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ABSTRACT OF THE THESIS 

 

 

 

Automation of molecular dynamics simulations and drug discovery efforts 

towards the inhibition of two kinases on the non-canonical NF-kappa B 

pathway 

 

by 

 

Garrett J. Chan 

Master of Science in Chemistry 

University of California, San Diego, 2017 

Professor Rommie E. Amaro, Chair 

 

Rational drug design has been revolutionized by computational 

methods such as molecular dynamics (MD) simulations and virtual screening. 

From both the methods development and the application standpoints, the 

entry of computation into chemistry has greatly changed how biophysics and 

medicinal chemistry are approached. First, we have developed an interactive 

platform on which a broader array of scientists can efficiently run molecular 



 xiv 

dynamics simulations, presenting an opportunity for a more rigorous and 

more accessible approach to utilizing this method. Second, virtual screening 

has allowed us to foray into the design of a protein-protein inhibitor for a 

polymeric form of IκB kinase alpha. And third, the application of molecular 

dynamics simulations has aided us in understanding the dynamics of 

proteins. Through MD, our studies on NF-κB-inducing kinase have given us 

insight into the interplay of interactions among its catalytic domains and 

revealed a possible allosteric site.  
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Chapter 1: 

 

A Kepler Workflow Tool for Reproducible AMBER GPU Molecular 
Dynamics   
  

Abstract   

With the drive towards high throughput molecular dynamics (MD) 

simulations involving ever greater numbers of simulation replicates run for 

longer, biologically relevant timescales (microseconds), the need for 

improved computational methods that facilitate fully-automated MD 

workflows gains more importance. Here we report the development of an 

automated workflow tool to perform AMBER GPU MD simulations. Our 

workflow tool capitalizes on the capabilities of the Kepler platform to deliver a 

flexible, intuitive, and user-friendly environment and the AMBER GPU code 

for a robust and high-performance simulation engine. Additionally, the 

workflow tool reduces user input time by automating repetitive processes and 

facilitates access to GPU clusters, whose high-performance processing 

power makes simulations of large numerical scale possible. The presented 

workflow tool facilitates the management and deployment of large sets of MD 

simulations on heterogeneous computing resources. The workflow tool also 

performs systematic analysis on the simulation outputs and enhances 

simulation reproducibility, execution scalability, and MD method development 

including benchmarking and validation.
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1.1 Introduction   

Continued advances in computing power and the development of the 

graphics processing unit (GPU), make the study of proteins, receptors, and 

other biophysical systems with molecular dynamics simulations increasing 

accessible1, 2. Molecular dynamics (MD) simulations are a powerful 

computational tool that predicts protein dynamics in physiological conditions 

and allows researchers to study atomic interactions3, aiding in improved 

models of molecular recognition and drug design4.   

 

1.1.1 An overview of MD simulation packages 

Several well-known MD simulation packages available for 

biomolecular simulations, including Gromacs5, NAMD6, Desmond7, 

OpenMM8, and AMBER9, have made significant contributions to scientific 

discoveries3, 10-12. Each can run calculations on a single central processing 

unit (CPU) or a single graphic processing unit (GPU), and on clusters using 

multiple CPUs or GPUs. In contrast to a CPU, a GPU is constructed with 

significantly reduced cache memory. It is built with thousands of smaller 

computing cores, designed to handle multipe identical mathematical 

operations simultaneously. Many GPU MD packages utilize the GPU for the 

non-bonded force calculation. The AMBER GPU software can perform 

complex calculations, including semi-isotropic pressure scaling, adaptively 

biased MD, and thermodynamic integration. The AMBER package utilized in 

this work can support MD simulations on a single GPU and multiple GPUs1, 2 
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with performances that outstrip even the most powerful conventional CPU 

based supercomputers13, 14. It takes advantage of the GPU to accelerate 

classical MD on realistic-sized systems, typically up to a maximum of ~3 

million atoms per simulation, bound by a size limit due to memory restrictions 

unique to specific GPU models. Nevertheless, systems of this size include 

many drug targets, including membrane-embedded G-protein coupled 

receptors, or a protein trimer with bound antibodies (3).   

 

1.1.2 The issue of reproducibility in MD 

Broadly speaking, a major criticism of MD simulations relates to their 

reproducibility. Reproducing published MD findings (i.e., an independent 

group reproducing the same set of results for the same system of interest) 

can be challenging due to many reasons, including complicated run 

procedures that rely on user-developed scripts, technical numerical 

reproducibility (which is dependent on a number of factors including the 

compiler, executable, and dependent libraries, as well as whether FFTW is 

utilized), statistical reproducibility (which can be achieved through the use of 

a high number of simulation replicates), and incomplete reporting of methods 

in the published literature. For example, it is common for an end-to-end MD 

experiment to require multiple dozens of steps; conceptually we can define 

the set of required steps as a “workflow.” Typically researchers employ 

various scripts to piece together each of the different steps. The formal 

encoding of these many scripts into an automated workflow framework is one 
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way to address many challenges related to reproducibility, as well as method 

development and researcher training.   

1.1.3 Workflow platforms provide reproducibility to scientific tasks 

Multiple workflow platforms are available for scientific research. Kepler 

is a completely open source option with an extensive set of basic and 

advanced modules that support various workflow configurations. Kepler is a 

Java-based platform that delivers an easy-to-navigate graphical user 

interface (GUI) and user-friendly text file interface. From the GUI platform, 

the user is given a palette of modules, actors, and directors, with which to 

visually program their workflow15. A director controls the execution of the 

workflow, and actors carry out specific functions in the workflow. Contributors 

around the world develop modules and other workflows that perform 

complementary functions. Within the last decade, Kepler has implemented 

multiple modules that support the applications of statistical analysis, 

biological research, adaptations of external software, and options to select 

execution on different platforms and with different schedulers15,16. 

Consequently, Kepler has become a flexible and broad-purpose platform on 

which to build a workflow that can perform both MD simulations and 

subsequent statistical analysis. The user-friendly GUI interface also provides 

a suitable learning apparatus for beginners to understand the components of 

MD and for experienced users to customize and extend the workflow to their 

project needs.   
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1.1.4 Kepler as an MD simulation gateway 

Combining these two computational tools, the AMBER GPU 

simulation code and the Kepler platform, we have developed a workflow tool 

that allows scientists to navigate, develop, deploy, analyze, and share MD 

simulation protocols. The workflow tool merges multiple MD steps that are 

otherwise scattered across disparate software tools or scripts into one central 

command that controls and executes all steps, starting from the initial energy 

minimization to multicopy production dynamics and routine analysis. The 

workflow tool submits jobs to various hardware architectures and copies back 

the output data to the user’s local machine, helps to systematically run MD 

simulations, and plots thermodynamic properties to check the integrity of the 

simulations. The integrated simulation execution and analysis features of the 

workflow reduces the time needed to monitor the various simulation steps 

and facilitates handling of the simulation data. Moreover, Kepler is equipped 

with an automatic execution check function, which will stop and highlight the 

step if the simulations fail to execute until the end.   

  The AMBER GPU workflow tool leverages Kepler’s advanced 

provenance capabilities to assist in achieving reproducibility17. Each time the 

workflow tool is executed, a detailed provenance report containing key 

signatures required to replicate a simulation is generated. The report, which 

can be used as a basis for method section reporting, contains not only MD 

configuration parameter information, but also details execution parameters 

not normally reported, including hardware configuration and software and 
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library version information (AMBER, CUDA, etc.). The latter set of 

information is not typically reported, though it has the potential to impact 

reproducibility as much as MD configuration file information.  

  

1.1.5 Differences between the AMBER GPU workflow and QuikMD 

Our AMBER GPU workflow tool provides some similar capabilities as 

QwikMD, another software that executes MD simulations, but unlike 

QwikMD18, which focuses on VMD and NAMD, our workflow tool utilizes 

AMBER and its well-known GPU computing power. QwikMD also focuses on 

assisting the user in building the system itself, whereas our workflow tool 

focuses on MD job execution and analysis, relying on the user to create the 

system files on their own. Our workflow tool is also able to execute jobs on 

various clusters including the XSEDE architectures, and the users can easily 

control the execution options via the GUI or command-line interface.  

Furthermore, through its integration with Kepler, the AMBER GPU workflow 

tool can easily utilize Kepler’s extensive data analytics capabilities, which are 

continually being developed. CHARMM-GUI19 is another complimentary tool 

that provides a web interface for system construction. It is capable of building 

and generating MD input files for a magnitude of biological systems, 

including solvated proteins, solvated proteins with ligands attached and 

membrane proteins, etc. The inputs produced by CHARMM-GUI could be 

used in the AMBER GPU workflow tool to actually execute the MD 
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simulations. To our knowledge CHARMM-GUI does not yet provide job 

execution capabilities.   

Finally we note that the workflow tool presented here is freely 

accessible, open source, and easy to modify and reuse. Each of the modules 

(a.k.a. Kepler actors) can be reconfigured with different components (e.g., 

including automated preparation and simulation of receptor-ligand 

complexes), and additional analysis steps can be developed and integrated 

into customized experiments. Workflows developed with KNIME can be 

called from within Kepler and functionality of different components can be 

extended via interoperability with packages such as HTMD20, MSMBuilder21, 

and PyEMMA22. The AMBER GPU workflow tool can be found at 

http://nbcr.ucsd.edu/products/workflow-distribution along with the user guide.   

