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ABSTRACT This report presents multi-genome evidence that REC protein family 
expansion occurs when the emergence of new pathways gives rise to functional 
discordance. Specificity between residues in REC domain containing response regula­
tors with paired histidine kinases is under negative purifying selection, constrained 
by the presence of other bacterial two-component systems signaling cascades that 
share sequence and structural identity. Presuming that the two-component systems 
can evolve by neutral amino acid changes (neutral drift) when purifying evolutionary 
constraints are relaxed, how might the REC protein family expand by amino acid 
changes when these constraints remain intact? Using an unsupervised machine learning 
approach to observe the sequence landscape of REC domains across long phylogenetic 
distances, we find that within-gene recombination, a subcategory of gene conversion, 
switched the effector domain and, consequently, the regulatory context of a duplicated 
response regulator from transcriptional regulation by σ54 to that by σ70. We determined 
that the recombined response regulator diverged from its parent by episodic diversifying 
selection and neutral drift. Functional experiments of the parent of recombined response 
regulators in a model Pseudomonas putida KT2440 model system revealed that the 
parent and recombined response regulators sense and respond to different carboxylic 
acids. Finally, a residue-switching experiment using structural predictions and functional 
characterization suggests that the new residues in the recombined regulator could form 
a new interaction interface and mediate condition-specific phosphotransfer. Overall, our 
study finds that genetic perturbations can create conditions of functional discordance, 
whereby the REC protein family can evolve by episodic diversifying selection.

IMPORTANCE We explore when and why large classes of proteins expand into new 
sequence space. We used an unsupervised machine learning approach to observe the 
sequence landscape of REC domains of bacterial response regulator proteins. We find 
that within-gene recombination can switch effector domains and, consequently, change 
the regulatory context of the duplicated protein.

KEYWORDS large protein families, two-component regulatory systems, evolution, 
gene regulation, genetic recombination, domain swapping, signal transduction, 
response regulator

P rotein families are a group of proteins that share a common ancestor, show­
ing sequence conservation across long phylogenetic distances (1–4). Amino acid 

consensus motifs are used to understand protein family function and specificity; 
active-site residues are fixed and tell us about the chemistry the protein family per­
forms or undergoes, while variable residues determine the protein’s specificity for 
different substrates or ligands, binding affinity, reaction kinetics, protein stability, etc.
—this report will focus on specificity for different substrates or ligands. Variable, 

November/December 2023  Volume 14  Issue 6 10.1128/mbio.02622-23 1

Editor Michael T. Laub, Massachusetts Institute of 
Technology, Cambridge, Massachusetts, USA

Address correspondence to Aindrila Mukhopadhyay, 
amukhopadhyay@lbl.gov.

J.D.K. has financial interests in Amyris, Lygos, 
Demetrix, Napigen, and Maple Bio.

See the funding table on p. 17.

Received 28 September 2023
Accepted 20 October 2023
Published 22 November 2023

This is a work of the U.S. Government and is not 
subject to copyright protection in the United States. 
Foreign copyrights may apply.

https://crossmark.crossref.org/dialog/?doi=10.1128/mbio.02622-23&domain=pdf&date_stamp=2023-11-22
https://doi.org/10.1128/mbio.02622-23


specificity-determining, residues form the molecular basis of tightly regulated sig­
nal transduction (5–7), such as those found in phosphotransfer receiver (REC) 
domains of response regulators, allowing for specific, context-dependent, protein-pro­
tein interactions.

Members of the REC protein family (PF00072) function as phosphotransfer receivers 
in bacterial signaling cascades called two-component systems. Most bacterial genomes 
encode dozens to over a hundred of these systems (8–10). Two-component systems 
modulate important functions in bacterial pathogenesis, antibiotic resistance, nutrient 
use (e.g., carbon, nitrogen, or phosphate utilization), fitness in a microbiome context, and 
a vast number of other functions (5, 10), making them attractive targets for addressing 
infection (5) and pathogenesis (11, 12) and for applications in synthetic biology and 
biotechnology (13–15). Despite large numbers of highly analogous systems encoded in 
a single genome, when a signal is recognized by a histidine kinase, phosphotransfer 
(phosphorylation or dephosphorylation) to its cognate response regulator occurs with 
precise biochemical specificity (16–18). The phosphorylated cognate response regulator 
then regulates cellular functions, mainly via transcription, chemotaxis, or modulation 
of second messengers (Fig. 1A). In response regulators, N-terminal REC domains are 
fused to a broad range of C-terminal effector domains and predominantly function 
as transcription regulators (Fig. 1B). Previous structural and biochemical studies of the 
REC protein family showed that variable amino acid sequences in active-site adjacent 
alpha-helices that form the interaction interface determine interaction with cognate 
histidine kinases to mediate highly specific, context-dependent, phosphotransfer to the 
active-site aspartate residue (16, 18–20).

How the REC protein family evolves is of interest due to its ubiquitous role in 
cellular signaling and regulation of cellular function. For the purposes of this report, 
we define three key mechanisms in the evolution of the REC protein family: (i) neu­
tral drift: synonymous or nonsynonymous amino acid changes that occur through the 
natural processes of mutation (21, 22); (ii) negative purifying selection: selection against 
nonsynonymous amino acid changes; and (iii) episodic diversifying selection: selection 
for nonsynonymous amino acid changes. In the evolution of bacterial two-component 
systems, the interactions between cognate histidine kinases and response regulators 
are under negative purifying selection to prevent deleterious interactions between 
non-cognate two-component systems. Presumably, loss of a single two-component 
system—due to gene loss or growth in conditions that suppress two-component system 
activity—can relax these purifying constraints, such that new two-component systems 
can sample the unused combinations of amino acids sequences that code for the 
interaction interfaces (23). It has been shown that while two components can sample 
new sequences, the phosphotransfer functions between encoded cognate kinases and 
regulators do not break, and phosphotransfer levels can be maintained during the 
evolutionary process of nonsynonymous amino acid changes (24). This implies that REC 
protein family expansion likely occurs by neutral drift when purifying constraints are 
relaxed, but we still do not understand if new combinations of sequences forming new 
interaction specificities are sampled when these constraints remain intact (Fig. 1C).

