuron was from subject H, and so the neuronal firing rate
inversely correlated with the subject’s preferences. The neuron did not discriminate between the
different lever movements. C, A PFcs neuron that showed a higher firing rate for apple juice than
for orange juice and a higher firing rate for orange juice than for quinine. This neuron was from
subject J, and so the neuronal firing rate directly correlated with the subject’s preferences. The
encoding of outcome information was stronger when the subject had made a rightward movement
than when the subject had made a leftward movement.
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Figure 3.4: For each neuron from PFdl (A) and PFcs (B), we plotted the percentage of variance
in the neuron’s firing rate during the first-outcome epoch that could be attributable to either
the action or outcome factor as determined from a two-way ANOVA. Those neurons whose firing
rates showed a significant main effect of one or both of the experimental factors are color-coded
(red, action only; blue, outcome only; pink, action and outcome). The data points circled in
red, blue, and black indicate the data from the neurons illustrated in Figure 3.3A-C, respectively.
C, Plot of the mean percentage of variance in the PFdl or PFcs neurons’ firing rates that was
explainable by either the action or the outcome factor.

had received orange juice. This neuron was from subject H, and so the neuronal firing rate
inversely correlated with the subject’s preferences. Figure 3.3C illustrates a PFcs neuron
that showed a significant interaction between action and outcome (F2371) > 5.0,p < 0.01).
The neuron showed a higher firing rate for apple juice than for orange juice, and a higher
firing rate for orange juice than for quinine. This neuron was from subject J, so the neuronal
firing rate directly correlated with the subject’s preferences. However, the encoding of the
outcome information was stronger when the subject had made a rightward movement than
for a leftward movement.

We contrasted the prevalence of these different types of neuronal encoding in PFdl and
PFcs. In PFdl, nearly twice as many neurons showed a main effect of action (83/172 or 48%)
as showed a main effect of outcome (49/172 or 28%). In contrast, in PFcs, more neurons
showed a main effect of outcome (67/112 or 60%) than showed a main effect of action (52/112
or 46%). Few neurons in either area showed an action x outcome interaction (PFdl: 20/172
or 12%, PFes: 10/112 or 9%). A comparison of the proportion of selective neurons between
the areas revealed that outcome-selective neurons were significantly more prevalent in PFcs
than in PFdl (x* = 26.3,p < 5 x 1079), while the proportion of action-selective neurons did
not significantly differ between the areas (x? = 0,p > 0.1).
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We next examined the magnitude of the experimental effects using n? for each of the
experimental factors (see 3.2.2 Statistical methods). For each neuron, this provided us with
two selectivity measures: the degree to which the neuron encoded the action and the degree
to which the neuron encoded the outcome. We then plotted these two measures against
one another (Fig. 3.4A, B). This confirmed our findings from the prevalence analysis: the
main difference between the two areas was that PFcs encoded both the action and the
outcome, whereas PFdl encoded the action alone. We performed a two-way ANOVA using
these selectivity measures as the dependent variable and independent variables of encoding
(outcome or action) and area (PFdl or PFcs). There was a significant interaction between
the factors (Fig. 3.4C) (Flisesy > 12.7,p < 0.0005). A post hoc simple effects analysis
revealed that there was significantly higher action encoding in PFdl than outcome encoding
(Flis6e) > 19,p < 0.00005), whereas there was no significant difference in the strength
of action and outcome encoding in PFcs (F(1564y < 1,p > 0.1). Furthermore, outcome
encoding was significantly higher in PFcs than in PFdl (F(1 561y > 18,p < 0.00005), but
there was no significant difference in the strength of action encoding between the two areas
(F(17564) <l,p> 01)

In summary, while PFdl encoded information about the action, only PFcs encoded both
pieces of information that were necessary to solve the task, namely the action and the
outcome. In addition, the low incidence of neurons showing an interaction between the
action and outcome factors, as well as the L-shaped pattern of the scatter in Figure 3.4B,
suggests that the two experimental factors were encoded by separate populations of neurons
in PFcs. In other words, neurons either strongly encoded the outcome or strongly encoded
the action but were unlikely to encode both factors. Our subsequent analyses focus on
determining more precisely what aspect of the outcome and action neurons are encoding.

3.3.4 Specific information encoded by outcome-selective neurons

To characterize more specifically how the neurons were encoding outcome information, we
began by determining, for each neuron, its mean firing rate when each of the different
outcomes occurred. We then determined the rank order of those means. There were three
different outcomes and consequently six potential rank orderings of those three outcomes.
Two of the six possible rank orderings were consistent with the subject’s preferences: either a
monotonically increasing or decreasing relationship between firing rate and preference. The
other four possible rank orderings were not consistent with the subject’s preferences. In PFcs,
47/67 (70%) of the outcome-selective neurons encoded the outcomes in a manner consistent
with the subject’s preferences, which was significantly greater than the one-third expected
by chance (binomial test, p < 1 x 107?). In PFdl, a similar proportion of outcome-selective
neurons encoded the outcome in a manner consistent with the subject’s preferences (28/49
or 57%, binomial test, p < 0.0005). In other words, despite consistent orderings making up
only one-third of the possible orderings, approximately two thirds of the neurons encoded
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Figure 3.5: A, Time course of selectivity related to encoding the first outcome across the two
neuronal populations as determined by the sliding ANOVA analysis. The bold line indicates the
mean of the population, while the colored shading indicates the SEM. The gray shaded bar
indicates the extent of the first-outcome epoch that we used for statistical analysis. The left pair
of green vertical lines indicate the mean time across all trials at which the subject acquired fixation
(subject H, dark green; subject J, light green). The right pair of green vertical lines indicate the
mean time at which the subjects made their movements to sample the second outcome. The
horizontal brown bar indicates time points at which the outcome selectivity was significantly
stronger in PFcs relative to PFd| as determined by a ¢ test. B, Time course of selectivity related
to encoding the first action as determined by the sliding ANOVA analysis.

the outcomes in a manner consistent with the subject’s preferences. Of these neurons, there
was a tendency to show a negative relationship between the subject’s preferences and their
firing rate (PFcs: 32/47 or 68%, binomial test, p < 0.005, PFdl: 23/28 or 82%, binomial
test, p < 0.0001). In other words, these neurons tended to show their highest firing rate to
the least preferred juice and their lowest firing rate to the most preferred juice.

We confirmed that the neuronal selectivity was not a simple sensory response to the juice,
by comparing each neuron’s firing rate during the first- and second-outcome epochs. If the
neurons were encoding the sensory properties of the juice, then their firing rate should show
the same rank ordering of the juices in both epochs. To determine this, we performed the
same analysis of neuronal activity during the second-outcome epoch as we had performed
for the first-outcome epoch. Of the 116 neurons (PFcs: 67, PFdl: 49) that were outcome
selective in the first- outcome epoch, 76 (PFcs: 43, PFdl: 33) were also selective during the
second- outcome epoch. However, only 8 of these neurons (PFcs: 6, PFdl: 2) showed the
same rank ordering of the outcomes in both epochs. Thus, the neuronal response to the
juice did not depend solely on the physical properties of the juice, but also depended on the
context within the task in which the juice occurred.

We also examined the time course over which neurons encoded outcome information.
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We performed a sliding two-way ANOVA and calculated for each time point the percentage
of variance in the neuron’s firing rate that could be attributable to the outcome factor (see
3.2.2 Statistical methods). Figure 3.5A shows that the encoding of the outcome was stronger
in PFcs than PFdl. An analysis of the latency at which neurons reached our criterion for
encoding of outcome information revealed that this occurred earlier in PFcs (median 360 ms)
than in PFdl (median 520 ms, Wilcoxon’s rank-sum test > 8855, p < 0.00005), although our
interpretation of this must be tempered by the very weak encoding of outcome information
that was present in PFdl.

Previous studies have shown that as a subject becomes satiated with a specific out-
come, the value of that outcome diminishes, causing changes in the subject’s choice behavior
(Balleine and Dickinson, 1998). Thus, we examined whether there was any evidence that
the neuronal responses changed across the course of the session. We divided each session
into quarters and repeated our previous analyses across these quarters. We did not find any
evidence that encoding of the outcome differed across the course of the session. Across the
four quarters, there was no difference in the proportion of neurons that encoded the outcome,
the action, or the interaction between the two factors (Fig. 3.6A) (x?,p > 0.1 for both areas
and all comparisons). Nor was there a difference between the quarters in the proportion of
outcome-selective neurons that encoded the outcome in a manner that was consistent with
the subjects’ preferences (Fig. 3.6B) (x2,p > 0.1 for all comparisons). Finally, there was no
difference in the mean strength encoding of the outcome across the session as determined
by calculating the percentage of variance in neuronal firing rates attributable to the identity
of the outcome (Fig. 3.6C). Thus, there was no evidence for any change in the neuronal
encoding of the outcome across the course of the session. This was consistent with the lack
of any behavioral change (Fig. 3.2C), which might suggest that our subjects were not fully
sated on any of the specific juices by the end of the recording session.

In summary, PFcs neurons showed stronger encoding of the three different juice outcomes.
The nature of this encoding was consistent with the neurons signaling the value of the juices
in terms of the subject’s preferences. Furthermore, the encoding was dynamic, as the neurons
did not encode the second juice outcome in the same way as the first. We examined the
encoding of the second juice outcome in more detail in subsequent analyses (see below).

3.3.5 Specific information encoded by action-selective neurons

To determine more precisely what information the action-selective neurons were encoding,
we compared the encoding of action information during the first-outcome epoch with the
encoding during the presample epoch. Over a third of the neurons showed significant action
encoding during the presample epoch, and there was no significant difference between the
two areas in the proportion of such neurons (PFdl: 60/172 or 35%, PFcs: 43/112 or 38%),
x? < 1,p > 0.1). A comparison of the neuronal selectivity during the presample and first-
outcome epochs revealed that neurons appeared to be encoding upcoming motor responses.

37



Chapter 3. Action and outcome encoding in working memory

PFdI PFcs
A
40 ® Action
® QOutcome
0= Q
c
o
bt
=1
5 /\—<
c
]
2
b=
9]
Qo
[9] ./‘\‘\.
w
ES
0
1 2 3 4 1 2 3 4
B
20 )
@ Consistent
2 ® Inconsistent
oS
et
=1
9]
c
o /\
2
=
3]
Q9
[
)
R
0
1 2 3 4 1 2 3 4
C

12 ® Action

o ® Qutcome
g E Both
.g 9}
e
> >
[ORe)
® D
“Q
o £
£ o l—/’l\z———l
tao
)
B3
0
1 2 3 4 1 2 3 4
Quarter of Session Quarter of Session

Figure 3.6: A, There was no difference across the quarters of the session (x?,p > 0.1 for both
areas and all comparisons) in terms of the prevalence of neurons encoding the action, outcome,
or the interaction of the two factors. (Although there were significantly fewer action-selective
neurons between the second and third quarters in PFdI, this effect did not survive the correction
for multiple comparisons.) B, There was no difference across the session in the prevalence of
neurons encoding outcome information in a manner that was either consistent or inconsistent
with the subjects’ preferences across the course of the session (x2,p > 0.1 for all comparisons).
C, There was no difference across the session in terms of the strength of outcome selectivity. For
each neuron and each quarter in turn, we calculated the percentage of variance in the neuron’s
firing rate that could be attributed to either the outcome or the action. We performed a three-
way ANOVA using the strength of selectivity as the dependent variable, and quarter, area, and
encoding (outcome or action) as independent variables. None of the main effects or interactions
with the quarter factor were significant (p > 0.1 in all cases), although there was a significant
area X encoding interaction (F(1,2254) =43,p<1x 10_10), consistent with the interaction shown
in Figure 3.4C.
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For example, the neuron in Figure 3.3A showed a higher firing rate during the presample
epoch on left-then-right trials, and a higher firing rate in the first-outcome epoch on right-
then-left trials. Thus, the neuron showed a higher firing rate whenever the subject intended
to make a leftward movement.

To investigate these effects at the population level, for each neuron and each epoch in
turn we calculated a direction index (see 3.2.2 Statistical methods). This index was positive
when the neuron showed a higher firing rate for upcoming leftward lever movements and
negative when the neuron showed a higher firing rate for upcoming rightward movements.
There was a significant correlation between the value of this measure in the two epochs
in both PFdl and PFcs (Fig. 3.7A, B). This pattern of results is consistent with neurons
encoding the upcoming motor action, with activity during the presample epoch encoding
the upcoming first sample action and activity during the first-outcome epoch encoding the
upcoming second sample action.

We also examined the value of the direction index during the prechoice epoch. If a neuron
was encoding the upcoming action during this epoch, then its activity should reflect the
direction of the lever movement that the subject intended at the choice phase of the task, in
the same way that it encoded the intended first sample action during the presample epoch.
Indeed, there was a positive correlation between the direction index in the prechoice and
presample epochs in PFdl (Pearson product-moment correlation coefficient, » = 0.34,p <
0.00001), although not in PFcs (r = 0.1,p > 0.1). However, in both areas action encoding
during the prechoice epoch was noticeably weaker than in the presample epoch, with 44/172
(26%) of PFdl neurons and 20/112 (18%) of PFcs neurons encoding the upcoming action.
We confirmed this by contrasting the absolute magnitude of the direction index during the
presample epoch with that in the prechoice epoch (Fig. 3.7C). We performed a two-way
ANOVA on these index values with the factors of epoch (presample or prechoice) and area
(PFdl or PFcs). There was a significant main effect of epoch (F{; 564y = 15,p < 0.0005) with
no other significant main effects or interactions (F' < 1,p > 0.1). Thus, the direction index
was significantly smaller during the prechoice epoch, and this effect was consistent across
both areas.

