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| INVESTIGATION

Joint Estimation of Pedigrees and Effective Population
Size Using Markov Chain Monte Carlo

Amy Ko*,1 and Rasmus Nielsen*,†,‡

*Department of Integrative Biology and †Department of Statistics, University of California, Berkeley, 94720California, and
‡Museum of Natural History, University of Copenhagen, 1123 Denmark

ORCID IDs: 0000-0001-7993-5463 (A.K.); 0000-0003-0513-6591 (R.N.)

ABSTRACT Pedigrees provide the genealogical relationships among individuals at a fine resolution and serve an important function in
many areas of genetic studies. One such use of pedigree information is in the estimation of the short-term effective population size
ðNeÞ, which is of great relevance in fields such as conservation genetics. Despite the usefulness of pedigrees, however, they are often
an unknown parameter and must be inferred from genetic data. In this study, we present a Bayesian method to jointly estimate
pedigrees and Ne from genetic markers using Markov Chain Monte Carlo. Our method supports analysis of a large number of markers
and individuals within a single generation with the use of a composite likelihood, which significantly increases computational effi-
ciency. We show, on simulated data, that our method is able to jointly estimate relationships up to first cousins and Ne with high
accuracy. We also apply the method on a real dataset of house sparrows to reconstruct their previously unreported pedigree.

KEYWORDS pedigree inference; effective population size; Markov Chain Monte Carlo

PEDIGREES are fundamental in many areas of genetic
studies. Pedigree structure can be used to study the social

organization of a population, such as the degree of polygamy
and the offspring distribution among mothers and fathers
(Blouin 2003). In conservation genetics, pedigrees provide
a way to design an appropriate breeding scheme by pre-
venting inbreeding between close relatives. Other uses of
pedigree information include estimating heritability of quan-
titative traits (Vinkhuyzen et al. 2013), controlling for cryptic
relatedness in association studies (Voight and Pritchard
2005; Eu-ahsunthornwattana et al. 2014), and pedigree-
based association studies (Ott et al. 2011). Furthermore,
the genealogical history embedded in pedigrees can be used
to estimate demographic parameters for the recent past,
such as the short-term effective population size ðNeÞ (Wang
2009). However, most population genetic models are based
on Kingman’s coalescent (Kingman 1982a,b,c), which is a

poor approximation of the genealogical process for time
frames shorter than log2N, where N is the population size
(Wakeley et al. 2012, 2016). Pedigrees, which provide a
finer resolution on the genealogical history of the samples
than the coalescent, may therefore be more appropriate to
use for estimating demographic parameters of the very recent
past.

Despite the importance of pedigrees in genetic analyses,
they are often a missing parameter. To address this problem,
many methods have been developed to estimate pedigrees
from genetic data. Existing methods fall broadly into two
categories: those that estimate pairwise relationships only
(Thompson 1975; McPeek and Sun 2000; Smith et al. 2001;
Sun et al. 2001; Milligan 2003; Sun and Dimitromanolakis
2014) and those that aim to reconstruct the entire pedigree
(Thomas and Hill 2000; Almudevar 2003; Wang 2004,
2012; Hadfield et al. 2006; Gasbarra et al. 2007; Cowell
2009, 2013; Riester et al. 2009; Wang and Santure 2009;
Kirkpatrick et al. 2011; Almudevar and Anderson 2012;
Cussens et al. 2013; He et al. 2013; Staples et al. 2014,
2016; Anderson and Ng 2016; Ko and Nielsen 2017;
Ramstetter et al. 2018). Although pairwise methods
are computationally fast, estimated pairwise relationships do
not necessarily translate to the correct pedigree, as piecing
together pairwise relationships may not produce a valid
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pedigree. Furthermore, because the coefficient of variation
in genome sharing between two individuals becomes larger
as the relationship becomes more distant (Hill and Weir
2011), distinguishing competing relationships from each
other becomes increasingly difficult. Methods that estimate
the entire pedigree have an advantage in this regard. Sev-
eral studies have shown that the accuracy of pairwise re-
lationship inference can be improved by considering all
relationships in the sample simultaneously and resolving
uncertain relationships in the context of other individuals
(Staples et al. 2014; Ko and Nielsen 2017; Ramstetter et al.
2018). Furthermore, the estimated pedigree is valid by con-
struction (see Appendix for the conditions for a valid pedi-
gree), which can then be used to study population
parameters of interest, such as the variance in offspring
distribution.