1.2 Materials and Methods  

The workflow tool requires an input directory containing two 

subdirectories. One subdirectory, labeled confDir, contains all the template 

simulation input files. The template AMBER input scripts provided in the 

default workflow tool were converted from the same parameters used in 

Wassman et al.’s NAMD MD simulations4, which consisted of four stages of 

minimization, one step of heating, three stages of equilibrations and one step 

of production. Users can also configure their own input files if desired (see 

user manual for details), e.g., if they would like to run another type of MD 

simulation such as accelerated or replica exchange MD. The second 
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subdirectory, labeled with the system’s stem name, contains the system’s 

AMBER topology and coordinate files. For example, the system’s topology 

and coordinate files are named under r174h_stictic.top and r174h_stictic.crd, 

respectively; then, the subdirectory folder name will be r174h_stictic.  

 

1.2.1 Workflow submission options 

There are three submission options implemented to run the AMBER 

GPU MD simulation workflow: LocalExecution on user’s local machine, 

CometGPUCluster on the San Diego Super Computer (SDSC) comet cluster, 

and PrivateGPUCluster on a remote private cluster. The workflow will always 

start from a user’s local machine, but it can connect to remote clusters, 

submit MD simulation jobs, and transfer simulation results. Moreover, users 

can connect the workflow to a GPU cluster of their choice. Regardless of 

which submission option a user chooses, all outputs at the end of a 

simulation can be found on the local machine, where users started the 

workflow.   

The workflow tool automates MD simulation processes and generates 

analytical plots that help analyze the system of interest and validate 

simulation quality. There are two parts to this workflow: simulation and 

analysis. Simulations can be further broken down into four components 

executed by four actors: minimization, heating, equilibration, and production. 

The analysis components are small actors working collectively to call locally 

implemented software, including cpptraj from the AmberTools suite and R, 
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the programming language (23, 24) to generate time-evolution energy, 

temperature, pressure, and RMSD plots. The resulting plots are stored in the 

system subdirectory for analysis and to verify simulations quality.   

  

 

Figure 1.1 AMBER GPU MD simulation workflow, showing the uppermost 
level of the workflow construct.  
  

1.2.2 Components of the workflow: minimization to production 

The first simulation component is the minimization (Fig. 1.1). In this 

step, a system is energetically minimized to a local minimum. After the 

minimizations, the workflow plots the energy for each step and an overall 

diagram combining all the plots. Since energy is the largest changing 

parameter during minimization, the energy plots are good indicators of 

whether minimizations were performed successfully.   

  Minimizations are useful for finding local minima but typically one 

would want to simulate a system in its physiological environment or at room 
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temperature. The next heating step (Fig. 1.1), thus, adds kinetic energy or 

“heats” the system from 0 K to a target temperature defined by the user. For 

the heating step, the temperature plot over time will indicate whether the 

system did indeed heat from 0 K to a user-defined value. After heating, the 

equilibration steps (Fig. 1.1) shift the system in gradual steps toward thermal 

equilibrium under NPT or NVT conditions.   

  Both the heating and equilibration steps output several 

thermodynamic property plots including kinetic energy, potential energy, total 

energy, pressure, and temperature. The workflow also calculates and plots 

the time-dependent root-mean-square-deviation (RMSD) of backbone 

α−carbons of the system. RMSD analyzes the time evolution of a selected 

set of atoms against some reference frame, in this case the default is the 

initial frame. The time series backbone α−carbon RMSD analysis provides 

information about the overall global change of the protein backbone structure 

over time. A collection of these property plots would indicate whether stable 

equilibration was attained.   

  The last component, production (Fig. 1.1), runs non-constrained NPT 

or NVT MD simulations (based on the parameters set on users’ input scripts) 

and derives a dynamic atomic trajectory of the system in a simulated 

physiological environment. In this step, users can choose to run the workflow 

on a local machine with one GPU card or on a remote cluster with multiple 

GPUs; in the latter case it is possible to deploy multiple copies of the 

production simulations concurrently. As with heating and equilibration, time 
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series plots for temperature, pressure, energy, and RMSD plots are also 

generated in the production stage. Regardless of how many copies of 

production simulation users would like to run, they will all start with the same 

starting structure from the last equilibration frame. The best solution to check 

whether the simulations ran successfully is to visualize the trajectories and 

examine if there are any abnormalities. In addition, analysis techniques 

presented here, such as the RMSD plots, can also serve as an 

investigational tool to identify and quantify any outstanding abnormal 

structural deviations from the starting structure. At the end of each execution, 

the workflow prints out a detailed report, which lists out the input parameters, 

hardware specification, the AMBER version used, the random seeds for the 

equilibrations and productions, and file locations.  This report can be 

appended to a publication as Supporting Information, and would contain all 

the requisite details to ensure technical (and statistical, if achieved) 

reproducibility. Or, it can be used as a guide to assist authors in writing more 

comprehensive Methods sections.  

 

1.3 Application    

We show the utility of the workflow tool on multiple protein systems of 

variable size, and with and without bound ligands (Fig. 1.2). Here we present 

in detail one of the systems, the p53 protein bound to a small molecule 

named stictic acid (4). P53 is considered to be a potential drug target for 

anticancer therapy (25-27), making its simulation with our workflow a relevant 
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test case to perform and scrutinize. Non-activated and mutant p53 is seen in 

more than half of human cancer cases (28), and stictic acid is a known 

compound that activates mutant p53 (4). We are therefore interested in 

understanding its dynamics when stictic acid is bound.   

 

 

 Figure 1.2 Performance of the AMBER GPU workflow on various systems 
on a local NVIDIA Tesla K20 cluster.   
  

1.3.1 Demonstration of capability with a p53-stictic acid system 

Courtesy of Wassman et al., we obtained the AMBER topology and 

coordinate files of the p53-stictic acid complex to run MD simulations using 

the workflow. The simulation consisted of five minimization steps, one 

heating step, three equilibration steps and one production step that branched 

out to perform three independent production simulations. We set up the 

simulations through the command prompt with Kepler on our local machine 
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(Fig. 1.3), and Kepler submitted the simulation jobs to the Comet cluster at 

SDSC. This single command communicates with Kepler to run all the 

simulation steps consecutively without interruption. For more information on 

each parameter, please refer to the user manual.   

  

 

./kepler.sh -runwf -nogui -ExecutionChoice CometGPUCluster -TargetHost user@comet.sdsc.edu -

remoteDir /oasis/scratch/comet/user/temp_project AMBERHOME_CPU /opt/amber/bin/ -

AMBERHOME_GPU /share/apps/gpu/amber cpuModulesToLoad "module load amber" -

gpuModulesToLoad "module load cuda/6.5" -t_cpu 04:00:00 -t_gpu 18:00:00 -CPUqueue compute -

GPUqueue gpushared -inputFolder /home/user/Desktop/MD_Test_Oct -IdentityFile /root/.ssh/id_rsa -

CMPD r175h_stictic -numOfJobs 3  

/home/user/Desktop/MD_Test_Oct/MDCADD_WF_SingleCmpd_2016.xml  

Figure 1.3 Command line for initiating MD simulations.  

  

The resulting output data was then copied back to the local machine. 

We first checked the energy plot generated from the minimization steps (Fig. 

1.4). As shown in Fig. 1.4, the system did move toward an energy minimum 

after five rounds of minimization, which suggested that the system was 

adequately minimized to a local/global minima. Next, we studied the 

temperature plot from the heating step. We assigned the desired temperature 

to 310 K to mimic physiological conditions. As shown in Fig. 1.4, the 

temperature gradually ramped from 0 K to 310 K and plateaued at 310 K. 
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This indicated that the system was successfully heated from 0 K to 310 K 

and held steady at 310 K.   

  

  

       

  

Figure 1.4 Energy minimization plot.                      Figure 1.5 Heating plot.  

  

As per the default workflow parameters, for our p53-stictic acid system, 

the protein backbone was constrained during equilibration, so it was not 

necessary to study the RMSD during these steps. We looked into the total 

energy, pressure, and temperature from the last step of equilibration. During 

production runs, the temperature and pressure oscillated around the defined 

system values of 310 K and 1.0 bar, respectively, as one would expect. Total 

energy increased but plateaued around -59000 kcal/mol, which suggested 

the system achieved at least a metastable equilibrium for the duration of the 

run (Fig. 1.5).   
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Figure 1.6 Time-series analyses (left to right) of the temperature, pressure, 
and total energy from the third and last stages of equilibration.  
  

We generated three copies of 30 nanoseconds (ns) production 

dynamics for our system. Since the system had already gone through 

constant pressure simulations in a step-wise equilibration steps, we did not 

expect any drastic global change during production. We were able to verify 

that the behavior of our system was as expected from the RMSD plot 

produced by the workflow (Fig. 1.7).  Shown in Fig. 1.7, we see small 

deviations (< 3Å) from the starting structure in all three production runs, 

indicating that the system sampled local conformational space without 

outstanding abnormal structural deviation.   
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Figure 1.7 Time evolution of the RMSD of a) copy 1 b) copy 2, and c) copy 3 
of production MD.   