We also examined whether the strength of action encoding at the choice phase depended
on the identity of the first outcome. For example, there might be weaker encoding at the
choice phase when the first outcome is the most preferred, since the subject could potentially
decide their final choice when they receive the first outcome. To examine whether this was
the case, we grouped the trials according to the identity of the first outcome and calculated
the direction index for each epoch and for each group of trials (Fig. 3.7D). We then performed
a three-way ANOVA using the direction index values as the dependent variable and epoch
(presample or prechoice), area (PFcs or PFdl), and juice (the subject’s preference for the
first outcome) as independent variables. This revealed a significant epoch X juice interaction
(Fl1,1692) = 19,p < 0.00005). A post hoc analysis of the simple effects revealed that direction
selectivity was significantly weaker in the prechoice epoch when the first outcome was either
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Figure 3.7: For each neuron from PFdI (A) and PFcs (B), we plotted the direction index during the
presample and first-outcome epochs. The direction index consisted of the normalized difference
in the neuron’s firing rate on those trials in which the subject made a leftward lever movement to
sample the first outcome and those in which he made a rightward lever movement. There was a
significant correlation between the value of this measure in the two epochs in both PFdl (Pearson
product-moment correlation coefficient, 7 = 0.4,p < 5x 1077) and PFcs (r = 0.35, p < 0.0005).
C, Comparison of the mean action selectivity, defined as the absolute magnitude of the direction
index, in PFdl and PFcs during the presample and prechoice epochs. Action selectivity was
significantly weaker in the prechoice epoch, and the effect was consistent across both areas. The
horizontal dotted line indicates the chance level of selectivity as calculated via a Monte Carlo
analysis. D, Comparison of the mean action selectivity in PFdl and PFcs during the presample
and prechoice epochs, separated according to the identity of the first outcome. Action selectivity
was significantly weaker in the prechoice when the first outcome was either the intermediately
preferred juice or the least preferred juice, but not when it was the most preferred juice. The
horizontal dotted line indicates the chance level of selectivity as calculated via a Monte Carlo
analysis (the chance level of selectivity was higher than in Fig. 3.6C, as the analyses were based
on fewer trials, and so the index showed more variability).
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the least preferred (Fiy1692) = 11,p < 0.005) or the intermediately preferred (F(11692) =
19,p < 0.00005) outcome, but not when the first outcome was the most preferred (F{; 1692) <
1,p > 0.1). Thus, although the subject could potentially make their choice earlier in the
trial when the first outcome was the most preferred juice, this did not appear to be what
produced weak encoding of the final choice action.

We examined the time course of action encoding by performing a sliding two-way ANOVA
and calculating for each time point the percentage of variance in the neuron’s firing rate that
could be attributable to the action factor (see 3.2.2 Statistical methods). Encoding of the
upcoming sample actions began shortly after the presentation of the fixation cue and peaked
shortly after the performance of the first sample action (Fig. 3.5B). It dropped rapidly once
the subject had made the second sample action. The time course of action selectivity in
PFcs and PFdl was very similar, although it was slightly stronger in PFcs around the time
of the second sample action.

In summary, when the subject needed to monitor the outcome associated with his action
there was strong encoding of the action in both PFcs and PFdl. In contrast, once the
subject had received both the first and second outcome, such that he could make his choice
between them, there was very little encoding of the movement that would lead to the final
delivery of the reward. This result begs the question as to where in the brain the final choice
action is encoded. Although PFcs appears to be important for encoding action and outcome
information, the final action selection may occur in an area downstream of PFcs.

3.3.6 Encoding of outcome information during the second delay

Our analysis of the first sample action and its associated outcome revealed that neither
PFcs nor PFdI encoded specific AO associations. Furthermore, while both areas encoded
the action, a critical difference was that PFcs encoded the value of the outcome associated
with that action.

We next examined neuronal selectivity during the second sample action. To quantify
neuronal selectivity, we first separated the trials into three sets depending on the identity
of the first outcome. Then, for each set of trials, we determined whether the neuron’s firing
rate was affected by the identity of the two possible second outcomes (see 3.2.2 Statistical
methods). Thus, we performed three t tests comparing firing rates for (1) apple juice versus
quinine (when the first outcome was orange juice), (2) orange juice versus quinine (first
outcome was apple juice), and (3) orange juice versus apple juice (first outcome was quinine).
Significantly more neurons in PFcs than in PFdl showed a significant difference between the
two outcomes for at least one of these t tests (PFes: 71/112 or 63%, PFdl: 53/172 or 31%,
x2=28,p<5x107°).

In both areas, the majority of the selective responses (PFcs: 47/71 or 66%, PFdl: 44/53
or 83%, binomial test, p < 0.005 in both cases) consisted of a higher firing rate when the
second outcome was the less preferable of the two potential outcomes (as was the case for all
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Figure 3.8: Spike density histograms illustrating the firing rate of neurons to the delivery of the
second outcome. In each plot, the top panel indicates trials in which the first outcome was
the most preferred juice, the middle panel indicates trials in which the first outcome was the
intermediately preferred juice, and the bottom panel indicates trials in which the first outcome
was the least preferred juice. The colored drop indicates the identity of the first outcome (orange,
orange juice; green, apple juice; blue, quinine). The red tick mark indicates the offset of the juice
delivery. The gray shading illustrates the second-outcome epoch that we used for statistical
analysis. A, A PFcs neuron that had a significantly higher firing rate when the second outcome
was quinine, but only when the intermediately preferred reward (apple juice for subject H) was the
first outcome. B, A PFcs neuron, recorded from subject H, which showed a higher firing rate to
the less preferable of the two potential outcomes that might follow each of the first outcomes. C,
Another PFcs neuron that showed a higher firing rate to the less preferable of the two potential
outcomes, this time recorded from subject J. D, A PFcs neuron that had a significantly higher
firing rate to quinine following apple juice and to apple juice following quinine. In both cases, the
subject would receive apple juice for his final choice, and consequently the most likely explanation
for this pattern of selectivity is that it reflected the subject’'s expectancy of the reward that he
would receive for his choice.
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of the neurons in Fig. 3.8). These actions were not simply to the sensory properties of the
juice, since the action to the second outcome depended on the identity of the first outcome.
For example, the neuron in Figure 3.8 A showed a strong response to quinine when it followed
the delivery of apple, but not when it followed the delivery of orange. This type of selectivity
accounted for 35/71 (49%) of the PFcs neurons that encoded the second outcome and 35/53
(66%) of the selective PFdl neurons. In PFdl, the vast majority of these selective responses
(34/35 or 97%) occurred when the intermediately preferred juice was the first outcome. In
PFcs, encoding of the second outcome was also most prevalent when the intermediately
preferred juice was the first outcome (15/35 or 43%), but selective responses also occurred
when the first outcome was the most preferred juice (5/35 or 15%) or the first outcome was
the least preferred juice (13/35 or 37%).

Some neurons appeared to encode a more abstract version of this information. For
example, the neuron in Figure 3.8B consistently showed a higher firing rate whenever the
less preferred of the two possible second outcomes occurred, which for subject H was quinine
following orange, quinine following apple, and apple following quinine. Figure 3.8C shows
an analogous neuron in subject J. Thus, these neurons appeared to encode the relative value
of the two outcomes that could potentially follow the first outcome, regardless of the specific
identities of those outcomes. Such responses accounted for 10/71 (14%) of selective PFcs
neurons and 2/53 (4%) of PFdl neurons. Of these neurons, the majority showed a higher
firing rate to the less preferable outcome, with only one neuron (in PFcs) showing a higher
firing rate to the more preferable outcome.

Finally, some neurons appeared to encode the juice that the subject expected in the
choice phase of the task. For example, the neuron in Figure 3.8D showed a strong response
to quinine following apple juice and apple juice following quinine. This neuron was from
subject H, and these are the two juice combinations where he will receive apple juice as
his final reward rather than orange juice. Such neurons accounted for 17/71 (24%) of the
selective PFcs neurons and 8/53 (15%) of the PFdl neurons. This left just 12/71 (17%) of
the selective PFcs neurons and 8/53 (15%) of PFdl neurons whose responses could not be
accounted for by one of the above patterns of selectivity.

We also examined the time course over which neurons encoded the identity of the second
outcome. We performed a sliding one-way ANOVA and calculated for each time point the
percentage of variance in the neuron’s firing rate that could be attributable to the identity of
the second outcome (Fig. 3.9A, B). The results supported our conclusions from the analysis
of the single neuron activity. Encoding of the second outcome was stronger in PFcs than
in PFdl, and it was most evident when the first outcome was the intermediately preferred
outcome. In PFcs, encoding of the second outcome was also present when the first outcome
was either the most or least preferred, but this was not the case in PFdl.

In summary, encoding of the second outcome was most prevalent in PFcs. Most neurons
appeared to encode the value of the second outcome relative to the first. This signal could
take the form of a response to a specific second outcome in the context of a specific first
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Figure 3.9: Time course of selectivity related to encoding the second outcome in PFdl (A) and
PFcs (B), separated according to the identity of the first outcome. The bold line indicates the
mean of the population, while the colored shading indicates the SEM. The horizontal colored lines
indicate significant differences between the plots as determined by a ¢ test. Orange points indicate
a significant difference between the yellow and red plot, green points indicate a significant differ-
ence between the yellow and blue plot, and pink points indicate a significant difference between
the blue and red plot. For example, the orange points indicate those times when the selectivity
for the second outcome was stronger when the first outcome was intermediately preferred (yellow
plot) than when the first outcome was the most preferred (red plot).

outcome, or it could take a more abstract form in which the neuron responded whenever the
less preferable of the two potential outcomes (as indicated by the first outcome) occurred.
This was particularly evident when the first outcome was the intermediately preferred juice.
It is these trials in which the identity of the second juice is most critical. This is because on
half the trials following the intermediately preferred outcome, the second outcome will be
less preferable than the first, while on the other half of the trials the second outcome will be
more preferable than the first. In addition, they are also the trials in which the difference
in value between the two potential outcomes (the most and least preferred outcomes) is
greatest. Either or both of these reasons may explain the bias toward encoding the second
outcome when it follows the intermediately preferred juice.

3.3.7 Encoding of the chosen outcome

Our final analysis of neuronal selectivity focused on the actions that occurred when the
subject received their chosen outcome. Many neurons encoded the identity of the chosen
outcome. For example, the neuron in Figure 3.10A showed a higher firing rate when the
subject received apple juice than when the subject received orange juice. In addition, on
25% of the trials the subject received a reward that was approximately twice as large as the
standard reward size. Many neurons responded differentially depending on the magnitude
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Figure 3.10: A, Spike density histograms illustrating a PFcs neuron that encodes the identity
of the chosen juice. The plots are color-coded according to the identity and magnitude of the
juice reward. The red tick marks illustrate the offset of the small and large juice reward. The
dark gray shading illustrates the extent of the chosen epoch, and the light gray shading indicates
the extent of the small-offset epoch. This neuron had a significantly higher firing rate when the
subject received his preferred juice (apple for subject J) than when he received his intermediately
preferred juice. B, A PFcs neuron that fired in response to the offset of the smaller reward. Note
that this was not a generic reward offset response, since a similar strong response did not occur
to the offset of the large reward.
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of the received reward. For example, the neuron in Figure 3.10B showed a phasic response
at the time of the offset of the small reward, which did not occur when the subject received
a large reward.

To quantify the prevalence of these different types of neuronal selectivity in our neuronal
populations, we performed a three-way ANOVA for each neuron and both the chosen and
small-offset epochs in turn. We used the neuron’s mean firing rate on each trial as the
dependent variable and independent variables of juice (whether the subject had chosen the
most preferred or intermediately preferred juice), action (whether the subject had made a
leftward or rightward lever movement to indicate their choice), and magnitude (small or large
reward trials). During the chosen epoch, a small number of neurons in each area showed
a main effect of juice or a main effect of action (Fig. 3.11A). No other main effects or
interactions accounted for > 3% of the neurons. During the small-offset epoch, the majority
of selective neurons encoded the magnitude of the received juice while a smaller population
encoded the juice’s identity. The prevalence of neurons encoding the magnitude of the juice
was greater in PFcs than PFdl, and PFcs tended to respond more strongly to the most
preferred juice. In summary, the identity of the juice and its magnitude both drove neuronal
activity, and the encoding of reward-related parameters was biased toward PFcs.

We also examined the relationship between encoding juice information during the sample
phase of the task (specifically the first-outcome epoch) and the choice phase of the task
(the chosen and small-offset epochs). There was no evidence that neurons that encoded
juice information during the first-outcome epoch were any more or less likely to encode juice
information during the chosen and small-offset epochs than were neurons that did not encode
juice information during the first-outcome epoch (x? test, p > 0.1 in all cases). For those
neurons that did encode juice information during both phases of the task, we examined how
their selectivity compared. (Too few PFdl neurons encoded juice information at both phases
of the task to permit a meaningful statistical test of their response properties, so for this and
subsequent analyses, we focused solely on PFcs neurons.) PFcs neurons tended to encode
juice information during the choice phase of the task in the opposite direction to how they
encoded it during the sampling phase of the task (Fig. 3.11B). To ensure sufficient neurons
to permit us to examine this statistically, we combined the two groups, i.e., those that
encoded juice information during the first-outcome epoch and the chosen epoch, and those
that encoded juice information during the first-outcome epoch and the small-offset epoch.
(Only one neuron was common to both groups, and our analyses were unaffected by whether
we included or excluded this neuron as a member of both groups.) This analysis confirmed
that neurons were more likely to switch their juice preference between the sample and choice
phases of the task than they were to maintain the same preference (binomial test, p < 0.05).
We also compared the firing rates that were elicited by the juices in the sample and choice
phases of the task (Fig. 3.11C). For each neuron and each epoch, we calculated the neuron’s
preferred juice, defined as the juice that elicited the highest firing rate, and determined
how this firing rate compared between those epochs. For those neurons encoding juice in
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Figure 3.11: A, Percentage of neurons that encoded either the magnitude of the chosen reward
(magnitude), the identity of the chosen reward (juice), or the direction of the behavioral response
to select the chosen reward (action). For those neurons encoding the magnitude of the reward,
the darker shading indicates the proportion that showed a stronger response to the larger reward.
For those encoding the juice, the darker shading indicates the proportion that showed a stronger
response to the more preferred juice. For those neurons encoding the action, the darker shading
indicates the proportion that showed a stronger response for a leftward movement. The asterisk
indicates that the prevalence of encoding the magnitude of the reward was significantly greater in
PFcs than in PFdl (x2,p < 0.05). The dagger indicates that there were significantly more PFcs
neurons that showed a stronger response to the more preferred juice than the less preferred juice
(binomial test, p < 0.05). B, Proportion of neurons that encoded outcome information during
both the first-outcome epoch and the choice phase of the task that showed either the same (dark
shading) or opposite (light shading) preference among the juices. C, Comparison of the firing
rate elicited by the neuron’s preferred juice for those neurons that encoded outcome information
during both the sample and choice phases of the task.
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both the first-outcome and chosen epochs, the firing rate to the neuron’s preferred juice was
significantly less in the chosen epoch (Wilcoxon signed-rank test, p < 0.05). In contrast,
for those neurons encoding juice in the first-outcome and small-offset epochs, there was no
significant difference between the mean firing rates (Wilcoxon signed-rank test, p > 0.1).