One challenge in understanding the evolution of large protein families is parsing 
relationships between members of the protein family from amino acid sequences 
alone. Previous studies (7, 25, 26) using phylogenetic and clustering methods to parse 
molecular information from REC domains from species that span short evolutionary 
distances (population of a species or species within a genus) showed that members of 
the REC protein family resulted from independent gene duplications, sharing a common 
ancestor in bacterial history. Studies comparing domain architectures of REC domains 
from extant species (8, 27, 28) suggest that REC domains evolve vertically, passing the 
fused effector domains to daughter REC domains (Fig. 1C). To overcome the challenge 
of understanding how REC protein family expansion occurs over long phylogenetic 
distances, we build upon insights from these previous studies, making use of the 
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over 200,000 sequenced bacterial genomes, to develop a method that can parse the 
evolution of the sequenced REC domains in extant, sequenced species (10).

In this study, we ask whether neutral drift alone or another evolutionary mechanism 
can explain how new members of protein families emerge. Using an unsupervised 
machine learning (ML) strategy, we explore the amino acid sequence landscape of the 
REC protein family. We identify a subfamily of the REC protein family that emerged 

FIG 1 Functional context for insight into the evolution of the REC protein family. (A) REC protein family in the context of bacterial two-component systems: 

membrane-bound histidine kinases sense a signal and undergo phosphotransfer to a cognate response regulator, which regulates cellular functions. (B) 

Domain architecture of the two-component system. The histidine kinases’ sensor, dimerization and histidine phosphotransfer (DHp), and catalytic (CA) domains 

coordinate the initial autophosphorylation. The signal is transmitted by phosphotransfer to the cognate response regulators’ receiver (REC) domain (bolded 

oval). The effector domain (oval labeled “E”) completes the signaling cascade. Effector domains “E” are mostly DNA-binding, and the most abundant are 

Trans_reg_C (yellow), GerE (blue), AAA+ (red), and HTH_8 (green). Because HTH_8 domains often co-occur with AAA+, they are shown as overlapping red and 

green ovals—for simplicity, AAA+-HTH_8 domains are called AAA+ domains throughout the text. Effector domains with non-DNA-binding function are shown 

as other (gray) and no domains (black). The effector domain color coding shown in this figure is used for all subsequent figures. (C) Hypothetical tree showing 

model REC protein family evolution. Assuming that REC domains share a common ancestor and that REC domains fused to the same effector domains are more 

closely related than those fused to different effector domains, showing regulators with distinct domain architectures and colors (refer to B) at the tips of the tree 

with coalescent branches. Neutral drift occurs when purifying constraints are relaxed; however, what causes REC domains to diversify and sample new sequence 

combinations that encode new specificities when constraints are intact remains unknown. (D) Similarity between members of the REC protein families showing 

the relationship between REC domain sequence alignments with gap replacement and explaining 95% of the variation between the sequences. REC domains 

were sampled from species found within the taxonomic rank (kingdom, Bacteria; phylum, Proteobacteria; or genera, Pseudomonas) labeled at the top of each 

plot and sampled as described in Materials and Methods. After species sampling, we identified all proteins with REC domains in each of the sampled species’ 

genomes and aligned their sequences. Points represent the sequences of unique REC domains from the sampled genomes; points that are close together 

share sequence identity with each other. Each REC domain is annotated by the identity of its effector domain Trans_reg_C (yellow), GerE (blue), AAA+ (red), 

other (gray), and no domains (black). Note that the location of REC domains is not fixed in the plot between independent runs of the algorithm; however, the 

relative distribution between the points is visually consistent between runs. Black arrow indicates the REC domains linked to GerE effector domains as a result of 

within-gene recombination of parent REC domains fused to AAA+ effector domains. TSNE: t-Distributed Stochastic Neighbor Embedding.
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and expanded after a within-gene recombination event changed the effector domain of 
this REC subfamily. We show that functional discordance between parent and daughter 
signaling pathways, which occurred after the within-gene recombination event, gave rise 
to a new structural interface that, we propose, facilitates phosphotransfer.

RESULTS

ML approach leads to (re)-discovery of recombination events

To understand how large protein families expand and evolve, we applied an unsuper­
vised ML algorithm that uses dimensional reduction to group similar domains based 
entirely on the identities and positions of amino acid sequences in an alignment. 
We established this strategy for large protein families, using the REC protein family 
(PF00072). To ensure diverse sampling of REC domains across the bacterial clade, we 
randomly sampled bacterial genomes from three taxonomic ranks, kingdom (Bacteria), 
phylum (Proteobacteria), and genera (Pseudomonas), generating independent data sets 
of REC sequences. To control for misgrouping due to gaps in the sequence alignments, 
we applied the algorithm to REC sequence alignments with and without gap replace­
ment by randomly generated amino acids. Using the t-distributed stochastic neighbor 
embedding algorithm (29) with N principal components to explain 95% of the variation 
in the sequences, we projected the dimensionally reduced output of the ML algorithm 
in two dimensions (Fig. 1D and 2; Fig. S1 to S3). Instead of assigning cluster bounda­
ries to the mapped data—which would be an inappropriate use of the dimensional 
reduction algorithm (29)—we color-coded each REC domain (single point on the plot) 
with independent information about the effector domain it is fused to in nature. The 
data structure of the REC protein family becomes evident by highlighting the predomi­
nant effector domains that have transcriptional function, GerE, Trans_reg_C, and AAA+. 
Interestingly, few differences in data structure were apparent between REC sequences 
with and without gap replacement (Fig. 1D; Fig. S1A). Furthermore, when we applied 
the ML algorithm to scrambled amino acid sequence alignments with gap replacement, 
the REC domains appeared randomly distributed; however, REC domains with scrambled 
sequences without gap replacement appeared to be arranged non-randomly (Fig. S2). 
We propose that replacing gaps with randomly generated amino acids does not affect 
the results of the unscrambled sequences, because the data structure is driven by the 
similarity among the variable residues. In the case of random gap replacement, the gaps 
are treated like noise, whereas if they are not replaced, the gaps are treated like the 
highly conserved residues, hence the appearance of a non-random arrangement in the 
scrambled sequence without gap replacement (Fig. S2). The non-random arrangement in 
the scrambled sequence (Fig. S2) also suggests that sequence ambiguity assigned by the 
hidden Markov model alignment strategy (30) results in more ambiguous alignments for 
REC amino acid sequences that share less sequence identity with the response regulators 
used to build the REC consensus model (7). Based on these collective results, sequences 
with gap replacement provide a data structure independent of the biases introduced by 
the alignment strategy. To demonstrate the consistency of the method, we repeated the 
random sampling of REC sequences two more times and applied the strategy with gap 
replacement to each sampling, each showing similar data structures to the first sampling 
(Fig. S1B and C). Together, these results validate this strategy, allowing us to infer from it 
the evolutionary history of the REC protein family.

