UC Irvine
ICS Technical Reports

Title
A protection model and its implementation in a data flow system

Permalink
https://escholarship.org/uc/item/65m4c9kk

Author
Bic, Lubomir

Publication Date
1980-01-15

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/65m4c9kk
https://escholarship.org
http://www.cdlib.org/

Notice: This Material

~ may be protected
by Copyright Law
(Title 17 U.S.C.)

, A PROTECTION MODEL AND
 ITS IMPLEMENTATION IN A
DATAFLOW SYSTEM
by
Lubomir Eig

Technical Report # 148
January 15, 1980

Keywords and Phrases: protection, keys, interprocess communication,
: proprietary services, selective confinement
problem, Trojan Horse problem, dataflow.

CR Categories: 4.35

This work was supported by NSF grant MCS-76-12460: The UCI Dataflow

Architecture Project.

ABSTRACT

A'pfotection model is presented for a general-purpose computing
system based on keys attached as ‘éeals' and 'signatures' to values
exchanged among processes. A key attached to a value as a 'seal'.
does not prevent that value from being pfopagated to any place within
the system; rather; it guarantees that the value and any information
derivéd from it ‘cannot leave the system unless the same key is
presented. A key attached to a value as a 'signature' is used by a
process to verify theiorigin of the received data. Solutions to

‘problems from the areas of interprocess communication and proprietary

services are given.

CONTENTS

Introduction and Objectives

An Intuitive Description of the Model
Implementation of the Model in a Dataflow System
3.1, Basic Dataflow Principles

3.2, Dataflow Processes

3.3. Implementation of Protection Mechanisms

"Application of the Protection System

4,1. Proprietary Services
4,2, The Selective Confinement Problem
4,3, Private Interprocess Communication

Conclusion

1. Introduction and Objectives.

In recent years the need for better and less restrictive pro-
" tection mechanisms has emerged.but the drawback most common in
advanced protection systems is their complexity in both use
andiunderstanding. In additiqn, meny well known protection
problems still have no satisfactory solution in those systems.
The.goal of this paperlis to present a protection mechanism

that is easily understood by the (user) programmer, yet power-

ful enough to allow the solution of a large variety of protection

problems. This mechanism is defined by a very small set of primi-
tive .operations that may be incorporated as part of a high-level
language. Thus the implementation and enforcement of proteﬁtion
policies does not require that the user leave the domain of the

. language in which his programs are written as is the case in

most contemporary -systems (no switching to a job or file control
language is necessary). This also means that operating systems
and user programs both utilize the same mechanisms to implement

their own protection policies.

in the sequel, we give a description and a possible implemen-
tation of the proposed‘mechanism in fhe context of a dataflow
system. We will demonstrate that despite the cdnceptual simpli-
city of the system'we are able to give satisfadtory solutions
to well.known protection problems, for example from the areas
of private interprocess communication and proprietary services,
in particular the 'Selective Confinement Problem' /Lam73/ and

the ‘'Trojan Horse Problem®' /Sch72/.

- 4 -

' We consider a computing system to be a collection of indépendent
‘processes each of which is in possession of a number of objects,
'where an objebt may bé»any piece of data. (In the sequel we will
use the terms ‘object®' and ‘value' as synonyms since in dataflgw
any objectiis treated as a value). Processes communicate by
sending messages, where a message is a copy of some value; that

. o . . R
is, no sharing of objects among processes is allowed.

Our goal is to pfovide mechanisms which can be employed by the

programmer to satisfy the following two basic requirements:

a) Each process sending some value v to another process
is able to 'seal' the value such that onlyithe intended
destinee can 'unseal® and thus utilize v. h

b) The sender of v is able to uniquely. 'sign' v thus

allowing the receiver to authenticate the sender.

Bofh of the above requirements should hold even if the value

is Eeing passed via other ‘'courier' processes. If this is the
ﬁase then any two processes are able to exchange secret or
private data without the risk that a third process could utilize
that data (due to requirement a) or substitute it by a ‘fake'
(dug to requirement b), We argue that the use of a proprietary
service may also be viewed (and implemented) as interprocess
communicationt If the user and the service are two separate

processes then the user is sending a package of information

* .