  

1.3.2 Built-in workflow report files on MD parameters 

At the end of the execution, the workflow tool outputs a provenance 

report file consisting of input parameters, hardware specifications, the 

AMBER version, file locations, and the random seeds used for the 

simulations. Using the report, we were able to configure the workflow with the 

same exact random seed to test for reproducibility. For the next execution, 

we input the random seeds from the report, and the workflow used the values 

to generate a new set of input files. We tested the workflow on a local 

machine, on the SDSC Comet supercomputer, and on a private GPU cluster. 

The three runs resulted in trajectories that were highly similar, but not exactly 

the same because they were executed on different GPU clusters. Even with 

the same random seeds, all three runs sample slightly different yet similar 

conformational spaces (Fig. 1.8). This result is as expected because in order 

for the runs to be exactly reproducible, we must use the exact same 

hardware (29). For the local execution, AMBER was compiled with the FFTW 

algorithm, which introduces uncontrollable variability (29). Nevertheless, we 

a)   b)   c)   
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were able to re-create identical input files with the workflow and successfully 

run additional MD simulations of different trajectories, enhancing statistical 

and methodological reproducibility.   

  

 

Figure 1.8 Principal component analysis (PCA) plot of the p53 

simulation results. All of the trajectories from the initial run (computer 

generated random seed) and the three simulation tests (used the same 

random seed from the initial run) with 1) Comet (Test 1), 2) private GPU 

cluster (Test 2), 3) local machine (Test 3) were first aligned. The first two 

principle components were then calculated and the trajectories from each 

test were projected onto the PC space.  
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1.4 Software Availability  

The AMBER GPU MD Simulation workflow is available under the GNU 

Lesser General Public  

License (LGPL), version 1.0 or later. Full documentation and examples are 

available through the National Biomedical Computation Resource download  

page, http://nbcr.ucsd.edu/products/workflow-distribution, and development 

is hosted on GitHub at 

https://github.com/nbcrrolls/workflows/tree/master/Production/AmberGPUMD

Simulation. This workflow is also available for download in Zenodo (DOI 

10.5281/zenodo.192490) and SciCrunch (RRID SCR_014389).  

An open online training course on the Kepler-MDCADD workflow will 

be available on the BBDTC (https://biobigdata.ucsd.edu) in 2017. The course 

will include lecture contents, videos and hands-on training utilizing VM 

toolboxes. The BBDTC is a collaborative platform to encourage and facilitate 

training and education of the Biomedical Big Data community. The platform 

provides an intuitive portal to upload, distributed and discover new content 

about developments in the biomedical big data domain (30).  

 

This chapter, in full, has been accepted for publication of the material 

as it may appear in “A Kepler Workflow Tool for Reproducible AMBER GPU 

Molecular Dynamics” by Purawat, Shweta; Ieong, Pek U.; Malmstrom, Robert 

D.; Chan, Garrett J.; Yeung, Alan K.; Walker, Ross C.; Altintas, Ilkay; and 
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Amaro, Rommie E., accepted for publication in Biophysical Journal in 2017. 

This chapter is included with the permission of all of the authors. 

 

  



 

 

20 

1.5 References  

1. Salomon-Ferrer, R., A. W. Gotz, D. Poole, S. Le Grand, and R. C. 
Walker. 2013. Routine Microsecond Molecular Dynamics 
Simulations with AMBER on GPUs. 2. Explicit Solvent Particle 
Mesh Ewald. J Chem Theory Comput 9:3878-3888.  

2. Gotz, A. W., M. J. Williamson, D. Xu, D. Poole, S. Le Grand, and 
R. C. Walker. 2012. Routine Microsecond Molecular Dynamics 
Simulations with AMBER on GPUs. 1. Generalized Born. J Chem 
Theory Comput 8:1542-1555.  

3. Ieong, P., R. E. Amaro, and W. W. Li. 2015. Molecular dynamics 
analysis of antibody recognition and escape by human H1N1 
influenza hemagglutinin. Biophys J 108:27042712.  

4. Wassman, C. D., R. Baronio, O. Demir, B. D. Wallentine, C. K. 
Chen, L. V. Hall, F. Salehi, D. W. Lin, B. P. Chung, G. W. Hatfield, 
A. Richard Chamberlin, H. Luecke, R. H. Lathrop, P. Kaiser, and 
R. E. Amaro. 2013. Computational identification of a transiently 
open L1/S3 pocket for reactivation of mutant p53. Nat Commun 
4:1407.  

5. Pronk, S., S. Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. 
Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der 
Spoel, B. Hess, and E. Lindahl. 2013. GROMACS 4.5: a high-
throughput and highly parallel open source molecular simulation 
toolkit. Bioinformatics 29:845-854.  

6. Phillips, J. C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. 
Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten. 2005. 
Scalable molecular dynamics with NAMD. J Comput Chem 
26:1781-1802.  

7. Kevin J. Bowers, E. C., Huafeng Xu, Ron O. Dror, Michael P. 
Eastwood, Brent A. Gregersen, John L. Klepeis, Istvan 
Kolossvary, Mark A. Moraes, Federico D. Sacerdoti, John K. 
Salmon, Yibing Shan, and David E. Shaw. 2006. Scalable 
Algorithms for Molecular Dynamics Simulations on Commodity 
Clusters. In ACM/IEEE Conference on Supercomputing (SC06), 
Tampa, Florida.  

8. Eastman, P., M. S. Friedrichs, J. D. Chodera, R. J. Radmer, C. M. 
Bruns, J. P. Ku, K. A. Beauchamp, T. J. Lane, L. P. Wang, D. 
Shukla, T. Tye, M. Houston, T. Stich, C. Klein,  



 

 

21 

M. R. Shirts, and V. S. Pande. 2013. OpenMM 4: A Reusable, 
Extensible, Hardware Independent Library for High Performance 
Molecular Simulation. J Chem Theory Comput 9:461-469.  

9. D.A. Case, J. T. B., R.M. Betz, D.S. Cerutti, T.E. Cheatham, III, 
T.A Darden, R.E. Duke, T.J. Giese, H. Gohlke, A.W. Goetz, N. 
Homeyer, S. Izadi, P. Janowski, J. Kaus, A. Kovalenko, T.S. Lee, 
S. LeGrand, P. Li, T. Luchko, R. Luo, B. Madej, K.M. Merz, G. 
Monard, P. Needham, H. Nguyen, H.T. Ngyuen, I. Omelyan, A. 
Onufriew, D.R. Roe, A. Roitberg, R. Salomon-Ferrer, C.L. 
Simmerling, W. Smith, J. Swails, R.C. Walker, J. Wang, R.M. 
Wolf, X. Wu, D.M. York and P.A. Kollman. 2015. AMBER 2015. In 
University of California, San Francisco.  

10. Allen, T. W., S. Kuyucak, and S. H. Chung. 1999. Molecular 
dynamics study of the KcsA potassium channel. Biophys J 
77:2502-2516.  

11. Tai, K., T. Shen, U. Borjesson, M. Philippopoulos, and J. A. 
McCammon. 2001. Analysis of a 10-ns molecular dynamics 
simulation of mouse acetylcholinesterase. Biophys J 81:715-724.  

12. Awasthi, M., N. Jaiswal, S. Singh, V. P. Pandey, and U. N. 
Dwivedi. 2015. Molecular docking and dynamics simulation 
analyses unraveling the differential enzymatic catalysis by plant 
and fungal laccases with respect to lignin biosynthesis and 
degradation. J Biomol Struct Dyn 33:1835-1849.  

13. Walker, R. AMBER 16 GPU ACCELERATION SUPPORT - 
BENCHMARK.  

14. Le Grand, S., A. W. Gotz, and R. C. Walker. 2013. SPFP: Speed 
without compromise-A mixed precision model for GPU 
accelerated molecular dynamics simulations. Comput Phys 
Commun 184:374-380.  

15. Altintas, I., C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. 
Mock. 2004. Kepler: An extensible system for design and 
execution of scientific workflows. 16th International Conference 
on Scientific and Statistical Database Management, 
Proceedings:423-424.  

16. Altinas, I., J. W., Daniel Craw, Weizhong Li. 2012. Challenges 
and Approaches for Distributed Workflow-Driven Analysis of 
Large-Scale Biological Data. In EDBT Extending Database 
Technology. I. A. Divesh Srivastava, editor. ACM. 73-78.  



 

 

22 

17. Altintas, I., O. Barney, and E. Jaeger-Frank. 2006. Provenance 
collection support in the kepler scientific workflow system. In 
Proceedings of the 2006 international conference on Provenance 
and Annotation of Data. Springer-Verlag, Chicago, IL. 118-132.  

18. Ribeiro, J. V., R. C. Bernardi, T. Rudack, J. E. Stone, J. C. 
Phillips, P. L. Freddolino, and K. Schulten. 2016. QwikMD - 
Integrative Molecular Dynamics Toolkit for Novices and Experts. 
Sci Rep 6:26536.  

19. Jo, S., X. Cheng, J. Lee, S. Kim, S. J. Park, D. S. Patel, A. H. 
Beaven, K. I. Lee, H. Rui, S. Park, H. S. Lee, B. Roux, A. D. 
MacKerell, Jr., J. B. Klauda, Y. Qi, and W. Im. 2016. CHARMM-
GUI 10 years for biomolecular modeling and simulation. J 
Comput Chem.  

20. Doerr, S., M. J. Harvey, F. Noe, and G. De Fabritiis. 2016. HTMD: 
High-Throughput Molecular Dynamics for Molecular Discovery. J 
Chem Theory Comput 12:1845-1852.  

