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TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 192, 1974

THE NORM OF THE L'-FOURIER TRANSFORM ON UNIMODULAR
GROUPS

BY

BERNARD RUSSO(l)

ABSTRACT. We discuss sharpness in the Hausdorff Young theorem for unimodular

groups. First the functions on unimodular locally compact groups for which equality holds

in the Hausdorff Young theorem are determined. Then it is shown that the Hausdorff

Young theorem is not sharp on any unimodular group which contains the real Une as a

direct summand, or any unimodular group which contains an Abelian normal subgroup

with compact quotient as a semidirect summand. A key tool in the proof of the latter

statement is a Hausdorff Young theorem for integral operators, which is of independent

interest. Whether the Hausdorff Young theorem is sharp on a particular connected

unimodular group is an interesting open question which was previously considered in the

literature only for groups which were compact or locally compact Abelian.

1. Introduction. Let G be a locally compact unimodular group with correspond-

ing Lebesgue spaces LP(G), 1 < p < oo, relative to a fixed Haar measure dx. Let

T = (L?(G),t,m) be the canonical dual gage space of G with corresponding

Lebesgue spaces LP(T), 1 < p < oo [9]. For a measurable function/on G let Lf

denote the partially defined operator of left convolution by /on L2(G). If L¡ is a

measurable operator relative to T it is called the Fourier transform of /and will

be denoted by /. (2) In this context R. A. Kunze [9] has proved the following

generalization of the Hausdorff Young theorem: If 1 </> < 2 and/ G LP(G)

then Lf is measurable relative to T, and in fact / = Lf E L^(r) and H/l^

< H/llp. Here, as throughout, p' denotes the index conjugate to p:

P' = pKp - O   if 1 < p < oo,       1' = oo,       oo' = 1.

The purpose of this paper is twofold. First we characterize functions for which

equality holds in Kunze's Hausdorff Young theorem. These are called If-

maximal functions and were studied by Hewitt and Hirschman for G Abelian [6,

§43]; and by Hewitt and Ross for G compact [6, §43]. Their results extend

verbatim to the unimodular case as follows: A function / on a locally compact

group G is called a subcharacter if there is a compact open subgroup G0 and a
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294 BERNARD RUSSO

continuous character xo of G0 such that/(x) = Xo(*) f°r x E G0 and/(x) = 0

for x & G0. The first result of this paper is the following theorem.

Theorem 1. If G is a locally compact unimodular group andf E Lp(G)for some

p, 1 < p < 2, then ||/||^ = \\f\\p if and only iff is equal almost everywhere to a

multiple of a translate of a subcharacter of G.

Now let 5j,(G) denote the L'-Fourier transform on a locally compact unimod-

ular group G, 1 <p < 2, i.e. the map/-» L¡. As a linear transformation from

U(G) into L^(r), %(G) has norm at most 1 by Kunze's Hausdorff Young

theorem. If G has a compact open subgroup, Theorem 1 shows that ||9J,(G)|| = 1

for all/», 1 <p < 2. Our second purpose is to estimate the norm of 5¡,(G) for

groups G lacking compact open subgroups (e.g. connected noncompact groups).

We provide two classes of examples of unimodular groups G with ||5j,(G)|| < 1

in §§3 and 5. The proofs will show that within these classes ||?S¡,(G)|| can be

arbitrarily small. We do not consider here the problem of computing the norm

exactly. §4 is devoted to a Hausdorff Young theorem for integral operators which

is needed in §5.
A brief history of the problem is the following. The Hausdorff Young theorem

for G = the circle group was proved by Young in 1912 forp = 2k/'(2k — 1), k

an integer > 2, and by Hausdorff in 1923 for all p, 1 < p < 2. The analog for

Fourier integrals, i.e. G = R was established by Titchmarsh in 1924. For general

locally compact Abelian groups the Hausdorff Young theorem was established

by Weil in 1940. Kunze's result was new even for compact groups, except for a

different form on compact groups [8]. Strong forms of the theorem are known on

particular groups ([10], [11]).

