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Nosocomial infections account for 5 to 10% of all infections in the United States 

and act as a continuous reservoir for the maintenance of antibiotic resistance.  

Development, testing, and implementation of broad antimicrobial deployment strategies 

are crucial in the proper management of resistance over the long term.  We present a 

population-based model which describes the spread of variably-resistant nosocomial 

pathogens amongst patients in an intensive care unit of a hospital.  Our purpose is to 

identify treatment strategies which maximize the number of uninfected individuals while 



 

 

xi 

maintaining low rates of multi-resistant infections.  This was accomplished via the 

expansion of a previously published model by introducing pharmacodynamics, 

pharmacokinetics, and cross-resistance tradeoffs.   Most importantly, we depart from  this 

model’s predecessors by treating the minimization of  resistant-infected individuals as 

secondary to maximizing uninfected.  We confirm that the benefit of a random mixing 

regimen over periodic cycling is minimal, while a hybrid of the two is slightly more 

effective.  Finally, we show that time- and probability-based strategies are inferior to 

Multi-Drug cocktails in their ability to exploit resistance-associated fitness tradeoffs; 

thereby selectively favoring susceptible genotypes.  These results provide an impetus to 

identify Multi-Drug cocktails which serve to minimize the incidence of multi-resistance 

while still maintaining curing efficacy. 
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Antibiotic resistance has been a widely publicized and studied phenomenon since 

it was first discovered in a clinical setting shortly after World War II [1].  Decades of 

antimicrobial misuse, precipitated by a fundamental naiveté towards their selective 

power, has led to a public health crisis that has only recently gained the necessary 

scientific and financial support to address it [2].  A recent flurry of theoretical research 

has been directed at identifying and comparing different antimicrobial deployment 

strategies [3-8].  Ecological theory dictates that the key to controlling resistance comes 

through forcing pathogens to cope with maximal environmental heterogeneity, thereby 

favoring the less-specialized sensitive genotypes [3]. This principle finds a variety of 

strategic applications to agriculture, oncology, and infectious diseases [9-11].  

Unfortunately, these systems may be sufficiently divergent such that the identification of 

a single optimal treatment strategy is unlikely.  Hospital-acquired, or nosocomial, 

infections propagate in an ecological niche brimming with selective pressure from 

antibiotics and are attributed with 2 million infections and 99,000 deaths per year [12].  

Beyond its significance to human health, the inherent clinical nature of nosocomial 

infection allows for the development and application of well-controlled experiments.  For 

these reasons, we believe this system to be ideal for the application of a mathematical 

model directed toward the ultimate goal of informing clinical resistance management 

experimentation. 

[2 – Relevance & Model Teaser] 

In March 2011, the Interagency Task Force on Antimicrobial Resistance released 

an action plan draft for combating the threat; wherein it is suggested that increased 

surveillance and research-guided regulations will play a crucial role in the management 
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of antibiotic resistance [12].  Currently, ward- or hospital-wide antibiotic usage and 

surveillance protocols are uncommon but ambitious plans are currently in development 

[13].  Physicians currently lack the necessary infrastructure to inform their primary 

treatment based upon the prevalence of resistance in their own patient, let alone their 

immediate community [14].  We believe that theoretical modeling can provide a rubric 

with which to compare forthcoming clinical surveillance information.  For example, a 

recent stochastic epidemiological model suggests that the cyclical usage of broad 

spectrum antibiotics can be extremely effective when combined with coarse data about 

the system’s dynamics [5].  Here, we expand a population-based model of antimicrobial 

resistance in a hospital to compare treatment strategies such as mixing, cycling, and 

multi-drug cocktails [3].  This is accomplished via the implementation of a 

pharmacodynamic function, directed at resolving complex antimicrobial interactions, 

which is further modified to enforce a range of cross-resistance fitness tradeoffs [15].  

Finally, we suggest that comparison of treatment strategies should be based upon the 

asymptotic proportion of uninfected individuals while taking the proportion of multi-

resistant individuals into special consideration. 
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Materials and Methods 
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We consider a population-based model of ODEs which describes a hospital’s 

Intensive Care Unit (ICU).  Two antimicrobial agents, drugs A and B, are employed and 

assumed to be of different classes and symmetrical efficacy.   Patients can be colonized 

by four nosocomial pathogens: sensitive to both A and B (s), resistant to A and sensitive 

to B (r1), resistant to B and sensitive to A (r3), and resistant to both A and B (r2).  The 

patient population is subsequently compartmentalized into five states of colonization: s-

colonized (S), r1-colonized (R1) r2-colonized (R2), r3-colonized (R3) and uninfected (X). In 

order to minimize stochastic effects, we assume infinite population size and represent the 

population as a system of five ordinary differential equations (Eq 1a-e, Fig 1). 