21. Harrigan, M. P., M. M. Sultan, C. X. Hernandez, B. E. Husic, P. 
Eastman, C. R.  

Schwantes, K. A. Beauchamp, R. T. McGibbon, and V. S. Pande. 
2017. MSMBuilder: Statistical Models for Biomolecular Dynamics. 
Biophys J 112:10-15.  

22. Scherer, M. K., B. Trendelkamp-Schroer, F. Paul, G. Perez-
Hernandez, M. Hoffmann, N. Plattner, C. Wehmeyer, J. H. Prinz, 
and F. Noe. 2015. PyEMMA 2: A Software Package for 
Estimation, Validation, and Analysis of Markov Models. J Chem 
Theory Comput 11:5525-5542.  

23. Roe, D. R., and T. E. Cheatham, 3rd. 2013. PTRAJ and 
CPPTRAJ: Software for Processing and Analysis of Molecular 
Dynamics Trajectory Data. J Chem Theory Comput 9:3084-3095.  

24. Team, R. C. 2015. R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, 
Austria.  

25. Vogelstein, B., D. Lane, and A. J. Levine. 2000. Surfing the p53 
network. Nature 408:307-310.  

26. Green, D. R., and G. Kroemer. 2009. Cytoplasmic functions of the 
tumour suppressor p53. Nature 458:1127-1130.  



 

 

23 

27. Li, T., N. Kon, L. Jiang, M. Tan, T. Ludwig, Y. Zhao, R. Baer, and 
W. Gu. 2012. Tumor suppression in the absence of p53-mediated 
cell-cycle arrest, apoptosis, and senescence. Cell 149:1269-1283.  

28. Olivier, M., R. Eeles, M. Hollstein, M. A. Khan, C. C. Harris, and P. 
Hainaut. 2002. The IARC TP53 database: new online mutation 
analysis and recommendations to users. Hum Mutat 19:607-614.  

29. Duke, R. 2007. AMBER: reproducibility between software. 
AMBER mailing list.  

30. Purawat, S., C. Cowart, R. E. Amaro, and I. Altintas. 2016. 
Biomedical Big Data Training Collaborative (BBDTC): An effort to 
bridge the talent gap in biomedical science and research. 
Procedia Comput Sci 80:1791-1800.  

  



 

 

24 
 

Chapter 2: 

 

Progress Made on the Development of an Inhibitor of Polymerization of 
IκB Kinase Alpha 
 

Abstract 

IκB kinase alpha (IKKα) lies on the non-canonical NF-κB pathway, a 

cascade of signaling proteins that regulates the transcription of certain 

oncogenesis-related genes. Leveraging the crystal structure of a newly 

discovered hexameric form of IKKα, we have begun to develop an inhibitor 

that binds to this kinase and inhibits its polymerization at a protein-protein 

interface. We started with the characterization of druggable “hot spots” on the 

IKKα surfaces. Subsequently, we have utilized virtual screening and scoring 

techniques to nominate compounds with predicted favorable binding 

activities for biochemical assays. Further optimization of hits from those 

assays, through a similarity search and additional virtual screenings, have 

allowed us to explore additional regions of chemical space, from which we 

can continue to take preliminary steps towards the development of a potent 

and selective inhibitor. 
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2.1 Introduction 

2.1.1 An overview of the non-canonical NF-κB pathway 

The non-canonical NF-κB pathway regulates the transcription of the 

APOBEC3B gene, whose product, the protein APOBEC3B (A3B), is the 

second largest source of mutation across all cancers1,2. Specifically, the 

overexpression of A3B has been linked to head and neck cancer, and has 

been found in over 50% of breast cancer tumors3. The NF-κB transcription 

mechanism of the APOBEC3B gene is regulated by two pathways: the 

canonical and non-canonical NF-κB pathways.  

IκB kinase alpha (IKKα), also called IKK1, is a signaling protein on 

both the canonical and non-canonical pathways4. Once in its homodimer 

form and phosphorylated, IKKα is known to facilitate the phosphorylation of 

the downstream protein complex p100-RelB. Furthermore, IKKα forms a 

hexamer on the non-canonical pathway. This form of the kinase has been 

found by Ghosh et al. to be necessary for the upstream signaling protein NF-

κB-inducing kinase5.  

 

2.1.2 Domains and a novel hexameric form of IKKα 

IKKα contains three domains: the kinase domain (KD), where the 

active site is located, the scaffold dimerization domain (SDD), which aids in 

the dimerization of IKKα, and the ubiquitin-like domain (ULD). The 

trimerization of dimers occurs at the KD-SDD interface, while dimerization of 

the trimers occurs at the SDD-SDD interface. Additionally, a recently solved 
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crystal structure5, reveals a previously unknown hexameric form of IKKα, 

which our collaborators determined to be essential in p100 processing (Fig. 

2.1). More specifically, they determined that this hexamer was a trimer of 

dimers, presenting another potential protein-protein interface to target.  

This study aims to develop a drug that will impede the polymerization 

of IKKα through structure-based drug design. Starting with the identification 

of regions of the protein surface favorable to binding, we and our 

collaborators performed iterative cycles of virtual screening and biochemical 

assays. From these first efforts, we have begun to characterize potentially 

favorable ligand-IKKα relationships and develop a potent and selective 

inhibitor.  

 

2.2 Materials and Methods 

We obtained the IKKα hexamer crystal structure (PDB: 5EBZ), which 

had been solved by cryo-electron microscopy (cryo-EM) at average global 

resolution of approximately 5.9 Å 5. Fragment-based identification of hot 

spots was performed with FTMap6,7 to determine sites of favorable ligand 

binding. A hot spot was then identified in each of the two regions of interest: 

the KD-SDD interface and the SDD-SDD interface. 

Virtual screening, using the 3943 small molecules catalogued in the 

Center for Drug Discovery Innovation library, was done with Schrödinger’s 

Glide software package8–11. The crystal structure first was minimized with the 

Protein Prep Wizard at pH 7.4 to assign protonation states and determine 
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hydrogen bonding. The ligands from the CDDI library were prepared with 

LigPrep12, also at pH 7.4 and with stereochemistry retained. Cubic receptor 

grids 10 Å in length were centered on the residues found in promising hot 

spots identified in FTMap. Rigid docking was then performed.  

From the docked and scored compounds, we identified 100 promising 

compounds to assay experimentally through a variety of methods. We took 

two factors into account when choosing compounds: the ligand’s docking 

score (a predictive parameter that incorporates several factors of ligand 

binding free energy) and its ligand efficiency (the docking score divided by 

the number of heavy atoms). Although not all of the compounds chosen 

based on ligand efficiency were necessarily compounds with the best 

docking scores, our rationale for choosing these compounds was that they 

were generally smaller in size than compounds with the best docking scores, 

therefore imparting them greater potential for later optimization. 

Immunoprecipitation (IP) assays were performed by our collaborators 

in Gourisankar Ghosh’s group, also at UC San Diego, to determine the level 

of inhibitory activity of each compound on IKKα. Of the compounds that were 

virtually screened. The IP assays were performed by incubating the inhibitor, 

at a concentration of 100 µM, with MEF cells, and then exposing them to the 

agonist α-LTβR. The assays were then monitored for changes in the level to 

which p100 was processed to p52. 

Those assays produced four hits. From those, we used the similarity 

search tool on the ChemBridge website to find derivative and analog 
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compounds. With this second cohort of compounds, flexible virtual screening, 

in which the ligand bonds were allowed to rotate, was performed to score the 

compounds. This second round of virtual screening hits is currently available 

for biochemical assays to test for inhibition of IKKα activity.  

 

2.3 Results and Discussion 

2.3.1 Druggable hot spots located at IKKα-IKKα interfaces were 
targeted 
 

To begin the design of an inhibitor of IKKα polymerization, we first 

needed to identify druggable hot spots on the IKKα surface. We decided to 

focus our search efforts on regions of the surface outside of the conserved 

IKKα active site for better ligand selectivity. Furthermore, since we wanted to 

discover an inhibitor of protein-protein interaction, we decided to focus on the 

dimerization and trimerization interfaces of hexameric IKKα complex, at the 

SDD-SDD and KD-SDD interfaces, respectively. As the crystal structure 

contained two hexamers, there were a total of twelve protein chains, and 

FTMap analysis was run separately for each chain. 

After performing hot spot-seeking analysis on each IKKα dimer, we 

counted the number of probes in each pocket identified by FTMap using 

Visual Molecular Dynamics13,14. With our attention directed towards hot spots 

located at protein-protein interfaces, we considered hot spots with more 

probes to be located in pockets that would have a better ligand-receptor 

binding free energy. Furthermore, using the Pose Viewer tool in 
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Schrödinger’s Maestro software package15, we were able to identify 

hydrogen bonds, salt bridges, and pi interactions between the probes and the 

residues. Locations of pockets heavily populated with probes were also 

compared across all twelve chains to find pockets common to multiple chains. 

The residues defining the pockets that were most common were noted.  