The forerunners of Theorem 1, aside from the works of Hewitt, Hirschman,

and Ross already mentioned, are the theorems of Hardy and Littlewood, 1926,

stating that equality holds in the original Hausdorff Young theorem only for

characters of the circle group, and the remarkable theorem of Babenko in 1961

showing that Titchmarsh's Hausdorff Young theorem on R is not sharp, to wit:

If p = 2k/(2k -l), kan integer > 2, then ||/||, < Ap\\f\\p for all / e L'(R),
where Ap = [^(p - l)p~x]x/2p. This result of Babenko, as will be seen below,

motivates and explains why Theorems 2 and 4 are true. For precise references to

the original papers see [6, §43, Notes].

2. IS- maximal functions. Let G be a locally compact unimodular group with

corresponding Lebesgue spaces LP(G), 1 < p < oo, relative to a fixed Haar

measure dx. Let £ be the von Neumann algebra generated by the left regular

representation A of G on L2(G). A regular gage m was defined by Segal [12] on

the projections in £ as follows: If g is a projection in £ set m(Q) = \\f\H if Q = L¡

for some /in L2(G) and otherwise put m(Q) = oo. The resulting gage space

T = (L2 (G ), £, m) is called the canonical dual gage space of G. We refer to [9], [14]

for properties of T.
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THE NORM OF THE ¿"-FOURIER TRANSFORM 295

Let 2 be the set of equivalence classes of unitary representations of a locally

compact group G. Then Ii(G) equipped with the norm ||/|| = sup„62IM/)ll is

a pre-C*-algebra whose completion is called the C*-algebra of G, denoted

C*(G). The Banach space dual of C*(G) can be identified with the collection

B(G) of linear combinations of continuous positive definite functions on G. The

set B(G) is a commutative Banach algebra with unit under pointwise operations

and is called the Fourier Stieltjes algebra of G. The Fourier algebra of G is the

closed subalgebra A(G) of B(G) which is generated by the continuous positive

definite functions with compact support. The study of A(G) and B(G) for an

arbitrary locally compact group was initiated by Eymard [3].

Theorem I. If G is a locally compact unimodular group andf G Lp(G)for some

p, 1 < p < 2, then ||/||p. = ||/||p if and only if f is equal almost everywhere to a

multiple of a translate of a subcharacter of G.

Proof. The proof is patterned after that of Hewitt and Ross [6, Theorem 43.17].

Let G0 be a compact open subgroup of G and Xo a continuous character of Gq.

If / equals xo on G0 and is zero off G0 then, for 1 < p < oo, ||/||' = fGo dx

= meas(G0) = c~x, say. Since/is a subcharacter, it is easy to verify that c/is

selfadjoint and idempotent so that Lcf is a projection in £. Thus

||LC/||; = m(|Lc/n = m(Lcf) = \\cf& = c2 • c~x = c.

So

\\Lf\\p = c-x-\\Lcf\\p = c-x.cVp = c-W.

Thus for 1< p < 2, \\Lf\\, = tr* = ||/||,.

Now let l<p<2, fELp(G), ||/||„ = ||/||, = 1. Define hz
= \f\*1+')/2sgnf, E(z) = K|/K(1+î)/2JorO < Rez < 1, where/ = K|/|isthe

polar decomposition of /. Let q = q(z) = 2/(1 + Re z) = 2/(1 + u) where

z = u + iv so that 1 <q<2 and q' = 2/(1 - u). Then

|£WI2 = l/K(2+2")/2 = l/lv/i,

and therefore

\\E(z)% = m(\E(z)\") = m(|/K) = 11/11/ = L

Also

Define <S>(z) = (Hz,E(z)) = m(fizE(z)*) for 0 < Rez < 1. One has |<&(z)|

< 114II,. ||£(z)||, < 1 [9, Theorem 1].
We claim that $ is analytic on 0 < Re z < 1, continuous on 0 < Re z < 1.