                                                        (1a) 

                                                           (1b) 

                                                              (1c) 

                                                     (1d) 

                                                            (1e)  

                    −           –                             
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Figure 1:  Stylized representation of the population-based ICU model.   

Each node is a population of patients.  Red arrows indicate transition from infected to 

uninfected states by drug or immune clearance.  Yellow arrows indicate primary 

infections.  Black arrows indicate resistance character-state changes via mutation or 

horizontal gene transfer.  Green arrows indicate competition via secondary infections.  

Note that competition during secondary infection is a stalemate between resistant 

genotypes because cost is uniform. 

 

Table 1: Table of Constant and Variable Definitions 

µ Rate of resistance acquisition ψmax Maximum growth rate w/o drugs 

k Bacterial response time to 

changes in drug concentration 

ψmin Minimum growth rate, in the presence 

of extremely high drug concentrations 

γ Immune clearance rate G() Strain-specific growth function 

β Transmission rate  α Cross-Resistance fitness tradeoff 

parameter 

σ Rate of secondary infection  c Cost of maintaining resistance 

π Rate of drug switching 
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Maintenance of drug resistance characters is metabolically costly and affects a 

genotype’s ability to compete with its wild-type relative.  Cost (c) is manifest in our 

model when two genotypes compete for the same host; which occurs at a frequency given 

by the rate of primary and secondary infections  β  σ    Note that cost is uniform for all 

resistant genotypes in order to emphasize the impact of drug multi-resistance tradeoffs 

discussed below.  We assume no pre-existing resistance but allow it to evolve at a rate 

given by  .  This is uniform between resistance characters to simulate that resistance can 

evolve by mutation or via horizontal gene transfer.  Finally, we assume that a nosocomial 

pathogen is highly virulent towards an immunocompromised patient hospitalized in an 

ICU and thus primary infection is assumed on contact (β=1).   The system has been 

closed to patient influx/efflux in order to focus on drug- and strategy-mediated 

competition.   

We further depart from our model’s predecessors by replacing the drug clearance 

terms with net bacterial growth rates      .  Growth rates are determined by a 

pharmacodynamic function that is based on published Emax models and time-kill data.   

         
             

      

       
 

 

 
      

       
 

 

  
    
    

               

     

        (2) 

If a genotype’s Minimum Inhibitory Concentration (MIC) is equal to the drug 

concentration the pharmacodynamic function will yield zero net growth.   

 
 

      

       
   

       –               (3) 
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This function is then modified by applying a cross-resistance scaling parameter (α) to the 

MIC of the multi-resistant strain (r2). 

     
     

             
      

         
 

 

 
      

         
 

 

  
    
    

      (4) 

This parameter denotes the fitness tradeoff associated with the simultaneous maintenance 

of multiple resistance characters. Note that the cross-resistance tradeoff has a range 

defined by            , thereby allowing the fitness tradeoff to capture all genotypes 

contained in the linear variable space between full susceptibility and full resistance [Fig 

2]. 

An antimicrobial cycling strategy is modeled by allowing each strain two 

different net bacterial growth rates that are alternated over a given periodicity (π).   

   
             –                    (5a) 

    
             –               (5b)                                                                                 

Mixing strategy assumes random drug selection (A or B) and therefore the drug usage 

ratio within the ICU                remains at 1.  In contrast to cycling, we assume that 

each patient will maintain their current treatment until cleared to the uninfected state.  We 

then develop a hybrid of the aforementioned strategies to exploit the increased temporal 

and spatial heterogeneity that they afford. This strategy consists of a patient population 

that is first divided and started on a broad spectrum antibiotic (A or B). Patients’ 

treatments are then periodically cycled (π) on a synchronized schedule               

  .   This requires the expansion of our model to allow for two populations that are 



9 

 

  

 

defined by the infecting strain as well as the drug treatment group (e.g.    
        

  ; ODEs 

not shown).  

We consider two theoretical Cocktail regimens wherein both drugs are 

administered simultaneously.  Note that under these regimens, drugs are administered at 

one half dosages with respect to all other treatment strategies.  Put another way, the 

cumulative amount of administered drugs remains constant across all treatment regimens.  

Separate Cocktail         is defined as the net bacterial growth rate   
   

  less the effects 

of each drug as determined by the pharmacodynamic function.  We believe this function 

captures drug pairings which have a non-interactive effect of Loewe’s Additivity. 