 

Figure 2.1 Structure of the IKKα hexamer and domains of a single IKKα 
chain. a) Overview of the IKKα hexamer in ribbon representation, with each 
of the six chains colored differently. b) Close-up of the interfaces between 
chains, demarcated in red. An interface between two scaffold dimerization 
domains is found between the orange and blue chains (SDD-SDD), and the 
interface between the kinase and scaffold dimerization domains is found 
between the orange and pink chains (KD-SDD). c) Locations of probes 
docked to the IKKα surface after performing FTMap analysis. The probes in 
the two pockets later used in virtual screening are circled in red. The 
ubiquitin-like domain is labeled as ULD.  
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When deciding which pockets to ultimately target, we first excluded 

pockets found in the IKKα active site. We then took probe populations, probe 

interactions, and recurrence of that pocket across multiple chains into 

account. From our census of the pockets, we chose the two pockets with the 

highest number of probes and that were common to multiple chains, and 

designated them with a name based on a representative residue. The T184 

pocket is at the KD-SDD interface, while the I650 pocket is at the SDD-SDD 

interface (Fig. 2.1). 

Virtual screening of the CDDI library was performed at each pocket 

using Glide, following the protocol described above. Scores from the virtual 

screening performed in Glide are tabulated below.  

 

Table 2.1 Virtual screening of three IKKα pockets. The pockets are 
denoted by an identifying residue. The interface at which the pocket is 
located is given. The docking scores and ligand efficiencies of the 3900 
compounds screened are listed for each pocket, and the best in each 
category are listed. No further work was done on pocket Y218 because it 
was determined to be too far from a neighboring chain to be an effective site 
of protein-protein interactions.  

 

POCKET INTERFACE BEST DOCKING 
SCORE 

BEST LIGAND 
EFFICIENCY 

T184 KD-SDD -5.751 -0.422 
Y218 KD-SDD -7.527 -0.509 
I650 SDD-SDD -9.112 -0.725 

 

 

For both docking score and ligand efficiency, a more negative score 

indicates more favorable binding. As it can be seen from the table, the I650 
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pocket at the SDD-SDD interface, where two IKKα chains interact to form a 

dimer, had the most promising docking score and ligand efficiency. What is 

less certain, however, is if targeting this pocket will also inhibit the 

hexamerization process in some way. We also noted the interactions formed 

between the docked compounds and the ligands. One common motif that we 

noticed at the I650 pocket was the tendency of ligands to interact with Y494, 

usually through pi-pi interactions. We therefore believe that the 

pharmacophore of a potent inhibitor targeting this site should have an 

aromatic group positioned near to the tyrosine. Other residues with the 

potential for additional interactions include the hydrogen bond and polar 

interactions made by D490 and R493, S504, and E505.  
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Figure 2.2 Interactions between virtually screened ligands and IKKα at 
the I650 pocket. a) Interactions shown here are for the top-scoring 
compounds. In the left panel, yellow dashed lines are hydrogen bonds, and 
blue dashed lines are pi interactions. In the right panel, green lines represent 
pi interactions, while purple arrows represent hydrogen bonds or polar 
interactions. The arrows point towards the electron donor. b) Interactions 
shown for the compound with the best ligand efficiency. Color scheme is the 
same as in a). 
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Figure 2.3 Interactions between virtually screened ligands and IKKα at 
the T184 pocket. a) Interactions shown here are for the top-scoring 
compound. In the left panel, yellow dashed lines are hydrogen bonds, and 
blue dashed lines are pi interactions. In the right panel, green lines represent 
pi interactions, while purple arrows represent hydrogen bonds or polar 
interactions. The arrows point towards the electron donor. b) Interactions 
shown for the compound with the best ligand efficiency. Color scheme is the 
same as in a).  
 

In the T218 pocket, T184 is a hydrogen bond donor in many ligand-

receptor interactions, while E148 is also available for polar interactions. 

Furthermore, Y187 forms pi-pi interactions with ligand aromatic groups. 

However, there were fewer interactions common to many ligands in the T218 
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pocket than in the I650 pocket, which would explain its lower top docking 

score.  

  

2.3.2 Virtual screening led the eventual identification of four hits for 
IKKα 
 

From our virtual screenings, 100 compounds were chosen, based on 

the methods described above, for immunoprecipitation (IP) assays to be 

performed by our collaborators in Gourisankar Ghosh’s group. The 

compounds chosen for assaying were evenly divided between the three 

pockets.  

The IP assays revealed that these four compounds showed inhibitory 

properties. These assays were performed in the presence of α-LTβR, a 

signal for IKKα processing of p100 to p52, thereby distinguishing the 

inhibitors that were capable of attenuating that processing (Fig. 2.4). 

Subsequent rounds of IP assays narrowed down the initial cohort of possible 

hits to four confirmed hits. The virtual screening results of the four 

compounds from their docking to the I650 pocket are also tabulated below. 
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Figure 2.4 Selected results from immunoprecipitation assays. After 
exposing inhibitor-incubated MEF cells to the agonist signal α-LTβR, the 
expression of p52 for each inhibitor was compared. Inhibitors with significant 
diminishments in p52 expression are in red typeface. Not all IP assay results 
are shown. Image courtesy of Anup Mazumder, Gourisankar Ghosh, et al. 
 

Table 2.2 Virtual screening results of the four hits from assay 1. The 
docking scores and ligand efficiencies of these compounds were taken from 
Glide after being docked into pocket I650. All of the compounds have 
relatively similar docking scores, but ligand efficiencies have a greater range 
of variation. Ligand 4027697 has both the best docking score and best ligand 
efficiency. 
 
LIGAND ID DOCKING SCORE LIGAND 

EFFICIENCY 

4027697 -7.814 -0.601 
4029496 -7.058 -0.504 
4032547 -6.395 -0.492 
7790626 -7.037 -0.440 
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2.3.3 A second of virtual screening was pursued based on analogs to 
the four hits 
 

We wished to optimize the first cohort of four hits we obtained by 

finding derivative and analogous compounds. Derivative compounds are 

those with the same core scaffold as the parent compound but with 

differences in their functional groups and outer moieties. Analogous 

compounds are those that have a core scaffold with chemical properties 

similar to those of the parent compound, but may have entirely different 

chemical connectivities or compositions.  

 

Figure 2.5 Actives obtained from immunoprecipitation assays and 
second round virtual screening. a) Chemical structures of the four 

compounds determined to be actives in IKKα inhibition assays. b) Schematic 

of the ChemBridge similarity search protocol detailing the differences 
between a derivative and an analog of a given compound.  

 

For each of the four parent compounds, we first searched for these 

types of similar compounds on the ChemBridge database. We also believed 

that it we wanted to maintain the chemistry of the core scaffold of the four 
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parent compounds, so we decided to search for derivatives before searching 

for analogs. In order to obtain between 50 and 200 derivatives of each parent 

compound, we set the similarity search level at 60%. For parent compound 

4032547, a similarity search at that level yielded only 10 results, making it 

necessary to search for analogs of that compound. Our search produced a 

total of 401 compounds. 

 

Table 2.3 Similarity searches from the four hits. The four hits from assay 
1 are the first round of hits, and from those, we obtained additional 
compounds to virtually screen. The method and number of compounds for 
obtained from each search are shown.   
 
LIGAND ID  METHOD OF SELECTION NUMBER OF COMPOUNDS 

4027697  Similarity search  71 
4029496  Similarity search 152 
4032547  Analogs  120 
7790626  Similarity search 58 

 

 

Since we had found the I650 pocket to be the most promising, we 

decided to continue prioritize that pocket over the T184 pocket. We 

performed another round of flexible virtual screening on the pocket with the 

new set 401 compounds, using the same methods as above. 

We then examined the virtual screening results of these second-round 

compounds. The docking score of each of the best second round compounds 

was better than that of the parent compound. Therefore, we can see that the 

top docking scores were improved by finding these derivative and analogous 
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compounds. This set of compounds represents one step in the process of 

optimizing our hits into leads.  

Furthermore, we observed the major interactions of these second-

round compounds. We found that they bonded to several of the same 

residues as the parent compounds did: D490, R493, Y494, and S504. In 

addition, though, they also formed new interactions. The new interactions 

that came up most frequently were W511, Q497, and Q657. Selected data of 

the interactions is shown in the table below. Therefore, our future assays will 

be focused on comparing that interact with those residues in the virtual 

screens, and comparing them against those without such interactions, to 

determine if the predicted interactions play a significant role in ligand binding. 

  

Table 2.4 Virtual screening results of round 2 of screening. The best 
docking score of each set of children compounds from the first four hits is 
shown. Additionally, residues with which those best scoring compounds 
interact are shown.  
 