"In dataflow these requirements are always satisfied. Some
operating systems also provide an equivalent view of inter-
process communication, in which case the results of this paper

are applicable.

- 5 -

(e.g. the arguments) to the serviée Which fhen.produces a new
package of information (the results) that is then sent béck to
the user. Thus the user of a-service is considered as both the
sencer and the receiver of an inforﬁation packagé which is being
péssed through and modified‘by aﬁ intermediate process - the
service. In this way the sefvice is similar to a ‘courier’
process, thé only difference being that the servicé.modifies

the data before forwarding it to the receiver. With this point

of view we will focus on providing mechanisms for interprocess

communication according to the requirements a) and b) above,
. and demonstrate that these requirements are also sufficient to

satisfy the needs of proprietary services.

2., An Intuitive Description of the Model.

We introduce a new data type called key. Each key k consists

of a value and two additional bits representing an attach right

and a detach right. Only if the attach right of a particular

key k is set, is the process holding tHis key able to attach

a copy of k's value (but not k's rights) to any value v in his
(the process') possession. Similarly, a process may detach key
k from v only if that process is in possession of the same key

k and if the detach right of k is set,

A given key may be attached to a value either as a seal or as
a signature. Any value may be sealed or signed (or both) with
thg same key. For example, assume that a process pl possesses
a.key k1 (with both attach and detach rights set) and all other
processes hold the same key k1 but with only the detach right

set. If any of these other processes pi receives a value v which

has kl1's value attached to it as a signature, pi can varify
fhat Vvoriginated from process pl since pl is the only process
able to attach k1. Thus a sepder is able to uniquely ‘sign’ a_b'
Value as’ was requ1red under b) above. The requirement b) may
be satlsfled in a similar fashion. Assume that a process p2

is in possession of a key k2 (whose attach and detach rlghts‘
are set) and all other processes possess k2 but with only the
attach righf sef° This configuration will gurantee that any
.process may_'seal' a value v by attaching k2 to it, but the
only process able to defach-kz is the process p2. We now devote
our attention to explaining how a key attached to a value v

as a seal protects v and prevents its contents from being mis-
used. Similarly, we will show how attaching a key as a signature
guarantees that the signed value could not have been modified

on the way to its intended destination.

As mentioned before, our system is modeled as a collection of
processes capable of holding and exchanging copies of pieces

of data. (We emphasize again that sharing the same piece of

data is explicitly prohibited - a separate copy is given to

each process if it is needed.f\Ne further enclose these processes

within a ‘'sphere' representing the boundary of the system. The

users of the system are standing outside the sphere and may

communicate with its interior only via special windows in the

sphere's wall called information disclosure interfaces (IDIs);

*A separate copy exists, of course, only at the conceptual level;

for reasons of efficiency an actual (physical) copy need not be

created but any mechanisms implementing possible sharing must

| . 2o 2 T o b b e m am

has k1's value attached to it as a signature, pi can.verify

fhat v driginated from procéss pl since pl is the only process
able to attabh ki. Thus a sender is able to uniquely ‘sign' a
value as was required under b) above. The requirement b) may
be satisfied in é similar fashion. Assume that a proceés p2

is in possession of a key k2 (whose attach and detach righfsl
are set) and all other processes possess k2 but wifh only the

attach right set. This configuration will gurantee that any

process may ‘'seal’ a value v by attaching k2 to it, but the

only proceés able to detach k2 isvthe process p2. We now devote
our attention to explaining how a key attached to a value v

as a seal protécté v and prevents its contents from being mis-
used. Similérly, we will show how attaching a key as a signature
guarantees that the signed value could not have been modified

on the way to its intended destination.

As mentioned before, our system is modeled as a collection of
processes capable of holding and exchanging copies of pieces

of data. (We emphasize again that sharing the same piece of

data is explicitly prohibited - a separate copy is given to

each process if it is needed.f‘We further enclose these processes

within a °‘sphere’' representing the boundary of the system. The

users of the system are standing outside the sphere and may
communicate with its interior only via special windows in the

sphere's wall called information disclosure interfaces (IDIs).

*A separate copy exists, of course, only at the conceptual level;

for reasons of effiéiency an actual (physical) copy need not be

created but any mechanisms implementing possible sharing must

be invisible to the user.