Existing pedigree reconstruction methods, however, are lim-
ited in their scope due to the inherent difficulty in pedigree
inference. First, the likelihood computation of a pedigree is
expensive, as it scales exponentially either in the number
of individuals in the pedigree (Lander and Green 1987) or in
the number of markers analyzed (Elston and Stewart
1971). Second, the number of possible pedigrees for a given
number of individuals is enormous,much greater than the num-
ber of phylogenetic trees (Steel andHein 2006; Thatte andSteel
2008), whichmakes exploring the pedigree space computation-
ally challenging, even for a small number of individuals.

In this study, we present a pedigree inference method that
addresses the difficulties of pedigree inference. First, we use

the composite likelihood developed in Ko and Nielsen (2017)
to make the likelihood computation efficient for a large num-
ber ofmarkers and individuals. Second, we useMarkov Chain
Monte Carlo (MCMC) (Hastings 1970) to sample pedigrees
from high probability regions, circumventing the need to
enumerate all possible pedigrees. Our method is different
in several important ways from previous methods (see, e.g.,
Wang 2012; Staples et al. 2014; Ko and Nielsen 2017) that
also use composite likelihoods and sampling algorithms to
explore the pedigree space. These previous methods take a
maximum likelihood approach and produce a list of pedi-
grees with highest likelihoods, and do not provide a princi-
pled way to compute the uncertainty of the estimated
pedigrees. In contrast, our method casts the problem in a
Bayesian framework, and estimates the posterior probability
distribution of the parameters, which, in turn, quantifies the
uncertainty in parameter estimation.

Furthermore, by assigning a prior, which is a function of
population parameters that govern the mating behavior of the
population, to the pedigrees,we can estimate these parameters
jointly with the pedigree. In particular, we focus on estimating
the short-term Ne, a key parameter quantifying the level of
genetic drift and inbreeding in the current population. Various
approaches have been developed for estimating the short-term
Ne, including methods based on relatedness, heterozygosity
excess, linkage disequilibrium (LD), or changes in allele fre-
quency over time (Wang et al. 2016). Our pedigree-based
approach for estimating Ne is most closely related to the esti-
mation method based on the frequency of siblings in a sample
by Wang (2009), which was shown to be more accurate and
robust than other approaches. A review by Hendricks et al.
(2018) gives an overview of variousmethods forNe estimation
in the context of conservation genetics.

In our method, we assume that all sampled individuals
belong to a single generation and infer pedigrees going up to
two generations back in time (i.e., up to first cousins). Fur-
thermore, we assume that the population is outbred with
nonoverlapping generations, and the pedigrees do not con-
tain cycles other than those caused by full sibling relation-
ships. We validate our method on simulated data and show
that it can estimate relationships and Ne accurately. Further-
more, we apply our method on a real dataset containing a
sample of house sparrows to reconstruct their previously un-
reported pedigree.

Figure 1 An example output pedigrees for three sampled individuals
(shaded) from a dataset in Simulation A. Sex of the unsampled individuals
(unshaded) are unknown but are drawn in for illustration only. (A) Ped-
igree with the highest estimated posterior probability ðP ¼ 0:55Þ. (B) Ped-
igree with the second highest estimated posterior probability ðP ¼ 0:45Þ.
The true pedigree is shown in (A).

Table 1 Pairwise prediction accuracy for simulation A (SNPs),
aggregated over 50 independent datasets

Predicted

FS HS UR FC HC

True FS 106 0 0 0 0
HS 0 136 0 1 0
UR 0 0 59,996 0 4
FC 1 0 0 445 32
HC 0 0 0 4 526

Two-generation inference by MCMC.
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Materials and Methods

Bayesian inference of pedigrees and mating parameters

Ourmethod aims to estimate the joint posterior distribution of
pedigrees and mating parameters. Let n be the sample size,H
the pedigree of the sample, u the set of mating parameters for
the population, and X ¼ ðX1; . . . ;XnÞ the set of genotype vec-
tors for the n individuals. Then, the joint posterior probability
of H and u can be written as

PrðH; ujXÞ} PrðXjHÞPrðHjuÞPrðuÞ; (1)

where PrðXjHÞ is the likelihood of the pedigree, PrðHjuÞ is the
prior for the pedigree under a mating model parameterized
by u, and PrðuÞ is the hyperprior on the mating parameters.
We describe below in more detail how to compute each of
these component terms.

