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MOLECULAR PHYSICS, 1991, VOL. 72, NO. 3, 523-535 

An electron gas calculation of the nuclear magnetic shielding tensor 
o f  3~+  1_12 

By CHRISTOPHER J. GRAYCE and ROBERT A. HARRIS 

Department of Chemistry, University of  California at Berkeley, Berkeley, 
California, 94720, U.S.A. 

(Received 31 July 1990; accepted 31 August 1990) 

We calculate the interaction nuclear magnetic shielding tensor for the 3E~+ 
state of H2, using the electron gas theory that we have presented previously. We 
confirm the finite direct contribution of the exchange energy, and our general 
results agree qualitatively with a simple Heitler-London calculation. Com- 
parison with experimentally derived results for 129Xe suggest that an electron gas 
calculation on that system would be valuable. 

1. Introduction 
Recently we presented the essential requirement for electron gas calculation of  the 

magnetic shielding tensor of nuclei [1], a gauge-invariant approximation of  the 
ground state energy density of a locally homogeneous electron gas in the presence of  
a constant magnetic field and a nuclear magnetic dipole. We pointed out that the 
theory would probably have greatest utility in the calculation of the part of  the 
magnetic shielding due to interatomic interactions in systems of  closed-shell com- 
ponents at intermediate distances from each other, where electron exchange and 
overlap are important, but long-distance induction and dispersion forces are not. In 
this paper we apply the electron gas theory to the prototype for interacting closed- 
shell systems, the non-bonding triplet state of H2. This system is an electron 'desert' 
rather than gas, so we do not expect the results so much to be quantitatively correct 
as to, if qualitatively so, encourage the application of  the theory to electron-rich 
heavier systems where the electron gas approximation holds more nearly true. It turns 
out our results are qualitatively correct, to the extent that can be determined, and thus 
the electron gas approach to nuclear magnetic shielding shows promise in its first test. 

We begin with a very brief review of  the origin and nature of  our approach. 
Gordon and Kim [2], in their calculation of  interatomic forces, introduced the idea 
of writing the interaction energy of  a system of  closed-shell components as a func- 
tional of  the electron density by approximating at each point in space the energy 
density by that of  a uniform interacting electron gas of  the same density. This electron 
gas approximation is equivalent to the assumption that locally the kinetic and 
potential energy operators commute [1]. This is most nearly true in regions of large 
and slowly varying potential, that is in regions far from atomic cores where electron 
density is nevertheless high. The second step in the Gordon-Kim approach is to 
approximate the true density of the system that appears in this energy density 
functional by the sum of  the densities of  the non-interacting components. Heller et al. 
[3] have pointed out that the Hohenberg-Kohn theorem [4] implies that the inter- 
action energy density thus calculated differs from the actual interaction energy density 
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to second order in the non-additivity. The interaction energy density can be integrated 
directly to obtain the interaction energy. 

We should like to make several points about this approach. First of all, the theory 
still requires the ground state densities of the non-interacting components to be found 
accurately by some other method. This is considerably easier than calculating the 
density of the whole system, however, because of the high symmetry of the com- 
ponents, which makes the trade-off advantageous. Note that an electron gas approach 
(e.g. ordinary Thomas-Fermi theory) would in general give rather poor results for the 
isolated component de~sities, since near atomic cores the electron gas assumption is 
rather badly violated. Indeed, the success of  the Gordon-Kim method rests to some 
extent on the subtraction, at the energy density stage, of the rather incorrect isolated 
component contributions to the energy. What is left in the energy density integrand 
is then the contribution from regions of electron overlap, where the electron gas 
approximation holds best. 

The second point is that the success of the method relies on the non-additivity 
being relatively small, which is why it is not useful for systems where strong bonding 
interactions exists, or where very close approach of the component is important. 

Thirdly, the assumption of additivity means that long-range induction and dis- 
persion forces are not included in this approach, which is why the asymptotic 
behaviour of the system is not described well. This is pointed out by Harris [5], who 
also showed how induction and part of the dispersion forced could be included in an 
electron gas approach, albeit at the price of more work. We have not included 
long-range forces here. 

Finally, it is a little paradoxical that the approach works at all: the assumption 
of additivity is inconsistent with the Hohenberg-Kohn and Hellmann-Feynman 
theorems, and yet it is precisely that inconsistently that gives non-trivial answers, since 
strict additivity would give an interaction energy of strictly zero. Harris and Heller [6] 
have discussed this point more fully. 