The REC protein family is divided into distinct groups, which we will call subclus­
ters; each REC sequence is represented by a point in the two-dimensional sequence 
landscape (Fig. 1D and 2; Fig. S1 to S3) and shares sequence identity with neighboring 
points. Subclusters that are qualitatively closer together tend to share the identity of 
their fused effector domains (Fig. 1B to D); this result confirms our expectation that the 
REC protein family evolved vertically and carried effector domain architectures through 
to the next generations (Fig. 1C). Interestingly, the subclusters become more pronounced 
as we sample REC domains from lower taxonomic ranks (kingdom, phylum, and genera); 
this signature of single points appearing more attracted to similar sequences and, at 
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the same time, more repellent to dissimilar sequences as we sample sequences from 
shorter and shorter evolutionary distances suggests that paralogous REC domains are 
indeed under negative purifying selection at the organismal level. Yet, despite purifying 
selection, the REC protein family has diversified over the course of bacterial evolution, 
which can be observed by the multiplication of subclusters in the REC domain landscape 
at each evolutionary distance.

Although we understand that protein families can diversify neutrally by sampling 
new combinations of amino acid sequences when purifying constraints are relaxed, 
we do not know whether they can diversify when these constraints remain intact. 
Selection to eliminate crosstalk (communication between distinct pathways) does not 
completely explain REC protein family expansion, as crosstalk can be tolerated and does 
not always result in a loss in fitness to the organism and, in cases of cross-regulation 
(communication between intertwined pathways), can also provide some fitness benefit 
to the organism (17, 31). For diversifying selection to occur, changes to the signaling 
system would need to affect cellular function, such as changes that can result from 
within-gene recombination (32–37) (a subcategory of gene conversion, also known as 
domain swapping or domain shuffling).

Within-gene recombination has occurred many times throughout the evolution of 
the REC protein family and has been previously documented (7, 25, 38, 39). We chose 
to focus on the largest, most pronounced instance of within-gene recombination in our 
data set. This event can be visualized in the two-dimensional sequence landscape by the 
presence of two major clusters of REC sequences with GerE effector domains (colored 
in blue); the GerE cluster that lies near REC sequences with AAA+ effectors (colored 
in red) is the product of a within-gene recombination event that changed the effector 
domain of a parent response regulator with a AAA+ effector to GerE (7, 25). We focus 
on this event for three reasons: (i) it has been previously documented (7); (ii) it is a clear 
example of protein family expansion, given that the two distinct clusters of GerE-fused 
response regulators are highly visible in the two-dimensional sequence landscape; and 
(iii) the recombination event is by default (and as discussed in Pao and Saier (7)) linked 
to functional discordance, because AAA+ and GerE domains regulate transcription with 
distinct sigma (σ) factors, σ70 and σ54, which are active in distinct cellular contexts 
(40–43).

When did this recombination event occur?

To determine whether within-gene recombination can lead to protein family expansion, 
we needed to determine whether these proteins were under diversifying selection as 
a result of the within-gene recombination event. Using our unsupervised ML strategy, 
we were able to find that the recombined response regulator likely emerged sometime 
in the Proteobacteria lineage, based on the presence of a second GerE subcluster in 
Proteobacteria and its absence in other phyla (Fig. S3A and B). More specifically, the GerE 
subcluster was expanded in the subclades of Alphaproteobacteria, Betaproteobacteria, 
and Gammaproteobacteria (Fig. 2; Fig. S3C and S4) but was not observable in Deltap­
roteobacteria. In the species tree of life (44), Alphaproteobacteria predates Betapro­
teobacteria and Gammaproteobacteria; we therefore reasoned that the within-gene 
recombination event had occurred sometime in the Alphaproteobacteria lineage. This 
insight enabled us to repurpose the REC sequence landscapes to home in on the REC 
protein family in Alphaproteobacteria (Fig. 2; Fig. S4) and search for the REC sequences 
of interest (Fig. 3A) for detection of differential rates of evolution (Fig. 3B; Fig. S5; Table 
S2). We found that the within-gene recombination event caused episodic diversifying 
selection on the branch of response regulators that have GerE domains in extant 
Alphaproteobacteria species (Fig. S5A). The consensus between the REC sequences 
of the parent and recombined response regulators highlights the shared sequence 
identity between the parent REC domains fused to AAA+ domains and recombined 
REC domains fused to GerE domains, apart from several highly conserved residues, in 
the recombined REC domains fused to GerE domains (Fig. 3C and D). Using a method 
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that identifies individual sites subject to episodic diversifying selection determined by 
the differential rates of nonsynonymous to synonymous amino acid changes (45) (Table 
S2; see Supplemental Data A at https://doi.org/10.6084/m9.figshare.24205968.v2), we 
found that among the highly conserved residues, two residues in the recombined REC 
domains fused to GerE domains were also under positive diversifying selection. These 
results show that after the within-gene recombination, episodic diversifying selection 
occurred in the evolution of the recombined regulators; however, it does not explain the 
roles of the conserved and/or selected residues in their functional context of regulating 
gene expression in response to signals.

Functional characterization of the recombined regulators: understanding the 
roles of conserved residues

To understand how the conserved and/or selected residues shaped the expansion of 
the recombined response regulators, we needed to understand the function of these 
regulators—the input signals they respond to and the genes they regulate—which were 
not completely known before this study. We set out to determine those functions, by 
pursuing functional experiments in P. putida KT2440, which proved advantageous for 
several reasons: (i) Pseudomonas putida is a model organism in bioremediation and 
synthetic biology applications (46, 47); therefore, many genetic and functional genomic 
experiments have been applied to understand this strain’s broad metabolism, allowing 
us to rapidly phenotype regulators to determine their functions; (ii) P. putida KT2440 
is a Gammaproteobacteria and is among the species where we have identified the 
parent AAA+ response regulators and the recombined GerE domain response regulator 
(note that these regulators are not present in Escherichia coli). Two functional genomic 
screens were used to determine: (i) the media conditions that cause randomly bar­
coded transposon insertion (RB-Tn) mutants at positions of the response regulators 
to grow more slowly in a population of other RB-Tn mutants (Fig. S6A) and (ii) the 
genomic location of the transcription factor-binding sites the response regulators use 
to regulate transcription (Fig. S5B; Table S3; Data S1 and S2). RB-Tn mutants of the 
response regulators showed growth phenotypes in defined media with carboxylic acids 
as the sole carbon source and transcription factor-binding sites were found upstream of 
genes related to carboxylic acid assimilation; we, therefore, proposed that the regulators 
might respond to carboxylic acids to transcriptionally regulate a set of genes involved 
in carboxylic acid assimilation (Fig. 4A). We validated these hypotheses with green 
fluorescent protein (GFP) reporter assays (Fig. 4B; Fig. S7), finding that the recombined 
regulator in P. putida responds to butyrate and regulates beta-oxidation (48), while 