Composite likelihood: As discussed in the Introduction, com-
puting the likelihood of a pedigree, PrðXjHÞ, is computation-
ally prohibitive for even a moderately large set of markers or
individuals. We therefore approximate the likelihood with
the composite likelihood introduced in Ko and Nielsen
(2017) to make the computation more efficient. The compos-
ite likelihood is based on the marginal pairwise likelihoods,
which we describe briefly here.

The composite likelihood of a local pedigree Hl for k sam-
pled individuals is given by

CLðHlÞ ¼

�
PðXiÞ; if k ¼ 1Q
ði;jÞ2Hl

P
�
Xi;Xj

��Ri;j�Q
i2Hl

PðXiÞk22 ; otherwise (2)

where Ri;j is the relationship between individuals i and j in-
duced by pedigree Hl. If the pedigree contains a single indi-
vidual (i.e., k ¼ 1), then the composite likelihood is simply

the probability of observing the individual’s genotypes (i.e.,
product of the genotype frequencies). For k. 1, the compos-
ite likelihood is the product of the pairwise likelihoods, scaled
by the marginal likelihoods of the individuals. That is, since
each individual appears k2 1 times in the numerator, we di-
vide the numerator by the marginal likelihood of each indi-
vidual k2 2 times. A previous study by Ko and Nielsen
(2017) showed that the composite likelihood scales similarly
to the full likelihood on simulated data and has sensible as-
ymptotic properties, making it a good approximation for the
full likelihood. The full composite likelihood for a set of local
pedigrees, H, is the product of the composite likelihood for
each local pedigree, Hl.

We precompute and store in memory the pairwise
likelihoods PrðXi;Xj

��Ri;jÞ for each pair ði; jÞ for a specified
set of pairwise relationships. For pedigrees going up to
two generations back in time, this set includes full sib-
lings, half siblings, full first cousins, half first cousins,
and unrelated. The pairwise likelihoods can be computed
efficiently using the method described in Weir et al.
(2006) for unlinked markers or by Albrechtsen et al.
(2009) for linked markers. The pairwise likelihoods can
then be accessed from memory to compute the composite
likelihood efficiently.

Prior: For the prior on the pedigrees, PrðHjuÞ, we used a
modified version of the mating model introduced in Gasbarra
et al. (2005). The model is defined by three parameters: a, b,
and N, which we describe in more detail below. The modified
version of the model does not change the original equations in
Gasbarra et al. (2005), but affects the interpretations of the
mating parameters, which will be discussed below.

The probability of a pedigree under this mating model is
most naturallydescribedby theprocedurebywhich each child
stochastically chooses its mother and father. We assume a
homogeneous population of constant sizeNwith nonoverlap-
ping generations and equal proportions of males and females
(i.e., N=2 males and N=2 females). Let n be the number of
children in the current generation. One by one, each child
chooses a parental pair ðf ;mÞ; where f 2 f1; 2; . . . ;N=2g and
m 2 f1; 2; . . . ;N=2g.

Figure 2 (A) Estimated posterior distribution of Ne from MCMC samples
aggregated over 50 datasets in Simulation A. (B) Distribution of maximum
a posterior (MAP) Ne for the 50 datasets in Simulation A. The red vertical
line in each panel corresponds to the true value of the parameter.

Table 2 Pairwise prediction accuracy for simulation A (SNPs),
aggregated over 50 independent datasets

Predicteda

FS HS UR

True FS 106 0 0
HS 0 137 0
UR 0 0 60,000
FC 0 117 360
HC 0 0 530

One-generation inference by MCMC.
a The likelihoods were computed without using the linkage information between
markers to make the likelihood computation comparable to COLONY’s.
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Let Cf ðkÞ be the number of children that mother f has after
the first k children have chosen their parents. Then the prob-
ability that the ðkþ 1Þth child chooses mother f is given by

aþ Cf ðkÞ
aðN=2Þ þ k

; (3)

where a is a parameter that controls the offspring distribu-
tion among mothers in the population. A small value of a
corresponds to the mating model where a few mothers have
many offspring, whereas a large value of a corresponds to the
model where children are distributed more evenly among all
mothers.