That a Gordon-Kim type of approach would work when magnetic fields are 
present is assured by the Rajagopal-Colloway extension of the Hohenberg-Kohn 
theorem [7], which proves that the ground state energy of the inhomogeneous inter- 
acting electron gas in the presence of a magnetic field is a unique functional of the 
electron density and current. Of course, it remains to find that functional! Harris and 
Cina [8] constructed a kinetic energy density functional, for the case of a slowly 
varying magnetic field, which was a functional of the density and current, in the hopes 
of using additive densities and currents to write the energy density. However, the 
functional was miltivalued in places and could not be so used. Vignale and Rasolt 
have also recently constructed an exchange correlation energy density as a functional 
of the density and current [9], but its calculational usefulness has not yet been 
determined. Cina and Harris [10] also found an energy density for the case of a slowly 
varying magnetic field as a functional of  the density and explicitly of  the magnetic 
field, and used it to calculate the diamagnetic susceptibility of the triplet state of H2, but 
they found that the lowest-order direct exchange energy contribution inconveniently 
diverged, and could not be included in the energy density. Stephen [11], in considering 
the case of a purely homogeneous electron gas many years ago, noted this problem, 
and found that screening the exchange resolved it. Our previous work is the con- 
struction, in a manner similar to that of Cina and Harris, of a complete energy density 
for the locally homogeneous electron gas, in the presence of a specific kind of magnetic 
field: that in an ordinary nuclear magnetic resonance (NMR) experiment, a super- 
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position of  a constant field and that due to a nuclear magnetic dipole. We found that 
by not treating this field as slowly varying (locally constant in the sense the potential 
is treated), it is not necessary to screen the exchange to obtain a finite lowest-order 
direct exchange contribution to the energy. We believe this to result from the fact that 
the magnetic field is 'spatially limited' in the sense that the lowest-order term in the 
square of  the field does not have amplitude over all space. 

Our energy density functional is correct to first order in the nuclear dipole moment 
and in the strength of  the constant field. If we find the ground state densities, to similar 
order in the fields, of  closed-shell components, we can use the Gordon-Kim approach 
to calculate the interaction energy of  the interacting components as a function of  the 
fields and the arrangement of the components. The coefficient of  the term in the 
interaction energy bilinear in the two fields is then the interaction nuclear magnetic 
shielding tensor as a function of  the nuclear position vectors. 

2. The spin-polarized energy density functional 

In our previous work we required the system to be closed-shell, i.e. to have total 
electron spin S = 0, so that if we assumed that the ground state wavefunction could 
be written as a product of  one-particle orbitals then a single Slater determinant of  
these orbitals would suffice. All physical properties could then be calculated using the 
physical space part of  the orbitals, with multiplicative factors of  two in the right places 
to account for the double occupancy of  each physical space orbital. The triplet state 
of H2 is not, of  course, a closed-shell system, but it is completely spin-polarized, 
meaning the azimuthal component of spin is at its maximum, that is m s = S. For 
spin-polarized as for closed-shell systems, just one Slater determinant is needed, and 
all physical properties can be found from the physical space orbitals. However, each 
single-particle orbital is singly instead of doubly occupied, because the spins of the 
electrons are parallel. For a locally uniform electron gas this means that at a particular 
point, with local potential V(r) and local Fermi energy ~F(r), the total spin-polarized 
electron gas density p~ (r) = �89 where p(r) is the total electron density when each 
physical space orbital is doubly occupied. To convert the results of our previous work 
to those appropriate to a spin-polarized electron gas, we need to insert factors of two 
in appropriate places. For example, from the ordinary field-free Thomas-Fermi-  
Dirac energy functional [12] V TED [p(r)], which gives the local potential from the local 
density, we can find VT TFD, the local potential for a spin-polarized electron gas, as a 
function of  the spin-polarized density: 

VT T~D[pT(r)] = v ~~  T(r)] 

_ 22/3 h 2 [ 3n2pt(r)] 2/3- (1) 