   
            

             
     

   
 
  
 

 

 
     

   
 
   

 

  
    
    

             
  

   
             

     

    
   

 

 
     

    
   

 

  
    
    

             
  

   (6) 

Combined Cocktail         , differs in that it assumes that the paired drugs limit each 

other’s efficacy and are thus combined into a single pharmacodynamic function.  We 

believe this function captures antimicrobial pairings which de-couple different cellular 

metabolic function; thereby resulting in a concerted but attenuated antimicrobial effect. 

   
             

             
     

   
 
  
 
     

    
  
  

 

 
     

   
 
    

     

    
   

 

  
    
    

     (7) 

In order to guide our analysis of simulation data, we developed a more simplistic 

fitness model based on net bacterial growth rates determined by the pharmacodynamic 

function.   Genotypic fitness under the periodic cycling regimen is defined as the 
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geometric mean of net bacterial growth rates when exposed to each drug individually (8).  

Fitness under random mixing is given by the arithmetic mean of a strain’s growth rates 

when exposed to each drug individually (9).  Fitness under cocktails is defined by the 

growth rate determined by each type’s pharmacodynamic function (10-11).    

    
     

     
     

  
          (8) 

    
        

 

      
 

               (9)  

      

        
                        (10) 

      

    
    

   
                     (11) 

Given that net bacterial growth rates can be negative, each component is then turned into 

an exponential function, thereby avoiding irrational numbers.  These fitness calculations 

allow a rough insight as to how different strains will fare, in relation to one another, in 

the presence of drugs on a specific treatment schedule. 

Analysis and comparison of treatment strategies were conducted via simulations 

performed in MatLab (v.7.10.0.499 - R.2010a, MathWorks Natick, MA) utilizing the 

built-in numerical ODE solver (ODE45).  The asymptotic proportion of uninfected 

individuals (  ) was used as the primary metric of comparison with careful consideration 

given to the asymptotic proportion of multi-resistant infected individuals (  2).  Time-

dependent simulations were run over an interval such that                      .  

       2  are considered to be the mean of the population proportions over the last 10
2
 time 

intervals, which we define as a 24-hour day.   
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Figure 2: Range of possible cross-resistance fitness tradeoffs for r2 

Variable cross-resistance places the multi-resistant strain’s (r2) level of resistance 

anywhere along the continuum indicated in red.  This range represents all genotypes 

between the susceptible and super-resistant types. 
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I. Model Generalizations 

A.        Cross-Resistance Tradeoffs 

Central to our analysis of various treatment regimens is determining the effect of 

multi-resistant strains in competition with less specialized genotypes.  More pointedly, 

we would like to elucidate the role of variable cross-resistance as it pertains to 

competition under different treatment strategies.  Simulations of our model indicate a 

hierarchy of treatment regimens when multi-resistant strains are not allowed to evolve 

[Fig 3].  Upon introduction of a competitive multi-resistant genotype, we begin to see a 

divergence in the efficacy of different strategies because of the dominant role a multi-

resistant strain (r2) commands when cross-resistance tradeoffs allow [Fig 4].  We 

identified tradeoff thresholds which allow r2 a sufficient fitness advantage such that it 

precipitates a restructuring of the patient distribution.  Our simulations indicate that each 

strategy has two corresponding  -thresholds where the level of cross-resistance: (  ) 

Allows r2 to compete for hosts and maintain a population at equilibrium.  (  ) Allows 

fixation of the r2 genotype thereby rendering a change in strategy futile [Fig 5].  For all 

tradeoffs where       
      the proportion of uninfected individuals remains static [Fig 

6a].  When       
     , the benefit to the proportion of uninfected individuals undergoes 

diminishing returns [Fig 6b].  Finally, as     approaches its maximal value, all but one of 

our cocktail strategies approaches the control of the single drug treatment [Fig 6c].   
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Figure 3: Proportion of uninfected individuals under various 

strategies without multi resistant genotypes. 

Histogram indicating a hierarchy of treatment efficacy when multi-

resistant strains are not allowed to evolve. Cocktail and Mixing are 

average asymptotic proportions while Hybrid and Cycling long-term 

averages when initial dynamics are ignored. 

 

Figure 4: Stylized hierarchy of various treatment strategies. 

Various treatment strategies’ proportion of uninfected individuals.  Under the 

cycling strategy, switching periodicity (π) has a large impact on the efficacy 

of treatment.  Under Mixing, the ratio at which drugs are employed plays a 

decisive role.  Therefore, Hybrid maintains the same limitations. 
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[2 – No Treatment Baseline] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proportion Uninfected

(X)

Cross-Resistance Tradeoff 

α

r2 can compete     r2 cannot invade r2 is dominant 

Figure 5: Proportion of uninfected and multi-resistance competition. 