In summary, PFcs neurons tended to encode juice preference at the choice phase in
the opposite direction to how they encoded this information during the sample phase. In
addition, the neurons showed lower firing rates to chosen rewards than to rewards received
during the sample phase. Thus, PFcs neurons showed their strongest activity when the
subject had to monitor the outcome of an action, as in the sampling phase, or when it was
not possible to predict the outcome of the action, as in the small-offset epoch, which is when
the subject learned whether he would receive a small or large reward.

3.3.8 Functional anatomy within areas

Figure 3.12 illustrates the location of neurons that were action selective and outcome selective
during the first-outcome epoch. To determine whether there was a relationship between the
incidence of selective neurons and their anterior-posterior position, we performed a logistic
regression using whether or not a neuron was selective as the dependent variable and the
anterior-posterior position of the recording location as the predictor variable. We did this
for each area and each variable (action or outcome) in turn. Action-selective neurons were
significantly more prevalent in more posterior recording locations in PFdl (p < 0.00005).
However, there was no relationship between location and action selectivity in PFcs, and no
relationship between location and outcome selectivity in either area.

In addition, we have previously reported that neurons encoding the value of multiple
decision-related parameters are restricted to the anteriormost portion of PFcs, with a marked
drop-off in the prevalence of such neurons as one moves posterior to the genu of the corpus
callosum [Kennerley et al., 2009]. To examine whether such a functional dissociation existed
in the current task, we recorded an additional dataset that focused on the dorsal bank of the
cingulate sulcus posterior to the genu of the corpus callosum (antero-posterior +20 to +23)
in subject J. We recorded 34 neurons from this area (PFcspostgenuat). We treated this as a
separate dataset: it was not included in our previous analyses.

Neuronal selectivity in PFcspostgenuar Was markedly different from the anterior part of
PFcs. During the first-outcome epoch, 28/34 (82%) of the neurons encoded the action
compared with 5/34 (15%) that encoded the outcome. When we plotted the magnitude
of the experimental effects of outcome and action, it was clear that the majority of neu-
rons encoded the action with little effect of the outcome (Fig. 3.13A). To confirm that
the neuronal encoding in PEFcspostgenuat Was indeed different from our original PFcs dataset,
we performed a two-way ANOVA using the magnitude of the experimental effects as the
dependent variable and independent variables of encoding (outcome or action) and area
(PFcSpostgenuar 0r PFes).  There was a significant interaction between the factors (Fig.
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Figure 3.12: Flattened reconstructions of the cortex indicating the location of all recorded neurons
(open circles) and outcome-selective neurons (filled circles) in subject H (A) and subject J (B).
The size of the circles indicates the number of neurons recorded at that location. Red circles
indicate neurons recorded from PFdl, blue circles indicate those recorded from PFcs, and green
circles indicate those recorded from PFcs,osgenuai- Gray shading indicates the unfolded cingulate
sulcus in PFcs and the unfolded principal sulcus in PFdl. We measured the anterior'posterior
position from the interaural line (x-axis) and the dorsoventral position relative to the lip of the
ventral bank of the principal sulcus (0 point on y-axis). For ease of viewing, each plot is presented
so that dorsal regions are at the top and ventral regions are at the bottom. C and D indicate the
location of action-selective neurons recorded from subject H and subject J, respectively.
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Figure 3.13: A, Percentage of variance in PFcspostgenuar Neuronal firing rates during the first-
outcome epoch that could be attributable to either the action or outcome factor as determined
from a two-way ANOVA. Conventions are as in Figure 3.4. B, Plot of the mean percentage of
variance in PFcspostgenuar OF PFcs neuronal firing rates that was explainable by either the action or
the outcome factor. C, Scatter plot of the direction index values during the presample and first-
outcome epochs for every neuron in PFcs,ostgenuai- There was a significant positive correlation
(Pearson product-moment correlation coefficient, » = 0.55, p < 0.001) indicative of the neurons
encoding the upcoming action. D, Comparison of the mean action selectivity, defined as the
absolute magnitude of the direction index, in PFcs,osgenuar and PFcs during the presample and
prechoice epochs. The horizontal dotted line indicates the chance level of selectivity as calculated
via a Monte Carlo analysis.
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3.13B) (Fliass) = 29,p < 5 x 107%). A post hoc simple effects analysis revealed that
there was significantly greater action encoding in PFcs,ostgenuat than outcome encoding
(Flai88) = 32,p < 5 X 1077). In addition, outcome encoding was significantly weaker in
PFcspostgenuar than in the original PFcs dataset (F{1 285y = 5,p < 0.05), and action encod-
ing was significantly greater in PFcspostgenuar (F(1,288) = 29,p < 5 X 1075). These results
supported our previous findings [Kennerley et al., 2009]: in PEcspostgenuar there is a clear
decrease in the encoding of outcome-related information and a clear increase in the encoding
of action-related information relative to more anterior regions of PFcs.

To examine the nature of the action selectivity evident in PFcspostgenuar, We compared
our direction index in the presample and first-outcome epochs. There was a significant
positive correlation indicative of the neurons encoding the upcoming action (Fig. 3.13C).
The predominance of action selectivity raised the possibility that PFcs,ostgenuar might be an
area downstream of the anterior regions of PFcs that could be responsible for encoding the
final choice action. In fact, there was no evidence that this was the case: selectivity relating
to the encoding of the final action did not differ between PFcspstgenuar and the original PFes
dataset during the prechoice epoch (Fig. 3.13D). We confirmed this by performing a two-
way ANOVA on the absolute magnitude of the direction index values with the factors of
epoch (presample or prechoice) and area (PFcspostgenuar 0 PFes). There was a significant
interaction between the two factors (F{12s5y = 39,p < 5 x 107%). A post hoc analysis of
the simple effects revealed that the direction index was significantly smaller in the prechoice
epoch than in the presample epoch in both areas (PEFcspostgenuaiz Fl1,2s8) = 91,p < 1 X
10715, PFecs: Fl 988y = 18,p < 0.00005). Furthermore, whereas the direction index was
significantly stronger in PFcs,ostgenuai than our original PFcs dataset during the presample
epoch (Fq288) = 88,p < 1 x 1071%), there was no difference between the areas in its strength
during the prechoice epoch (F' < 1,p > 0.1). Thus, although PFcspostgenua €ncoded the
upcoming action strongly during the presample epoch, there was little evidence that it was
responsible for implementing the final choice action.

3.4 Discussion

Using a task that required subjects to maintain information about which of three potential
outcomes was associated with one of two possible actions, we observed marked differences
in the properties of PFcs and PFdl neurons. Whereas both areas encoded the action, PFcs
neurons also encoded the value of the outcomes associated with those actions. PFcs neurons
encoded the value of the first outcome with respect to the subjects’ preferences. They
subsequently encoded the value of the second outcome relative to the first outcome. This
information would be sufficient for the subject to determine their choice, but neurons showed
much weaker encoding of both actions and outcomes during the choice phase of the task,
compatible with the notion that PFC is more important for monitoring behaviors than
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implementing them.

3.4.1 Differential control of action selection by PFdl and PFcs

Our results suggest that PFcs is important for monitoring the value of an outcome that re-
sults from a specific behavioral action. This conclusion is compatible with recent theories of
PFcs function, which suggest this region may be important for valuing actions [Rushworth et
al., 2007; Quilodran et al., 2008; Rushworth and Behrens, 2008]. For example, PFcs lesions
render monkeys unable to sustain rewarded action in an outcome-guided choice task [Kenner-
ley et al., 2006], while PFcs neurons tend to encode both rewards as well as the action that
led to the reward [Matsumoto et al., 2003; Williams et al., 2004]. The results of the current
study help to define what information PFcs encodes. Neurons encoded outcome information
in a manner that was consistent with the subjects’ preferences. This supports the idea that
PFcs neurons encode outcome information via an abstract value signal [Amiez et al., 2006;
Wallis, 2007; Kennerley et al., 2009].

In contrast, despite a good deal of focus on PFdl in the control of goal-directed be-
havior [Shallice and Burgess, 1991; Duncan et al., 1996; Watanabe, 1996; Miller and Co-
hen, 2001], it is becoming increasingly apparent that its role in this process is relatively
constrained. Neuropsychological studies show that PFdl damage does not impair decision
making [Bechara et al., 1998; Fellows, 2006; Fellows and Farah, 2007; Baxter et al., 2008].
Neurophysiological studies show that PFcs neurons encode multiple decision parameters,
such as the amount of available juice, the amount of work necessary to earn the juice or
the probability of juice delivery, while PFdl neurons show much weaker encoding of such
information [Kennerley et al., 2009]. Results from [Matsumoto et al., 2003] have also sup-
ported this conclusion. In a task that required subjects to learn associations between stimuli
(two different pictures), actions (holding or releasing a lever), and outcomes (receiving or
not receiving a juice reward), PFcs neurons encoded the AO association, while PFdl neurons
encoded the stimulus-action association.

In addition, we saw a marked decline in the prevalence of encoding outcomes in the more
posterior parts of PFcs. In a previous study, we saw a marked decrease in the complexity of
the encoding of decision parameters in the more posterior PFcs [Kennerley et al., 2009]. This
raises the possibility that the dorsal bank of the cingulate sulcus anterior to the genu of the
corpus callosum is functionally distinct from the more posterior regions of the dorsal bank.
We note that there is considerable disagreement regarding the cytoarchitectonic designation
of the dorsal bank of the anterior PFcs, with it variously labeled as area 9 [Vogt et al.,
2005], 32 [Petrides and Pandya, 1994, 9/32 [Paxinos et al., 2000], or 24b [Carmichael and
Price, 1994]. Regardless of the cytoarchitectonic labels, our results highlight the functional
diversity of the cingulate sulcus. In addition to the anterior/posterior distinction, the dorsal
and ventral banks of the cingulate sulcus also appear to be functionally distinct [Hoshi et al.,
2005]. These differences in functional anatomy must be considered if we are to understand
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PFcs function [Rushworth et al., 2004].

3.4.2 The specific nature of action encoding in PFcs

Some neurophysiological studies of PFcs find strong encoding of behavioral responses [Mat-
sumoto et al., 2003], while others find little evidence for such encoding [Ito et al., 2003;
Matsumoto et al., 2007]. Our own data seem to suggest that PFcs action encoding is most
evident at the point in the trial when the subject must monitor the outcome associated with
an action. Those studies that did not observe strong action encoding, may not have required
such monitoring, either because a cue instructed which movement to make [Ito et al., 2003]
or because the subject could adopt a simple ‘win-stay, lose-shift’ strategy [Matsumoto et
al., 2007]. A further issue relates to why our study found segregation of neuronal response
properties: neurons tended to encode either the outcome or the action but not both. Al-
though similar segregation occurs in the striatum [Lau and Glimcher, 2007], previous studies
of PFcs found that neurons integrated action and outcome information [Matsumoto et al.,
2003]. The segregation that we observed might be a consequence of our task design, since
information in our task was only relevant for the current trial. Integration of action and out-
come information may only occur when it is necessary to keep track and update an action’s
value across multiple trials.

Both PFcs and PFdI strongly encoded the movements to sample the outcomes but only
weakly encoded the final choice movement. These findings are compatible with accounts of
prefrontal function that emphasize its role in monitoring behavior, rather than planning and
executing actions [Petrides, 1996]. They are also consistent with studies that show stronger
encoding in both PFcs [Matsumoto et al., 2007; Quilodran et al., 2008] and PFdl [Procyk
and Goldman-Rakic, 2006] when a subject is determining which action is rewarded than
when they are repeating a known rewarded action. More generally, we can interpret such
findings within the framework of exploration (discovering what outcomes are associated
with specific actions) versus exploitation (repeating actions that lead to known outcomes),
with prefrontal neurons more involved in exploration than exploitation. This raises the
question as to whether there is a downstream motor area responsible for implementing the
final choice, although our data seem to exclude PFcspostgenuar from such a role. For exam-
ple, reward-dependent modulation of motor responses increases in progressively downstream
motor structures [Roesch and Olson, 2003]. Alternatively, exploitation may be a default
strategy that exploration must override, with the consequence that neuronal responses to
exploration will always be stronger than exploitative responses [Daw et al., 2006].