Carrying through the procedure logically consistent with this on the kinetic and 
exchange energy densities given in (37) and (38) of [1], we obtain for the spin-polarized 
kinetic energy density 

h 2 1 {25/3(3n2p~)5/3 
tT[r,/l, B, pr(r)] = 2m lOn 2 

( e ) : [ ( / t  x r ) . ( r  x B) D,(24/3a) 
+ ~24/3(3n2Pt)4/3 hc r 2 
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-Jr- 2 j[l �9 .D2 (24/3 a)] -Ji- ~ 24/3 (3"/~2 p], )4/3 ( ~c/2 

x [ (ll x r ) ' ( r  x B) 
r2 T e  I (24/3a) -k- p" BTe2 (24/3 a) 

and for the spin-polarized exchange energy density 

xT[r , I1, B, Pt(r) ]  - -  ~ 3  24/3(31t2pt)4/3 

( e )2 [ (tt x r) " (r x B) Dl (24/3 a) 
+ 4(3napr) he r 2 

xE ]} r2 B)Xel(21/3a) + 1 a" BXe2(2U3a) , 

where the variable a is defined as 

a =- [3rt2pt(r)]W3r 

The functions D 1 , D 2, Te I and Te 2, as given in [1], are 

(2) 

(3) 

(4) 

Tel(x) = _2[1 
x 

Te2(x) 

D l ( x )  = x4---y(l --  c o s x )  --  -x 2j~ } 
(5) 4 2 

D2(x) = ~ (1 -- cosx)  x - c o s x  - jr(x) -- si(x), 

- J0 (xl], } (61 

8 { c o s x  - 1) 1 c o s x )  
- --}si(x)  + T~fj3(x) + ~sj~(x) + 3 \  x 5 + -2 - - i f -  ' 

where j0 (x) is the spherical Bessel function of  order zero and si (x) is the sine integral 
function. The functions D l , D 2, Te I and Te 2 are finite everywhere. The functions Xe ~ 
and Xe 2 we defined in [1]. We cannot write them in closed form, but they have been 
tabulated [13] as functions of their single variable. 

The electron gas potential energy density is just that from ordinary mean field 
theory: 

V(r) = -eVn(r)pT(r)  + �89 2 ~cl3r 'p~(r)pT(r') 

where Vn is the nuclear Coulomb potential. The first term comes from the interaction 
of the electrons with the nuclei, where the second is the classical electron-electron 
repulsion energy. No modification of the form of this functional is necessary for 
spin-polarized systems. Note that this is just the electronic potential energy; to arrive 
at the total potential energy we should add the nuclear repulsion. The latter does not, 
however, contribute to the magnetic shielding tensor. 
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3. Densities of the isolated hydrogen atoms 

What we have said in the previous section is still completely general. Now we must 
specialize to the triplet H 2 system that we are considering and determine the input to 
the energy density functional, which is the densities of the isolated hydrogen atoms 
in the presence of the two magnetic fields. This is the place where each application of 
the electron gas theory requires serious work; however, once the work is done for any 
particular set of components, the magnetic shielding tensor of a system consisting of 
any non-bonding arrangement of those same components can be calculated with one 
three-dimensional integral over the energy density functional. 

For this symmetric system the nuclear magnetic shielding is identical for each 
proton, so we arbitrarily designate the atom with the nuclear magnetic dipole under 
consideration as Ha. The other we call H b. We write the densities, in the presence of 
the dipole p and constant magnetic field B as the field-free ground state density p0 plus 
some small correction due to the fields: 

pa(ra, ~, B) = p~ q- pa(ra,/g, B), 

Pb(rb, R,/u, B) = p~ + p~(rb, R, !1, B), (8) 

where R is the internuclear separation. The p0b are the usual hydrogen atom ground 
state densities, in atomic units: 

0 = 7~ 1/2e--ra'b. Pa,b (9) 

We calculate the additions pl,b(/~ , B) using ordinary time-independent perturbation 
theory, in the manner of Dalgarno and Lewis [l 4]. The energy density of the interacting 
system is determined by using p~ + Pb for the density p(r) in the energy density 
functionals above. To find the interaction energy density, we then need to subtract the 
energy densities of the isolated components. We find the isolated energy density for 
Ha by inserting p~ into the energy density functionals above. For Hb, however, the 
isolated energy density is found by inserting pO alone into only the field-free part of 
the functionals above, because when H b is infinitely far from H a no contribution to 
its energy can come from terms involving/~, and only the field-free parts of Pb, t[p(r)] 
and x[p(r)], contain no/ l .  