To see this, let g be a simple function, g = 2 a*X^> let

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



296 ' BERNARD RUSSO

kt = \g\rii+*)/2sgag _ 2 \aic\*+*V2s&lakXÀt

and let

G(z) = *&£(*)•) = 2 kl^'^sgna.mfi.J/K^^F*).

Suppose such a G is analytic. Then taking a sequence {/w} of simple functions

converging to/as in [6, (43.11)], i.e. |/w(x)| T and/w(jc) ~*f(x) uniformly on

ÍI/MI < /}. and letting Gn(z) - m(h[^E(z)*) where A« = |/M|*l+l)/2sgn/M,

then G„ is analytic and

|*i» - G„(z)| = \m((hz - AW)"£(z)*)| < \\(hz - AW)" ||,.||£(z)||,

< HA,-A« |^0

uniformly on compact sets [6, (43.11)], so it will follow that $ is analytic. Now G

will be analytic if the function H(z) = m(B f™ \ffll+*V2 dE\) is analytic where

B = V*xa> aQd {E\} is the spectral resolution of |/|. But H(z)

= /o°° A''(1+z)/2i//i(A) where p. is the measure on [0, oo) given by the function

A -* m(BEx) of bounded variation. Thus H is analytic by a standard application

of Fubini's theorem and Morera's theorem.

Now if a = 2/p - 1 then 0 < a < 1, A„ = /, E(a) = V\J Ylp and thus

*(«) = n*3\î\"'V) - m(K|/|1+^K*) = mfl/K) = 1.

Thus, by the maximum modulus theorem, 3>(z) = 1 on 0 < Re z < 1.

Let gz be the inverse transform of E(z) [9, Theorem 7]. Then gz E Lq'(G),

WgzWq' < II^OOII, = 1 and by the Parseval formula [9, Lemma 7.2]

<Ä„g,> - <f\z,E(z)) =1   for all 0 < Re z < 1.

For z = 1 + iv, q(z) = 1, gx+iu E A(G) [3] and ||gi+/„L < llgi+JL*
= ||£(1 + iv)|L = 1. Thus

1 = <Ä,+*,a+*> = /|/|*2+Ä,)/2sgn/g7^dx <f\f\p\gx+iv\dx

<iig.+juii/ii;<i.
so [7, (12.29)]

l/l^^sgn/g^- = av|/r|sgn/||g1+J = a„|/|'|g1+J = a,|/|'

a.e. for each real v where |a„| = 1. From this we infer that

l/ri/l^sgn/gí^ = «U/I'

a.e. for each v; that/is supported a.e. for each v on {x E G: \gx+¡v(x)\ = 1}; that

on the set where/(x) ¥= 0, l/l^sgn/ = a„gx+U/ a.e. each v and that llgi+JL

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE NORM OF THE ¿"-FOURIER TRANSFORM 297

= ll£i+JL = 1- In particular sgn/ = a0gi a.e. on the set where/(x) ^ 0 and/

is supported a.e. on the set H = [x: \gx(x)\ — 1}. By translating / as the

statement of the theorem allows we may suppose that gx is a constant (modulus

1) multiple of a positive definite function. Hence [6, (32.7)] H is a subgroup of G,

g, | H is a constant multiple of a character of H and since gx vanishes at infinity,

H is compact, and hence open.

We claim next that by adjusting / on a null set we may assume / continuous

and that everywhere on G one has \f\p'^2sgn.f = gx+iv for all real v.