3.4.3 Biased encoding of valence in PFcs

Both EEG [Gehring et al., 1993; Miltner et al., 1997] and fMRI [Carter et al., 1998; Ullsperger
and von Cramon, 2003; Holroyd et al., 2004] studies have found that PFcs activity is stronger
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to failures than successes. Our finding that neurons responded more strongly to the less
preferable outcomes during both the first- and second-outcome epochs supports this view.
This valence bias is the opposite of that reported in other areas involved in value-based
decision making, such as orbitofrontal cortex, where neuronal responses were stronger for
positive events [Roesch and Olson, 2004]. This has prompted some theories to argue that
choice behavior involves the integration of benefits from orbitofrontal cortex and costs from
PFcs [Cohen et al., 2007]. However, such a conceptualization may be overly simplistic.

Several studies have found comparable responses in PFcs to successes and failures [Knut-
son et al., 2000; Holroyd and Coles, 2002; Walton et al., 2004]. We previously found an
even split between neurons that increased their firing rate as the value of a choice increased
compared with those that increased their firing rate as the value of a choice decreased in both
PFcs and orbitofrontal cortex [Kennerley et al., 2009]. PFcs neurons are equally likely to
respond to gains (when a subject was cued that they would receive more juice than expected)
and losses (when a subject learned they would receive less juice than expected) [Sallet et al.,
2007]. Furthermore, PFcs neurons respond to rewards in a manner that is highly sensitive
to the reward context in which they occur [Sallet et al., 2007]. For example, the response
of a PFcs neuron to a large reward will be larger if it occurs in a block of relatively small
rewards versus a block of relatively large rewards. This suggests that PFcs neurons may be
relatively susceptible to framing [Tversky and Kahneman, 1981]: their response may depend
on the context in which the choice is presented. A possible explanation for why we observed
larger signals for negative outcomes may be because subjects tend to be overly optimistic
about the likelihood of a positive outcome [Miller and Ross, 1975]. Thus, our subjects may
have hoped for their most preferred juice to occur following a sample, and the PFcs signaled
when this did not occur.

3.5 Conclusion

In summary, our results support the notion that PFcs is important for monitoring the value
of an outcome produced by a specific behavioral response and highlight the relative lack of
outcome encoding in PFdl. These neuronal populations in PFcs could contribute to many of
the functions in which PFcs has been implicated, including action valuation, error detection,
and decision making.

Work in this chapter has been published in the Journal of Neuroscience [Luk and Wallis,
2009).
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Neuronal representations of
action-outcome and stimulus-outcome
associations

4.1 Introduction

In a dynamic world, values of stimuli in the environment and of one’s actions change. To
obtain desired outcomes efficiently, it becomes necessary to track the value of stimuli and
actions as stimulus-outcome (SO) and action-outcome (AO) associations, respectively. Pre-
frontal cortex may be critical in tracking these associations, particularly the prefrontal region
of the cingulate sulcus (PFcs) and orbitofrontal cortex (PFo). Both areas are strongly con-
nected to limbic areas [Carmichael and Price, 1995a], thus providing them with reward
outcome information. PFcs has robust connections to motor regions in the cingulate motor
area and ventral premotor cortex [Carmichael and Price, 1995b]. It is also part of a medial
prefrontal network referred to as the “visceromotor network” [Carmichael and Price, 1996].
PFo is in a complementary network focused on processing sensory information from infer-
otemporal cortex, insula and pyriform cortex, among other sensory areas [Passingham, 1995;
Carmichael and Price, 1995b].

Consistent with the anatomy, studies suggest that there is a division of labor across PFcs
and PFo, with PFcs involved in encoding AO associations and PFo involved in encoding
SO associations. PFcs neurons encode values of a spectrum of actions like instructed move-
ments [Matsumoto et al., 2003; Luk and Wallis, 2009], chosen actions [Hayden and Platt,
2010], effort requirements to obtain reward [Walton et al., 2002; Croxson et al., 2009] among
other decision parameters. On the other hand, PFo neurons capture the value of outcomes
predicted by specific stimuli and contexts [Thorpe et al., 1983; Tremblay and Schultz, 1999;
Padoa-Schioppa and Assad, 2008; Bouret and Richmond, 2010]. BOLD activity in PFcs cor-
relates with the subject’s actions, while BOLD activity in PFo increases with changing SO
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associations [Noonan et al., 2011]. Lesions of PFcs render rats [Balleine and Dickinson, 1998;
Dias and Aggleton, 2000] and monkeys [Hadland et al., 2003] incapable of adjusting their ac-
tions based on changes to outcomes based on responses, but they can link changing outcomes
to associated stimuli [Rudebeck et al., 2008]. In contrast, PFo lesions impair rats [Pickens et
al., 2003] and monkeys [Izquierdo et al., 2004] on SO associations, but do not affect action
encoding [Ostlund and Balleine, 2007; Rudebeck et al., 2008]. Collectively, these studies
provide strong evidence for a double dissociation between the medial and orbital prefrontal
areas in how they represent associated value, suggesting that PFcs is required for process-
ing AO associations, and PFo for SO associations. The neuronal mechanisms instantiating
this differential encoding across areas have yet to be determined. Thus, we aimed to deter-
mine the precise neuronal mechanisms that take place in PFcs and PFo that enable them to
process information on AO and SO associations.

Past experiments often required subjects to focus on either AO and SO associations
throughout an entire experiment or used a task that required both types of associations. By
merging AO and SO associations into single task, it becomes difficult to know how much
attention is placed on individual components of the task. Subjects may have utilized SO,
AO, or both associations to choose optimally [Valentin et al., 2007]. Thus, we had subjects
alternate between performing either AO and SO tasks within single recording sessions, and
we contrasted the neuronal representation of AO and SO associations in PFcs and PFo.
The specific associations changed trial to trial, so the subject needed to remember both the
predictor (A or S) and its paired outcome to perform optimally. We then compared PFcs
and PFo in their encoding of AO and SO associations.

4.2 Materials and methods

4.2.1 Behavioral task

The experiment comprised of two tasks, an AO and an SO task (figure 4.1A). Both tasks
followed the same structure as was described in section 3.2.1 for the AO task. A trial began
with a sampling period and followed with a choice period. In an SO trial, the subject viewed
two different pictures that yielded two different rewards during the sampling period. Then
in the choice period, the subject saw both pictures side-by-side and moved the lever in the
direction of the picture associated with the more preferred reward. In order for the subject
to obtain more of his preferred reward, he needed to remember which picture was linked
with which outcome. The AO trial was similar, but instead of viewing pictures, the subject
executed two different lever movements and then repeated one of them in the choice period.
For more details on the AO task, see 3.2.1 Behavioral task. We made one change to the
AO task described in the previous chapter: the colors of the block cues were identical in
this experiment. This lack of visual information instructing actions encouraged the subject
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to ignore stimuli in the AO task. The SO and AO contingencies changed trial to trial. All
cue-outcome pairings were equally likely to occur. The spatial order of the pictures during
the choice period of the SO task were counterbalanced and randomized.

Cues were actions in the AO task (left and right lever movements) and pictures in the
SO task (natural scene, portrait images of isoluminance and square dimensions with sides
of 5 degrees of visual angle). Pictures were presented for 0.6 s. Reward was presented
such that its offset coincided with the offset of the picture. The rewards we used were
unique to each subject. We gave subject H orange juice (Minute Maid), apple juice (50%
dilution, Safeway), and quinine (1.1 mM, Sigma-Aldrich). Subject J received orange juice
(75% dilution), apple juice, and quinine (4.4 mM). Reward amounts were also tailored to
each subject, so as to ensure that they showed consistent preferences between the juices and
so that they received their daily fluid aliquot within a single recording session. Sample juices
lasted approximately 0.4 s (0.25 mL). Choice rewards varied between two sizes, one that was
small and occurred 75% of the time, and the other that was large and occurred 25% of the
time. The small reward was typically 3-5 times larger than the sample juice, and the large
reward was typically 5-8 times larger.

The two tasks were organized into blocks: 35 trial-long blocks of AO trials, 45 trial-long
blocks of SO trials. Because behavioral performance was lower on the SO task, this ensured
that we had a similar number of correct trials for each task. Within a block, the order of
the cues did not change. Hence, we had two different blocks of the AO task and two other
blocks of the SO task. During a recording session, blocks alternated from being one of the
AO blocks to being one of the SO blocks.

4.2.2 Statistical methods

We excluded error trials from our statistical analyses. Subjects made two types of errors,
which have been described in section 3.2.1. Briefly, subjects needed to maintain their eye
position within +2.5° of the fixation spot throughout the trial prior to the choice period. If
the subject’s eye went beyond the £2.5° boundary, the subject experiences a 5 s timeout (red
screen) before the trial returned to where the subject left off. The second error only occurred
in the AO task. During the sampling period, the subject could make the wrong movement,
i.e., a leftward movement instead of the correct rightward movement. If the subject made a
wrong movement, he experienced a 5 s timeout (yellow screen). Afterward, the trial resumed
from the point where the subject was prior to the error. If the error occurred prior to the
delivery of the first sample reward, then the trial was included in our statistical analyses,
but all other error trials were excluded.

We also excluded recording sessions in which the subjects exhibited significant side bias
in their choices. Specifically, we divided a session into blocks of 30 trials. Within each
block, we performed a binomial test on the direction of the choice response. If there was a
significant difference in the number of leftward and rightward movements, we removed the
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Figure 4.1: A, The experiment consisted of two tasks presented in alternating blocks. In the AO
block, the subject moved the lever in two directions to receive two different liquid rewards. Then
he repeats one of the movements to receive more of that corresponding reward. For instance,
the subject could move left to receive orange juice, then right to receive apple juice. Supposing
the subject prefers orange juice, he will repeat the leftward movement in the choice period to
gain more orange juice. In the SO block, the subject viewed two pictures that were paired with
different rewards. Then he selected the picture associated with his preferred reward via a lever
movement. Pictures were equally likely to appear on either side at the choice phase. B, Timeline
of the behavioral events on a typical SO trial. Vertical lines denote onsets of cues (duration
in gray bars) and rewards (duration in colored bars). The two possible durations of the chosen
reward are shown in shades of orange. The shorter one occurs 75% of the time. Time from choice
cue onset to chosen reward onset was the median reaction time for subject H. Below the timeline
are the analysis epochs we used time locked to the timeline. Below those are descriptions of the
epochs regarding what statistical model was used and bounds for the sliding window of analysis.
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block. Then we totaled the number of remaining trials. If that number was greater than 240
trials, we kept the session in our analyses.

We visualized rasters of the spikes for each neuron and removed spikes that were likely
artifacts from the solenoid valve delivering rewards. For each neuron, we compared the
number of spikes within 15 ms from reward onset to the number of spikes between 15 and 30
ms from reward onset. If there were more than two times as many spikes within 15 ms from
reward onset, then those spikes were removed. We repeated this for reward offset. For each
task, we visualized spike density histograms by averaging activity across the appropriate
conditions using a sliding window of 150 ms. We quantified neuronal selectivity in each task
during specified windows following several defined events of a trial. These specified windows
and events are listed in Fig. 4.1B. For a given event and corresponding window, we performed
a “sliding” analysis on each neuron using either an ANOVA or linear regression separated
by task.

To analyze encoding of the first reward we focused on neuronal selectivity that began at
reward onset and ended at the end of the first delay period. This corresponded to the period
of time in which the subject needed to encode information about the reward so as to later
compare it to the second reward and choose the better option for that given trial. For each
neuron, we separated its data by task. In each task, we performed a “sliding” analysis. We
took 200-ms bins of time, beginning at reward onset and performed a two-way ANOVA on
the neuron’s mean firing rate during that bin with factors of cue (which action was made in
the AO task or which picture was shown in the SO task) and outcome (which reward was
given). In each bin, we used our statistical model to calculate the percentage of variance
(PEV) in the neuron’s firing rate that was attributed to each factor. Bins were incremented
by 10 ms until the end of the window for analysis was reached. We defined each neuron’s
selectivity based on the time of the maximal PEV obtained from that factor or interaction
term. We used this same analysis to examine the time course of neuronal encoding. We
determined the time of maximal encoding from the sliding analysis. We further defined the
earliest latency of selectivity for that factor as the earliest time bin in which the p value
fell below 0.005 for three consecutive time bins. We contrasted the strength and latency of
neuronal encoding across brain areas and tasks using ANOVAs.

Following delivery of the second reward, we wanted to measure how much information
neurons encoded about both the first and second reward. So for each neuron, we performed
a linear regression analysis in a sliding manner starting from the onset of the second re-
ward until the end of the subsequent delay period. The regression model compared how
fluctuations in a neuron’s firing rate scaled linearly with the value of the two rewards:

Y =0bo+ b1 X1+ by X2, (4.1)

where y was firing rate (Hz) in a given bin of time, r; was the normalized value of the
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first reward and 79 was the normalized value of the second reward. All variables were
standardized. Normalized value for each reward term equaled one if the reward was the
subject’s most preferred reward and zero if it was the subject’s least preferred reward. The
value given for the subject’s intermediately preferred reward was a ratio of how often the
subject picked the more preferred rewards in all reward pairings. Specifically, the ratio
followed this equation:

Npest>intermediate
r= : (4.2)

Npest>intermediate + Nintermediate>worst

where r is either r; or ry for trials when the intermediately preferred option was presented,
Npest>intermediate 15 the number of trials the subject picked the best (most preferred) reward
in trials presenting the best and intermediate options, and Mutermediate>worst 18 the num-
ber of trials the subject picked the intermediately preferred reward in trials presenting the
intermediate and worst options.

We quantified how correlated the independent variables were to check the validity of
the model. We used the variance inflation factor as our measure of collinearity. In the 47
recording sessions across the subjects, all variance inflation factors were between 1.2 and 1.6,
which is well under the 2.5-valued threshold indicating a problem of collinearity [Allison,
1999].