After selecting mother f, the child chooses a father next.
Let CfmðkÞ be the number of children that parental pair ðf ;mÞ
has after the first k children have chosen their parents. Then
the probability of the ðkþ 1Þth child choosing father m is
given by

bþ CfmðkÞ
bðN=2Þ þ Cf ðkÞ

; (4)

where b is a parameter that governs the degree of polygamy
of fathers. If b is small, then the child is more likely to choose

father m if the father already shares other offspring with the
child’s mother, f (i.e., parental pairs tend to stay monoga-
mous). On the other hand, b ¼ N corresponds to the case
where the child chooses a father at random (i.e., random
mating model).

After all n children in the current generation have chosen
their parents, we continue recursively backward in time by
treating the chosen mothers and fathers in the current stage
as the offspring for the next stage. Using this sequential sam-
pling scheme, we can compute PrðHjuÞ, where u ¼ ða;b;NÞ.

Furthermore, we can relate the mating parameters a, b,
and N to the effective population size, Ne, using the formula
derived in Gasbarra et al. (2005).

For the hyperprior, PðuÞ, we assume a uniform distribution
for each of the parameters in u. For instance, we assume
a � Uðamin;amaxÞ for some fixed amin and amax: We treat b
and N in a similar way.

Finally, we combine the composite likelihood, prior, and
hyperprior to approximate the joint posterior distribution of
H and u with

CLðHÞPrðHjuÞPrðuÞ (5)

MCMC: To explore the vast parameter space in a computa-
tionally feasible way, we use MCMC to sample from the
posterior distribution of H and u, approximated by
Equation 5.

We represent the pedigree for a sample of individuals as an
undirected graph, where a node corresponds to an individual
with a particular sex (i.e., male or female), and an edge rep-
resents a parent–offspring relationship. Individual i in the
graph is not necessarily represented in the sample; but, if it
is sampled, the node is associated with a genotype vector,
Xi. A more detailed description of the graph representation
of pedigrees and the conditions for a valid pedigree is pro-
vided in Appendix.

The MCMC explores pedigrees and mating parameters
simultaneously. To explore the pedigree space, wemake local
modifications to the edges and the nodes in the graph using
12 reversible updates. The 12 updates can broadly be cate-
gorized into twogroups. Thefirst category of updates involves
inserting or deleting edges to join or split pedigrees. The

Figure 3 (A) Distribution of MAP Ne by MCMC, where the pedigree
inference was restricted to one generation and the likelihood computa-
tion assumed independent markers. (B) Distribution of Ne estimates by
COLONY based on full likelihood computation with independent markers
and nonrandom mating.

Table 3 Pairwise prediction accuracy for simulation A (SNPs),
aggregated over 50 independent datasets

Predicteda

FS HS UR

True FS 106 0 0
HS 0 137 0
UR 0 0 60,000
FC 0 106 371
HC 0 0 530

One-generation inference by COLONY.
aInference was based on the full likelihood method under the assumption of
independent markers.
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second category modifies the pairwise relationship between
two randomly chosen individuals, such as changing half-
siblings to full-cousins, and vice versa. To explore the mating
parameters, we use three different updates—one for each
mating parameter—where we propose a new state by sam-
pling the new parameter value from a normal distribution
centered at the current value. A more detailed treatment of
the updates is given in Appendix.

Here, we outline the MCMC algorithm. Let Q ¼ ðH; uÞ de-
note the set of parameters we want to estimate (i.e., pedigree
and mating parameters).

1. Initialize pedigree H to be the one in which every individ-
ual is unrelated to each other. Initialize a by sampling
fromUðamin;amaxÞ, for some fixed amin and amax. Initialize
b andN in a similar way. Compute and store Equation 5 for
the current configuration.

2. Choose 1 of the 10 updates at random and generate a new
configuration.

3. If the new configuration is invalid, reject and go back to
step 1. If it is valid, accept the new configuration with
probability.

min

 
1;
CLðHnewÞPrðHjunewÞPrðQoldjQnewÞ
CLðHoldÞPrðHjuoldÞPrðQnewjQoldÞ

!
:

4. Repeat steps 1–3 T times.

The total number of samples, T, was chosen to achieve a
balance between convergence of the Markov chain and com-
putational time. Since wewant to keep samples only after the
Markov chain has converged to the stationary distribution,
we discarded the first B samples as burn-in. To check for
convergence, we ran multiple independent MCMC chains
and checked that all chains fluctuated in a similar, stable
range of log-likelihood values. We note that this is only a
proxy for checking convergence and there are other, albeit
more involved, methods, such as checking the potential scale
reduction factor for some specified quantity (Gelman and
Rubin 1992). Furthermore, we keep only every tth sample
to avoid storing correlated samples.