For this, observe first that because (hz,gz) = 1 we have gz — |Aji-1sgn hz

a.e. for each z with 0 < Rez < 1 [7, (135)1. Also \hz\ = l/l*1^72, sgnAz

= l/l^sgn/so that \hz\q~x = \f\p^"' andgz = |/1"/"'|/1","/2sgn/a.e. for each

z with 0 < Re z < 1. Let XH be the left regular representation of H, Let £(//)

be the von Neumann algebra it generates on L2(H) and let 91 be the von

Neumann algebra generated on L2(G) by [\(s): s E H}. Since H is open, there

is an isomorphism a of t(H) onto 91 which carries XH(s) onto (À | H)(s)

whenever s E H, where the vertical bar denotes restriction. One checks that also

a(XH(h)) = (À I H)(h) whenever h E Ii(H). Now observe that if A: G Ii(G)

and k is supported on H then X(k) = (À | H)(k \ H), and consequently for such

k, a(\H(k | H)) = (X | H)(k \ H) = X(k). From this follows the crucial obser-

vation that /, hz and gz, with the exception possibly of gx+iv, all have their

transforms in 9L Now making use of the compactness of H we have that 91 is

isomorphic to Jla£/¡ ®(5C„) [9, Theorem 8] where %„ is finite dimensional for

each unitary equivalence class o of irreducible representations of H. It follows

easily that m \ % = 2,,<e# ̂ otr(-) for positive numbers da where tr(-) denotes the

trace on $(00. Since / belongs to % so does V and it follows that, writing

T — (T,) for operators T in % one has

i =m(hxE(i)*)= 2 dM^MD*) < 2 «ÄLIISOU

<I|â,L 2 4J|£(iU = ll¿,IUl£(i)ll<i.

Thus if E(l)a # O for a certain <r then IKÂ,),,!!«, = ||Ä,L for that a. But

fa: 11(4). II > e} is finite for every e > 0 [6, (28.40)]. Thus £(1),/ and therefore
E(z) are all operators of finite rank in Ê and it follows easily that

\\E(\ + iv) - E(u + iv)\\\ -> 0

as « Î 1. Thus

llc?i+* - &**L < hi+iv - gu+JA = \\E(l + iv) - E(u + iv)\[ ̂  0.

For a fixed v taking a subsequence w, T 1 we have

g1+* = lim gUj+iv = lim|/|"<1-"v)/2|/|"*'/2sgn/= |/|^2sgn/.
7"►OO        J l—*CC
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298 BERNARD RUSSO

This holds a.e. for each v where we have discarded countably many null sets. In

particular gx = sgn / a.e. Moreover /1 H is a trigonometric polynomial on H

almost everywhere by [6, (28.39)(ii)]. Thus/is continuous a.e. on G and it follows

that, assuming / continuous everywhere, both hz = |/|/<1+z^2sgn/ and thus

|Az|,_1sgn hz are continuous everywhere. But gz = |Az|,-1sgn hz a.e. and gz is

continuous being in A(G). It follows that gz = |Az|i-1sgn hz everywhere and this

establishes the claim.

The proof of the theorem will be completed by showing that |/| is constant a.e.

on H. To see this, multiply / by a scalar to get f(e) > 0 and let kv

= f(e)~piv,2gx+br Then ku(e) = 1 and ||fc„L = \\k„\\A = kv(e) so that kv is a

positive definite function. Now kv = f(e)-piv/2E(l + iv) =f(e)-'*'l2V\}\p'(2->")12.

But k„ is positive in LX(T) so k"v = |£„| = l/l''. Thus k"„ = k\ for all v and

sgn/ = fc0 = kv = /(e-)-^2|/|""/2sgn/. So on H, |/|" is constant depending on

real s. The proof is complete.

Remark, us in [6, §43] it is possible to consider L'-maximal functions for

2 < p < oo. Namely/ G LP(G), p > 2, is L'-maximal if/also belongs to 11(G)

for some r, 1 < r < 2, if/ (= the IT-Fourier transform off) belongs to L^(T)

and U/H,/ = \\f\\p. Using Theorem 1 it is easy to show that the L'-maximal

functions, 2 < p < oo, are precisely the same as the L'-maximal functions,

1 < p < 2, i.e. constant multiples of translates of subcharacters. To see this

observe that/ E L*(T) ("I Lr'(T), and since/ < 2 < r'J E L2(T). Thus/is

the inverse transform of /. Let g = \f\p^s¡jaf. We claim g is L^-maximal.