PARENT 
COMPOUND 

DOCKING 
SCORE OF 
PARENT 
COMPOUND 

BEST DOCKING 
SCORE OF 
SECOND-ROUND 
COMPOUNDS 

INTERACTING 
RESIDUES 

4027697  -7.814 -8.032 Y494, Q497, 
W511, Y651 

4029496  -7.058 -8.616 D490, R493, Y494 
4032547  -6.395 -8.354 Y494, S504 
7790626  -7.037 -8.325 D490, Q647 
 

2.4 Conclusions 

The two rounds of virtual screening we completed allowed us to focus 

on two pockets in IKKα to develop a targeted inhibitor. As we continue this 
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work, we will go also return to the T184 pocket. Targeting this pocket would 

be especially exciting because it would allow us to go after an interface that 

would be directly involved in the formation of the IKKα hexamer. Although the 

discovery of four hits from the first round of assays was promising, we 

believe that there are many other methods which could be applied to give us 

further insight into IKKα-ligand interactions. For example, broad-scale 

insights into the dynamics of IKKα and, on the canonical pathway, IKKβ16, 

have been recently published could provide us with additional conformations 

of the protein to target5. Even more precisely, we could run molecular 

dynamics simulations on an IKKα chain, dimer, or the hexamer to access 

additional conformations.   
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Chapter 3 

Elucidation of the Dynamics of NF-κB-Inducing Kinase and the 
Discovery of a Potential Allosteric Site 
 

Abstract 

NF-κB-inducing kinase (NIK) is a signaling protein in the non-

canonical NF-κB pathway whose up-regulation has been linked to 

dysregulation of cell death. This work presents all-atom molecular dynamics 

(MD) simulations initiated from crystal structures of NIK bound to active site 

inhibitors. These simulations reveal that the active site adopts two major 

conformations. Furthermore, simulations reveal that the active site inhibitors 

not only obstruct the ATP binding pocket, but also alter the conformations in 

NIK domains critical to ATP binding and catalysis. In addition, in our 

simulations, a previously developed lead compound was serendipitously 

displaced from the active site into a previously unexplored pocket, near 

R509. We initiated further trajectories of NIK from the frames containing the 

R509 pocket and reveal here that this pocket to be a potential allosteric site. 

 

3.1 Introduction 

3.1.1 The role of NIK in the non-canonical NF-κB pathway 

The non-canonical nuclear factor κB (NF-κB) pathway regulates the 

transcription of the protein APOBEC3B (A3B), whose overexpression has 

been linked to oncogenic behavior in cells and has been found in over 50 

percent of breast cancer tumors1–3. Inhibition of the proteins on this pathway 
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could diminish overexpression of A3B and prevent tumor evolution. NF-κB 

inducing kinase (NIK) is a serine/threonine protein kinase, also known as 

mitogen-activated kinase kinase kinase 14 (MAP3K14), that binds to IKKα to 

activate the cleavage of p100 to p52. The p52-RelB complex then transcribes 

the A3B gene. An inhibitor of NIK is then desirable for attenuating overactivity 

of this pathway.  

While active site, or type I, inhibitors of NIK, e.g. 6-alkynylindoline, and 

modified type I inhibitors such as those developed by Castanedo et al. exist, 

type III kinase inhibitors would be more attractive because they do not target 

the active site and can therefore be designed to target this kinase 

specifically4,5. So far, trametinib is the only MAP kinase inhibitor approved by 

the FDA6,7. However, several other MAP kinase inhibitors, such as BIRB 

7968 and XL518/cobimetinib9, are currently in development or were so in the 

past.  

3.1.2 An overview of NIK domains implicated in ATP catalysis 

We performed all-atom molecular dynamics (MD) simulations in 

explicit solvent. The preliminary focus of our analysis of the simulations was 

on residues that have been identified to be important for ATP binding of NIK, 

including R408, F411 and G412, which are found on the NIK phosphate loop 

and form hydrogen bonds with the ATP phosphates10–12. There are the 

catalytically important E440, on the αC helix, which forms a salt bridge with 

K429, and N520, which orients D515, a catalytic base residue11,13,14. In its 

active conformation, when Mg2+ is bound to NIK, the ion chelates with D534 
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and N520. Finally, the activation loop (A-loop) has been reported to play a 

role in substrate binding15. The DFG motif (residues 534-536) at the N-

terminal end of the A-loop, has been scrutinized in past work, as it has been 

hypothesized that when it is in the out conformation, kinases are usually held 

in their inactive state, due to the steric hindrance of the phenylalanine with 

phosphates in ATP8,12,16,17. Furthermore, in the out conformation, the 

aspartate in the DFG motif points outward and away from the ATP-binding 

site7. 

In our studies, we looked at which of these residues and loops the 

inhibitors T28 and 13V interacted with or displaced. From this finding, we set 

out to determine if T28 could act as an allosteric inhibitor when bound to the 

R509 pocket.  

To our knowledge, there are no leads for allosteric inhibitors of NIK. 

The inhibitors targeting the ATP binding site or the active site shared by all 

kinases have been struggling to achieve target specificity due to the large 

number of kinases present in human body7,18,19. Therefore, we desired to 

determine if NIK contained allosteric druggable pockets, and if the R509 

pocket was one of those sites. 

 

3.2 Materials and Methods 

3.2.1 Molecular dynamics simulations and trajectory analysis 

We simulated a total of four systems. Two co-crystal structures of 

inhibitors discovered by Li et al. bound to human NIK served as the basis for 
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our MD simulations: one of the NIK-T28 complex (PDB 4IDT) and one of the 

NIK-13V complex (PDB 4IDV)20. We wished to elucidate the dynamics of 

these holo NIK systems, along with a ligand-less, apoenzyme NIK system 

derived from crystal structure 4IDT, in which we omitted ligand T28 from the 

PDB file. The systems were first parameterized in LEaP using the 

Generalized Amber Force Field21.  

These systems were solvated in cubic TIP3P water boxes using 

AMBER14. The systems were then minimized over 13,000 steps, heated to 

the physiological temperature of 310 K over a period of ps, and allowed to 

equilibrate for 750 ps. When simulation setup was complete, we realized that 

sometime during the parameterization process that in the simulation of the 

NIK-T28 complex, ligand T28 had been serendipitously relocated to the R509 

pocket. Although the ligand was no longer in accordance with its previously 

reported binding pose in the active site, we decided to proceed with the 

simulation of this NIK-T28 R509 system anyway. We later added a simulation 

of T28 when bound to the NIK active site, designated the NIK-T28 system.  

We performed all-atom molecular dynamics (MD) simulations on all 

four of these systems: the apoenzyme, NIK-T28, NIK-13V, and NIK-T28 

R509. For each system, triplicate simulations, each 150 ns, were performed 

to sample the conformational landscape of NIK and of any inhibitor bound to 

it22–25. The active site volume was analyzed with the Pocket Volume 

Measurer (POVME), and clustering was performed based on the active site 

volume and root-mean-squared-deviation (RMSD)26.  
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Further analysis was performed using the GROMACS tool g_covar to 

perform principal component analysis, and several tools in Visual Molecular 

Dynamics to measure atom-atom distances and dihedral angles, and find salt 

bridges27–29. Lastly, FTMap was used to identify changes in druggable hot 

spots in the NIK-T28 R509 system30,31.  

 

3.3 Results and Discussion 

3.3.1 Analysis of the active site suggests differences in behavior based 
on presence and type of ligand 
 

While both ligands T28 and 13V are known to act as type I inhibitors 

by occupying the active site and blocking ATP from binding, we wanted to 

know in greater detail how the presence of these inhibitors would change the 

binding pocket, and to look for differences between the volumes and 

dynamics of the apo and holo pockets. Analysis of the active site with 

POVME revealed that the active site changes conformation differently 

depending on whether an inhibitor is present, and on inhibitor structure and 

position. 
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Figure 3.1 An overview of the domains of interest of NF-κB inducing 
kinase. In orange is the phosphate loop (P-loop), in green, the αC helix, and 
in blue, the activation loop (A-loop). The N-terminus is at the top right in red; 
the C-terminus in the bottom left in magenta. The inset shows the P-loop in 
orange and important catalytic residues in sticks.  
  

As previously mentioned, the volume of the active site of each system 

was measured over the duration of their MD trajectories (Fig. 3.2a). Both the 

NIK-13V and NIK-T28 R509 systems were fairly stable in their volumes over 

the simulation time. We note that the NIK-13V system has a larger average 

volume than that of the apo system. As expected, the NIK-13V active site 

volume was greater than that of NIK-T28 because ligand 13V is larger than 

T28. The active sites of all three inhibitor-bound systems, furthermore, were 

on average smaller in volume than that of the apo system. Additionally, the 

active site volumes of the NIK-13V and NIK-T28 R509 systems 

demonstrated a bimodal distribution. This is an indication that these two 

systems may therefore have two distinct major conformations.  
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Principal component (PC) analysis was performed based on the active 

site conformation for each of the four systems (Fig. 3.2b). We find that the 

existence of two conformations suggested in the volume histogram for the 

NIK-T28 R509 system is also supported by the PC data. Brighter areas on 

the PC plots indicate a greater number of MD frames with an active site 

assigned to those PC values. Therefore, those brightest areas represent 

active sites with stable conformations.  
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Figure 3.2 Quantitative analysis of the NIK active site. a) Histograms of 
active site volumes for the four NIK systems. The apo system is black, NIK-
13V is green, NIK-T28 is blue, NIK-T28 R509 is red. b) Principal component 
analysis of NIK active site volume. The NIK-13V and NIK-T28 R509 systems 
display two distinct regions of PC density. 
 

When we first consider how each system behaves in principal 

component space, we see the relative diffusivity of the graph of the NIK-13V 

system compared to that of the NIK-T28 and apo systems, and we conclude 
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that the active site in the NIK-13V system samples a wider range of 

conformations. The NIK-13V PC plot shows that its active site has sampled 

two distinct areas of PC space, circled in red in Fig. 3.2b. This supports our 

hypothesis formulated from the active site volume histogram: the bimodal 

distribution of those volumes in the NIK-13V system is symptomatic of the 

existence of two major active site conformations. In contrast, the PC space 

covered in the NIK-T28 system is compact, indicating that, compared to the 

apo and NIK-13V systems, relatively little conformational space is covered.  