FIG 2 Within-gene recombination that changed the parent REC domain fused to AAA+ domain to REC domain fused to GerE domain occurred during the 

Alphaproteobacteria lineage. Assessment of similarity between members of the REC protein families showing the relationship between REC domain sequence 

alignments with gap replacement and explaining 95% of the variation between the sequences. As in Fig. 1D, REC domains are annotated by the identity of its 

effector domain Trans_reg_C (yellow), GerE (blue), AAA+ (red), other (gray), and no domains (black). Black arrow indicates the REC domains fused to GerE effector 

domains as a result of within-gene recombination of parent REC domains fused to AAA+ effector domains.
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the parent regulator responds to glutamate and regulates amino acid assimilation. 
The overlap in chemical structure between carboxylic acids (Fig. 4A) adds context of 
missignaling by chemical sensing to our proposed model for diversifying selection of the 
highly conserved residues in the recombined regulator, but we needed to investigate 
whether the evolved residues could have a role in breaking interaction between the 
parent and recombined regulators’ signaling pathways.

The domain-based tree of the parent and recombined regulators in Alphaproteobac­
teria not only revealed that episodic diversifying selection occurred after the emergence 
of the recombined regulator but also revealed that the parent regulator underwent a 
second and third duplication event after the initial within-gene recombination (Fig. 3; 
Fig. S4). We did not detect instances of episodic diversifying selection on these post-
recombination, duplicated REC domain branches and thus propose that they diverged 
from their parent REC domain by neutral drift. From functional genomic experiments, 
we determined that these regulators are also regulated by carboxylic acids and regulate 
carboxylic acid assimilation (Fig. S5, S7A andB). This result raises an important distinction 
between the regulators that duplicated after the recombination event and the recom­
bined regulators. Despite the same possibility of crosstalk in response to carboxylic 

FIG 3 Episodic diversifying selection in the REC domain occurred after within-gene recombination that changed the parent REC domain fused to AAA+ domain 

to REC domain fused to GerE domain. (A) Fig. 2 data (Alphaproteobacteria panel) displayed as a dimensionally reduced map showing REC domains from P. putida 

(x’s) or Alphaproteobacteria (circles). The recombined cluster (black box) becomes apparent using two-component systems from P. putida that were previously 

known to be among the recombined clusters, PP_1066 and PP_3551. The zoom panel shows the protein names for REC domains in the recombined cluster. (B) 

The REC domains in the Alphaproteobacteria recombined cluster (Fig. 3A) (circles) are used to construct a domain tree using GCF_000169415-SSE37_RS08100 

as an outgroup. Branches are red for AAA+ or blue for GerE (or no domain). Bootstrap supports are labeled at the nodes and shown as branch thickness. Nodes 

under episodic diversifying selection are indicated by an arrow and black circle. (C and D) Amino acid sequences of the REC domains were aligned and separated 

into two distinct groups (AAA+ or GerE) based on the identity of their effector domains and were used to generate WebLogo consensus motifs. Residues under 

positive diversifying selection (red background and a red star).
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acids in an ancestral organism, the post-recombination duplicated regulators diverged 
neutrally, while the recombined regulators did not.

To understand if functional discordance following within-gene recombination plays a 
role in evolution in the REC protein family, we asked whether the identified amino acid 
changes in the recombined regulator enable it to interact specifically with its cognate 

FIG 4 Parent and recombined response regulators in P. putida KT2440 are regulators of carbon assimilation and evolved by episodic diversifying selection 

to break an overlap in specificity. (A) Model of regulation of carboxylic acids in P. putida KT2440 by the parent (PP1066) and recombined (PP3551) response 

regulators. The parent system (PP1067/PP1066, red) is activated by glutamate and uses AAA+-dependent σ54 transcription machinery. The recombined system 

(PP3552/PP3551, also red) is activated by butyrate and uses GerE-dependent σ70 transcription machinery (the recombined GerE domain, blue). Based on 

transmembrane or sensing domains in the histidine kinases, PP1067 is modeled as membrane bound with a dCache domain for sensing glutamate and PP3351 

as cytosolic with two PAS domains for sensing butyrate. The residues in PP3551 REC domain under diversifying selection are represented by black stars on the 

PP3551 REC domain. Chemical similarity between glutamate and butyrate is shown in the box. (B) Fold change of the median fluorescence intensity (MFI) of 

control strains bearing plasmids of the indicated upstream promoter region [empty vector (EV), p2435, p3553] driving expression of the GFP reporter. Strains 

grown with glutamic acid or butyric were compared to strains grown without an inducer. Centerline, median; box limits, upper and lower quartiles; whiskers, 1.5× 

interquartile range; points with black diamonds, outliers; n = 3. (C) Amino acid sequences of the REC domains of Gammaproteobacteria species were aligned 

and separated into two distinct groups (AAA+ or GerE) based on the identity of their effector domains and were used to generate WebLogo consensus motifs. 

Residues of interest: covarying residues (Fig. S9) (blue background and blue triangle); residues under positive diversifying selection (red background and red 

star), and residues that show conservation in the GerE group but are not under positive diversifying selection (yellow background and yellow triangle). (D) 

Alignment of PP1066 and PP3551 REC domains. Covariant (blue), selected (red), conserved but not selected (yellow), and active aspartate (purple) residues are 

highlighted by the indicated background color. PP1066* and PP3551* match the sequence of PP1066 and PP3551, respectively, but are switched at the covariant 

positions (blue). (E to H) Structural impact of switching residues: modeled structures of PP3551 (E), PP1066* (F), PP1066 (G), and PP3551* (H) of the full-length 

protein using AlphaFold are shown and color-coded as in D.
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kinase. To answer this question, we applied a residue-switching thought experiment, in 
which we computationally switched the six residues that tend to covary with cognate 
kinases across Pseudomonas species (Fig. S8); the list of six residues included a conserved 
leucine residue, which is also under episodic diversifying selection. The list, however, 
excluded a second conserved and selected leucine residue, as well the other conserved 
residues that were not found to be under selection (Fig. 4C and D). For the purposes 
of comparing residues that were under selection and those that were just found to be 
conserved, we will focus on the first leucine, which falls among the covariant residues, 
and compare it to a conserved cysteine that was not found to be under episodic 
diversifying selection. To understand the physical role of these residues in PP_3551, we 
turned to the structural prediction of PP_3551, PP_1066, and their respective mutants 
determined by AlphaFold (49). In PP_3551, the conserved/selected leucine residue (Fig. 
4E and F; Fig. S8) sits inside of the alpha-helix that canonically interacts directly with 
its cognate kinase. It is therefore plausible that the new interface is responsible for 
the interaction of PP_3551 with its cognate kinase. The conserved but not selected 
cysteine residue lies within the same beta-sheet as the active site for phosphotransfer 
(conserved aspartate residue) (Fig. 4G and H) also making it a candidate for mediating 
communications with its cognate kinase.