-7 -

Any data may leave the system only via an IDI, and then only

if it is unsealed. Only after all seals have been removed will

the data be allowed to pass an IDI and reach the ‘'outside world’.

Since information‘ihside a computing system is ﬁot_merely being
stored but is aléo being used for computation to yield new
pieces of information, we introduce the following rqlé: Any
value derived from data sealed with a key must inhérif the same
key as a seal and thus. be subjecf to the same restrictions as
‘the original data., The basic philosophy of oﬁr approach then

may be summarized as follows:

A piece of data potentially may propagate to any

place within the system. When sealed with a key

it is guaranteed that this data and any information

derived from it will not be able to leave the

system unless the seal is removed,

Since our approach departs significantly from those taken in
other systems where data is prevented from propagating unless
certain access or capability conditions are met, the following

discussion is intended to further explain our point of view,

In no existing system known to the author is a distinction

made betwéen the (human) user and the process running under

his command. Implicit in such systems is the notion that infor-
mation accessible toithe process is automatically available .

to the user. Consequently, the secrecy of information must be
considered already compromised when it reachesAthe user's
process, and not only'after it reached the user himself. wWe

argue that this condition is an unnecessary constraint. Imagine

-8 -
a sealed box containing secret information.'If this box éahnot
be opened by a ‘spy’ no disclosufelof_information will take |
place’éven if fhe spy is actually invpossession of the box;
éimilarly; in a computing facility it is nof really the pfocess
that must’be prevented from iliegally accessing sensitive

information, but rather the user running that process.

A process which possesses secret information but

which is unable to reveal that information con-

stitutes no danger with respect to protection,

To further illustrate the basic philosophy of our approach
j‘we would like to contrast our system with a.capability based
system such as HYDRA /CoJe75/. There a subject can make use
of an objeét (e.g. read‘énd outpgt a file) if the subject is’
in possessioh of a-capability for that objecf. A capability
consists of a bointer to the object and aiset of rights (e.g.
a fead right) which determines those operations the holder

of the capability may perform on the object.

In order for a subject to make use of an object (e;g. a file)

in our system, the subject must necessarily be in possession

of that object itself,.and in case this object is carrying a

set of keys (seals) the subject must also be in possession

of all the keys included in the set. Only.then is the subject
able to unseal and thus utilize the object. We wish to stress
that under ‘utilize an object' we understand outputing that
object (or any information derived from it) to'the ocoutside

of the sphere. The subject is of course free to perform arbitfary
cdmputations with the object since all sealed results will

remain within the sohere.

-9 -

'From the above discussion it follows that the purpose of a seal

key ‘is to prevent 'leaking' of information. In contrast, the

purpose of a signature key is to permit the origin of the signed

value_to‘be verified. We do this by guaranteeing that no value
produced‘as a result of any computation involving a Sighed'
Qalue will inherit the éignature of the 6rigina1 value; save
lfor computations known to induce only the identity fransfor—
mafion. Note'tHat this rule is just the converse of the rule
regarding seals which Eequires that E}l_result must inﬁerit the

seals of the original values.

Even though our model is independent of any particular langﬁage'
or machine architecture it was especiaily develdped for_appli-
cafive languages such as pure LISP, FFP /Bac78/, and in par-
tiﬁulaf, dataflow /ArGoPl78/. We will attempt to justify the
usefulness of oﬁr approach by giving solutions to several well

known protection problems in section 4.

3. Implementation of the Model in a Dataflow System.

3.1, Basic Dataflow Principles.

A prihéry motivation for studying dafaflow is the gdvent of

LSI technology which makes feasible the construction pf a-
geﬁeral-purpose computer comprising hundreds, perhaps.thbﬁsands,
of asynchronously operating processors /GoTh79/. The seﬁantics
‘of a dataflow program are such_that it is iﬁplicitly parti-

tioned into small tasks called activities that may be executed

asynchronously by independent processors. In this way many

processors may cooperate in completing the overall computation.

- 10..