Lastly, the PC behavior of NIK-T28 R509 system is similar in some 

ways to that of the NIK-13V system. It displays diffusive behavior and two 

clusters of PC density, thereby also indicating at least two active site 

conformations. Changes in ATP-catalyzing NIK domains near the active were 

explored in our analysis, and their relevance to the NIK active site, will be 

discussed later.  

Therefore, from the preliminary observations about the active site 

volume histogram and the PC graphs, we focused our analyses to further 

explore causes of two phenomena: the differences between the orthosteric 

ligand-bound systems and the apo system, and the differences between the 

NIK-T28 R509 and apo systems.  
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3.3.2 When bound to the active site, inhibitors NIK-T28 and 13V induce 
different changes in the phosphate loop 
 

In searching for reasons for the differences between the orthosteric 

ligand systems (NIK-T28 and 13V) and the apo system, we first analyzed the 

dynamics of the phosphate loop (P-loop). Also called the glycine-rich loop, 

the P-loop is a turn of 11 residues fond between the β1 and β2 sheets across 

a variety of kinase families10,26. In NIK, the P-loop consists of residues from 

H402 to E413. Its glycine backbone interacts with the phosphates in ATP, 

stabilizing the substrate’s position in the active site32,33.  

The P-loop revealed itself to be one of the most noteworthy motifs in 

NIK. We quantified changes in the bending of the P-loop through its distance 

from the Cα of K517 (Fig. 3.3a), which, being on a relatively immobile loop on 

the C-terminal end of the αE helix, served as a reference. We also quantified 

those changes through P-loop torsion by measuring the dihedral of the Cα of 

four residues at the apex of the loop, R409, S410, F411, and E413 (Fig. 

3.3b). In our studies, the P-loop was found to undergo a conformational 

change to varying degrees, depending on whether or not the system was 

ligand-bound, and if so, on the type and position of the ligand. In the NIK-13V 

system, the P-loop adopts an outward-facing conformation in which the apex 

of loop bends away from the active site (Fig. 3.3c). Additionally, these 

displaced conformations were found in the representative frames of the 

largest active site volume-based clusters of the system trajectories. 

Therefore, we believe that this conformation is not a rare event, and that the 
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P-loop remains in this conformation for a significant portion of the MD 

trajectories.  

 

Figure 3.3 The phosphate loop changes conformation in different ways 
depending on the ligand bound to the active site. a) Change in distance 
from P-loop residue F411 to K517 across individual trajectories. b) Dihedral 
angle of four residues at the turn of the P loop: R408, S410, F411, and E413. 
c) The orthosteric ligands T28 and 13V induce different conformational 
changes in the P-loop, causing it to adopt displaced or twisted conformations 
and opening up the active site. d) The NIK active site adopts two 
conformations when bound to ligand 13V. Conformation 1 is represented with 
lime-colored carbons, and conformation 2 is represented with magenta 
carbons. 

 

From the quantitative results and visual observations, what we find 

interesting is that the P-loop is in this bent conformation when inhibitor 13V, 

but not T28, is bound to NIK. Ligand T28, when placed in the active site, 

tends to force the P-loop away from the active site and consistently increase 

the F411-K517 distance compared to the distance in the apo system, the 

loop in the NIK-13V system is much more dynamic, alternating between the 
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upward bent P-loop and a downward bent P-loop that traps the ligand in the 

active site. P-loop bending away from the active site, either distal to the 

active site, would be ideal for an inhibitor because the loop glycines, along 

with F411, would be displaced from their position around the active site, 

therefore mitigating their role in stabilizing the phosphates in ATP from 

entering the active site.  

 

3.3.3 The two active site conformations in the NIK-13V system mainly 
result from the bending of the P-loop 

 

Observation of the MD trajectories revealed further behavior about the 

P-loop. The loop also appears to pinch or twist, as illustrated by the dihedral 

angle of the loop. This results in the P-loop taking a half-folded conformation, 

although this conformation does not exactly the conformation adapted 

MAP4K4 in Guimaraes et al.’s study10. This folded conformation may be due 

to the hydrogen bond that forms between F411 and E413 only in the apo 

system, which would be consistent with studies on the correlation between 

having an aromatic residue at that position and P-loop folding10. This 

hydrogen bond may be disrupted when an inhibitor binds in the active site. 

Instead, in the inhibitor-bound systems, a new hydrogen bond forms between 

the backbones of G412 and K430, which then bends the P-loop upwards 

away from the active site.  

Furthermore, we hypothesize that ligand 13V causes conformational 

changes in the P-loop and other residues in the active site area (Fig. 3.3d). 
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These changes lead to the presence of two conformations in the NIK-13V 

system, which were suggested by the active site volume histogram and the 

PC plots. In the first conformation, R408 and M469, the gatekeeper residue, 

move away from the active site pocket. This leads to the opening of pocket 

when both the methionine side chains swing out of the active site. Similarly, 

the side chain of R408, which is needed for nucleotide binding4, is displaced 

and, as such, allows Q479 and K482 to close over the active site. 

Furthermore, we observed that the methoxy tail of 13V interacts with Q479, 

and the side chain of R408 closes over the inhibitor, preventing its exposure 

to solvent. Cowan-Jacob et al. reported that a hydrophobic cage forms 

around inhibitor, holding it in place in the binding pocket32. We believe that it 

is the interaction between inhibitor 13V and R408 that most contributes to its 

higher potency. The ether oxygens of the methoxy tail on 13V make their 

closest approaches to the arginine side chain nitrogens at 4.31 and 5.93 Å, 

and may be able to hydrogen bond with their hydrogens.      

In the second conformation, the side chains of R408 and F411 point in 

opposite directions, preventing R408 from shielding the active site. Q479 and 

R408 have a head-on interaction that allows the space below the active site 

to remain open. Furthermore, the guanidinium side chain of N520 swings 

from an outward-facing to and inward, active site-facing conformation, which 

would allow the side chain to be appropriately oriented to chelate with Mg2+ 

during ATP catalysis. 
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In the NIK-T28 system, the presence of inhibitor T28 causes several 

changes to the residues in the active site. The long side chain of K429 

moves out of the way of the active site, allowing a pocket above the P-loop to 

open. Being blocked by the inhibitor, Q479 is unable to form a salt bridge 

with R408. Overall, though, the active site volume is less in the NIK-T28 

system than in the apo system because the residues in its active site form 

interactions with ligand T28 that draw residues in the active site closer 

together: N520 is another such residue that points towards the active site, 

and whose side chain nitrogen forms a salt bridge with S410 at a distance of 

3.75 Å, which can be compared to the S410-N520 distance in the apo 

system, which never approaches any closer than 6.48 Å. 

 

3.3.4 Interactions between the activation loop and αC helix change when 
an inhibitor is bound 
 

The activation loop (A-loop) can be delimited by residues Q542 to 

T559 in NIK. It consists of a chain of residues found between the αE and αF 

helices12,32. Several residues before its N terminus is the Asp-Phe-Gly (DFG) 

motif, located at positions 534-536 in human NIK.  

Observation of the MD trajectories of the A-loop led to the conclusion 

that the A loop is less mobile in inhibitor-bound systems, while being less 

ordered in the apo conformation. This observation is supported by RMSD 

analysis performed on the residues of the A-loop, as compared to the starting 

conformation. The steady level of the plots of the inhibitor-bound systems in 
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Figs. 3.4a, and 3.4b show that the A-loop stays in one major conformation. 

However, compared to the system in which the ligand binds to the active site, 

the A-loop does not show as much stability in the allosteric system.  

 

Figure 3.4 Changes in the activation loop. a) RMSD of the A loop over 
150 ns of MD simulation. The apo system is black, NIK-13V is green, NIK-
T28 is blue, NIK-T28 R509 is red. b) Distance of the D554-R437 salt bridge 
in the MD simulations of four NIK systems. c) The activation loop can adopt a 
pinched, in conformation, as in the apo system (cyan), or a relaxed 
conformation, as in the holoenzyme systems. The salt bridge is between 
D554 and R437.  

 

The A-loop can adopt in and out conformations4,34. When the A-loop is 

in the in conformation, the portion of the loop between residues K548 to 

G558 is closer to the active site, while when it is in the out conformation, the 
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loop farther from the active site17. The three ligand-bound systems the A-loop 

exhibited a conformation unlike those published in the literature; whereas the 

apo system A-loop was often extended away from the active site in the in 

conformation, the ligand-bound systems, the A-loop would un-pinch and 

flatten, bringing D554 towards the αC helix. Therefore, the A-loop in the 

inhibitor-bound systems appears to moving away from the in conformation.  

In addition, crucial catalytic residues, when compared to the apo 

system, were found to be in positions and orientations that held the A-loop in 

this conformation. A portion of the loop, located from L549 to P555, forms a 

single helical turn, and this turn has been shown to stabilize the position of 

the αC helix by packing underneath it32. 

 We found a residue on this turn to be of special importance, D554. 

This aspartate is crucial because it forms a salt bridge with R437, which 

stabilizes the loop in its hairpin form. Additionally, R437 is on the αC helix, 

and this salt bridge stabilizes the conformations of both this helix and the A-

loop. The αC helix needs to be oriented so that ATP can bind to the enzyme4. 

In the NIK-inhibitor systems, these two residues appear to stay in fairly close 

proximity consistently, while this is not seen in systems lacking a ligand. 