This shows the general features of all treatment strategies when the 

uninfected population is considered with respect to cross-resistance 

fitness tradeoffs.  As tradeoff increases, the multi-resistant strain becomes 

increasingly competitive.  
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Figure 6: Proportion of uninfected under all treatment strategies. 

 

Proportion of uninfected individuals under all strategies with respect to cross-

resistance tradeoff. (A) Indicates the range of tradeoffs which do not impact the 

uninfected proportion  (B) Highlights that the benefit to the uninfected 

population due to different treatment strategies undergo diminishing returns as 

the tradeoff increases. (C) Shows that a change in treatment strategy at high 

tradeoff values is futile, unless powerful cocktails are employed. 

6a 6b 6c 
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B.        No Treatment 

To assess various treatment strategies we begin by obtaining measurements of the 

asymptotic proportion of all patients in the specific case of no drug treatment.  We intend 

this to act as a baseline of comparison as well as a control of the model’s competition 

dynamics.  When no drugs are employed, each genotype has an equivalent net growth 

rate but differ in overall fitness due to the cost of resistance.    Because the cost of all 

resistance characters are uniform, when no drugs are employed we expect the resistant 

populations to be competitively excluded and only appear at the rate of resistance 

acquisition     .  We find that the asymptotic proportion of uninfected individuals is 

given by                 , or the clearance rate of a patient’s immune system less the 

net bacterial growth rate of the susceptible strain in the absence of drugs.  The result of 

untreated nosocomial infections in an intensive care ward can be seen as a worst case 

scenario, therefore we assume       to be equal to that of   .  Put another way, the net 

bacterial growth is equal to the immune clearance rate.  As a result, a lack of treatment 

results in the proportion of uninfected individuals dropping to zero. 

C.       Single Drug Treatment 

If a single broad spectrum antibiotic is regularly employed without surveillance 

we assume the resistant mutant to be under powerful selection until its minimum 

inhibitory concentration (MIC) meets the drug concentration employed.  The singly-

resistant r1 has an MIC equal to the treatment dosage; we assume symmetrical levels of 

resistance between r1 and r3, therefore          .   We find that the mutant resistance 

allele quickly sweeps to fixation amongst infected patients under a single-drug treatment 

regimen.  Such a strategy represents a worst possible treatment strategy wherein an 
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infected patient’s fate would be entirely dependent upon their compromised immune 

system to clear the infection.  Our simulations indicate that the drug A-only regimen 

maximizes the     patient state with only a small proportion of uninfected individuals.  As 

with no treatment, we expect                  . However the proportion of uninfected 

individuals under single treatment is greater than that of no treatment because the net 

bacterial growth rate does not negate the effect of immune clearance.  This is a result of 

the drug’s bacteriostatic effect when the genotype’s MIC reaches the dosage 

concentration        ; See Method; Eq.3).   

II. Time- and Probability-based Treatment Strategies 

A.       Cycling 

Using a single drug indefinitely results in an unacceptably high proportion of 

resistant-infected hosts. The intuitive and most commonly practiced response is to then 

switch the primary broad spectrum antibiotic to reduce the frequency of resistance. Our 

model indicates that after such a change there is an immediate, though fleeting benefit to 

the proportion of uninfected individuals as the dominant population feels the full force of 

the secondary drug [fig. 7c].  For example, if an ICU were to switch drugs every 30 days 

we expect the uninfected population to reach a minimum in less than three weeks.  In 

addition, the average proportions of the resistant-infected patients are roughly equivalent 

when averaged over the long term (   
   

       
   

) [Fig. 7b]. When cycling antimicrobial 

agents on a pre-determined schedule,         is maximized when the drug rotation interval 

( ) is shortest, regardless of the imposed tradeoff. In addition, as       we observe that 

                 (i.e. as the drug rotation interval increases, the strain resistant to the 

currently deployed drug experiences the same environment it would under a single drug 
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regimen) [Fig. 7a, 8a-c].  As with other strategies,    
   

  is of little concern until the 

cross-resistance tradeoff of r2 surpasses the first fitness threshold        .  Beyond the 

second threshold, which allows for fixation of the r2-genotype, the short-lived benefit that 

      receives from switching disappears because it is equally fit under both 

environmental conditions            

B.      Random Mixing and Cycle-Mix Hybrid 

Previous theoretical models directed at identifying optimal treatment strategies 

have found little benefit to cycling protocols over that of mixing.  Periodic cycling can be 

understood as a discrete subset of outcomes within the random mixing strategy itself, and 

therefore optimal cycling essentially is optimal mixing.  We observe that optimal periodic 

cycling results are nearly indistinguishable from that of optimal mixing. A hybrid of the 

two strategies (see Methods) yields only a slight improvement over both random mixing 

and infinitely rapid cycling in terms of the uninfected population [Fig 9].  We also find 

that this hierarchy is reflected in each strategy’s   -threshold [Table 1].  Thus the cycling 

strategy allows the multi-resistant allele to rise to fixation with a slightly weaker tradeoff 

than under the mixing strategies.  Note that the only functional difference between the 

hybrid strategy and its competitors is increased environmental heterogeneity due to 

forced periodic cycling of an already randomized treatment.    
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Figure 7: Proportion of populations in response to cycle periodicity. 
 