We performed a different sliding ANOVA analysis following the choice cue onset. Trials
in which the subject chose quinine were removed, as they were inconsistent with the subjects’
overall preferences and we could not be certain as to the reason for the error. For example, the
subject could have forgotten the cue-outcome contingencies or accidentally moved incorrectly.
Trials were then separated by task. The window for the analysis was kept as the same
duration used for the first reward and ranged from 1300-1500 ms. In the AO task, a sliding
two-way ANOVA was performed with factors of chosen action (which direction the subject
intended to move) and chosen outcome (which reward the subject had chosen). In the SO
task, a sliding three-way ANOVA was performed with the same factors as in the AO task
and an additional factor of stimulus (in which spatial order the pictures appeared).

In all sliding analyses, we controlled for multiple comparisons by using the adjusted p
value of 0.005. We calculated this value by determining the false alarm rate during the
first second of the ITI period. For each neuron, we ran a sliding ANOVA analysis on its
mean firing rate with the factors of first cue and first reward shuffled across trials ten times.
We then averaged those p values collapsed across task to determine the threshold at which
approximately five percent of the neurons reached criterion. Only 13-14 neurons out of 464
(3.6-4%) were falsely classified as selective for each factor. Hence, our choice of threshold
yielded a reasonable rate of type I errors.

We defined value neurons as those that scaled their firing rate consistent with the subject’s
reward preferences. For neurons selective in one task, we focused on the neuron’s peak
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Figure 4.2: Reward preferences across sessions represented as the mean proportion of trials in
which the subject selected his more preferred option in each reward pairing.

selectivity, and compared the ordering of firing rates for each reward with the subject’s
behavioral rank ordering of the rewards. There are six possible orderings of the three rewards,
of which two were consistent with the subject’s preferences (a positive or negative relationship
between firing rate and preference). Those two rankings indicated value encoding. For
neurons selective in both tasks, we first collapsed across tasks to determine the team of peak
outcome encoding for each neuron. Proportions of value neurons were then compared across
brain area and task.

4.3 Results

4.3.1 Behavior

Both subjects showed consistent preferences across both tasks (Figure 4.2). Subject H pre-
ferred orange juice to apple juice and quinine, and apple juice to quinine across 27 sessions.
Subject J preferred apple juice to both orange juice and quinine, and orange juice to qui-
nine across 20 sessions. To account for possible deterioration in choice behavior towards
the end of sessions, we performed a three-way ANOVA on the percentage of choices that
were consistent with the subject’s preferences. The factors were reward pair, task, and quar-
tile of a session. Subjects’ choices depended on the interaction between pairings and task
(F > 8.1, p < 0.0003 for both subjects). Subject H had strongest preferences for orange over
apple in the AO task (97 £ 1.2), followed by orange over quinine in the AO task (96 + 1.1),
orange over apple in the SO task (89 + 2.3), and orange over quinine in the SO task (82 +
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2.2). Weakest preferences were for orange over apple in the SO task (78 £+ 1.7). All simple ef-
fects were significant (One-way ANOVA, F > 7.6, p < 0.006; t-test, t1o7 > 3.9,p < 2x 107%).
Subject J had similar preferences in the AO task (apple over quinine: 99 + 0.4, apple
over orange: 99 4+ 0.6, orange over quinine: 98 + 1.0; simple effects one-way ANOVA,
Flo237) = 0.75,p > 0.47). In the SO task, he had strongest preferences for apple over quinine
(91 £ 1.0), followed by apple over orange (84 + 1.1), and weakest preference for orange over
quinine (71 + 1.3, simple effects one-way ANOVA, F5937) > 81,p < 1 x 107'°). Further,
all simple effects differentiating task levels for each level of reward pairing were significant
(t-test, t7g > 9.0,p < 6.6 x 107). Quartiles had only a limited effect. Specifically, the
interaction of reward pairing and quartile affected subject H (Fig 624y > 2.6,p < 0.02), but
not subject J (Fg456) = 0.65,p > 0.69). It was limited to the apple-quinine pairing (Simple
effects one-way ANOVA, F(3212) > 5.3,p < 0.002) in that preferences dropped across the
session (quartile 1: 92 + 1.6%, 2: 92 £+ 1.6, 3: 85 £+ 2.7, 4: 81 £+ 3.1).

Neither subject made many errors. We excluded error trials, which were defined one the
basis of two types of errors: 1. Subject broke fixation during a period subsequent to the
presentation of the first reward, or 2. Subject made a wrong lever movement during the
second sample period in the AO task. The mean number of fixation errors (£ S.E.M.) per
session was 10 £+ 2 for subject H and 68 4+ 3 for subject J. Across both tasks, the fixation
errors were equally likely to occur in either delay for subject H (¢-test, t50 < 0.2,p > 0.7).
Subject J tended to break fixation more often in the first delay during the SO task (¢-test,
t3s < 2.1,p = 0.046). In the AO task, however, he tended to break fixation during the second
delay (t-test, tzg < —3.1,p < 0.003). Fixation errors also did not depend on the reward just
given (one-way ANOVA; subject H: Fo 75y < 2.6,p > 0.08; subject J: Fio57) < 2.8,p > 0.07),
except in one case. The exception was delay 2 during SO trials for subject H: he broke
fixation most often following his least preferred outcome, quinine, and least often following
his most preferred outcome, orange juice (one-way ANOVA, Fis75) > 5.6, p < 0.005). As for
moving the wrong way in the sample periods of the AO task, the mean number of errors per
session was 17 4+ 2 for subject H and 18 £ 1 for subject J. Most errors happened for the
first movement of the trial (¢-test, t5 > 7,p < 5 x 107 for both subjects). The likelihood of
making wrong movements did not depend on the identity of the reward (one-way ANOVA,
Fozs) < 1.3,p > 0.2). After removing all error trials, subject H completed a mean of 138
+ 35 correct trials per session in the AO task and 170 4+ 28 correct trials in the SO task.
Subject J completed 135 £ 18 correct trials in the AO task and 199 4+ 31 correct trials in
the SO task.

We removed sessions, in which subjects showed significant side biases (see section 4.2.2
Methods for more details). In the remaining sessions used for analysis, we verified that both
subjects showed reward preferences and did not strongly prefer one movement over the other.
Subject H selected one lever movement significantly more than the other on only 21% of the
trials within a session. For subject J, it was 13%. Of the bias trials, they tended to occur
during the SO task (H: 56%, J: 59%, t-test, p < 2 x 1079 for both subjects).
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Subject H gradually responded faster to successive movements in an AO trial, taking 456
ms (median) for the first response, 336 ms for the second response, and 199 ms for the choice
response. The choice response was much faster than that in the SO task (median 744 ms,
Wilcoxon’s rank-sum test, p < 1 x 1071%). Subject J was also slowest at the first response of
the AO task (median 333 ms), faster at the second response (median 286 ms) and fastest at
the choice response (median 266 ms). AO choice responses were again much faster than the
choice response in the SO task (median 709 ms, Wilcoxon’s rank-sum test, p < 1 x 10719).
These results suggest that the choice phase of the SO task involves a qualitatively different
process than the choice phase of the AO task. This is likely because in the AO task the
subject can determine the appropriate response to obtain his preferred juice immediately
after the delivery of the second reward. In contrast, in the SO task they must wait until the
pictures appear before they can determine the appropriate response. This involves processing
the pictures, recalling their association with the rewards and then determining the response.

Subject H had a small bias in the AO task to perform leftward choice movements more
quickly (median left: 193 ms, median right: 204 ms, Wilcoxon’s rank-sum test, p = 0.05).
He had the same bias in the SO task (median right: 733 ms, median left: 754 ms, Wilcoxon’s
rank-sum test, p < 2x 107°). He showed no reaction time difference across the two directions
during the first sample response of the AO task (median left: 453 ms, median right: 459
ms, Wilcoxon’s rank-sum test, p > 0.65). There was a difference during the second sample
response with him being faster for rightward movements (median left: 353 ms, median right:
311, Wilcoxon’s rank-sum test, p < 4 x 1072°). Like subject H, subject J was also faster
choosing leftward responses in both tasks (median AQ: left 247 ms, right 283 ms; SO: left
579 ms, right 826 ms; Wilcoxon’s rank-sum test, p < 1 x 1071° for both cases). His reaction
times on the sample responses of the AO task were faster for rightward movements in the
first sample epoch (median left: 355 ms, median right: 314 ms, Wilcoxon’s rank-sum test,
p < 2 x1077) but there was no difference in the second sample epoch (median left: 286 ms,
median right: 286 ms; Wilcoxon’s rank-sum test, p > 0.84).

The AO choice movement reaction time scaled with subject H’s reward preferences
(Kruskal-Wallis one-way ANOVA, x? > 221,p < 1 x 107'%). It was quickest following the
subject’s favorite juice as the preceding second sample juice (median 181 ms), moderately fast
following the subject’s intermediately preferred juice (median 190 ms), and slowest following
the subject’s least preferred juice (median 208 ms). The SO choice movements also differed
(Kruskal-Wallis one-way ANOVA, x? > 51,p < 6 x 107'%). From a post-hoc simple effects
test, we found that actions were only significantly faster following subject H’s favorite reward
compared to either of the other two: favorite juice median 727 ms, intermediately preferred
juice median 740 ms, least preferred juice median 744 ms (Kruskal-Wallis one-way ANOVA,
x2 > 24,p < 7x 1077 in both cases). Subject J’s choice movements were also affected by pre-
vious rewards given in the second sample period. In the AO task, he was fastest to respond
following his least preferred quinine option (259 ms) and slowest following his most preferred
apple juice option (270 ms) (Kruskal-Wallis one-way ANOVA, x* > 7,p < 0.03). In the SO
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task, he was fastest after his intermediately preferred option (692 ms) and slowest after his
least preferred option (730 ms) (Kruskal-Wallis one-way ANOVA, x2 > 13, p < 0.002).

4.3.2 Neurophysiology

We recorded the activity of 215 neurons (H: 125, J: 90) from the dorsal bank of the cingulate
sulcus (PFcs) and 249 neurons (H: 145, J: 104) from areas 11 and 13 in the orbitofrontal
cortex (PFo) while our subjects performed the AO and SO choice tasks. In order to choose
optimally, the subjects needed to remember which juice outcome was paired with which
stimulus or action.

4.3.3 Encoding first outcome following its delivery

In common to both tasks was the requirement to remember the first juice across the first
delay and so our analyses begin with this time period. Many of the neurons showed similar
encoding of the outcome across the two tasks. Figure 4.3A illustrates an example of a PFo
neuron that responded to the delivery of quinine in both the SO and AO task. However,
other outcome-selective neurons showed very different patterns of selectivity between the
two tasks. Figure 4.3B illustrates a PFcs neuron that encoded the first outcome during the
AO task but did not fire at all during the SO task. In contrast, figure 4.3C illustrates a
PFo neuron that encoded outcome during the SO task but not during the AO task. We
quantified the prevalence of neurons that encoded the first juice outcome using a sliding one-
way ANOVA (see section 4.2.2 Methods). A similar proportion of neurons encoded outcome
in either one or both of the tasks, and the proportions did not differ between brain areas
(Table 4.1).

We also examined the extent to which neurons encoded the value of the outcome, in which
case encoding of the outcomes should match the subjects’ preferences. For each neuron, we
determined the time point of maximum outcome selectivity and then calculated how it rank
ordered the juices and compared this to the subject’s behavioral rank ordering of the juices.
There are six possible ways to rank order three juices, two of which are consistent with the
subject’s preferences (a positive or a negative relationship between firing rate and preference)
and therefore indicative of value encoding. For neurons selective in one task, we focused
solely on the task in which they encoded the outcome. For neurons selective in both tasks,
we collapsed activity across the tasks and then determined the order in which the neuron
ranked the outcomes. Since two of the six possible rankings of three juices were consistent
with subjective preference, we would expect by chance a third of the neurons showing these
two rankings. Instead we found that a majority of the neurons that encoded outcomes across
both tasks or in the SO task reflected subjective preferences (Fig 4.4). The exception was
with the neurons in the AO task where there was a variety of different rankings, suggesting
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Figure 4.3: A, Spike density histogram illustrating a PFo neuron encoding the first reward across
both tasks. It had its highest firing rate when the reward was quinine (purple lines) and its lowest
firing rate when the reward was orange juice (orange lines). The magnitude of outcome selectivity
is shown below the histogram. Significant encoding is denoted with red and black dots in the SO
and AO tasks, respectively. Brown tick marks illustrate the end of the delay period. B, A PFcs
neuron that encoded outcomes only in the AO task. C, A PFo neuron that encoded outcomes
only in the SO task.
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Table 4.1: Neurons with significant encoding for cue or outcome following the first reward. Rows
are sorted by which task neurons were selective in and from which brain area neurons were
recorded. In the top panel, percentages are out of all recorded neurons. In the bottom panel,
percentages are from outcome-selective neurons. The columns of the top panel lists neurons
that had significant main effects of cue or outcome or a significant interaction. There were no
differences in such selective neurons across brain areas. In the bottom panel, outcome-selective
neurons are further divided according to whether they also encoded the cue and according to
whether their cue encoding fell in the same or different task as their outcome encoding. Outcome
neurons selective in one task carrying cue information tended to do so in the same task as their
outcome encoding. However, outcome neurons selective across both tasks rarely had cue encoding
in both tasks.