Indeed

</,*> = ff\f\p/'wfdx = / \f\x+p"dx = / \f\"dx = 1

without loss of generality. Thus

1 = </,*> = </,g> < ll/ll„ltéll, < 11*11, = 11/11^ = 1
and so g is //-maximal. Now since 1 < p' < 2, Theorem 1 implies that

1/1plplsgn /is a.e. a translate of a constant multiple of a subcharacter and so the

same holds for/.

3. Direct products.

Theorem 2. If H is an arbitrary unimodular locally compact group then

||ST,(R X H)\\ < 1 for allp, \<p<2.

Proof. In the proof an equal sign is sometimes used to denote unitary

equivalence. If G is a direct product RxH then Agfa,*) = AR(i) ® Aff(x),

s E R, x E H. By Stone's theorem in direct integral form AR = Si Xtdt, i.e.

AR(i) = Jg3 e'"dt where dt is Lebesgue measure divided by (2ir)^2 and x>(s) = ^°

is the operator of multiplication by eits on a one-dimensional Hubert space.

Identifying £(R) with L^R) we can write £(R) = Jjf &,dt where &, is the

complex numbers for each t. Thus
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THE NORM OF THE ¿"FOURIER TRANSFORM 299

£(G) = £(R) »£(//) = Jt" («, ® £(#))<#

and

K(s,x) = (/R® <?'"<*) ® XH(x) = /R° (** ® XH(x))dt

(cf. [2, Chapter II]).

It follows from Fubini's theorem that/ = /if/(jG ® XH)dt for any continuous

function f on G with compact support. A routine calculation shows that

I(Xt ® À») = & where g,(x) = [f(;x)]'(-t), x G H, t G R. By [2, p. 211] the
gage m on G has the form m = f¡? <p,dt where (p, is a faithful, normal semifinite

trace on &, ® £(//). If we identify &, ® t(H) with £(//) then <p, is almost

everywhere the canonical gage mH on H. To see this, let F E L°°(R) and

T E t(H) be positive. Then m(F ® T) = fR <p,(F(t)T)dt = J"R F(typ,(T)dt. But
m is the product gage mR X mH [14, §9] so w(F ® T) = /Wr(F) • mH(T). Thus

/RF(/)K(r)-<p,(r)]<ft = o

for all F G L°°(R), so <p, = mw a.e. Now

11/11/ = «(1/1') =/R<P,(l^r)^ = hmH(\¿,\')dt

=/R iig,n/<* < /R iifti^*=/R [/„ i[/(-,x)r (-oi^]^*

= [/„ Hi/Mil;^]'7' < ^[/ff n/(-^)ii>]^

=Ap[L [I i/m'*]*]'''=^,'ii/n,'.

where we have used Minkowski's integral inequality [13, p. 271] and Ap denotes

||?Tp(R)||. The proof is complete.

Corollary. Let G be a central topological group, i.e. G/Z is compact where Z is the

center of G (cf. [4]). The following statements are equivalent:

(I) G has no compact open subgroups;

(2)\\%(G)\\<\forallp,I<p<2;
(3) ||3,(G)|| < 1 for some p, \<p<2.

The corollary is a simple consequence of the structure theorem for central

topological groups [4, Theorem 4.4] and the log convexity of the function

P ~* ll5p(G)||, valid for any unimodular group [9, Corollary 3.1].
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The idea for the proof of Theorem 2 came from a consideration of the Abelian

case which is considerably more elementary.