Proportion of various patient populations with respect to the drug-
switching rate. (A) Indicates that as period increases, the proportion of 
uninfected individuals asymptotes with that of single drug treatment.  
(B) Shows that the R1 and R3 population, under cycling, are mirrors of each 
other and maintain the same average proportion over time. (C) Highlights 
the momentary benefit that the uninfected proportion gains immediately 
after a switch. 
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Figure 8: Proportion of uninfected in response to cycling periodicity 
 
Proportion of uninfected patient population in real-time and average over 
the long term. (A) Shows the proportion of uninfected individuals when 
drugs are switched multiple times each day (π = 0.1).  Note that it 
asymptotes below the average attained by Mixing. (B) Shows the 
proportion of uninfected individuals when drugs are switched every three 
weeks (π = 21). (C) Indicates the proportion of uninfected individuals 
when drugs are switched every 100 days (π = 100). 
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      Cycle Mixing 

Fitness (net growth)  0.500 0.565 

Simulation 0.660 0.660 

Discrepancy 0.160 0.095 

Figure 9: Proportion of uninfected in response to cycling, mixing, and hybrid. 

The proportions of each antimicrobial deployment strategy under optimal conditions 

indicates a clear hierarchy with respect to the uninfected population.  Note that the 

differences shown may be negligible in small hospital wards. 

Table 2: Tradeoff thresholds for optimal Mixing & Cycling. 

When secondary infections are not taken into account, as is the case with the 

simplistic fitness model, periodic cycling allows r2 to achieve dominance with a 

more readily attained cross-resistance tradeoff (lower α).  When the full 

simulation is taken into account, this difference disappears.  The discrepancy 

highlights the inflated role of secondary infections under the periodic cycling 

regimen. 
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III. Multi-Drug Cocktails and Tradeoff Thresholds 

A.        Comparison of Multi-Drug Cocktail Strategies 

Maximizing antibiotic heterogeneity that nosocomial pathogens experience over 

time is of crucial significance in regards to curing patients and minimizing resistance.  

We suggest that forcing a pathogen to cope with the antibiotics of two environments 

simultaneously may be the optimal path because it fosters intraspecific competition. 

Therefore, we investigate two competing strategies in order to capture drug pairings 

which are dependent and independent of each other (Ckcmb and Cksep, respectively) [Fig 

10].  We find that an ICU which employs Cksep will vastly improve the proportion of 

uninfected individuals; however, for a given range of tradeoff Ckcmb also represents a 

significant improvement over previously described strategies                     
 

          [Fig. 4].  We find that under both cocktail strategies the tradeoff thresholds which 

allow r2 to survive      and to thrive      are lower than previously described strategies.  

This difference is most pronounced with Ckcmb given that when     ,  r2’s primary 

competitor is that of the susceptible strain, thereby requiring the least costly cross-

resistance tradeoff threshold to dominate. 
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Figure 10: Net growth of multi-resistant genotype in response to tradeoff. 

Under the separate cocktail, and for all cross-resistance tradeoffs, the net growth 

rate of the multi-resistant strain is significantly lower than under the combined 

cocktail.  In addition, note the lack of linearity as the tradeoff becomes more 

costly.  
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B. Beneficial Cross-Resistance Tradeoffs 

In order to algebraically solve for fitness thresholds under the Ckcmb strategy we 

must first make a few assumptions about the effects of fitness on competition.  We 

assume that, given rough measurements of pharmacodynamic fitness, certain genotypes 

will be competitively excluded under specific treatment strategies.  We also assume that 

the role of background resistance acquisition at equilibrium is negligible.  Finally, we 

assume that a tradeoff may exist which favors the susceptible over the multi-resistant 

genotype.  If such a tradeoff exists, we ask what value of    is necessary for r2 to break 

free of its competitive exclusion by s                         If we use our system of 

ODEs and invoke the aforementioned assumptions we find that this will occur if the 

tradeoff is such that 

                              .  Therefore we can say that only the 

susceptible genotype is capable of growing when the cross-resistance tradeoff falls below 

the first threshold           . Under these conditions, our model is therefore reduced 

to two populations and is defined by the following system:  

       
  

γ   

 
           (1a)  

                   
          

         (1b) 

                                      (1c) 

We then simplify and algebraically solve for the uninfected individuals and find that the 

solution, at equilibrium, exactly replicates the asymptotic proportion of uninfected 

individuals given by the simulation model.   