Do the conserved and/or selected residues make or break the condition-spe­
cific responses of the parent regulator?

We speculated that the conserved residues could mediate contact with the cognate 
kinase of the recombined regulator to facilitate phosphotransfer. So we asked whether 
changes to the glutamic acid responsive parent regulator, PP_1066, affect the regulator’s 
native behavior under activating conditions. To test this question, we complimented 
GFP reporter strains (using the p2453 promoter) of P. putida KT2440 ∆PP1066∆PP3551 
with four variants of PP_1066: (i) the native PP_1066, (ii) PP_1066* (* indicates covariant 
mutations as described above), (iii) PP_1066I52C, and (iv) PP_1066*I52C (* indicates 
covariant mutations as described above) (Fig. S10). High basal expression of GFP without 
an inducer for both the mutant regulators and the native regulator suggested that the 
amino acid changes we introduced did not impede the regulator’s ability to turn on the 
expression of GFP through the reporter’s promoter (Fig. S10C). To determine whether the 
tested residues play a role in phosphotransfer during condition-specific activation, we 
compared activation of GFP expression with two signals, glutamic acid and butyric acid. 
The covariant mutations in PP_1066* appear to break the regulator’s native response to 
both signals, whereas the I52C mutation only breaks the regulator’s native response in 
glutamic acid. These data support the hypothesis that the conserved residues mediate 
phosphotransfer under activating conditions; however, we still do not know which 
histidine kinases are responsible for phosphotransfer under either inducing condition. 
Collectively, these results show that both episodic diversifying selection and neutral 
drift occurred after the within-gene recombination event, forging new interactions that 
mediate activation by phosphotransfer.

DISCUSSION

The REC protein family undergoes three mechanisms of evolution, neutral drift, negative 
purifying selection, and, as determined by this study, episodic diversifying selection 
(Fig. 5A and B). Prior to this study, it was understood that neutral drift occurs when 
crosstalk/cross-regulation between communicating signaling systems does not affect 
an organism’s fitness (17, 24, 50–52). It was also established that negative purifying 
selection occurs when crosstalk between signaling systems results in dysregulation of 
cellular function affecting an organism’s fitness (23). This study demonstrates that REC 
protein family expansion can occur by episodic diversifying selection and has occurred 
in a test case, in which a new signaling system emerged by within-gene recombination 
and communication between the old and new signaling systems affected cellular fitness. 
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Specifically, our results show that a within-gene recombination in a duplicated response 
regulator of carbon assimilation changed the context in which this new regulator 

FIG 5 Models of the evolution of the REC protein family. (A) Model of the evolutionary tree of the REC protein family, updated by this study. We assume 

that all REC domains share a common ancestor and that REC domains fused to the same effector evolved vertically, showing regulators with distinct domain 

architectures and colors (refer to Fig. 1B) at the tips of the tree with coalescent branches. Note that the order of events in Steps 1–3 is uncertain. Selected 

changes (black stars) and neutral changes (white stars) occurred after the within-gene recombination that changed a parent REC domain fused to AAA+ domain 

to a recombined REC domain fused to a GerE domain. (B) Models of the evolution of the REC protein family in a sequence-fitness landscape. Top and bottom 

panels show the sequence-fitness landscape as projections of sequence and fitness. The top panes show the x,y plane representing the available combinations 

of amino acid sequences to the REC protein family, where z is the fitness (or distribution of REC domains with amino acid sequences defined by the x,y plane). 

If the fitness of a domain is high, it is shown as a black point on the plot; the boundaries of the fitness (or possible combinations of amino acid sequences that 

allow the domain to maintain its specificity) for the domains that are colored in red, yellow, orange, or blue are shown as a gray radius. Pointed arrows show the 

direction of positive selection or neutral drift; blunted arrows show the direction of negative selection. The bottom panes show the fitness as a function of the 

cross-section in the x,y plane [f(x,y)] (dashed line in the top panel) of the domains that are colored red, yellow, orange, or blue. Each column shows a different 

mode of evolution discussed in this report (from left to right: purifying selection, drift, drift under purifying selection, and episodic diversifying selection).
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performed its transcriptional function (changing the effector domain from its parent 
regulator’s σ54-dependent transcription to σ70-dependent transcription). We show that 
specificity and functional overlap between the recombined response regulator and its 
parent gave rise to new amino acid changes in the recombined response regulator that 
may form a new interface for phosphotransfer (Fig. 5A).

In this study, we applied an unsupervised ML strategy to study the protein sequence 
landscape of the REC protein family. One of the benefits of this strategy, over previously 
applied strategies (7, 25, 26, 32, 34), is that it enabled us to characterize the relationship 
between REC protein family members over long evolutionary distances. The alternative 
approach of inferring the evolution of a large protein family across long phylogenetic 
distances from a domain tree typically results in long branch distances and uncertainty 
of branch positions (53, 54). For this reason, it is challenging to build reliable domain 
trees for large protein families, specifically the REC protein family, which we estimate 
has between 10 and 100 million members in sequenced bacteria (10). We overcame this 
challenge by repurposing the ML strategy to find closely related REC domains over a 
defined evolutionary distance (Fig. 3A), after which we could build a reliable domain tree 
(Fig. 3B) and apply methods to detect differential rates of evolution (Fig. S5A). One pitfall 
of the ML strategy is that the points on resultant maps do not maintain their positions 
for the same data sets between runs; however, the relative position of the points for the 
same data sets is maintained between runs (29). Further development of this strategy, 
specifically implementing a bootstrapping method, will enhance the overall reliability of 
its application to the REC and other protein families. Another limitation of this method 
is that the interpretation of the results is qualitative—as clustering methods do not 
perform well against neighbor embedding methods (29). To overcome this limitation, 
we applied an alternative to clustering using a fitting approach to find closely related 
sequences of interest (Fig. S4). This fitting approach could be used in the future to 
distinguish the relationships between orthologous and paralogous response regulators 
of interest across species of interest. This method may also be applicable to other 
large protein families but may have additional limitations depending on the specific 
application.