The author wishes to thank Masamichi Takesaki for indicating how to drop

assumptions of separability and type I in a previous version of Theorem 2.

4. The Hausdorff Young theorem for integral operators. A plausible conjecture

for a locally compact unimodular group G is: G has no compact open subgroups

if and only if ||^(G)|| < 1 for some (hence all)/>, 1 < p < 2.

In §3 we established this conjecture for central topological groups. In the next

section the conjecture is established for any locally compact group G which is a

semidirect product A \ X of an Abelian group A and a compact group X (acting

on A), e.g. the groups of rigid motions of Euclidean space.

As in the proof of Theorem 2 use will be made of Babenko's theorem (i.e. that

||9J,(R)|| < 1) and elementary direct integral decompositions. However, a new

element is needed, namely a Hausdorff Young theorem for integral operators,

which we state as a separate theorem because of its independent interest. I am

indebted to E. M. Stein for essentially stating this theorem and for the reference

[1].
Let X and Y be a-finite measure spaces with measures denoted by dx and dy.

For a square summable function k on XX Y we consider the integral operator

K: L2(X) -> L2(Y) defined (a.e.) by Kf(y) = fx k(x,y)f(x)dx; and the norms

H*IU = (jy (fx \k(x,y)\pdxy/PdyJ\       1 < p, q < oo.

We note that \\K\l = (Tr (K*K)r/2)x/r is well defined for 1 <r< oo (possibly

+ oo), and we let k*: YxX-*Cbe defined by k*(y,x) = k(x,y).

Theorem 3. Let 1 < p < 2, p' = p/(p - 1) and let k G L?(X X Y). If K is the
integral operator with kernel k then

W\,<(Jk\\P,l,-\\^\\P,,)vt.

Proof. By a density argument which is outlined below it is sufficient to establish

the theorem for simple functions k of the form k — 2 <x¡Xa¡xb, where {A¡} (resp.

{/?,}) is a finite disjoint family of measurable subsets of X (resp. Y) of finite

measure. For notation's sake let/, = Xa? Sí = Xb, and let |^4| denote the measure

of a set A. Then K*K = 2 kHl/zlÎlIgilË^ where {Pj is a finite family of
mutually orthogonal one-dimensional projections on L2(X). It follows that

IIA1I, = (2 MUMaWf1' - (2 WWW2)«'.
But

11*1!*/ = (2 kKM.I^I^I)^
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THE NORM OF THE ¿"-FOURIER TRANSFORM 301

and

l|A:*IU = (2kl'kl|5,l"'^.

Schwarz's inequality now gives the result if we notice that

(W^^I'^I^I^KKr^l^PW'^-kl'l^l^lB,!^

because p'/p + 1 = p'.

Suppose now that k G L2(X x Y) and that \\k\\Ptp. and ||&* \\p¡¡/ are both finite.

The function k belongs to the Banach spaces determined by finiteness of the

norms ||&||A^, 11^*11^, ll&ll^- There is a simple function s on XX Y such that

II& - j|| is small in all three norms. Here we have used a bounded convergence

theorem for the spaces LM with mixed norm [1, p. 302]. Write s = 2 atXE, with

{E¡} a mutually disjoint family of measurable subsets of X x Y. For each E,

choose a measurable set F¡ which is a disjoint union of measurable rectangles with

the measure of Et¡ A.F¡ small. (3) If we let t = 2 <*íXf, then ||i — r|| is small in each

norm. Here we may assume that {F}} is a disjoint family. Therefore \\k - r|| is

small in each norm, say less than e, and t is a simple function of the type

considered in the first part of the proof. If T denotes the integral operator with

kernel t we have ||iS: - T]^ < \\K - 1% = \\k - t\\ < e and thus

W^e+llTH^e + dlilU-riU)'/2

<e + (\\kl, + e)V2(\\k*\\Pi]/ + e)x'2.

This completes the proof.