We now describe the calculation of the P~.b(/~, B). The effects of the dipole on Ha 
are a special case (with internuclear separation going to zero) of the effects of Hb, SO 
we begin with the latter. We locate the atom at the origin. A magnetic dipole at R and 
constant magnetic field lead to the following extra terms in the Hamiltonian: 

~b' -- e p ' I R  e e 2 ~ x ( r - -  R)]- (B x r) (10) 
m c  r 3 q- ~mc B"  1 + 2mc~ r3 

We have dropped terms higher than first order in ~u and B, and ignored the 
spin-magnetic-field interaction. The notation IR indicates angular momentum 
about R, that is IR = (r - R) • p. The first two terms of (10) are the para- 
magnetic terms: to evaluate the change that they make to the wavefunction in the 
general case, to first order in p and B, we should need to do second-order perturbation 
theory, involving in the traditional approach a sum over all the excited states. 
However, because the ground state density must be real, the paramagnetic terms 
cannot contribute in first order, and, because the ground state of the hydrogen atom 
has zero angular momentum, they contribute nothing in second order. We need only 
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deal then with the final, diamagnetic term in (10). This requires only first-order 
perturbation theory, since the diamagnetic term already contains/~ and B explicitly. 
Therefore the perturbation theory equation that we must solve for ~b~, the first-order 
change in wavefunction, is 

{ I[p • (r-R)]'(B • r)} 
(~b ~ -- E~ = Eb ~ 2C 2 r3 ~k ~ (1 1) 

in atomic units, where O ~ is the lowest eigenfunction of the field-free Hamiltonian ~ o  
and E ~ is its eigenvalue. The first-order energy shift Eb' can easily be calculated as 

el  = e 2" + N + N  + R  g3 

1 ( I t ' R ) ( R ' B ) [  ( 5 6 3 )  1 3 ]  
2c 2 R2 e -2" 2 + ~ + ~-~ + ~-~ + ~ -  R-- 3 . (12) 

The term multiplying c-2/, �9 Bwe call E 1 , it tends to �89 as R ~ 0. The term multiplying 
c 21~zB z (if we let R lie along the z axis) we call E~, and it of course tends to zero as 
R does. 

Expanding both sides of (1 l) in spherical harmonics and equating coefficients gives 
us a second-order inhomogeneous differential equation, in just the radial coordinate r, 
for each coefficient functionft(r) multiplying the spherical harmonic of order l in the 
perturbation wavefunction expansion. These we solve by numerical integration [13]. 
We orthogonalize the l = 0 coefficient to the field-free wavefunction specifically, and, 
by that and the orthogonality of the spherical harmonics, ~b~ is made orthogonal to 
~b ~ In practice we need include only the first few spherical harmonics and coefficient 
functions in ~b 1, because for higher l the coefficient functions become small and the 
spherical harmonics oscillate quickly, cancelling each other out. Our experience is that 
the first nine are more than sufficient. (As a side comment, we should point out that 
the retention of more and more spherical harmonics in the wavefunction changes it 
hardly at all, with one interesting exception: very near to and centred on the dipole, 
the spherical harmonics and their coefficient functions add coherently in a smaller and 
smaller region, building what for the complete solution is probably a strong singularity. 
However, this singularity is such that spherically symmetric integration over it with 
any non-singular function gives zero. We have noted before this property of Dalgarno- 
Lewis-type perturbation wavefunctions for singular perturbations [15], and the 
problems of integration over them has been discussed in a more general context by 
Pitzer et al. [16].) 

To calculate the first-order change in density for Ha is considerably easier than for 
Hb. The dipole is now located at the origin, where the atom is, so the perturbation 
equation that must be solved is 

(o~o o , [ 1 (t* x r ) ' (B x r) ] 
- -  E a ) ~ t a  - -  E2 2c 2 r 3 t) ~ (13) 

Note that the gauge origin of the constant magnetic field has been changed from that 
in (1 l). Although this gauge transformation can affect the perturbed wavefunction Ola, 
it cannot affect the resulting perturbed density pal. The first-order energy shift is found 
to be �89 �9 B, by direct calculation or by letting R ~ 0 in (12). We follow the same 
logic as in the determination of Ob above--the expansion in spherical harmonics, 
finding coefficient functions, and so on. However, the expansion of the perturbation 
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stops with l = 2, and only three coefficient funct ions are non-zero,  so the process is 
considerably abbreviated.  