_in our ‘dataflow sYétem,'programs_are writtéﬁ-only in the high—
level language Id (fof Irvine dataflow). An Id program is
 compiled info a corresponding prdgram,in the Eggg.lanéuage --
‘ap'drdered graph consisting of éctors (operators) ihtercqnnected
: by.Iinés,that transport_yglggg on fokens. For example,‘Fig. 1

is an expression in Id and Fig. 2 is its comhiled form. The
execution of every actor is completely data-driven which means
that éxecution:is carried out when and only when all opefands'
needed by that activity have arrived. The resulting output
values are then sent to other actors which expect those values
as inputs. Thus the multiply actor in Fig. 2 will produce the
result xxc and seﬁd”it on a token to the plus.actor after having
reteiQed both the'operand x produced by the subtract actor and

the dperand c (an input to the program),

"In addition to tHe asynéhfonous, data-driven stylé of execution,
dataflow is concepfually.memoryleés. All values are carried by
fokens e*changed between actors., Thus all calculafions.are on
values rather than on the locations where those values are kept.
.This implies a purely funCtionai and side-effect free exeéution.
It also implies‘that no sharing of data is possible since every
actor obtains a separéteAcopy of any value it needs as its input.
The absence of memory implies -that it is not possible tb talk
about 'access' to data. All ihformation must be sﬁpplied to

~a program explicitly in the form of arguments., These érguments
propagate through the graph constituting the progfam and tﬁe
final fesulting valueé are retufned to the caller of the program.
This pr1n01pal is crucial to protection: A (borrowed) program

can never galn access to (e g. steal or destroy) any 1nformat10n

-1 -

which ‘is not explicitly passed to it by the caller as an argument.

The possibility of a program gaining access to data private to

the caller of the program is referred to as the Trojan Horse
Problem, and iﬁ our system it is immediately solved by the very
.principleé of dataflow. This is discussed in further detail in

section 4.1.

3,2, Dataflow Processes.

Dataflow resource managers4were~introduced info Id /ArGoP178/

to provide non-deterministic and history-sensitive funétions
accessible from different parts of a program. An instance of

a resource manager is a dataflow program (graph) enciosed between
an entry and an exit actor (Fig. 3). The entry actor receives
all arguments (e.g. arglt, arg2) sent‘to that manager, possibly
fromvdifferent users, and forms a stream of tokens directed into
the managers bédy. The body of a hanager may be any dataflow
expression with a stream‘argﬁment and stream result. In Fig. 3
we have presumed the body to be a loop which recomputes an
‘internal state' on each iteration, where an itteration oécurs
essentially upon the arrival of each token in the input stream.
By making the 'intefnal state' on each iteration a function of

its previous value and the value of the-token just obtained

from the input stream, the effect of an internal memory is

‘artificially’' achieved. In this manner the output of a manager
may be made to depend upon the history of previous inputs. The
stream of result tokens (e.g. resl, res2) is then sent to the
‘exit actor.which returns the individual tokens comprising.the

output stream to the corresponding callers,

- 12 -

In order to be able to.call a part10ulér-managér, the user must
-bé.in possession of a poinfer.to the ﬁanager'é domain, -m. In
-Id a call to manager m is denoted | |
_feéiii-Jggg(m,argl) ' ;
The value h'poihts to the desired maﬁagef inétance and is
supplied together With the argument value argl to the primitive
use. This pr1m1t1ve sends the value argl to the entry of the
manager instance and receives the value resi returned from the
manager's -exit as the result of m's processing argument argl.

(Similarly for the other use of m in Fig. 3).

We define a process to be an instance of a resdurce manager.

The only way for processes to communicate is by explicitly
calling one another through thelggg primitive. Thus information
is always passed explicitly in the form of arguments and results;'
information is never passed by granting ‘access' to the infor-
mation, (e.g. a portion of memory) as is the case in conventional

systems$.

ﬁiﬁg°% 2 above description is in terms of dataflow, it of course
holds for any system satisfying the basic properties of no shared
data and communication through copied messagés. Thﬁs the system
described here might be used on a conventional system ét the
level of processes, where tokens are the messages in an inter-

process communication facility.

3.3 Implementation of Protection Mechanisms.

All processes in the system capable of holding and exchanging

information are implementec as dataflow resource managers. The

- 13 -

information to be exchanged may be any type of value, e.g.
integers, reals, strings, structured values, procedure defini-
tions, etc. The following extensions are introduced in order

to implement the protection mechanisms described earlier.

a) A .special faciiity'called the key generator is introduced.