Remarks. 1. The cases p = I andp = 2 of Theorem 3 are well-known results

and we expected Theorem 1 to follow by interpolation.

2. Equality holds in Theorem 3 for k = Xax.b> »*• the result is sharp.

3. If X and Y are discrete with the same mass at each point, say a for X and b

for 7, then \\K\lj, < (aè)l/2~i/" 11*11;, holds. This can also be shown by interpola-
tion. Conversely this inequality for arbitrary X and Y easily implies that the

measures of nonnull sets are bounded away from zero.

4. If G is a locally compact group and <p G Ii(G) then Lç: g -* <p * g is an

integral operator on L2(G) with kernel k(x,y) = <p(xy~x). In case G is compact

Theorem 3 yields an elementary proof (modulo the Peter Weyl theorem) of the

Hausdorff Young theorem for compact groups ([6, (31.22)], [9]).

5. //"-Fourier transforms on semidirect products. It is possible to avoid

separability assumptions and induced representations by employing the following

device which is due to Godement.

(3) This result is well known to probabilists but I lack the reference.
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Lemma 1 [5]. Let G be a locally compact group, A an Abelian closed subgroup of

G. For each character x '" the dual Â of A there is a representation Ux of G on a

Hubert space Hr We have A = ff Uxdx, where A denotes the left regular

representation ofG, (X(s)f)(t) =f(s~xt),f E Ü(G), s,t EG.

Proof. We sketch Godement's argument since the construction will be needed.

Let da and dx denote normalized Haar measures on A and Â. For/, g E %(G)

(= continuous functions with compact support) and x G -^ let <P/,g(x) =

Sa (p(a)f\ g)x(a)da, where p is the right regular representation of G, p(s)f(t)

= f(ts), / G L2(G), s,tE G. By Fourier inversion (p(a)/|g) =

Sa <Pf.g(x)x(a)dx- The Hilbert space Hx is the completion of 9C(G)/ATX with

inner product (fx | gx) = <p/g(x) (fx = equivalence class of / and Nx = {/

G %(G): <pfJ(x) = 0}). For' s G G, let U*fx = (\(s)f)x. The above Fourier
inversion formula yields

(Áa)Hs)f \g)=fÂ (U*fx | gx)x(a)dx

which proves the lemma.

Let now G be a (topological) semidirect product A x^ X of an additively

written Abelian locally compact group A and a locally compact unimodular

group X (acting on A). The product in G will be denoted by (a,x) • (b,y)

= (a + x(b), xy), where x(b) denotes the action of the automorphism x E X on

b E A.G'vs unimodular with Haar measure ds = da • dx, s = (a,x).

Lemma 2. Let G be a semidirect product A \X of an Abelian locally compact

group A and a locally compact unimodular group X acting on A by measure-

preserving automorphisms. For x G Â the map

Wxh(x) = fA h(a,x)x(x-x(-a))da      (A G 3C(G))

sets up a unitary equivalence of Hx with L2(X) which for f E 5C(G) transports UJ1

into an integral operator on L2(X) with kernel kx(x,y) = f(A'%yx~l)(x) ('•*•

kx(x,y) is the Fourier transform of the function a -» f(y(a),yx~x) evaluated at the

character x).

Proof.

\Wxh(x)\2 = £ fB h(a,x)W¿)x(x-x(b - a))dbda

***m!Á fB h(a,x)h(a + x(b),x)xib)dbda

so that

II^AIP = fx \Wxh(x)\2dx = fJA fB h(a,x)h(a + x(b),x)x(b)dbdadx.
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On the other hand

IIU2 = <Pm(x) - fB (P(b)h | h)W)db

= ImIa Sx K(a,x)(b,e))h(a,x)x(b)dadxdb

= fxfA fB h(a + x(b),x)h(a,x)x(b) dbdadx

= II Wx A||2.