4. Results 

Because of  the symmet ry  of  the H2 system, the interact ion nuclear magnet ic  
shielding tensor a 1 (R) has just  two independent  components .  I f  the z is the inter- 

which are identical. nuclear axis then these are a~,  which we label a I , and alx~ or ayy, 
We define a~ = 1 1 0.1 ~(axx + yy), in accordance with the usual no ta t ion  for d ia tomic  
molecules; the an iso t ropy  Aa ~ is then convent ional ly  defined as a I - a~.  The  scalar 
interact ion magnet ic  shielding a ~ is one-third of  the trace of  the full interact ion 
magnet ic  shielding tensor. No te  that  this is all that  survives rota t ional  averaging,  and 
hence is wha t  is determined in ord inary  gas phase  experiments.  

Figure l(a) shows a l, alll and Aa I for  the triplet H2 system, as functions of  
internuclear  separat ion R, calculated with the electron gas theory. I t  should be borne  
in mind that  the full magnet ic  shielding tensor a(R) would be a 1 (R) plus the shielding 
tensors o f  the two isolated hydrogen  a toms.  The  latter are just  �89 -2 times the unit 
tensor for  H~, and zero for  Hb. Figure l(b) shows the cont r ibut ion  to the scalar 

c o  ~ ' .  

t )  ~ " .  

2 o 6 p ~  ,,','. . . . . . . . . .  
o 

i J i i i i i i 
1"0 1-5 2.0 2.5 3-0 3.5 4-0 4-5 fi.O 

internuclear seporafion R/atomic unifs 

(a) 
o 

~ .  �9 . . . . . . . . . . . .  . . . . , . .  

~ o  

. L 2  

'1-o ;-s ~'.o J-s ~-o ~-s 2-0 2-~ d,o 
infernuclear seporafion R/atomic unifs 

(b) 

Figure 1. Results of the electron gas calculation of the interaction nuclear magnetic shielding 
tensor of the triplet H2 system. (a) Components of the shielding tensor: , ] tr a ~ ; - - -, 
al; . . . .  , Aa ~. (b) Contributions to � 8 9  kinetic; . . . .  , exchange; . . . .  , potential. 
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Figure 2. 
scalar nuclear magnetic shielding of triplet H2: - - - ,  direct; . . . .  , indirect; - -  

g 

6 -  

O 

6 
I I I I 

~.o I'-5 ~-o ~-5 ~-o ~-5 4.0 .~.5 ~.o 
internuclear separation R/atomic units 

Direct and indirect parts of the interaction exchange energy contribution to the 
, total. 

interaction magnetic shielding from the kinetic, exchange and potential energies. Note 
the significant contribution of the exchange interaction energy. Figure 2 shows the 
portions of the exchange energy contribution where the fields come in directly and 
indirectly, the 'direct' portion comes from integration of  that part of the exchange 
energy density x[r, F, B, p(r)] that contains the field explicitly, while the 'indirect' 
portion contains the fields only by virtue of the field dependence of the non-interacting 
densities pa(r, F, B) and pb(r, R, F, B). As mentioned in section 1, Cina and Harris 
[10] showed that the direct exchange contribution to the electron gas energy diverges 
if the magnetic field is treated as slowly varying, and cannot therefore be included in 
an electron gas calculation. From figure 2 it can be seen that leaving out the direct 
exchange energy contribution here would be a significant error. It should be recalled 
that no screening of the exchange is included in this theory. 

The finite direct exchange energy contribution is the first interesting result of this 
calculation. The second is the existence of a minimum in the deshielding effect of  the 
interaction at intermediate distances near 'contact' (R = 2a0). There is no rigorous 
calculation of the triplet shielding tensor available for comparison with the electron 
gas results, but there is one other ab initio calculation at these short distances, by 
Marshall and Pople [17] using the Heit ler-London molecular wavefunction. The 
atomic basis orbitals Xs that they use are simply hydrogen orbitals multiplied by a 
phase factor: 

[ i 1 L.(r) = ~b~(r)exp - ~ c r "  (B x R,) , (14) 

in atomic units, where ~b H is the hydrogen orbital and R, is the location of  nucleus s. 
These atomic orbitals are correct to first order in B. This follows from the observation 
that the hydrogen orbitals are unchanged to first order in B if the gauge origin is the 
location of the nucleus. Moving the gauge origin to - R , ,  which is equivalent to 
keeping it at zero and moving the nucleus to R~, is a gauge transformation, and 
modifies the wavefunction by the phase factor given above. Of course, the molecular 
wavefunction constructed from these orbitals is not correct to order B, because of the 
inexact formulation of the former from the latter by the Heit ler-London prescription. 
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It becomes more accurate at large separations because the Heit ler-London wave- 
function becomes exact asymptotically. 