On the basis of this study, we propose that episodic diversifying selection in the 
REC protein family occurs when two conditions are met: (i) communication between 
distinct signaling systems (due to detection of the same signals or due to overlap 
in specificity in downstream interactions) and (ii) the outcome of this communication 
that negatively impacts cellular fitness. Results from this study and others (15, 24, 50–
52, 55) suggest that communication between distinct two-component systems that 
arise after gene duplication may not negatively impact cellular fitness (Fig. 5B). In 
this study, we found that the parent response regulator duplicated and diverged a 
second and third time after the selection of the recombined regulator (Fig. 3B; Fig. S5). 
Although these new regulators presumably communicated with their parent’s signaling 
system as they sampled sequences in their trajectory to new specificity, we determined 
that these changes were not under episodic diversifying selection (Fig. 3B). As the 
recombined regulator probably had comparable overlapping communication with its 
parent regulator to these other duplicated response regulators, why did the recombined 
regulators and regulators that duplicated and diverged after the recombination show 
different rates of evolution? We propose that after the within-gene recombination 
changed the effector domain from its parent regulator’s σ54-dependent transcription to 
σ70-dependent transcription, the recombined and parent response regulators respon­
ded to the same signals under the distinct regulatory contexts of σ54 and σ70 (40–43). 
Although we cannot rule out the possibility that episodic diversifying selection occurred 
for a different reason, a simple explanation for the evolution of the recombined response 
regulator is that differences in regulation by the sigma factors negatively impacted 
cellular fitness, giving rise to the episodic amino acid changes in the recombined 
regulator (Fig. 5A).
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In our model for episodic diversifying selection of a test case in the REC protein family, 
duplication followed by recombination led to an overlap in signals and outputs under 
competing regulatory contexts, giving rise to new residues that may facilitate a new 
interaction interface. We propose that if conditions of functional discordance are met, 
episodic diversifying selection can become a mechanism of evolution for large protein 
family expansion. We further propose that a within-gene recombination can facilitate 
such conditions. In comparison to expansion in protein families where evolution is 
directly influenced by an immediate requirement—for example, dynamic environmental 
factors that need response in immune systems proteins (e.g., toxin-antitoxin [56] and 
Ig [57]) or small molecule sensing protein families (e.g., G protein-coupled receptors 
[GPCRs]/olfactory receptors [58, 59] and efflux pumps [60])—the REC protein family is 
a midpoint in signaling cascades, and immediate fitness or “arms race” factors may not 
influence its expansion. However, our study indicates that even for this class of large 
protein families, positive selection occurs, not by changing environmental conditions—
as we might have predicted—but instead due to genetic perturbations like recombi­
nation events. It should be noted that although recombination can be a source of 
functional discordance, as it is in this study’s test case, recombination can be neutral and 
will not always result in functional discordance. Further exploration of the REC sequence 
landscape or the sequence landscape of other protein families may elucidate whether 
other genetic perturbations create conditions for diversifying selection when purifying 
constraints remain intact. It will also be interesting to understand whether there are 
limitations on protein family expansion that occurs by neutral drift, even when purifying 
constraints are lifted. Overall, this study shows that episodic diversifying selection is a 
mechanism in the expansion of the REC protein family and that it occurs by functional 
discordance. We believe this result is significant in understanding the evolution of the 
REC protein family, which directly modulates a vast range of cellular functions. This 
knowledge provides important context for assessing their role in microbial function and 
microbial communities and in engineering efforts in biosystem design and synthetic 
biology applications.

MATERIALS AND METHODS

Two-dimensional visualization of protein family sequences

Sampling genomes and creating REC domain databases

Databases of REC domains (PF00072) that were used to make all REC sequence 
landscapes were sampled from the Microbial Signal Transduction Database (MISTDB) 
(10)—a curated database of the signal transduction genes from over 200,000 bacterial 
genomes—using their API and custom functions written in Python. To control for bias 
driven by genome availability for species of various taxonomic ranks (e.g., Gammapro­
teobacteria more represented than any other class in the Proteobacteria phylum), we 
took a subset of the available data by randomly sampling species based on taxonomic 
rank (e.g., the taxonomic rank below kingdom is phylum; the maximum of species from 
each bacterial phylum was randomly sampled to generate the bacteria data set; Table 
S1). The following data sets were forced to include P. putida KT2440, which we used to 
track the parent and recombined regulator in the two-dimensional projections of the 
REC domains: Bacteria, Proteobacteria, Pseudomonas, and Alphaproteobacteria in Fig. 3A. 
Again, using the MISTDB API, we used a custom function to generate a second database 
of all of the amino acid sequences of two-component system genes from the sampled 
species, while keeping a record of each protein’s metadata (e.g., fused domains). We then 
sampled this database to find all response regulators and their respective sequences to 
generate Fasta files that include entries for each response regulator in the database.
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REC domain alignments

We aligned the REC domain entries in the generated Fasta files from the REC domain 
sampling functions using hmmalign (30, 61) to the REC pfam consensus motif, PF00072 
(7). Using a custom Python function, we linked the aligned domain back to its metadata 
in the REC domain database. When gap replacement was applied, gaps were replaced 
by a randomly generated amino acid. To generate scrambled data sets, we scrambled 
the individual sequences using a custom function that randomly samples residues and 
rejoins them in a new order while maintaining the original length of the alignment.

Projection of REC domain alignment variability in two-dimensional space

We then encoded the sequences into a discrete variable vector representation (62), by 
encoding each amino acid into a 21-dimensional zero vector (one dimension for each 
possible amino acid and a gap character), except for the index representing the amino 
acid, which is set to 1. Each Lx21-dimensional matrix, where L is the length of the aligned 
protein sequence, is flattened to a Lx21-length vector. Each vector representing the 
alignment of a single protein sequence is stacked into a Nx(Lx21) matrix, where N is 
the number of independent protein sequences, and is then dimensionally reduced to n 
dimensions (or n-components) to explain 95% of the variation by principal component 
analysis before being reduced to Nx2 dimensions using the t-distributed stochastic 
neighbor embedding (29). We approximated the perplexity or the expected size of the 
clusters, as the number of clades in the taxonomic rank below the highest taxonomic 
rank queried (e.g., if we were looking at a kingdom rank, the next clade down is the 
phyla). The perplexity is then equal to the number of unique phyla in the data set—see 
Table S1 (unique taxa in rank below). Note that we found that a binary encoding was 
sufficient for our use case, but another encoding may be more suitable for other large 
protein families. Source code and data are available at https://github.com/mgarber21/
Large_Protein_Families.git.