[7 – Algebraic –          ] 
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C. Intermediate Cross-Resistance Tradeoffs 

Next, we consider the ranges of cross-resistance tradeoffs which allow for 

competition between genotypes under the Ckcmb treatment regimen          .  Given 

the prevalence of competition between genotypes in ICUs, this range of cross-resistance 

tradeoff is most likely to capture reality.  Under these conditions, our system contains 

three populations of patients and is thus defined by the following algebraic system:  

                      (4a) 

    
                

   
        (4b)  

     
          

   
         (4c) 

Again, by ignoring background mutation and assuming equilibrium we can then come to 

a quadratic solution given by (5). 

                                                             
      (5) 

The result of this algebraic solution is identical to the simulation outcome for the 

equivalent range of cross-resistance tradeoffs.  

D. Detrimental Cross-Resistance Tradeoffs 

Now that we’ve determined when it is most effective to employ the Ckcmb 

treatment strategy we must also identify the cross-resistance threshold that might render it 

ineffective or dangerous     .  This would occur when r2 has a cross-resistance tradeoff 

such that it can competitively exclude s.  Put another way: When will    be sufficiently 

low as to allow s to invade an r2-dominated ICU                      ?  Using the 
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same assumptions as for    , we can also solve for     and find that it occurs when the 

inequality given by (2) is satisfied. 

    
                            

    
       (2)  

Thus we can conclude that r2 will competitively exclude all other genotypes when its 

tradeoff exceeds the    -threshold.  The proportion of uninfected individuals is then given 

by (3). 

             
 
     

 
     

      
        (3)    

While this strategy achieves a higher proportion of uninfected individuals than other 

single-drug strategies, note that multi-resistance is fixed beyond this threshold.   
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IV. 

 

Discussion
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Theoretical studies which provided the framework for our research suggest that 

periodic cycling of antibiotics provides no practical benefit over random mixing.  Such 

a determination is made based on the goal of minimizing the spread of resistant-

infected patients.  The expansion of this framework in the direction of optimal control 

theory has shed light on the value of informing the cyclical use of antibiotics via 

resistance surveillance [5-7].  We feel that our model complements these studies by 

highlighting the value of multi-drug cocktails through the implementation of 

concentration-dependent bacterial growth and cross-resistance tradeoffs.   We would 

like to guide the use of optimal cocktail strategies based on the aforementioned fitness 

thresholds.  If system surveillance indicates that multi-resistance is evolving at a high 

cross-resistance tradeoff, such that      , then we would advocate the Cksep strategy.  

This would maximize the proportion of uninfected patients with minimal risk of a 

dominant multi-resistant strain evolving.  If surveillance indicates that the tradeoff lies 

somewhere between the two thresholds, therefore indicating an increased risk of a 

competitive multi-resistant genotype, it may be best to employ the Ckcmb strategy.  If the 

tradeoff surpasses the threshold which allows competitive exclusion by r2 , more 

information is needed to discern optimality due to the risk posed by a dominant multi-

resistant genotype.  However, there is a significant range of fitness tradeoffs where the 

Ckcmb strategy improves upon time-dependent and probability based strategies.   

 Clinical manifestations of nosocomial pathogens with variable resistance 

characteristics are unlikely to manifest identical morbidity and mortality among their 

hosts.  Reliance upon the level of resistance might therefore allow for a situation where 

the incidence of resistance is low but favors a strain where mortality is all but 
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guaranteed.  When considered, this metric requires increasingly complicated methods 

of analysis in order for optimality to be discerned in a clinical setting, let alone 

achieved.  We therefore use the proportion of uninfected patients as the standard by 

which treatment strategies are compared.  There is a similar danger with this metric, in 

that we may optimize the amount of uninfected individuals by employing a strategy 

which favors multiply-resistant strains; thereby limiting patient recovery due to a lack 

cost-effective treatment options [16].  Can we accept an antimicrobial deployment 

strategy which effectively dooms the unlucky few to a grim prognosis that is largely 

dependent a compromised immune system?  Public opinion will likely play a greater 

role in answering this question than medical professionals and theoreticians.  We 

suggest that the primary means of comparison be based on the proportion of uninfected 

individuals at equilibrium, but warn that the level of multiple resistance should be 

carefully considered with respect to the larger community.  