Marshall and Pople used their wavefunction to calculate the magnetic field 
induced at the nucleus with the magnetic dipole by the external field; the coefficient 
of the term linear in the external field is then the magnetic shielding. (It is not readily 
apparent in Marshall and Pople's paper that this is what they are doing, but careful 
consideration of  their calculation shows its formal and exact equivalence to use of  the 
Biot-Savart law to find the induced magnetic field from currents in the wavefunction 
induced by the external magnetic field.) The electron gas approach, by contrast, uses 
a density that has both y and B in it to find the interaction energy, whereupon the 
coefficient of the term biIinear in the fields is the interaction magnetic shielding tensor. 
This 'energy' approach would naturally give the same answer as the 'induced-field' 
approach used by Marshall and Pople, were the wavefunctions exact. If approximate 
wavefunctions were used that satisfied the Hellmann-Feynman theorem [18], even 
trivially, for the two fields, then the two approaches would also give the same answers. 
The difference between the two approaches is not therefore necessarily an indication 
of the accuracy of either, but we cautiously take it to be so, since the methods of 
calculation differ significantly. 

A comparison of the scalar magnetic shielding calculated by Marshall and Pople 
with the electron gas results is shown in figure 3, along with, for comparison, the 
results of  the perturbative calculation of  Rummens [19], made to order 1/R ~~ which 
is good at large distances. The agreement between the electron gas and Marshall and 
Pople calculations is qualitative, but certainly not quantitative. (It is rather encourag- 
ing that there is even qualitative agreement, given the doubtfulness of the electron gas 
assumption for a two electron system.) Although it is not easily seen in the figure, the 
Marshall and Pople scalar shielding starts out positive for large internuclear sep- 
arations, as does the electron gas shielding. Both shielding curves cross the axis and 
become negative at smaller separations, the Marshall and Pople curve at a separation 
of 3.0 au, about 1.0 au less than where the electron gas curve crosses. The electron gas 

6 

"E 

L) O- II 
"~ I tl e 

0 / tt 

C~ 

0 

'1.0 1'.5 ~'.o 1-5 3.o' ~'-5 2.0 4.5' ~.0 
internucleor seporofion R/otomic units 

Figure 3. Comparison of the electron gas calculation of the nuc|ear magnetic shielding with 
that by Marshall and Pople [17] using the Heitler-London wavefunction: o, points 
calculated by Marshall and Pople (the line joining then is simply to guide the eye); 

, electron gas calculation; - - - ,  perturbative calculation by Rummens [19], valid 
asymptotically. 
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0 
0 -  

0 

~ o  ~ -  

80 

0 

I 

O 0  ~) 

0'7 (}-8 0"9 ll'0 l~'l 11"2 11"3 i 1'4 I ~'5 
R/Re 

Figure 4. 
internuclear separation for two 129Xe atoms: O, empirically derived results; - -  
of the interxenon potential that best fits the data. 

Jameson's [20] empirically derived interaction chemical shift as a function of 
, function 

shielding is rather more negative at intermediate distances than the Marshall and 
Pople shielding, and l~h~ latter does not display a minimum. We suggest, however, that 
this minimum is a real feature, missing in the Marshall and Pople calculations, 
although its position and depth for the triplet H 2 system we do not expect to get right 
with electron gas theory. We base this first on the physical intuition that the loss of 
spherical symmetry, resulting from the interaction, that reduces diamagnetic shielding 
begins to reverse as the interacting atoms get very close. There is also indirect 
experimental evidence that this minimum exists, at least in heavier systems. Jameson 
[20] has extracted from experimental data obtained [21] in her laboratory an empirical 
estimate of  the interaction chemical shift, as a function of internuclear separation, for 
pairs of  129Xe atoms, a real interacting closed-shell system. Her results are shown in 
figure 4. Note that, in parallel to what we find in the triplet H2 system, there exists a 
minimum in the interaction deshielding near 'contact '  (the equilibrium separation Ro). 
Figure 4 also shows the function of the xenon interatomic potential Jameson found 
that best reproduces the experimental data. While there are no compelling reasons for 
the interaction chemical shift to depend in a simple way upon the interatomic 
potential, it is interesting that, of  the class of  functions that do so, the one that works 
best is very similar to our interaction magnetic shielding as shown in figure 1. 