Only the key generator is able to create (upon request from

some process) values of type key. The fact that keys are

of a distinct data‘fype is used to eliminate the possibility
of (accidentally or intentionally) forging a key:'once
created a key may never be modified, nor may a new value

of type'kéy be produced (other than by the key generator).

b)fInitially every key k is obtained from the key generator
l ; :

with both the attach and detach rights set. Each of these

rights may be ekplicitly reset (i.e. set to zero) by the

programmer with the two primitives. reset-attach-right(k)

and reset-detach-right(k) which produces a copy of k with
the corresponding right set to zero. For example the state-

ment

k' < reset-attach-right(k)
produces a copy k' of k with the attach bit set to zero.

The detach bit remains unchanged.

" ¢c) Every value v carries with it two (possibly emptY)Sets'

of keys. We denote this as v{sl.sz,...,sn}{gl,gZ,....gm}.

- 14 -

Each of the keys si is called a seal and each of the keys

gj is called a signature.

d) Four primitive opefations are defined for attaching keys
to and detaching keys from values:

1)' v' «— sign(v,k)
‘The value v' is a cdponf v, and in addition the key k is.
included in the set of signatﬁres of v'., (Only the value
. but an the rights of k arewritten. The operation will be
successful only if the attach right on k is set, otherwise
v' will be an errbr value,

2) v',f <~ unsign(v,k)
In casé the key k is an element of the set of éignatﬁres
cérried'by v the value v' is a copy of v with the key k
removed, and the vaiue f (serving as a flag) is éet to true.
In‘case k is not carried by v as a signature then v’ is an
exact copy of v and f has the value false. Thus the vaiue
of f indicates whether the key k was carried by v as a
siénature. The operation will be successful only if the
detach right on k is set, otherwise v' and f are error
values.

3) v' e seal(v,k)
The value v' is a cbpy of v, and in addition the key k is

included in the set of seals of v'. The operation will be

successful only if the attach right on k is set, otherwise

v' will be an error value.
4) v',f @« unseal(v,k)
Similar to unsign, the unseal primitive gives v' the value

of v with the key k removed from the set of seals (in case

- 15 -

this key was present). The value of f then indicates whether

the key was present or absent. The operation will be success-

ful only if the detach right on k is set,

e) A primitive operétion_test-séal(v) is defined on any
“value v; This primitive may be used by the programmer to
detect whether a Qalue is protected by at least one seal.
If this is the case the bbolean value true is returned,

otherwise the value false results.

f) The result of any function f in the system, other than

unseal, unsign, and test-seal, must carry the set union of

all seals carried by the individual values involved in the
computation. An example of.a primitive function f is shown
in Fig. 4 where the set of seals carried by the result z
,is the unioh of sets {kl,kZ} V] {Ki,k3} = {kl,k2,k3} cérried
by the inputs x énd Y respectively. As opposed to seals,

a signature on an inpquvalue v will be inherited_by the
result of a éomputation f(v) only if f is aniidentity |
primitive. As an example of an identity primitive, we
mention the primitive actor use which sends a message

(unchanged) from one process to another. ’

g) As deécribed in séction 2, Communication between a user
standing outside the system sphere and a process running
inside is possible only via an information disclosure
interface (IDI). An IDI is a-procéss so validated by the
systems programmer (i.e., it isltrusted). A system properly
configured would insure that any:piéce:of data sent to a

user terminal must move via an IDI. Each IDI employs the

16

primitive test—sealAdefinéd in e) to test whether the
received data is unsealed. If this is the case the IDI
forwards the data, thus passiﬁg thé data through the window
to butside the sphere. If a seal is detected tﬁéldaﬁa is -
n;t aliowed to p;ss and instead an,error'mgssage is for-.
warded. Thus no protected value is able to escabe from the
system, It is‘imhortant to relize that the IDIs must be

physically interposed between any sending process inside

"the sphere and a receiving terminal outside the sphere.

Thus the IDIs define the boundary of‘the system - the éphere.
In the sequei wé will'demonStrate the use of the protection
system aé defined in a) through g) by applying it to two
major prbblem domains: proprietary services and private

interprocess communication.

-4, Application of the Protection System.