Lack of treatment and the indefinite use of a single antibiotic serve as 

theoretical measurements of worst-case scenarios where disease and resistance are 

rampant. Time-dependent and probabilistic treatment regimens, such as periodic 

cycling and random mixing, currently serve as upper bounds to our current clinical 

capabilities.  Our results indicate that in a small hospital ward (<50 patients) random 

mixing, cycling, or their hybrid are functionally equivalent.  We may therefore choose 

to mimic random mixing in clinical practice; however, random events and human error 

will prevent us from making it a reality.  Likewise, but under cycling, we can 

appreciate that using a single antibiotic for too long will result in high resistance; but 

how quickly must we cycle to reap the benefits?  While it is theoretically informative 
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that optimality is reached as the cycle period     approaches zero, it is of limited 

clinical significance because of its logistical and financial implausibility.  We must then 

ask the question: If there is little to no difference under optimal conditions, under which 

strategy would we most readily approach optimality?  The current modus operandi in 

ICUs is to allow the physician to choose the treatment which best fits their patient’s 

symptoms.  This lack of top-down coordination closely resembles the hypothetical 

random mixing strategy.  Therefore, it seems that mixing is the most logistically 

feasible means by which optimality can be approached.   

Recent theoretical findings are encouraging in that it seems that the theoretical 

limit of mixing can be far surpassed when drugs administration is based on system 

surveillance rather than pre-determined ratios and schedules (Informed Switching 

Strategies: ISS) [5].  Bonhoeffer et al.’s corroborate the prediction of ecological theory 

which states that maximal environmental heterogeneity is optimal; but also provides a 

corollary that antibiotic heterogeneity should be maximized with respect to a specific 

population and its stochastic history.  It is important to note that optimal treatment 

strategies within the nosocomial realm may not be applicable to other human disease.  

For example, drug resistance from an oncology perspective is of less concern because 

resistant mutants persist in the environment beyond the lifespan of that patient.  In the 

same respect, the short reproductive timescales of HIV may minimize the benefits of 

drug cycling strategies.   Therefore the path necessary to achieve optimality of a given 

treatment regimen is dynamic with respect to the stochastic variation of the system as 

well as the life strategy of the pathogen in question. 
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Previous population-based models directed to study antibiotic resistance are 

traditionally based on drug administration rate, and assume clearance on contact.  Our 

model differs by expressing drug-mediated clearance as net bacterial growth; thus 

allowing for fine tuning of the pharmacodynamic function to simulate a specific drug-

pathogen relationship.  Fine tuning is essential because the relationship between a 

pathogen’s MIC and the administered drug concentration is extremely complex [16].  

Our model is robust to such complexity because its pharmacodynamic function is based 

on the widely used and deeply explored Hill function (Emax models).   We represent two 

forms of cocktails where the pharmacodynamic functions are held separate and 

combined; thereby representing cocktails whose drug pairs act independently and those 

which interact.  For example, doxycycline (DOX) and ciprofloxacin (CPR) are 

considered a suppressive drug pair and are thus are considered to interact [22].  

Doxycycline (DOX) targets the ribosome to inhibit protein synthesis while 

ciprofloxacin (CPR) targets cell machinery involved in DNA replication.  If a DOX-

resistant genotype is faced with CPR, it results in a costly overabundance of ribosomes 

due to a lack of DNA available for transcription.  The effective “de-coupling” of these 

systems in DOX-r genotypes puts the single-resistant mutants at a competitive 

disadvantage when compared with the wild-type [22].  Consequently, with this multi-

drug pairing a multi-resistant genotype is more likely to be in competition with the 

susceptible, rather than a singly-resistant one.  Our combined cocktail strategy captures 

the fitness relationship generated by in vitro pairings of DOX and CPR.     

It was previously thought that the occurrence of multi-resistance in the presence 

of two selecting agents was of little clinical significance due to the statistical rarity of 
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two independent mutations which confer resistance factors to different drugs.  The 

extreme selective conditions of an ICU tend to ameliorate the cost of maintaining 

resistance characters by forcing resistant and wild-type resistant pathogens to compete 

in antimicrobial-free environments.  This occurs most frequently when pathogens are 

vectored through medical equipment, visitors, and healthcare professionals.  Resistance 

characters are consequently maintained at high allelic frequencies even when spatially 

and temporally removed from their selecting agent.  These conditions, combined with 

the frequency with which resistance is transmitted by horizontal gene transfer (HGT), 

have led to high prevalence of multi-resistance with hospital acquired diseases such as 

tuberculosis.  While HGT allows for increased incidence of cross-resistance it occurs 

by a mechanism which leaves it open to exploitation by carefully selected multi-drug 

cocktails.  For example, the maintenance of resistance factors housed on distinct 

accessory plasmids may, in some cases, be more costly than one due to the metabolic 

costs they impose.  If so, we can then identify the drug pairings which maximize the 

fitness tradeoff of cross-resistance, thereby favoring the less specialized genotype.   