Isolating the parent and recombined regulators from randomly sampled REC 
domains in Alphaproteobacteria, Gammaproteobacteria, or Proteobacteria 
species

Using P. putida KT2440 to track the parent and recombined regulator in the two-dimen­
sional projections of the REC domains in Alphaproteobacteria, Gammaproteobacteria, 
or Proteobacteria species, we defined boundaries in the projection and to isolate 
the candidate proteins. Using the amino acid sequences and reverse translated DNA 
sequences (63), we aligned the candidate domains (isolating the REC domain from 
the protein or protein coding sequence) using the MAFFT-LINSI algorithm from MAFFT 
v7.310 (64). We then used IQTREE (65) to build the Alphaproteobacteria REC domain 
tree, using the aligned reverse translated DNA sequences of the REC domains with a 
transversion model, empirical base frequencies, and discrete Gamma model (TVM + F 
+ I + G4), also using outgroup species, GCF_000169415-1-SSE37_RS08100 and 1,000 
bootstraps. Using these same sequences, we applied an adaptive branch-site REL test 
for episodic diversification and detected individual sites subject to diversifying episodic 
selection using the online aBSREL (66, 67) and MEME (45) tools from HyPhy in Datamon­
key (68–70) with default parameters and according to the user instructions. Logs and 
results can be found in Supplemental Data A online (https://doi.org/10.6084/m9.fig-
share.c.6854898.v2). To generate amino acid consensus motif images for each subgroup, 
REC domains fused to either AAA+ or GerE, excluding outgroup AAA+ domains, we 
binned the aligned domains into their respective subgroups and generated a consensus 
motif using WebLogo (71).

Fitness experiments using a library of RB-Tn mutants

As described in prior reports (72), the P. putida KT2440 RB-TnSeq library, JBEI-1, was 
thawed, inoculated into 25 mL of Luria broth (LB) supplemented with 50-µg/mL 
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kanamycin, and grown to OD600 of 0.5. Three 1-mL samples were taken after this step to 
serve as t0 records of barcode abundance. The library was then washed via centrifugation 
and resuspension in an equal volume of MOPS [3-(N-morpholino)propanesulfonic acid] 
minimal medium (MM) (Table S4). The washed cells were then diluted 1:50 in MOPS MM 
with 10 mM L-glutamate serving as the sole carbon source. The library was cultured in a 
96-well deep well plate sealed with a gas-permeable membrane (VWR, USA). The plate 
was shaken (700 rpm) in an INFORS HT Multitron (Infors USA Inc.) at 30°C for 24 hours. 
Duplicate 600-µL samples were then combined, and BarSeq analysis was conducted as 
described previously (73–75). Single carbon source fitness data are available at http://
fit.genomics.lbl.gov (48).

Automated DNA affinity purification with NGS

DNA preparation for NGS

Pseudomonas isolates were cultured in either LB or MMs (see Table S4 for strain-specific 
MM recipes). Genomic DNA was purified with a Promega Wizard Genomic Preparation 
Kit (Promega, Madison, WI). DNA was sheared with Covaris miniTUBE (Covaris, Woburn, 
MA) to an average size of 200 bp. The DNA quality was confirmed by the Bioanalyzer 
High-Sensitivity DNA Kit (Agilent, Santa Clara, CA). Sheared DNA was then adapter-liga­
ted (AL) with the NEBnext Ultra ii Library Preparation Kit (New England Biolabs, Ipswich, 
MA). AL-DNA quality was again confirmed by the Bioanalyzer High-Sensitivity DNA Kit 
(Agilent, Santa Clara, CA). AL-DNA was stored at −20°C until required for downstream use.

Expression strain design

pet28 expression vectors with N-terminal 6×-His-tagged response regulators (RRs) were 
cloned by Gibson assembly (76). Plasmid design was facilitated by j5 DNA assembly 
design (77); see Table S5 for primers.

Automated DNA affinity purification

Quadruplicates of expression strains were grown in autoinduction media (Zyp-5052 
[78]) at 37°C, 250 rpm, for 5–6 hours, and then transferred to grow at 17°C, 250 rpm, 
overnight. Cell pellets were harvested and lysed at 37°C for 1 hour in a lysis buffer—1× 
Tris-buffered saline (TBS) (diluted from a 10× TBS stock [0.2 M Tris, 1.5 M sodium chloride, 
pH 7.6]), 100 µM phenylmethylsulfonyl fluoride (PMSF) (Millipore Sigma, Burlington, MA), 
2.5 units/mL of benzonase nuclease (Millipore Sigma, Burlington, MA), and 1-mg/mL 
lysozyme (Millipore Sigma, Burlington, MA). Lysed cells were then clarified by centrifuga­
tion at 3,214 × g and further filtered in 96-well filter plates by centrifugation at 1,800 × g. 
To enable high-throughput processing, protein-DNA purification steps were performed 
with immobilized metal affinity chromatography (IMAC) resin pipette tips (PhyNexus, 
San Jose, CA) using a custom automated platform with the Biomek FX liquid handler 
(Beckman Coulter, Indianapolis, IN). The expressed RRs were individually bound to metal 
affinity resin embedded within the IMAC resin pipette tips and washed in a wash buffer 
(1× TBS, 10 mM imidazole, and 0.1% [vol/vol] Tween 20). The bead-bound RRs were 
then mixed with 60 µL of DNA binding buffer (1× TBS, 10 mM magnesium chloride, and 
0.4-ng/µL AL-DNA, with or without 50 mM acetyl phosphate [split into duplicates]). The 
protein bound to its target DNA was then enriched in an enrichment buffer (1× TBS, 10 
mM imidazole, and 0.1% [vol/vol] Tween 20) and eluted in an elution buffer (1× TBS and 
180 mM imidazole). The elution was stored at −20°C for a minimum of 1 day and up to 
a week before proceeding to the next-generation sequencing (NGS) library generation. 
See the Supplemental Methods for detailed protocol.

NGS library generation

A 3.2-µL elution from the previous step was added to 3.5-µL SYBR green SsoAdvanced 
(Bio-Rad, Hercules, CA) and 0.15 µL of each dual-indexed NGS primer. NGS libraries were 
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prepared by following the protocols for fluorescent amplification of NGS libraries (79). 
Pooled libraries were sequenced by Illumina NovaSeq 6000 SP (100 cycles) (Illumina, San 
Diego, CA).