Cue Outcome Cue x Outcome
AO only: PFo 28 (11.2%) 43 (17.3%) 15 (6.0%)
AO only: PFcs 27 (12.6%) 24 (11.2%) 22 (10.2%)
SO only: PFo 17 (6.8%) 43 (17.3%) 22 (8.8%)
SO only: PFcs 11 (5.1%) 39 (18.1%) 10 (4.7%)
Both: PFo 4 (1.6%) 32 (12.9%) 1 (0.4%)
Both: PFcs 4 (1.9%) 37 (17.2%) 0 (0.0%)

Outcome + no cue Outcome + same Outcome + differ-

selectivity pattern cue selec- ent pattern cue se-

tivity lectivity

AO only: PFo 22 (51.2%) 20 (46.5%) 1(2.3%)

AO only: PFcs 15 (62.5%) 9 (37.5%) 0 (0.0%)

SO only: PFo 34 (79.1%) 9 (20.9%) 0 (0.0%)

SO only: PFcs 30 (76.9%) 5 (12.8%) 4 (10.3%)

Both: PFo 18 (56.2%) 3 (9.4%) 11 (34.4%)

Both: PFcs 18 (48.6%) 3 (8.1%) 16 (43.2%)
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Figure 4.4: Value encoding in outcome neurons at the maximal point of outcome encoding.
Outcome neurons in both brain areas that were selective in both tasks or in the SO task only
encoded rewards consistent with subjective preference. However, the proportion of AO outcome
neurons encoding rewards consistent with preferences did not significantly differ from the propor-
tion expected by chance.

that neurons may have encoded the specific outcome associated with the movement rather
than its value.

We next turned our attention to other measures of outcome encoding. We began by
looking at the strength of encoding, which was measured as the maximal percent explained
variance in mean firing rate attributable to outcome (PEV,yicome). To compare encoding
strength across populations of neurons, we ran a three-way ANOVA on PEV,,icome With
factors of brain area, task, and whether the cell was selective in one or both tasks. As illus-
trated in figure 4.5A, outcome encoding of neurons selective in both tasks was significantly
stronger than that of neurons selective in one task (F{y 279 > 38,p < 1x 107'?). In addition,
the AO task carried stronger outcome encoding than the SO task (F(1279) > 5.2,p < 0.023).
In short, outcome selectivity is more robust in the AO task and strongest when it is present
in both tasks.

We next compared the temporal evolution of these signals. We compared the latencies
of maximal outcome encoding via a three-way ANOVA analysis again using factors of brain
area, outcome and whether neurons were selective in one or both tasks. Maximum outcome
encoding occurred slightly earlier in PFo compared to PFcs (PFo: 702 £+ 25 ms, PFes: 763
+ 26 ms; F(1,255) > 3.7,p = 0.053). We also examined how quickly neurons began encoding
outcome information. To measure this, we determined each neuron’s earliest latency for
outcome selectivity. Earliest latency was defined as the first 200-ms window after reward
onset, that the neuron remained selective for three consecutive time bins. We ran a three-
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Figure 4.5: A, Strength of maximal outcome encoding in neurons that are outcome selective
during one or both tasks. Encoding was much stronger in neurons selective in both tasks than
one task (p < 1 x 1071%). Encoding in the AO task was also reasonably stronger than the SO
task (p < 0.023). B, Distribution of earliest encoding of outcome in selective neurons. Outcome
neurons selective in both tasks (blue) tended to have earlier latencies than those selective only in
one task (gold). Significant p = 0.0008.

way ANOVA of those latencies with factors of brain area, task, and whether the neuron
encoded outcome in one or both tasks. As shown in figure 4.5B, neurons encoding outcome
in both tasks were significantly faster than those encoding outcome merely in one task (mean
+ standard error: 557 £ 25 ms for both task neurons, 672 + 25 ms for one task neurons;
F 276y > 11,p = 0.0008). These data suggest that both tasks utilize a task-independent
reward signal that is broadcast quickly and simultaneously to PFo and PFcs.

4.3.4 Encoding task cues by outcome neurons

The subject not only had to remember what outcome he received in order to guide his choice,
he also had to link it with the associated task cue. One method neurons could do this is
by simultaneously encoding outcome and cue. To see if this occurred, we looked for cue
encoding during maximal outcome encoding. We began by isolating the outcome neurons
that were selective for cue. Nearly 40% (81/218) of outcome neurons also encoded the cue
with most of them (49/81 or 60%) encoding the cue simultaneously. See Table 4.1 for more
details. These cue-outcome selective neurons were evenly divided across brain area as seen
in figure 4.6A.

Because of the nature of the task, it was possible that the cue encoding we observed could
reflect neuronal activity encoding the expected second cue, rather than first cue. This would
require a very different interpretation of the cue-outcome selective neurons. To distinguish
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Figure 4.6: A, Proportion of outcome neurons that also had cue encoding in the AO task (yellow),
SO task (light blue), or both tasks (dark blue). Roughly 40% of outcome neurons in each brain
area also carried significant cue encoding. B, Direction index prior to and following reward
onset of the cue-selective outcome neurons. Neurons are denoted as circles. Those lacking cue
selectivity prior to reward onset are unfilled circles. They have been offset from the abscissa to
enable visualization of their direction index. There were more neurons with consistent direction
indices before and after reward, but that was only significant in the SO task (p < 1 x 10719). C,
Latencies for encoding cue and outcome differed across tasks and brain areas. In the AO task,
latencies were roughly the same in PFcs (blue) and PFo (red), whereas in the SO task, these
latencies were clearly faster in PFo than PFcs (p < 0.01).
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this possibility, we computed a cue index for neurons at the time of maximal outcome encod-
ing and compared it to a cue index taken from the epoch prior to reward onset. Specifically,
we performed a sliding ANOVA to calculate the point of maximal cue encoding from the
period of cue presentation until 200-ms after the onset of the reward. (The 200-ms took
account of the latency for reward information to reach prefrontal cortex [Lara et al., 2009)).
The cue index was the normalized difference in a neuron’s firing rate during trials of one
cue (leftward movement or picture A) and trials of the other cue (rightward movement or
picture B). There were more neurons showing consistent cue encoding before and after the
reward onset (figure 4.6B): 16/26 (62%) and 8/8 (100%) in the AO and SO tasks, though it
was only significant in the SO task (binomial test, AO: p = 0.08, SO: p < 1 x 107%5). Thus,
it is possible these neurons could be combining the cue and outcome information necessary
for performing the experiment optimally.

Next we compared the encoding strengths and latencies of combined cue and outcome
information across neurons. We isolated the outcome selective neurons. Then we used a
three-way ANOVA to detect differences due to factors of task, area, and whether or not
these neurons encoded cues in one or both tasks. For encoding strength, we found no
differences (p > 0.1). The ability to encode cue and outcome was similar across tasks,
brain areas, and the number of tasks in which cue encoding occurred. The latencies, on the
other hand, showed an interaction between task and brain area (figure 4.6C). During the
AO task, cue-outcome neurons in both brain regions took about 780 ms following reward
onset to reach maximal outcome encoding. In contrast, during the SO task, cue-outcome
neurons from PFo were faster. They took 590 ms and cue-outcome neurons from PFcs
took 780 ms (F{191) > 7,p < 0.01). These data suggest PFo and PFcs carry both cue and
outcome information on a single neuron level, but that this information for the SO task is
first combined in PFo.

4.3.5 Encoding outcomes following the second reward

Representation of the first reward was very similar across brain regions. However, there were
hints of task-related differences. Outcomes were more strongly represented following lever
movements than pictures, and cue-outcome selective neurons from PFo were faster to reach
maximal outcome encoding in the SO task than such neurons from PFcs.

We next turned our attention to the second reward epoch. During this epoch, the subject
learned the identity of the second reward and could begin comparing both rewards so as to
determine which associated cue he would later choose in the trial. We were interested in
knowing how much information about each reward neurons encoded. For each neuron, and
each task in turn we performed the following linear regression in a sliding analysis starting
from the onset of the second reward until the end of the subsequent delay period:

y:bo+b1XT1+b2XT2, (43)
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Table 4.2: Neurons with significant outcome encoding following the second reward. Rows are
sorted by which task neurons were selective in and which brain area neurons came from. First
column percentages are out of all recorded neurons from the given region. Percentages for the
rest of the columns are out of all significant neurons in that given category (first column total).
Approximately 15% of the neurons in each brain area showed each type of selectivity (AO only,
SO only, Both).

Significant Positive be- Negative Anti-
tas betas correlated

betas

AO only: PFo 43 (17.3%) 14 (32.6%) 21 (48.8%) 8 (18.6%)

AO only: PFces 36 (16.7%) 10 (27.8%) 12 (33.3%) 14 (38.9%)
SO only: PFo 40 (16.1%) 11 (27.5%) 7 (17.5%) 22 (55.0%)
SO only: PFcs 37 (17.2%) 5 (13.5%) 16 (43.2%) 16 (43.2%)
Both AO: PFo 30 (12.0%) 5 (16.7%) 12 (40.0%) 13 (43.3%)
Both AO: PFcs 39 (18.1%) 7 (17.9%) 11 (28.2%) 21 (53.8%)
Both SO: PFo 30 (12.0%) 5 (16.7%) 13 (43.3%) 12 (40.0%)
Both SO: PFcs 39 (18.1%) 10 (25.6%) 12 (30.8%) 17 (43.6%)

where y was firing rate (Hz) in a given sliding window, 1 was the normalized value of the first
reward and ro was the normalized value of the second reward. (See 4.2.2 Statistical methods.)
We first checked that our model was a reasonable one without too much correlation in the
independent variables. This was a concern, since there is some correlation given that the
second reward was never the same as the first. As the measure of collinearity, we used
the variance inflation factor. In the 47 recording sessions across the subjects, all variance
inflation factors were between 1.2 and 1.6, which is well under the 2.5-valued threshold
indicating a problem of collinearity [Allison, 1999]. Hence, we could interpret the results
from this model. From the sliding analysis, we isolated the time when each neuron best fit
the model and looked to see if the fit was significant.

Roughly 15% of the recorded neurons from each brain area had significant fits to the
linear model and therefore carried reward information. Table 4.2 shows the breakdown. We
noticed that a number of these neurons modulated their firing rate in opposite directions to
the value of the rewards. For example, the neuron in figure 4.7A had highest firing rate when
the first reward was orange juice and lowest firing rate when the first reward was quinine
(R? > 0.06, p < 0.005 in both tasks). However, when conditions were grouped by the second
reward, this neuron had highest firing for quinine and lowest firing for orange. Figure 4.7B
shows a similar neuron, except its selectivity was limited to the SO task (R* = 0.08,p <
0.002). This contrasting behavior to the rewards meant the neuron had one positive and one
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Figure 4.7: A, Spike density histogram illustrating a PFcs neuron that captured relative reward
value as a linear difference of the rewards’ values. It had highest firing rate when the first reward
was orange juice (orange lines) and lowest firing rate when the first reward was quinine (purple
lines). When conditions were grouped by the second reward, this neuron had highest firing for
quinine and lowest firing for orange. Brown tick marks illustrate the end of the delay period. B,
A PFcs neuron that also captured relative reward value, but only in the SO task.

negative beta coefficient. Thus, these neurons could potentially be involved in the decision
process, comparing the value of the two rewards by calculating their difference in value.

To determine how many neurons encoded relative rewards as linear differences, we plotted
the beta coefficients of all significant neurons and sorted neurons based on the sign of their
beta coefficients to see if they were anti-correlated, i.e., had opposite sign. Of the PFo neurons
selective in the AO task, 21/73 (29%) had anti-correlated beta coefficients. In contrast,
34/70 (49%) of the PFo neurons selective in the SO task had anti-correlated coefficients
(x> > 5,p < 0.025). This significant difference fits with the idea that PFo is sensitive to
the context of reward value, in this case whether value related to motor or visual cues.
PFcs neurons lacked such task difference. They were evenly split with 35/75 (47%) having
opposite signs in the AO task and 33/76 (43%) in the SO task (x* < 0.4,p > 0.5).

Aside from variations in encoding strength, we also examined whether there were differ-
ences in the time that encoding emerged. We compared both the time of maximal reward
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encoding as well as the earliest reward encoding using a three-way ANOVA with factors of
task, brain area, and whether or not the neuron was selective in one or both tasks. The anal-
ysis yielded no significant differences. Hence, the temporal dynamics of outcome encoding
were similar across brain regions and task following the second reward.

4.3.6 Encoding stimulus, action and outcome at choice cue onset

Our analyses thus far have revealed subtle distinguishing features in the function of PFo
and PFcs across the tasks. PFo carried simultaneous stimulus and outcome information
faster than PFcs in the SO task. Both areas represented relative value of the two rewards
in a linearly manner across both tasks, but only in PFo were there more relative encoding
neurons limited to the SO task as compared to those limited to the AO task.

We continued examining regional and task-related variations further in the trial to when
the choice cue came on. This event had marked differences across the tasks. In the AO task,
no decision necessarily occurred. The subject could have planned his action already. But in
the SO task, the subject could not plan ahead. He needed to observe both pictures presented
side by side, select the one that was associated with the more preferred option, and then
plan his action accordingly. To characterize neurons during this process, we ran two sliding
ANOVA analyses per neuron separated by task. For AO trials, we used a two-way ANOVA
with the dependent variable of mean firing rate and factors of chosen action and chosen
reward. We located the 200-ms bin in which each factor had its maximal encoding. For SO
trials, we used a three-way ANOVA with the additional factor of stimulus, the spatial order
of the pictures. In both analyses, we removed trials in which quinine was picked since this
occurred too infrequently to meaningfully analyze the data. We then compared the number
of neurons with main effects for each factor. Roughly 5-10% of the neurons in either brain
area encoded stimulus, and 5-20% encoded outcomes in some form. The striking difference
arose in action encoding with most neurons, particularly in PFo, selective only in the SO
task. As seen in figure 4.7, over 40% (108/249) of all recorded PFo neurons encoded actions
only during the SO task. This was more than the proportion of PFcs neurons selective only
in the SO task (64/215 or 30%). Both proportions were far greater than either proportion
selective in just the AO task or both tasks. These action neurons were not simply motor
neurons though. They were not active in the AO task, which also required a motor action
to be executed. Further, they were not encoding the spatial location of the better reward
either, because the location was equally likely to occur on either side. Instead they could be
encoding the output of a decision-making process. In the AO task, the subject could have
made his decision earlier in the trial; however, in the SO task, the subject could only plan
his response when he saw the two pictures and located the one associated with his preferred
reward. Hence, these PFo neurons encoded the means, by which to achieve the subject’s
goal during the SO task.