We feel that it would be worthwhile to perform an electron gas calculation for the 
129Xe system, where the plethora of electrons lends the electron gas assumption 
considerably more accuracy in the region of importance. With a good xenon inter- 
atomic potential [22], the temperature and density dependence of the magnetic 
shielding of  129Xe could then be directly calculated and compared with Jameson's 
experimental results. Our preliminary work on triplet H 2 suggests there is a good 
chance this comparison will be favourable, since the minimum in the interaction 
magnetic shielding function, at least the most obvious feature demanded of it for 
agreement with experiment, which is missing in previous theoretical formulations, is 
here found even in the electron desert limit of  the electron gas. 

We wish to make three further comments. First of  all, it should be borne in mind 
that the electron gas results are expected to be best at intermediate distances. At large 
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separations, where overlap is small (here where R is greater than about 4), the main 
contributions to the energy are from induction and dispersion forces, of which the 
electron gas theory takes no notice, since it uses the additive density approximation. 
At small distances, the non-additivity is large; furthermore, the potential changes 
rapidly and the Thomas-Fermi condition no longer holds (or more precisely is even 
less accurate) in the region of overlap, whence most of the interaction energy comes. 
We estimate this region as being R less than about 1. The short-distance region, we 
could argue, is less important for ensembles of atoms, since close approaches are 
unlikely because of the strongly repulsive nature of the potential at short distances. 
As for the asymptotic region, as Harris has shown, it is in fact possible to include 
induction forces in the electron gas theory--at the price of a fair amount more work 
in the calculation of the constituent component densities. It may also be possible to 
make some kind of interpolation between the electron gas results at intermediate 
distances and the results of perturbative calculations, which are reliable at asymptotic 
distances. 

Our second comment is that the NMR spectrum of spin-polarized atomic hydrogen 
at low densities has been recorded by Johnson et al. [23]. Since the interatomic 
potential of triplet H2 is known, the density dependence of the nuclear magnetic 
shielding for spin-polarized hydrogen could be calculated directly from our results, 
perhaps using the perturbative results for asymptotic distances, and compared directly 
with experiment. (Johnson and colleagues have not actually published the density 
dependence of the magnetic shielding, but their published results make clear that it 
could easily be measured with their technique, if they have not already done so.) 

Finally, of some interest are the results of our electron gas theory applied to direct 
calculation of the complete (not interaction) nuclear magnetic shielding of just the 
hydrogen atom itself, because they are curiously good considering that a single 
electron in a Coulomb potential is very far from an electron gas, and in fact the 
Thomas-Fermi condition is satisfied nowhere. 

The potential energy written in terms of the density is calculated exactly for the 
hydrogen atom; the ion-electron potential energy is 

The self-energy is 

1 
V~E = --1 + ~-5/ t 'B.  (15) 

.)c- 

5 5 
Vs = 1---6 - 48c -----5/l. B. (16) 

This latter should exactly cancel with the exchange energy, since for just one electron 

f p(r)p(r') Vs = 1 d3rd3r, .~ 

1 f d3rd3r , r 
= 2- Jr -- r'l 

1 ( d 3 r d 3 r  , ]P(rlr') Iz 
= z J I r - r ' ]"  (17) 

We add these potential energies to the results of integrating the kinetic and exchange 
energy density functionals above using the hydrogen atom unperturbed density. The 
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field-free results are 

C. J. Grayce and R. A. Harris 

kinetic = 0.4590, 

exchange = - 0.2680, 

ion-electron = - 1.0000, 

self = 0.3125, 

Total = - 0-4966. 

The electron gas approach gives a kinetic energy that is too small (the exact value 
is �89 but this is compensated for by the exchange energy also being too small. Thus 
the remarkable accuracy of  the total energy seems somewhat fortuitous. 

The exact nuclear shielding tensor for the hydrogen atoms is �89 -2 times the unit 
tensor. The electron gas results are, in units of  c -2, 

kinetic = - 0.5407, 

exchange = 0"4016, 

ion-electron = 0-3333, 

self = -0"1042,  

Total = 0.0901. 

Here the electron gas theory overestimates the exchange energy, but this is com- 
pensated for by an overestimation of  the kinetic energy, leading to a final result that 
is surprisingly good. 
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