DAP-seq data analysis

Sequenced reads were processed by a computational DNA affinity purification-sequenc-
ing (DAP-seq) analysis pipeline as follows. Adapters and low-quality bases were trimmed, 
and reads shorter than 30 bp were filtered out using Trimmomatic v.0.36 (80). The 
resulting reads were checked for contamination using FOCUS (81). Then, the reads 
were aligned to the corresponding Pseudomonas spp. genome using Bowtie v1.1.2 (82) 
with –m 1 parameter (report reads with single alignment only). The resulting SAM files 
were converted to BAM format and sorted using SAMtools v 0.1.19 (83). Peak calling 
was performed using SPP 1.16.0 (84) with a false discovery rate threshold of 0.01 and 
a maximum likelihood enrichment (MLE) ratio threshold of 4.0. Enriched motifs were 
discovered in genome fragments corresponding to the peaks using MEME (85) with 
parameters –mod anr –minw 12 –maxw 30 –revcomp –pal –nmotifs 1. The source 
code of the DAP-seq analysis pipeline is available at https://github.com/novichkov-lab/
dap-seq-utils.

For conserved RRs with small numbers of high-confidence peaks (one to two per 
genome), binding motifs were predicted manually by a comparative genomic approach. 
Orthologous RRs were identified by OrthoFinder2 (86). For each of the orthologous RRs, 
one genome fragment corresponding to the peak with the highest enrichment value was 
selected for motif search. Conserved motifs were discovered using the SignalX tool from 
the GenomeExplorer package (87) with the “inverted repeat” option.

Covariance analysis

Cognate RRs and histidine kinases (HKs) from Pseudomonas and E. coli strains were 
identified as pairs if they were found neighboring each other in their respective 
genomes. Dimerization and histidine phosphotransfer (DHp) (HisKA), catalytic (CA) 
(HATPase_C), and REC (Response_reg) domain boundaries were determined with 
hmmsearch from HMMER v3.1b2 (88). Fasta files of concatenated DHp-CA-REC domains 
from cognate and randomized HK-RR pairs were aligned with the MAFFT-LINSI algorithm 
from MAFFT v7.310 (64). Alignment files were then queried for coevolution with the 
ProDy Evol suite (89, 90) in Python and were plotted in a heatmap. The highest scor­
ing residues > 1.1 were used to inform hypotheses for specificity switch in AlphaFold 
structural predictions.

GFP reporter strain generation and assays

Knockout strain generation

A total of 1,000-bp homology fragments upstream and downstream of the target gene 
were cloned into plasmid pKS18. Plasmids were then transformed into E. coli S17 
and then mated into P. putida via conjugation. Transconjugants were selected for LB 
agar plates supplemented with 30-mg/mL kanamycin and 30-mg/mL chloramphenicol. 
Transconjugants were then grown overnight on LB medium and were then plated on LB 
agar with no NaCl that was supplemented with 10% (wt/vol) sucrose. Putative deletions 
were screened on LB agar with no NaCl supplemented with 10% (wt/vol) sucrose and 
LB agar plate with kanamycin. Colonies that grew in the presence of sucrose but had 
no resistance to kanamycin were further tested via PCR with primers flanking the target 
gene to confirm gene deletion.

GFP reporter strains

Promoter boundaries for p2453, p1400, and p3553 were selected as the region just 
upstream of the gene’s start codon up until the start or stop codon of the next nearest 
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gene. The promoters were cloned upstream of the gene-encoding sfGFP on a broad 
host range plasmid with BBR1 origin and kanamycin resistance, with Gibson cloning (76). 
Primers in Table S5. The plasmids were transformed into P. putida KT2440 or P. putida 
KT2440 mutant strains by electroporation. Three biological replicates of each strain 
were cultured in LB and stored with 25% (vol/vol) glycerol at −80°C. Complementation 
plasmids (GFP reporter plasmids with full-length RR driven by pBAD promoter and 
constitutively expressed AraC) were combinatorially built using Golden Gate cloning (91) 
and j5 DNA assembly design (77) (diva.jbei.org), primers in Table S5. The plasmids were 
transformed into gene-knockout strains of P. putida KT2440 by electroporation. Three to 
six biological replicates of each strain were cultured in LB and stored with 25% (vol/vol) 
glycerol at −80°C.

Covariant and point mutants

Gene blocks (TWIST Biosciences, San Francisco, CA) of REC domains (Table S5) with 
covarying mutations (co-variation score > 1.1; see Fig. S9) were cloned into the 
complementation plasmids with Gibson assembly (76). Point mutants were made using 
the Q5 Site-Directed Mutagenesis Kit (New England Biolabs, Ipswich, MA). The plasmids 
were transformed into P. putida KT2440 or knockout strains of P. putida KT2440 by 
electroporation. Six biological replicates of each strain were cultured in LB and stored 
with 25% (vol/vol) glycerol at −80°C.

GFP reporter assays

Reporter strains were adapted to M9 MMs (see the Supplemental Methods for strain-spe­
cific MM recipes) supplemented with 0.5% (wt/vol) glucose as the sole carbon source in 
three overnight passages and stored in MM at −80°C in 25% (vol/vol) glycerol. Adapted 
strains were cultured in MM in +0.5% (wt/vol) glucose and passaged to MM in +0.5% 
(wt/vol) glucose with or without a second carbon source (40 mM glutamic acid, 40 mM 
α-ketoglutaric acid, or 20 mM butyric acid, unless otherwise specified). After 24 hours 
of growth, samples were diluted 1:100 in 1× PBS, and fluorescence was measured by 
flow cytometry on the BD Accuri C6 (BD Biosciences, San Jose, CA) configured to detect 
GFP fluorescence with either fluorescence channel 1 (FL1-A) or fluorescence channel 3 
(FL3-A) channels (as indicated in the figures). To remove noise, single-cell measurements 
with a forward scatter area (FSC-A) greater than a corresponding forward scatter height 
(FSC-H) by more than 1,000 and an FL1-A or FL3-A less than 10 were removed for further 
analysis. Median fluorescence intensity (MFI) (median FL1-A or FL3-A) was calculated by 
determining the median fluorescence of the single-cell measurements. Fold change MFI 
was calculated by dividing the MFI of the treated sample by the average MFI of the 
untreated replicates.

AlphaFold predictions of wild-type and mutant response regulators

Full-length amino acid sequences of wild-type PP_1066 and the respective specificity 
switching mutants of PP_3551 and PP_1066 were queried using ColabFold by Alpha­
Fold (49) using the default parameters. PDB files and prediction logs can be found 
in Supplemental Data B online (https://doi.org/10.6084/m9.figshare.24205953.v2). The 
structural prediction of PP_3551 was retrieved from the AlphaFold DeepMind Database 
(92). The PDB file from each protein’s highest-ranking structure from AlphaFold was then 
visualized and annotated with Chimera X (93).
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