Thus Wx maps %(G)/NX isometrically into L?(X) and it is trivial that the range

of Wx is dense in L?(X). Let W = W£ denote the unitary operator thus defined on

Hx onto L2(X). For s = (b,x) E G let Vsx = WU* W~x. Let g G L2(X) be such

that Ax = Wg~x E %(G)/NX. Then

V*g = Wty/ir'g = Wi/,*^ = W((X(s)h)x)

so

Cx¿r(v) = JA (X(b,x)h)(a,y)x(y-x(-a))da

= ¿ Ä(x-'(a - b),x-xy)x(y-x(-a))da.

Hence

(^U)=/G/(i)(^k)^

" SbSx^'^SyL h(x~i(-a - b),x-xy)x(y-l(-a))dagjyjdydxdb

and thus

Vfg(y) = fBfxf(b,x)fA h(x~x(a - b),x-xy)x(y-x(-a))dadxdb

"='bfBij(b,x)fAh(a,x-xy)x(y-xx(-a))x(y-x(-b))aaaxdb

X^'JBLf(.b,yx-x)fAh(a,x)x(x-x(-a))x(y-x(-b))dadxdb

^áb)íxfBf(Áb),yx-x)fAh(a,x)x(x-x(-a))daxJb)dbdx

= fxfBf(Áb),yx-l)g(x)W)dbdx

= fxf(A-),yx-xï(x)g(x)dx.

Theorem 4. Let G be a locally compact group which is a semidirect product of an

Abelian locally compact group A and a compact group X acting on A. Then G has
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no compact open subgroups if and only if \\^P(G)\\ < 1 for some (hence all)

p,l<P<2.

We note first that G is unimodular and that X, being compact, acts as measure-

preserving automorphisms of A.

Proof. It is sufficient to prove that ||9¡,(G)|| < ||5^04)|| for a single value of p,

1 < p < 2. For if G had no compact open subgroups, neither would A since X

is compact so that ||5¡,(j4)|| < 1 by the corollary to Theorem 2. The converse is

contained in Theorem 1.

We fix on the value/? = 4/3 so that/ = 4. If / G %(G), then, from Lemma

2, / = Lf = ff Ufdx where Vf- can be taken to be an integral operator on

L2(X) with kernel kx(x,y) = f(A-),yx~xY (x)- This entails ||i//|g = ||*Jg so
that

X \\Uf\yX= fAfxfr\f(A-),yx-x)'(x)\2dxdydx

= ¿X Wf(Á-lyx-xr II Idxdy = 11/1122

since the Haar measure on X is normalized in the usual way to have total mass

one.

For notation's sake let g =/**/, A = g* * g. Then

\\Lfl = m(|L/) = m(L¡) = m(L„) = h(e) = ||g|g

-JÜ ll£?lg<k = X II^IK* <I,(ll*xl*/- H*ilU/)//2*

*(j!i-IMk*)*(/j «&*)*■

But

£ ll*xlK/* = XX (/* l/^O^y-'rOc)! pdxy/Pdydx

< X (X (X i/ww-'r wi "dx)P"dxy''dy

<X(X iwini/wo.^-oii,*)'7'* = iwru/ii/.

Similarly X, U^U^x < IIWINI/II/ and so U^L, < 113,04)1111/11, with />
= 4/3. This completes the proof.

A slightly simpler and more transparent proof of Theorem 4 can be given if

one assumes separability of G and uses the language of induced representations
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for the separable case as follows: If X is the left regular representation of G then

by inducing in stages, X = Ux* where XA is the regular representation of A. By

Stone's theorem XA = f® x^X and since inducing commutes with direct integra-

tion, X = Xf Uxdx. By Fubini, Lf = JJ Ufxdx for/ G %(G). Next the Hubert
space %(UX) of the induced representation Ux is mapped onto L?(X) by

Wg(x) = g(e,x), g E %(UX) and a computation, not unlike that for Lemma 2,

yields UJ- as an integral operator with an appropriate kernel.
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