In section 1 we‘argued thét thé'use of propfietary services

may be viewed as a special case of interprocess communication,
In the following we concentrate first on the problem df pro-
prietéfy services and later extend our consideration to include

the more general case of interprocess communication,

4.1, Proprietary services.

Most users of a computer system have the need or desire to
build on the work of others by utilizing programs and systems

provided by other programmers. We will refer to such programs

- 17 -

as_(proprietary) services™®. Several important protection problems
must be solved in order to satisfy the needs of the lessors
(owners, providers) and the lessees (users) of such services.

The lessee‘s major concerns are the following:

:a) The service must not be éble to steai or destroy infor-
.mation which the lessee did not explicitly supply to the
service for such purposes. Each sﬁch service is employed

by sénding it tﬁe necéséary arguments via the use primitive
described in section 3.2. Since this is the only way a
pfocess éan receive information it is guaranteed that a
service cannot obtain or destroy information belonging'to
fhe lessee or some other process unless that information
was explicitly supplied as an argument. Thus the very
principles of dataflow solve this problem, referred to

as the Trojan Horse Problem.

b) The service must not be able to disclose sensitive
information supplied to it by the lessee, but it should

be allowed to disclose non-sensitive information, for
example for the purposes of billing. The following section

(4.2) presents a solution to this problem, usually re-

ferred to as the Selective Confinement Problem.

*In this paper we assume that all proprietary services are
implemented as dataflow resourée managers, i.e. separate processes.
However, there is no qualitative difference in the results if

such services are instead supplied as procedures. The pfotection

primitives previously described are still sufficient.

- 18 -
On'thé-other hand, the lessor's major concerns are the following:

a).The lessee must not be able to destroy or steal (copy)

~parts of the service. This includes not only the code itself

but also any intermediate results that could be misused to
deduce information about the principles and methods employed

by the service.

.b) Permission to use the service must not provide a way for
the lessee to steal or destroy information which is not

part of the service.

In Id, in order to employ a service only the pointer to the
manager (which is the implementation of that service) need be
Agiven to the lessee. The only operation defined on such a pointer
is the use primitive that communicates the. necessary arguments
and resuits between the lessee and the service as was described
in section 3.2. These points imply the solution fo‘the above two

problems a) and b);

4,2. The Selective Confinement Problem.

The Problem.

The essence of the problem is to guarantee that a borrowed program,
e.g. a service routine, will not disclose any sensitive infor-

mation passed to it by a caller for processing.

Assume, for example, that the lessor provides a proprietary
service called Tax which calculates the income tax for any lessee
that supplies to it the necessary information, such as salary,

deductions, address, etc.. In order to employ the service the

- 19 -

following call must be performed
res € use(Tax, data)
where 'Tax' is the pointer to the service process, ‘'data' re-

presents the collection of values supplied by the lessee, and

res' is the income tax calculated by ‘Tex* according to ‘'data’, .
Since the lessee of the service may nét trust the Tax prbgrahm,
he wishes to prevent certain sensitive information (e.g. the
salary) from béing disclosed to‘other users, including the lessor
of the service. In addition to computing the income tax the

service needs to calculate a bill for the services rendered

and to give a copy of the bill to the lessor.

The Solution.

1

In order to solve the problem the lessee is asked to partition
the data sent to the service into two parts - one part contains
sensitive information, such‘as the salary, while the other part
contains information not needing protecfion from.disclosure and
which is required by the Tax system, e.g. the lessee's name and
address, for purposes of billing. In calling the service the
leésee may protect the senéitive part of the data by attaching
to it a key k known only to the lessee. The non-sensitive part
is left unprotected. The call then has the form‘

sd' < seal(sd,k);

res < use(Tax,<sd', fd?);
where sd is the sénsiti?é datapart, sd' is a copy of sd with the
'key k attached to it, and fd is the non-sensitive (free) data
bart. (The angle brackets indicate a list of érguments). The
flow of information is shown in Fig. 5. The service computes