Therefore, we are led to believe that the salt bridge may be stabilized by the 

presence of an inhibitor. Compared to the apo system, D554 was found to be 

consistently closer to R437 in the inhibitor-bound systems (Fig. 3.4b). This 

stabilizing effect may prevent ATP binding by keeping the channel between 

the αC helix and activation loop more constrained.  
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Furthermore, we observed F535, a residue of the DFG motif, which is 

located at the N-terminal end of the activation loop. In the NIK-13V system, 

F535 consistently extended into the hydrophobic pocket adjacent to the 

active site occupied by 13V but not T28, and hydrogen bond analysis 

showed that a hydrogen bond formed between the hydroxy hydrogen of 

ligand 13V and the backbone of F535, this being the same hydroxy group 

that bonds to E440 on the αC helix. 

Lastly, it was found that a long-lasting hydrogen bond is found 

between F535 and E440 in the NIK-13V system. We also found that 

hydrogen bonds formed between the hydroxyl group and both E440 and 

K429, which also helps stabilize the salt bridge. This combination of 

electrostatic interactions stabilizes conformation of the back pocket and the 

binding pose of ligand 13V. Compared to ligand T28, which does not have 

this hydroxyl group extension into the back pocket, it therefore makes sense 

that 13V is a more potent inhibitor. Therefore, ligand 13V not only binds to 

these two back pocket ligands, but disrupts the hydrogen bond between the 

two residues, thereby opening up the pocket.  

 

3.3.5 Binding of T28 to the R509 pocket induces changes in previously 
discussed domains 

 

As previously discussed, the binding of the NIK-T28 to the R509 

system intrigued us, and we wished to understand its effect on the 

conformational space sampled by NIK. We began by searching for druggable 
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hotspots on the NIK surface with FTMap to see if there would be any 

changes the locations of druggable pockets on NIK. As controls, we used the 

4IDT, 4IDV crystal structures. Additionally since we also wanted an additional 

non-ligand-bound crystal structure to compare against the NIK-T28 and NIK-

13V systems, we chose 4G3D, the apo structure solved from human NIK 

with the best resolution4.  

 

Figure 3.5 Comparison of FTMap probes docked to NIK MD simulation 
structures. Probes docked to the apo system are in yellow, and probes 
docked to NIK-T28 R509 system are in green. The P-loop is highlighted in 
purple. The protein traces are taken from apo NIK. Probes docked to the 
centroid frame of the a) most-populated active site volume-based cluster and 
b) most-populated RMSD-based cluster. 
 

We then searched the conformations sampled in our MD simulations 

for druggable regions on NIK. To find representative conformations sampled 

in our MD trajectories, we used RMSD- and active site volume-based 
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clustering. All structures were searched for druggable hot spots using 

FTMap30,31. In the FTMap results obtained from the crystal structures, we 

found that small-molecule probes docked to the active site (or ATP binding 

site) in all NIK-T28, NIK-13V, and 4G3D NIK crystal structures, as can be 

expected.  

From our examinations of the NIK-13V and 4G3D NIK crystal 

structures with FTMap, the region of NIK corresponding to the MEK allosteric 

binding site was also populated by many probes. Furthermore, this pocket 

had probes binding to it in all three of the representative frames from the 

most-populated RMSD-based cluster of each of the 4IDT, 4IDV, and apo 

system MD trajectories, indicating that it would be druggable across a wide 

area of the conformational landscape of NIK. In the active site volume-based 

results, meanwhile, the apo and NIK-13V systems showed druggability in 

that site.  

While comparing the apo and NIK-T28 R509 systems from their 

FTMap results, we noticed that there was a shift in which NIK surface regions 

were druggable hotspots when T28 was bound to the R509 pocket. Our first 

observation was that there was a noticeable shift in the druggable regions of 

the NIK-T28 R509 system compared to the apo system. Even more excitingly, 

in both the RMSD- and active site volume-based clustering, several probes 

from the apo FTMap were usually found in the active site, indicating that it 

would be expected for molecules to bind there.  



61 
 

 

However, in the NIK-T28 R509 system, no probes were bound to the 

active site. This would indicate that the active site was no longer amenable to 

having molecules bind there, and suggests that the binding of T28 to the 

R509 pocket makes binding to the active site less likely. 

 
3.3.6 The phosphate loop, and other catalytic residues, undergo 
conformational changes when NIK-T28 binds to a non-orthosteric 
pocket.  

 

There is further evidence that the binding of T28 to the R509 pocket 

induces conformational changes in NIK. The NIK-T28 R509 active site 

volume histogram shows that there is a bimodal distribution of active site 

volumes in that system. Moreover, the PC plot, compared to the PC graph of 

NIK-13V, more prominently displays two closely-set clusters of PC density. 

As with the NIK-13V system, we set out to explore the reasons for this 

behavior.   
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 Figure 3.6 Comparison of the P-loop in the NIK-T28 R509 and apo 
systems. (a) The P-loop adopts a bent conformation when ligand T28 is 
bound to the non-orthosteric R509 pocket. Residue F411 is depicted in sticks 
to serve as a reference for comparison between the NIK-T28 R509 and apo 
systems. (b) Comparison of the P-loop to αD helix distance in the NIK-T28 
R509 simulation separated by trajectory, with the average distance in the apo 
simulation as reference. (c) Comparison of position of residues K429 and 
E440. K429 normally stabilizes the αC helix, shown at right. (d) The 
significant change in the K429-E440 distance in the NIK-T28 R509 trajectory 
suggests that the more mobile αC is displaced in the NIK-T28 R509 system. 

 

In our observations of the P-loop, we noticed that NIK-T28 R509 has a 

dihedral similar to that of the NIK-13V system (Fig. 3.6a), providing further 

evidence that the P-loop undergoes similar conformational changes in those 

two systems. The distance between the P-loop and the stable αD helix is also 

noteworthy. The distance is more stable during a given trajectory in the NIK-

13V system, indicating less fluctuation and bending in the P-loop. However, 
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the amount of P-loop bending varies widely between trajectories (Fig. 3.6b). 

Therefore, while the P-loop appears to rapidly change conformation—from 

bent to unbent—in the NIK-13V system, it more steadily remains in one 

conformation in the NIK-T28 R509 system, and can stay in the bent or 

unbent conformation for  the entire 450 ns-duration of simulation.  

Following the conformational changes we saw in certain catalytic 

residues in the NIK-13V systems, we wanted to know if those changes also 

occurred in the same residues but with an allosteric inhibitor. Because of its 

role in ATP catalysis and its differences in orientation in the NIK-13V system, 

we decided to examine the behavior of N520 in the NIK-T28 R509 system as 

well. We tracked this residue in the NIK-T28 R509 system as well and 

compared it to its behavior in the apo system. We saw that its guanidinium 

group shifted away from the active site. This shift also coincides with the 

increase in distance between K429 and E440. 

In addition to changes in the A-loop, allosteric kinase inhibitors have 

been reported to shift the αC helix (Jia) into an inactive conformation because 

the correct positioning of E440 on this helix is necessary for ATP catalysis 

(de Leon-Boenig). This glutamate aids in the catalysis of ATP through its salt 

bridge with K429, and positions the lysine to form dipole-dipole interactions 

with the alpha and beta phosphates of ATP12. In our simulations, the lengths 

of the salt bridge in the NIK-T28 and NIK-13V systems appear to be relatively 

similar to each other. However, the distance between E440 and K429 

fluctuates more in the NIK-T28 R509 system than in the orthosteric ligand 
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and apo systems (Fig 3.6c), which would preclude salt bridge formation 

between those two residues. This, in turn, would prevent the αC helix from 

being in a position amenable for ATP binding. In our NIK-T28 R509 

simulations, because of the shifting of the N-terminal end of the αC helix, 

E440 moves farther away from K429, displacing it from the position required 

to catalyze ATP binding (Fig. 3.6d). Therefore, we see this as another piece 

of evidence that the placing an inhibitor in the R509 pocket may induce NIK 

to be an allosteric state, and that R509 is a potential allosteric pocket.  

 

3.4 Conclusions 

In order to rationally design a NIK inhibitor, we strived to find NIK 

conformations that are not represented in crystal structures. By running MD 

simulations of NIK, we have found changes in the apo active site that tell us 

about the nature of NIK.  

Although both ligands 13V and T28 occupy the active site, they cause 

dissimilar changes in NIK motifs necessary for ATP-binding. Most notably, 

T28 causes the P-loop to be drawn in towards the active site, while 13V does 

the opposite. 

We have also found a potential allosteric site. Targeting this allosteric 

site yielded changes to the P-loop, A-loop, and αC helix that are suggestive of 

an inactive NIK conformation. We therefore hypothesize that T28 can 

allosterically inhibit NIK. Further work needs to be done to understand the 

mechanisms behind the allosteric effects of ligand T28 on the active site.  
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This chapter, in full, is in preparation for publication of the material as 

it may appear in “Elucidation of the Dynamics of NF-κB Kinase and the 

Discovery of a Potential Allosteric Site” by Chan, Garrett J.; Demir, Özlem; 

Schiffer, Jamie M.; and Amaro, Rommie E. in 2017. This chapter is included 

with the permission of all of the authors. 

 

3.5 Supplementary Material 

Supporting Movie 3.1 Location of inhibitor T28 when bound to the NIK R509 

pocket 

Supporting Movie 3.2 Bending of the NIK P-loop due to the binding of R509  
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