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Abstract

Genome-scale models require an objective function
representing what an organism strives for. A method
has been developed to infer this fundamental
biological function from data.
elucidate appropriate objective functions. The first one
Evolutionary pressures on genome-scale science
Genome-scale models of metabolism appeared soon after
the first genome sequences became available [1]. Meta-
bolic models are built on three foundations:

1. Reconstruction of the metabolic network in an
organism of interest. Reconstruction consists of
building the specific metabolic reactome and linking
it to its encoding genes.

2. Recasting of this biochemical, genetic and genomic
information into a mathematical network. This
model formulation process defines the constraints
under which the network must operate.

3. Formulation and application of an objective function
to search through the network for the “best” solution
to optimize the objective function. Application of an
objective function is often necessary as metabolic
networks inherently have multiple degrees of
freedom and can possess non-unique solutions.

Theodosius Dobzhansky famously wrote, “Nothing in
biology makes sense except in the light of evolution” [2].
The objective function strives to formalize this statement
mathematically. It is used to represent distal causation—that
is, the change in organism function over many generations
as its fitness improves. The objective function is thus the
biologist’s function as it is not based on physical or chem-
ical causation. In genome-scale models, laws describing
physical and chemical causation are cast as constraints on
organism function as they limit achievable homeostatic
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states. Knowing the objective function is thus a fundamen-
tal issue in biology.

How then does one determine cellular desires?
It is a grand challenge to determine what actual object-
ive functions are. Two approaches have been used to

is hypothesis based. For instance, the hypothesis that
cells optimize their growth rate in nutritionally complete
medium has been fairly revealing in studies of optimal
metabolism in microorganisms [3, 4]. In fact,
optimization of growth rate has been put to a direct ex-
perimental test through adaptive laboratory evolution
[5]. Such experiments have now been automated, open-
ing up large-scale experimental studies of objective func-
tions defined by the selection pressure imposed.
However, these objective functions are “man-made.”
The second approach is to infer the objective function

from observed cellular functions in their natural state.
The initial constraint-based study of mammalian metab-
olism used experimental data to conclude that its ob-
served state was most likely determined by minimizing
formation of reactive oxygen species (ROS) [6]. This in-
verse approach to finding the objective function from
data was subsequently formalized through optimization
methods [7, 8].

Using data to drive inference
In a study appearing in this issue, Danel Segré and col-
leagues further study the inference approach though the
development of a method they call inverse flux-balance
analysis (invFBA). Their goal is to address “…whether it
is possible to use the flux balance framework to associate
possible metabolic objective functions to a given mea-
sured set of genome-scale fluxes. In other words, we
seek to understand whether it is possible to say that a
given organism was optimized to favor some reactions at
the expense of others” [9].
The authors first perform a computationally based test

of their method. They generate optimal growth solutions
for a genome-scale model of Escherichia coli growing on
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different carbon sources. They show that if these flux
states are fed to invFBA, it infers the growth rate objective
functions accurately. However, the solution to an inverse
problem is not unique and alternative objective functions
can generate the same flux map. Using an “objective vari-
ability analysis” to search the range of alternative objective
functions, the authors show that maximizing the substrate
uptake rate represents an equivalent objective, based on
the fixed metabolic flux state given to invFBA.
Unlike computational solutions, actual data come with

experimental error. The authors next examine the ro-
bustness of invFBA in the face of experimental error.
They find that, as the magnitude of the noise increases,
the performance of invFBA deteriorates, as expected,
with a major downshift when the noise level is between
1 and 10 % relative to the flux norm.
The authors apply invFBA to two experimental situa-

tions: data generated in their lab for Shewanella oneiden-
sis over a time-series, and E. coli strains evolved for over
50,000 generations. For the first case, they find that
invFBA was able to capture trends in secretion and up-
date of exchanged metabolite fluxes for pyruvate, glyco-
late, and acetate in S. oneidensis. Furthermore, it was
determined that biomass production was the likely ob-
jective function during the experiment at the different
time steps. For the second case, examining evolved cell
lines, invFBA was used to understand the tradeoff be-
tween two specific “biologically interesting fluxes” from
the evolved cell lines—growth versus respiration flux.
The algorithm was able to link high-acetate-producing
cell lines to a low respiratory objective, and vice versa,
providing a link between correlated pathways for the ob-
served phenotypes.
The majority of published studies use the growth rate

(i.e., biomass) equation as an appropriate objective func-
tion. However, there are many situations of interest
where the primary function of the cell being analyzed is
not growth. Such situations include the homeostatic
functions of human cells in tissues, the metabolic func-
tion of the mitochondria or chloroplasts, or microbial
cells in a biofilm community. The invFBA approach
might be able to analyze such circumstances and provide
novel insights into their cellular physiology.

The challenges that remain
The invFBA method represents progress towards the im-
portant goal of inferring objective functions from experi-
mental data, although, as the authors state, significant
challenges remain. Perhaps the major hurdle is to gener-
ate data sets large enough to fully implement invFBA.
The 13C-labeled experiments that are used to measure
experimental fluxes generate relatively few flux values,
and, in fact, often reduced-stoichiometric models are
used to compute some of these fluxes. Thus, further
development of inverse methods might follow that make
optimal use of the available fragmented experimental
data. Together, such efforts move us closer to the goal of
being able to determine objective functions based on ex-
perimentation and yield a realistic understanding of per-
haps the most fundamental of all biological (mathematical)
functions.
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