It is possible that neurons first locate stimuli within the environment, and then plan the
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Figure 4.8: Prevalence of action and outcome encoding following presentation of the choice cue
in the SO task, i.e., the two pictures presented side-by-side. PFo neurons with action encoding
limited to the SO task were more common than any other class of neuron (p < 3 x 107®). Not
shown: less than 10% of the neurons selected for stimulus.

necessary movement towards the better stimulus. If this is the case, we should see stimulus
encoding sooner than action encoding. To test this theory we compared the timing of action
encoding with the encoding of stimulus and outcome. We performed a two-way ANOVA
on the maximal encoding latencies with the factors of which of the three variables neurons
encoded and which brain area neurons came from. We found the factor for which variable
neurons encoded to be significant (two-way ANOVA, F(o563y = 6.5,p < 0.002). Further
analysis of simple effects showed that the latency for actions was similar to that of stimulus
but faster than outcome (660 + 17 [action], 726 + 56 [stimulus], 763 £ 25 [outcome]; one-
way ANOVA, Flos66) > 6.2,p < 0.003). As seen in figure 4.9, both action and stimulus
information appeared roughly at the same time. Thus, our data do not support a sequential
process in which the picture associated with the preferred juice is first located and then the
correct response determined. Rather, these processes appear to occur simultaneously and in
parallel, at least within PFo and PFcs.

4.3.7 Encoding action and outcome after choice

Given the subject had to execute a decision in the form of a lever movement following the
choice cue in the SO task, our observation of prevalent action encoding right after that cue
seemed logical. We would further expect a drop in such encoding after reward was delivered,
since the decision had completed. To measure this, we ran the same sliding ANOVA analyses
used for each task preceding reward delivery on a window of the exact same size but starting
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Figure 4.9: The time neurons took to reach their maximal encoding was quickest for actions
(blue). Those latencies were significantly faster than those for outcomes (green).

at chosen reward onset. Indeed, after the decision had been executed, significantly fewer
neurons selected for actions only in the SO task. Numbers are shown in table 4.3. The
drop was significant for both PFo and PFcs populations (x? > 9.4,p < 0.003 in both cases).
There was no disparity in the number of neurons encoding action only in the AO task or
across both tasks before and after chosen reward onset. Nor was there any difference in the
number of neurons encoding stimulus or outcome (x? < 1.9,p > 0.1 in all cases). This data
highlights the transience of action encoding limited to the SO task, which coincides with the
execution of the decision.

If neurons specific to the SO task were most active during the execution stage of a
decision, we would hypothesize fewer to encode subsequent parameters in the experiment
after the chosen reward was given. We probed this issue by characterizing neurons to see
if they encoded the size of the chosen reward, which on 25% of the time yielded a much
bigger reward. We also tracked if neurons encoded the identity of the chosen reward. We
ran a sliding two-way ANOVA analysis with dependent variable of mean firing rate and
factors of reward identity (most or intermediately preferred juice) and reward size (small
or big) during a 1000-ms long window starting at the small offset of the chosen reward.
Comparing selectivity only in the SO task, there was a drop in the number of neurons
selective for reward identity: from 73/464 (16%) following cue onset to 46/464 (9.9%) during
reward delivery (x? > 7,p = 0.008). Roughly equal proportions of neurons encoded reward
size as reward identity. The difference became significant when all task selectivity was
grouped. 204/464 (44%) neurons encoded size, and 111/464 (24%) neurons encoded identity
(x> 41,p <2 x 10719,

Next we examined encoding strength of reward size and reward identity across brain
regions, tasks, and whether neurons were selective in one or both tasks. Strength measures
were entered into a three-way ANOVA as the dependent variable, and the factors were brain

75



Chapter 4. Neuronal representations of action-outcome and stimulus-outcome associations

Table 4.3: Neurons with significant task-relevant encoding following delivery of the chosen reward.
Rows are sorted by which task neurons were selective in and which brain area neurons came from.
Columns correspond to which task-relevant event neurons encode: stimulus (spatial location of
pictures), action (chosen movement), and outcome (chosen reward). Fewer neurons in both areas
encoded actions once the action had been completed and reward delivered.

Stimulus Action Outcome
AO only: PFo - 20 (8.0%) 35 (14.1%)
AO only: PFcs - 26 (12.1%) 29 (13.5%)
SO only: PFo 24 (9.6%) 108 (43.4%) 32 (12.9%)
SO only: PFcs 14 (6.5%) 64 (29.8%) 41 (19.1%)
Both: PFo - 30 (12.0%) 12 (4.8%)
Both: PFes 26 (12.1%) 20 (9.3%)

area (PFo or PFcs), task (AO or SO), and the neurons’ selectivity (one or both tasks). There
was a significant three-way interaction with encoding strength for reward size varying with
all three factors (F(1,262) = 4.2,p < 0.042). We then performed simple effects analyses hold-
ing each factor constant at each level and then computing the resulting two-way ANOVA.
Significant area differences were limited to the SO task and varied with selectivity (signif-
icant interaction, F(1 115y = 4.6,p = 0.034): PFo neurons encoding reward size across both
tasks had strongest selectivity (6.4 + 0.2%), followed by PFcs neurons encoding size in one
task (5.7 &+ 0.2%). PFo neurons encoding size in one task had weakest selectivity (5.5 +
0.2%). Reward identity was represented more strongly in PFo than PFcs, and this trend was
more pronounced for neurons selective in both tasks (Three-way ANOVA, significant area
by selectivity interaction, Fi; 113 > 10,p < 0.002). We continued by analyzing encoding la-
tencies for reward size and identity. For size and identity in turn, we ran the same three-way
ANOVA analysis with the corresponding maximum latencies as the dependent variable. We
found that encoding of reward size was faster in PFo at 498 £+ 17 ms than PFcs at 569 +
20 ms (F1,262) > 7,p < 0.008). In sum, PFo remains fairly active in monitoring parameters
related to reward even after a decision.

4.4 Discussion

Obtaining the optimal goal often requires assessing the value of environmental cues such as
visual stimuli, as well as one’s own actions. We hypothesized that values associated with
stimuli and actions utilize PFo and PFcs, respectively. Contrary to our hypothesis, there
was not a clear-cut distinction between PFo and PFcs in terms of encoding these SO and AO
associations. Both areas encoded stimulus, action, and outcome information. However, there

76



Chapter 4. Neuronal representations of action-outcome and stimulus-outcome associations

were some differences that appeared to support a role for PFo in preferentially encoding SO
associations. Neurons selective for the first stimulus and reward were faster to encode these
pieces of information within PFo than PFcs. Most surprisingly, PFo neurons showed robust
encoding of the chosen actions during the choice period of the SO task.

4.4.1 Overall similarity across brain areas in outcome encoding

We did not support our hypothesis of a double dissociation across brain areas in encoding
AO and SO information. Instead we found that both PFcs and PFo represented AO and SO
associations. It is particularly surprising that we observed AO encoding in PFo, as it has not
been reported before in monkeys. Rather, PFo studies in monkeys have found robust neu-
ronal selectivity for SO associations with little selectivity for AO associations [Tremblay and
Schultz, 1999; Wallis and Miller, 2003b; Padoa-Schioppa and Assad, 2006]. In contrast, rat
studies have found action encoding in PFo [Feierstein et al., 2006; Furuyashiki et al., 2008;
Sul et al., 2010]. However, these studies differ from the monkey studies in behavioral testing
procedures, which could explain the different encoding patterns in PFo across species. For
instance, rat studies tend to place rewards in different spatial locations, which require differ-
ent actions to reach them, but also manifest as different stimuli. Our findings instead suggest
that PFcs and PFo can flexibly encode action- and stimulus-outcome pairings depending on
task demands.

Neuronal representations may reflect the relative attention placed across the task vari-
ables, i.e., stimuli, actions, and outcomes. Greater attention to a particular parameter could
yield greater neuronal encoding of that parameter within the physiological bounds of a neu-
ron. Another formulation of this idea is that neuronal representations reflect the set of prior
probabilities of the task variables being utilized during the experiment. Suppose an exper-
iment required most decisions be computed from how rewarding a set of movements and
few decisions be computed from how rewarding a single colored cue is, then there would be
more prior probabilities in the set of action-related priors than the set of stimulus-related
priors. Having more elements related to a particular task variable should increase neuronal
representation for that variable. In perceptual decision-making tasks where subjects must
determine which direction semi-randomized dots are moving on a computer screen, subjects
will perceive dots moving more often in a certain direction if that direction tends to be
the correct answer. On a neuronal level, a majority of parietal neurons correlate with the
prior probability of movements [Platt and Glimcher, 1999]. PFC neurons may show similar
correlations in a decision-making experiment given the breadth of task details they encode.
Hence, experiments that emphasize SO associations should have little action encoding [Wallis
and Miller, 2003b; Padoa-Schioppa and Assad, 2006]. These studies place more attention on
stimuli and rewards than actions. Specifically, each recording day used novel pictures [Wallis
and Miller, 2003b] and different juices [Padoa-Schioppa and Assad, 2006]. Our study does
not change the identity of stimuli and outcomes, but rather alters their associations. Further,
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if an experiment includes the evaluation of actions, attention or a prior should be allotted
to it and manifest as action selectivity. Kennerley and colleagues performed an experiment,
in which monkeys selected stimuli that predicted rewards differing either in their size, likeli-
hood of receiving them, and the physical cost to obtain them [Kennerley et al., 2009]. Since
cost involved lever movements, the subjects needed to evaluate AO associations, in addition
to SO associations. In terms of neuronal encoding, the study found more action encoding
compared to the two aforementioned studies. Likewise, our experiment is split across trials
where chosen actions require comparisons of either AO associations or on SO associations.
In so doing, actions may be more readily represented across both the AO and SO tasks.

4.4.2 Choice representation in PFo

Our study has found a strong representation of the chosen action in PFo. Proportions of
action-encoding neurons were higher than those found in other studies [Tremblay and Schultz,
1999; Wallis and Miller, 2003b; Padoa-Schioppa and Assad, 2006; Bouret and Richmond,
2010; Abe and Lee, 2011].

There may be a number of reasons for varying degrees of choice-related action selectivity
in PFo across studies. For example, tasks that could utilize Pavlovian approach responses
rather than more deliberative movements may have less action selectivity. Governed by
Pavlovian influences, the subject reflexively gravitates towards the desirable stimulus. Sub-
sequently, the executed choice action need not be well encoded. In [Padoa-Schioppa and
Assad, 2006], monkeys were presented two pictures that predicted two different rewards.
The pictures had been well learned and always predicted the same reward across a day of
the experiment. Hence, the subjects could select the better-rewarded picture by relying
solely on SO associations and being more captivated and physically drawn in by the picture
of greater value. Consistent with this idea, the study found a negligible number of neurons
encoding actions. [Kennerley et al., 2009] used a similar task set-up, having monkeys choose
between two pictures presented side-by-side that denote two different reward outcomes. They
also found less action encoding in PFo than our study. In contrast, our SO task could not
be solved with Pavlovian approach responses. Both pictures could predict any of the three
rewards depending on the trial. In other words, no picture could be consistently associated
with a particular outcome, and therefore could not acquire the conditioned value. Thus,
chosen action selectivity may scale with whether the action reflects a Pavlovian approach
response or a more deliberative action.

The ease to which actions can be encoded as Pavlovian approach responses may be influ-
enced by whether choice movements are indicated by saccade or lever movements. Eye move-
ments could be a reflexive orientation response, much like a Pavlovian approach response.
Whereas arm movements needed to control a joystick involve an arbitrary mapping between
what is on the screen and the physical movement of the joystick. Such a mapping must be
learned and cannot be acquired through a simple approach response. Based on these dis-
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tinctions, we would expect less neuronal representation for chosen actions involving saccades
as compared to actions involving lever movements. Indeed studies using arbitrary stimulus-
motor mappings, including our SO task, have found more prevalent selectivity for the chosen
action than studies using saccades [Padoa-Schioppa and Assad, 2006]. Fitting with this idea,
Kennerley and colleagues had one subject use saccades and the other use a joystick via an
arm movement [Kennerley et al., 2009]. The subject who used saccades had an insignifi-
cant number of action encoding neurons in PFo, whereas the subject using the joystick had
a sizable number of action encoding neurons in PFo. Other studies in which the subject
cannot utilize Pavlovian approach responses include rat work where the subject must move
according to odor cues in order to receive different types of rewards [Feierstein et al., 2006;
Furuyashiki et al., 2008]. The odors are delivered from a port flanked by the response
movement ports. Therefore the location is not in the same spatial position as the response
locations and cannot be readily mapped onto a Pavlovian approach action. Rather the
subject must translate the odor into the appropriate movement in order to receive a partic-
ular type of outcome. Hence these studies require action representation and have findings
consistent with ours: there are many PFo neurons encoding deliberative actions.

However, the action encoding we observed also correlated with the direction of the bet-
ter stimulus option, so that neuron activity could relate to the value of the chosen option.
Chosen option encoding has been found in PFo neurons in rodents [Sul et al., 2010], mon-
keys [Kennerley et al., 2011], and humans [Arana et al., 2003; Valentin et al., 2007]. The
choice-related activity in our study was limited to the SO task. This isolation might reflect
the fact that only in the SO task could the subjects not anticipate their movements earlier
in the trial. Consequently, the subjects would not know the value of their chosen action
until the choice phase, when the action could be chosen. Hence, action encoding coincided
with the earliest time at which the value of the action could be ascertained. Specifically, we
observed the most action encoding prior to the feedback period, i.e., delivery of the chosen
reward. Selecting a stimulus in our task reliably produces a reward of known value to the
subject. Consequently, it is at this point the subject can transfer values from the two SO
associations onto the possible choice actions. The feedback period, when the chosen reward
is given, yields no new information about the value of the chosen action, and in fact there
are fewer neurons encoding the chosen action at this time. In short, chosen action selectivity
peaked at the time when choice options could be first compared.