~the result and returns it to the lessee as the value res. For

- 20 -

example, a computation within the service pfocess might be

r < compute_tax(sd',fd) | A .
where the vaiue r will inherit the'key KAfrom'sdf.‘If r is thé
yélue returned (possibly at some later point) to the lessee as
res (b* the use primitive shown above), he is able to detach.
the key k from_reslby . o , |

res' -« unseal(res,k) |
and output the'unsealed value res' - the income tax. On the
other hand tﬁe bill may be computed by the service using only
the non-sensitive data, as in |

bill.e compute_bill(fd) .
If this is the case the value bill will be unsealed, and if senf
to the lessor for subsequent billing of the lessee it ﬁay be
disposed ofAfreely, that is it may be output, The value r (res)
and any other values possibly derived from sd' afe sealed with
the key k. Hence, even if sent to the lessor by the service, .
these values cannot be Qtilized since no information disclosure
interface will permit thése values to leave the system. We pre-
sume, of course, that the lessee did not give k (directly or
indirectly) to the leésor. Note that we do not prevent thé service
~from propagating any of the sensitive»data to other processes..
This permits the service to employ yet other services on its

own behalf,

4.3. Private Interprocess Communication.

Our protection system is centered around the following two
facilities:
a) A process ml sending a sealed value v to a process m2

is guaranteed that only m2 will be able to unseal and

- 21 -

utilize v, even if v was forwarded through e number of
'courier' processes. Assuming that some.of these procesees
cannot be trusted, it is not possible to.guéfahtee.that \
will reach m2. However, it is always guaranteed that no
information contained in v can ever be misused by other

‘processes.

b) Process ml signs v before releasing it to any ‘courier’
process. Thus m2 may verify the authenticity of v and

prevent any other process from masquerading as ml.

The mechanisms behind the above facilities are based on the
idea of trapdoor functions presented in /RiShAd78/;'A trapdoor
function f has the property of possessing an inverse function
£€ not easily derivable from f. The function f is made public
and may be used to encode messages that'eae be decoded’only by
the user who is in possession of £f€. On the other hand the
function f°© providee an unforgable 'signafure' on ﬁessages
originating from the user in bossession of §° (since this is
the only user in possessioﬁ of fc). In our system we do not
encode messages in a cypher, rather we uee keys as signatures
and seals that are attaehed te the message. Initially every
process that wishes to engage in communication with another
process obtains a new key from the key generator. Assume that
process ml is to send messages to m2, For this purpose ml will
nake a key k1 (obtained from the key generator) public, but
with only the detach right set. By "making public" we mean to
‘advertise or otherwise disclose (for examele, to a usef infor-
mation service) so that any process, in particular m2, can

ob;ain it. Similarly, process m2 will make its own key k2'public,

- 22 -

but with only the ‘attach righf set. From the above it foliows
that thé key k1 can be attached dnly by m1 but may be detached
by any process iﬁ the system. Conversdy the key k2 may be
attached by any process, but can be detached only by m2, If

ml is to send a message m to m2, ml attaches the key k1 as a
signature and the key k% as a seal to m:

m' <& sign(m,kl);
m" -t gggl(m‘,kZ)
Both operatibné wiil be_sucéessful since ml has k1 with bofh
rights set and k2 with the attach right set. The message m"
will then have the fornm m" {k2} {k1}. when m" is received by m2,
m2 may remove both keys as follows: ' |
m',fl <« unsign(m” ,ki);
m,f2 - unseél(mﬂ,kz)
The above atfach/detach operations have the following con-
sequences:
a) The received message mf is sealed with the key k2.
Only m2 is in possession of k2 with the detach right set,
hence only m2 is abie to successfully perform the unseal
,operation which yields the unsealed value m. This gives
ml the guarantee that only m2 will be able to utilize the

" information contained in m".

b) The flag f1 may be used by m2 to détect wﬁether the key
k1l was cérriea by the message as a signature. If this is
the case (f1 is true) then m2 is certain the message
originated from ml, since ml.is the only process in posses-

sion of k1 with the attach right'set_and thus the only

;23+
process that could have signed the message.”'E

From the above it follows.that by - using the same mechanisms

és those employed to solve other problems (sections 4.1, 4.2)
it is possible to establish a communication between processes
such that both communication partnérs are certain fo exchange
mességes with the desired process and no 'spying' or 'maéque—

rading’ can take place. Of course, the system is not limited

to just pairs of communicating processes; two groups of logically'

equivalent senders and logically equivalent receivers may commu-

nicate with equal assurance of protection.