Multi-drug cocktails are most frequently exploited in HIV, TB, and cancer 

patients where they place such a stress on the target organism to raise the effective 

concentration of the pair above the Mutation Prevention Concentration (MPC) [18-20].  

This method of treatment uses lower concentrations of individual drugs, thereby 

decreasing negative side effects, while still maintaining curing efficacy. We found that 

a multi-drug pair whose components work independently (Cksep) perform better in 

terms of maximizing the proportion of uninfected individuals.  Conversely, drug pairs 

which interact (Ckcmb) still provide a significant advantage over mixing and cycling 
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with the same drugs.  Cocktails of the Cksep-type may not be commonly found for 

nosocomial infections and thus we expect clinically employed cocktail pairings to lie 

somewhere between the two strategies in terms of the proportion of uninfected 

patients                              
.     

It is important not to consider Cksep as a panacea of antibiotic deployment 

strategies because of its potential to select for a particularly nasty multi-resistant strain.  

Multi-resistance does not often sweep to fixation, and thus we presume that most 

tradeoffs in vivo would place an r2 genotype under the    -threshold.  On the opposite 

end of the cocktail spectrum, Ckcmb may pose an increased risk of cross-resistance 

because it achieves a    -threshold at a much lower cross-resistance tradeoff, thereby 

capturing the increased likelihood of resistance with similar drugs.  The r2-genotype’s 

increased ability to competitively exclude occurs because sufficiently small values of   

allow all genotypes an equivalent net growth rate; however, the susceptible genotype 

does not incur the cost of resistance and is therefore more fit than resistant genotypes. 

In order to create an environment which selects for the susceptible strain and 

maximizes the number of uninfected individuals under the Ckcmb strategy, r2’s cross-

resistance tradeoff must fall below the strategy’s    -threshold.  Note that tradeoffs 

above this threshold still warrant the use of Ckcmb because it outperforms other 

strategies.  If cross-resistance tradeoffs exist which favor susceptibility over resistance, 

in the face of effective treatment, then Ckcmb-type drug pairings may prove invaluable 

in the management of multi-resistance. Thus we are in agreement with a growing 

chorus of resistance management-minded researchers in that the benefits of maximizing 

killing power may not balance out the increased risk of resistance [Reede, Kishony, 
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maybe more?].  Such powerful pairings may pose an unnecessary risk to patients and, 

due to the prevalence of HGT, the community at large.   

The success or failure of a strategy seems largely dependent upon the threshold 

by which multi-resistant genotypes can competitively exclude other genotypes.  

Unfortunately, healthcare professionals cannot control the cross-resistance tradeoffs 

that manifest when multi-resistance evolves.  It is not unreasonable to assume that 

tradeoffs exist over the majority of our tradeoff range; however, certain tradeoffs are 

more likely to evolve and rise to dominance than others.  Our aim is to identify optimal 

treatment strategies when surveillance informs us of the specific range of cross-

resistance tradeoffs in the system.  Consequently, we illustrate how these thresholds can 

be identified without the need for cumbersome simulations.  Unfortunately, this method 

is dependent upon having steady-state equilibria and thus is not readily applied to time-

dependent strategies like periodic or informed switching.   With regard to the multi-

drug cocktail strategies we expect that realistic drug pairings will have thresholds 

which range between the bounds of Cksep and Ckcmb     
         

           
      .  It 

would be beneficial to find how various multi-drug treatment pairings, with respect to 

drug epistasis, impact the position of these thresholds along the tradeoff continuum.   

Ideally, we would like to roll back the clock to a time before antimicrobial 

resistance evolved and approach antimicrobial resistance with “20-20 hindsight.”  

However, evolutionary theory seems to dictate that we may be able to reduce the 

selective pressure that we apply during treatment while still maintaining treatment 

efficacy.  In order to achieve this, we must first understand and exploit the fitness 

landscape that we generate through our treatment protocols. Recent theoretical studies 
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in combination with our own indicate that this may best be achieved through the use of 

increased surveillance and clinical adaptations of proposed strategies such as Informed 

Switching Strategies and cocktails.  Biotic epistatic drug interactions will play a crucial 

role in the formation of the fitness landscapes imposed by various drug pairings.  

Furthermore, these landscapes are in constant flux because of the inordinate strength of 

stochastic events in hospital wards with small populations.  Future research might 

benefit by focusing on comparisons between multi-drug cocktails and dynamic 

switching routines in a stochastic context.  Finally, it may not be in the best interest of 

the patient or the community at large to maximize the bactericidal effects of our 

treatments; perhaps we could help the most patients through the informed direction of 

intraspecific competition such that it works for us rather than against us. 
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