This temporal selectivity is consistent with other studies that have found the strongest
PFo choice-related action selectivity at the earliest time when the assessment of the choice
can be made. In tasks where the subject uses the outcome of the current trial’s chosen
action to plan the next trial’s action, action encoding occurs during the feedback period
when the subject learns if his action yields reward [Tsujimoto et al., 2009; Sul et al., 2010;
Abe and Lee, 2011]. Likewise, action encoding is maximal when the subject learns the
value of his chosen action after having selected the action and waited a variable interval
of time [Bouret and Richmond, 2010]. The value can be communicated as a binary signal,
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i.e., reward for correct choice and no reward for incorrect choice [Tsujimoto et al., 2009;
Bouret and Richmond, 2010] or via visual cues that then predict different rewards [Abe and
Lee, 2011, our SO task]. In all of these studies, reward delivery changes across time either
within the trial or across trials. Thus, action encoding is updated at the end of the trial
during the feedback period. Our SO task differs in that reward delivery is fully predicted by
the picture values for a given trial. Hence, action encoding is first updated at the onset of
the choice phase, when picture values are first mapped onto the potential actions necessary
to select them. In light of this comparison, our study validates the idea that PFo can encode
the chosen action specifically during the portion of the trial when the action can first be
evaluated.Other studies may have less action encoding in PFo owning to the dynamics of
encoding. Firstly, some tasks may encourage updating actions in a structured way based on
past trials. That is, if actions and their reward contingencies do not change trial to trial,
it becomes energy efficient to represent the action in memory and update only when the
association changes. Consequently, the trial-averaged encoding of such actions will be less
than that in a task where contingencies affecting those actions change trial to trial, such as in
our SO task. Our task had the lever movement corresponding to the more preferred picture
change randomly, as well as the identity of the corresponding reward. This randomness
may promote more updating and subsequent encoding of actions and outcomes. In contrast,
studies that rely on updating the value of actions in a structured way find less encoding in
PFo. For instance, there is more structure in updating action values when subjects update
actions based on actions from past trials. This is the case in a rock-paper-scissors game
against a computer opponent that tracks and exploits the subject’s choices [Abe and Lee,
2011]. Secondly, aside from structure in trial history accounting for less action encoding,
action encoding might happen at different times within single trials. If that is the case,
a decision can be made during various times within the trial, then analyses that collapse
across all such trials end up diluting neural representations of action selection [Wallis and
Miller, 2003b, our AO task]. Consequently, by temporally constraining when choice actions
are executed both with respect to past trials and within the current one, we potentially are
more likely to see greater action selectivity.

4.4.3 Interpretational issues

We found similar prevalence in action encoding across PFcs and PFo during the sampling
period of the trial. Such similarity may stem from anatomical connections between the
brain areas via areas 120, 13a and b, and 14c [Carmichael and Price, 1996]. Consequently,
activity across PFcs and PFo could well correlate. Further, we cannot determine the di-
rectionality of information flow between the areas when task-related encoding like that of
the first reward appears in both areas at roughly the same time. While information may
be shared freely through PFcs and PFo, it is also possible that reward information reaches
both areas from a common source, accounting for the similar latency to encode value. Cor-
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relation of actions and their intended outcomes is a further concern following the onset of
the choice cues. During this time a significant number of PFo neurons encoded actions
necessary for selecting the preferred picture. The chosen action was always in the direc-
tion of the more valuable stimulus. Hence, we cannot discern how much of that activity
is purely motor-related.Another point to note is that overall neuronal activity in the AO
task was greater than in the SO task. This appears highly correlated with behavioral re-
ward preferences. During the AO task, behaviorally demonstrated preferences were more
consistent, and both prevalence and strength of encoding these preferences were greater at
the neuronal level. These neurons may have provided a clear signal with which the animal
could more easily determine the better reward option. The AO task was also learned to
a higher criterion than the SO task, and this difference may contribute to a stronger rep-
resentation of AO associations at the neuronal level. Well-learned items can be encoded
in the prefrontal cortex more strongly than more novel items [Pasupathy and Miller, 2005;
Antzoulatos and Miller, 2011].

4.5 Conclusion

Our study has found that both PFcs and PFo are capable of encoding outcomes associated
with external environmental stimuli and internally generated actions. The SO task evoked
subtly more involvement from PFo as compared to PFcs, but differences were minor with
respect to expectations from anatomy and findings from a number of past studies. Given
both of these areas encoded multiple value estimates, they may play key roles in enabling
the adaptive control of value-based decision making.
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Conclusions

We began this thesis with the question of how your brain learns to associate stimuli in
the environment with actions and outcomes. Based on shared anatomical connections, we
contrasted three prefrontal areas. We compared two areas with robust motor connections
PFcs and PFdl in their roles for storing AO information in working memory. Then we
compared two areas with prevalent limbic inputs PFcs and PFo in their ability to differentiate
AO and SO information. This chapter will summarize findings from our two experiments in
relation to current prefrontal literature. Then it will address remaining questions and future
directions related to this work.

5.1 Summary of results

We approached the credit assignment problem by contrasting how different prefrontal regions
encoded in working memory the value of either environmental stimuli or the subject’s actions.
Chapter 3 compared AO encoding across PFcs and PFdI and found that PFcs had prevalent
encoding of AO associations compared to PFdl, despite taxing working memory, a process
linked with robust PFdl activity. We also observed relative reward encoding of the second
outcome with respect to the first, a pattern that was again more common in PFcs. These
results strongly implicate PFcs in goal-directed decision-making. Chapter 4 then compared
AO and SO encoding across PFcs and PFo. Both areas encoded all task-related information,
namely actions, stimuli, and outcomes. There was a subtle bias for PFo to encode information
in the SO task, particularly of the action needed to select the more preferred picture. In
short, PFcs and PFo both carry all pieces of task information needed for flexible decision-
making and credit assignment.
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5.2 Prefrontal involvement in the framework for decision-
making

A potential theoretical framework for understanding the role of PFC in decision-making
is provided by computational accounts of reinforcement learning [Sutton and Barto, 1998].
Specifically, we might expect PFC to have correlates of these four parameters: the set of
possible states, the set of possible actions or actions for a given state, the set of transition
probabilities for the chance that one state following a given action leads to another particular
state and a variable to track reward expectation. This thesis found that both PFcs and PFo
can encode information related to states, actions, and rewards. PFdl, on the other hand, had
mostly action encoding and was not as involved in decision-making. Our discussion in the
remainder of this section will therefore focus on PFcs and PFo. Both of these areas contained
neurons that reflected states, actions, and rewards in that they encoded cues (actions in the
AO task and pictures in the SO task) and/or outcomes. Some did so only in one task. This
diversity of selectivity suggests that the collective activity of neurons may reflect details
about what behavioral state the subject is in as well as possible upcoming actions from
that state.States, actions and outcomes appear to be encoded dynamically. For instance,
attention may alter the span of the parameters to be encoded. From the previous chapter
(section 4.4.1), we raised the idea that neuronal representations could scale with the relative
attention placed across task variables. Greater attention to a particular parameter would
yield greater neuronal encoding of that parameter. Similar responses have been observed in
posterior association cortex, such as the parietal cortex [Platt and Glimcher, 1999]. This
could explain the diversity of selectivity seen in PFcs and PFo across numerous studies.
Further, the attention required to perform different actions can also manifest in the strength
of neuronal encoding for that particular action. On one hand, little attention is necessary
to execute pavlovian approach responses. Hence experiments that can be solved using such
actions may have less action encoding. For example, decision-making tasks that require the
animal to indicate its choice by looking at the preferred picture could be solved by pavlovian
orienting responses [Padoa-Schioppa and Assad, 2006; Kennerley et al., 2009]. In contrast,
more attention is necessary for deliberative actions like when a subject needs to remap a 3D
joystick movement onto a 2D movement on a computer screen [Kennerley et al., 2009]; our
experiments|. Such an action requires more attention and consequently could evoke more
neuronal activity.

The stimuli, actions, and outcomes used in our experiments serve as building blocks for
the computations needed in decision-making. Although we do not know the exact com-
putations occurring in either PFo or PFcs, both areas utilize all three parameters. Past
literature places a bias for PFo to compute signals related to states and PFcs actions.
This thesis suggests that these areas embody computations that do not dissociate stim-
uli from actions within a local computational unit in either brain area. The computations
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related to state may well require information about actions. For instance, it is possible
that PFo captures very diverse signals related to state, such as the transition probabil-
ity of one state switching to a particular one in the future: P(s;41 = §'|s;y = s,a; = a),
where action a in state s at time ¢ leads to state s’ at time ¢ + 1. If so, it would make
sense for PFo to carry signals about pictures and actions in our task. This proposal is
consistent with ideas implicating PFo as a goods space [Padoa-Schioppa, 2011] capable of
tracking potential choice options and their values [Sul et al., 2010; Abe and Lee, 2011;
Kennerley et al., 2011].

As another key area for decision-making, PFcs also needs signals carrying information
about states, actions and outcomes. Indeed we find PFcs neurons to encode all those sig-
nals. However, the role of this area often centers on action processing. Animal lesion
work and human imaging find PFcs to be crucial for action selection in situations where
the outcomes of the actions need to be monitored [Dias et al., 1997; Hadland et al., 2003;
Rudebeck et al., 2008; Noonan et al., 2011]. But tracking potential actions and their out-
comes change depending on the state. Hence, PFcs should encode state-related information
as well. The recent predicted response-outcome model includes this fact. This model learns
the joint probability of actions and outcomes for each given state, P(a,ols), and can accu-
rately monitor goal-related actions [Alexander and Brown, 2011]. In sum, PFcs may have a
bias for action encoding, but the computations performed within the area needs to account
for state. Consequently, it should encode information related to the subject’s environment
(including the sensory stimuli) as our results suggest.In conclusion, both PFo and PFcs are
key areas for processing information involved in goal-directed decision-making. They carry
dynamic signals that can identify and evaluate specific items in the state space and action
space of the agent’s task. This is consistent with our findings: neurons encoded specific cues
or outcomes, as well as AO and SO associations, depending on the block of the experiment.
PFo and PFcs may be more biased towards processing state-related and action-related com-
putations, respectively, but ultimately both areas need information about stimuli, actions,
and outcomes.

5.3 Remaining questions

There are more avenues of research following this thesis. We have only compared PFdl and
PFo against PFcs. It remains unclear how divergent are the roles of PFdl compared to PFo
and PFcs in encoding either AO or SO associations during a working memory choice task.
Another question directly related to the thesis is why neuronal encoding of AO and SO
associations does not closely match lesion studies. Many such studies have found PFcs to
be critical for updating AO associations based on lesions in rodents [Balleine and Dickinson,
1998; Dias and Aggleton, 2000] and monkeys [Hadland et al., 2003; Kennerley et al., 2006;
Rudebeck et al., 2008]. Similarly, studies with PFo lesions in rodents [Pickens et al., 2003]
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and monkeys [Dias et al., 1996; Dias et al., 1997; Izquierdo et al., 2004; Rudebeck et al., 2008]
found that PFo is necessary for representing SO associations. In contrast, we only see a bias
for PFo activity during the SO task and none for PFcs during the AO task. It is likely that
neuronal activity in PFcs and PFo are highly correlated, given their strong interconnections.
Further, lesions often cover large areas and consequently greatly alter behavior. To bridge
the gap between lesion work and our work, future research may consider local and temporary
inactivation of each brain area while subjects perform AO and SO tasks. We also cannot
determine the source of the choice encoding in PFo neurons during the SO task. Perhaps it
reflects the chosen action similar to rat work [Feierstein et al., 2006; Furuyashiki et al., 2008;
Sul et al., 2010] or it could merely reflect the selection of the more valuable stimulus.

Another constraint to this thesis is its lack of realistic contingency learning. In our tasks,
learning does not occur across trials and hence could not utilize reinforcement models. Future
work may consider trial-to-trial learning. One possible task could require a subject to select
actions in response to various visual cues. Reward delivery then follows and can either be
predicted by what action the subject made or by what cue the subject viewed. For the subject
to maximize rewards, he would need to learn whether a particular action or cue predicts
reward and keep selecting that action or cue. Through this type of learning paradigm, we
can observe the neuronal mechanisms involved in a more realistic credit assignment problem.
In other words, the animal has to determine whether actions or stimuli are relevant to solving
a given problem. This paradigm benefits from the quantitative power reinforcement modeling
offers in characterizing both behavioral and neuronal activity.

5.4 Closing thoughts

Credit assignment plays a central role in what the brain is designed to do. It provides biolo-
gists with a psychological and computationally rigorous framework for quantifying neuronal
mechanisms related to contingency learning. This thesis highlights the differential roles of
prefrontal areas in contingency learning over short delays. Future work can expand from
this by having subjects learn contingencies across long periods of time, which better reflect
natural learning. Ultimately, decision-making studies will benefit greatly from tracking the
full learning process in natural settings. This field may achieve this goal from technology
and methodologies developed by the engineering and physical science communities. A likely
starting point would include adoption of chronic implants that monitor neuronal activity
and collaborative code libraries. Such technologies will broaden the scope over which we can
monitor neuronal activity and speed up data analysis. After all, a decision is not made by
a single neuron. It is the distributed network of neuronal dynamics that we need to observe
and understand.
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