5. Conclusions.

This paper preséhted a protecfion.mechanism which is simple to
understand and to use, yet powerful enough to allow the solution
of a large variety of protection problems. The entire mechanism
- presented here is based on attaching and detaéhing unforgable
keys to values.and is controlled by the.programmer through only
a few primitives. Despite its simplicity we have been able to
give solutioné to problems which cannot be solved eaéily in

most other advanced protection systems, e.g. the Selective Con-

b 3.3

finement Problem. The price paid for - the capabilities of the

*The flag f2 is not used in this example. It may be employed to

detect whether a particular key was carried by a value as a seal.

**Eurther application examples'méy'be found in /Bic78/ where we

\

present solutions to problems such as the "Prison Mail System"

/AmHo77/, "Sneaky Signaling"” /Lam73/, /Rot74/, and problenms

related to file systems.

- 24 -

4

system is overhead in computation:: for every primitive operation
some computatibn producing a new set of keys might be necessary.
However, since the computation of the new set of kéys ié in-
depehdeht of the computation~of the actual Value, a processing
unit can be designed.torperform both tasks in pérallel, Thus
little degradation of the actual cbmputational performance need
be introduced due}to the protection mechanisim. With decreasing
cost of hardware the cost of the additional processors or
processor combonents would appear minimal. This argument holds
especially in the case of a dataflow machine which consists of

a large number of inexpensive processors availéble through LSI

technology.

- 25 -

Acknowledgements.

I would like to express my sincere thanks to Prof. K.P.Gostelow
(UC Irvine) and Prof. Arvind (M.I.T.) for reviewing and

commenting upon the countless drafts of this paper.

(xaa - b;
Y= X % C

‘return y + x)

-
i

Figure 1 - Figure 2
.
iargl entry ;
argl ‘
m .-
——™Muse . ‘: :
resl r——*
iresl A
mahager internal
bOdy s tate
arga \
arg2 L
m -
~—>juse |
res2
{resz exit

Figure 3

VA

4 {sd 'k}, £dD

x{kl,gz}t iy{l;l,ks}

%z{kl,kz,kis}

Figure 4 .

o G ik}, fd)i—

compute_tax

use <

ires{k}

re:{k}

compute_bill

ik}

l

é bill
¥

{ exit

1

Figure 5

~;;27 -

~ 28 -

REFERENCES :

/ArGoP178/ Arvind, Gostelow,K.P., Plouffe,W. An Asynchronous
Programming Langugge and<Computing Machine. TR-114 Dept.
of ICS, UC Irvine, Ca 92717 |

/AmHo77/ Ambler,A.L., Hoch,C.C. A Study of Protection in Pro-
gramming Lahguages. SIGPLAN Notices, Vol.12, Nr.3, March 77

/Bac78/ Backus,J. Can Programming be Liberated from the wvon
Neuman Style?.-CACM, August 78. '

/Bic78/ Bic,L. Protection and Security in a Dataflow System.
Ph.D. Thesis, Dept. of ICS, UC Irvine, CA 92717. 1978

/Code75/ Cohen,E., Jefferson,D. Protection in the HYCORA Operating
System. SIGOPS, Nov. 1975. |

/GoTh79/ Gostelow,K.P., Thomas,R. Performance of a Dataflow
Computer. TR-127A, Dept.of ICS, UC Irvine, CA 92717.
Submitted for publication. 1979

/Jdon73/ Jones,A.K. Protection in Programmed Systems. Ph.D.
Thesis, Carnegie-Mellon Univergity. 1973.

/Lam73/ Lampson,B.W. A Note on the Confinement Problem. CACM,
Vol.16, Nr.lo. October 1973. |

/RiShAd78/ Rivest,R.L., Shamir,A., Adelman,L. AMethod for
obtaining Digital Signatures and Public-Key Cryptosystems.
CACM, Vol.21, Nr.2. February 1978. |

/Rot74/ Rothenberg,L.J. Making Computers Keep Secrets. Ph.D.
Thesis, MAC-TR-115, M.I.T., Cambridge, Mass. 1974.

/sch72/ Schroeder,M.D. Cooperation of Mutually.Suspicious
‘Subsystems. Ph.D. Thesis, MAC-TR-104, M.I.T., Cambridge,
Mass, 1972. '