For both simulated and empirical datasets, which will be
described next, we ran the MCMC for T ¼ 63 106 iterations
with a burn-in period of B ¼ 43 106 iterations. The hyper-
prior for the mating parameters was set as follows:
a � Uð:1; 100Þ, b � Uð13 1025; :1Þ, and N � Uð5; 5000Þ.
We also thinned the MCMC samples by keeping only every
50th sample.

Simulated data

We tested the performance of our method on simulated data.
We simulated pedigrees up to two generations back in time
using the mating model described in Prior with a ¼ 15,
b ¼ 1e2 4, and N ¼ 1000, which translates to Ne ¼ 650 us-
ing the formula given in Gasbarra et al. (2005). The sample
size, n, was 50.

We then simulated 10,000 independent single nucleotide
polymorphic sites (SNPs) for each of the N founders in the
pedigree, where the population allele frequency for each
marker was sampled from the site frequency spectrum under
neutrality. We assumed that the markers were spread evenly
among 20 independent chromosomes of length 100 Mb, and
assumed sequencing error rate of 0.01. To test the effect of
marker type on our parameter inference, we also simulated

Figure 4 Distribution of the Ne estimates in Simulation B (i.e., micro-
satellites). (A) Distribution of MAP Ne estimated from MCMC samples
under two-generation inference. (B) Distribution of MAP Ne estimated
from MCMC samples under one-generation inference. (C) Distribution
of Ne estimate by COLONY under nonrandom mating.

Table 4 Pairwise prediction accuracy for simulation B (microsatellites),
aggregated over 50 independent datasets

Predicted

FS HS UR FC HC

True FS 96 22 7 0 0
HS 2 31 81 0 0
UR 0 23 60,054 0 0
FC 1 8 445 0 0
HC 0 0 480 0 0

Two-generation inference by MCMC.
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20 microsatellites with 10 alleles of equal frequency per
marker. Furthermore, we assumed that each marker was on
an independent chromosome, with sequencing error rate of
0.01 and allele dropout rate of 0.05.

We then simulated the genotypes for the children in the
pedigree by recombining parental haplotypes at rate 1.3e28
per base pair per generation. We generated 50 independent
datasets for both SNP and microsatellite simulations. For
convenience, in subsequent sections, we refer to the simula-
tions with SNPs as Simulation A, and those with microsatel-
lites as Simulation B.

Bias correction

For real datasets, it is often unreasonable to assume that the
sample does not contain relatives more distant than first
cousins. To show the effect on the inference of pedigrees
and Ne of having second cousins in the sample, we simulated
a scenario where second cousins were present in the sample.
The simulation parameters were identical to those of Simu-
lation A, except for the number of generations under which
the pedigrees were simulated. Instead of going back up to
two generations back in time as in Simulation A—which gen-
erated relatives up to first cousins—here, we simulated ped-
igrees up to three generations back in time, which generated
second cousins as well.

As we will discuss in Results, the second cousin relation-
ships will often be classified as half first cousins (HC), the
most distant relationship type our method is designed to es-
timate. Consequently, Ne will be biased downward due to the
high frequency of HC in the estimated pedigrees, caused by
the misclassification of second cousins as HC.

To correct the downward bias in Ne estimation, we took
advantage of the fact that our method can still infer siblings
with high accuracy. More specifically, we simulated pedigrees
under various Ne to find a value that generated a number
of siblings close to the one estimated by our method. Let
SIBD ¼ NFS þ :5NHS be the summary statistic that measures
the level of identical-by-descent (IBD) contributed by siblings
in the sample, where NFS and NHS are the number of full
siblings and half siblings, respectively; and denote ŜIBD to
be the statistic obtained from the MCMC inference on
the sample. Let aMAP and bMAP be the MAP estimates of a
and b, respectively, computed using the marginal posterior
distributions obtained from the MCMC samples. We then

simulated pedigrees going back up to one generation in time
under aMAP, bMAP, and various values of N—which translate
to different values of Ne—and computed SIBD from the simu-
lated pedigrees. We then chose the value of Ne that produced
SIBD that most closely matched ŜIBD.

Empirical data

We applied our method to reconstruct the previously un-
reported pedigree of house sparrows collected from an
archipelago off the Helgeland coast of northern Norway
(Lundregan et al. 2018). The individuals were genotyped
using a custom Affymetrix 200K SNP array, with markers
distributed across 29 of the chromosomes in the genome.
Also provided were the location and year in which each in-
dividual was collected.

We used individuals from a single island (island 27) to
avoid any potential substructure in the sample. Furthermore,
we restricted our analysis to the individuals born in 2009 to
ensure that all samples belonged in a single generation. We
pruned themarkers for LD using PLINK (Chang et al. 2015) at
r2 ¼ 0:05 to get a set of independent, or loosely linked,
markers. The filtering steps resulted in 79 individuals and
4519 SNPs. The likelihoods were computed by Albrechtsen
et al. (2009) for linked markers.

Evaluation of method

We compared the performance of our method to that of
COLONY (Jones and Wang 2010)—one of the most widely
used pedigree reconstruction methods. We chose COLONY
for several reasons. First, it supports full likelihood computa-
tion, which provides a gold standard to which we can com-
pare our composite likelihood method. Second, it supports
both SNPs and microsatellites data, allowing us to compare
the performance of different marker types. Third, COLONY
can estimate the short-term Ne based on the estimated fre-
quency of siblings in the sample, whichwas shown to bemore
accurate than other methods of estimating Ne (Wang 2009).

Because the sample size in our simulations was much
smaller than the population size, many pedigrees for the
sample had similar likelihoods, making it difficult for both
our method and COLONY to find the correct pedigree in its
entirety. So we used pairwise prediction accuracy as a proxy
for the accuracy of pedigree inference. In our method, we
assigned pairwise relationship R to pair ði; jÞ if it had the

Table 5 Pairwise prediction accuracy for simulation B (microsatellites),
aggregated over 50 independent datasets

Predicted

FS HS UR

True FS 91 22 12
HS 2 25 87
UR 1 23 60,053
FC 0 3 451
HC 0 0 480

One-generation inference by MCMC.

Table 6 Pairwise prediction accuracy for simulation B
(microsatellites), aggregated over 50 independent datasets

Predicted

FS HS UR

True FS 102 22 1
HS 2 92 22
UR 3 1675 58,399
FC 1 105 348
HC 0 39 441

One-generation inference by COLONY.

860 A. Ko and R. Nielsen

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/212/3/855/5931252 by guest on 20 February 2022



highest posterior probability among all competing relation-
ships. We approximated the posterior probability of R by
counting the proportion of times pair ði; jÞ had relationship
R in theMCMC samples. Similarly, we assigned relationship R
to pair ði; jÞ in COLONY if it had the highest probability
among all candidate relationships. Because the number of
possible pedigrees is large, COLONY archives only the top
w pedigrees with highest likelihoods. Suppose S is the set
of indices for the pedigrees where ði; jÞ has relationship R.
Then, the probability of R is estimated byP

k2S LkPw
m¼1 Lm

;

where Lm is the likelihood of the mth pedigree.
Furthermore, since COLONY restricts its inference to ped-

igrees going back only one generation back in time (i.e., sib-
lings), we also limited our inference to the same scope when
comparing the performance of our method to COLONY. The
parameters used to run COLONY are detailed in Supplemen-
tal Material, File S1.

Data availability

Our software for pedigree inference is available for download
at https://github.com/amyko/mcmcPed. Simulated data are
available upon request. All supplemental files are available
at FigShare. Supplemental material available at FigShare:
https://doi.org/10.25386/genetics.8079953

Results

Simulated datasets

To illustrate some of the issues involved in estimating multi-
generation pedigrees, we first turn our attention to an exam-
ple from Simulation A. Figure 1 shows the two most likely
local pedigrees involving three sampled individuals (shaded)
and their estimated posterior probabilities. In the first pedi-
gree, individual 3 forms a full first-cousin relationship with
the other two individuals (1 and 2), as opposed to a half first-
cousin relationship as in the second pedigree. Here, the true
pedigree is shown by the first pedigree (Figure 1A), which
had the highest posterior probability.

The uncertainty in the pedigree estimation, shown by the
similar posterior probabilities of the two pedigrees (0.55 and
0.45),was consistentwith the fact that the pairwise likelihood
values were similar under different relationships. More spe-
cifically, individuals 1 and 3 had a higher likelihood of being
full cousins than half cousins by �1 log likelihood unit. On
the other hand, individuals 2 and 3 had a higher likelihood of
being half cousins than full cousins by roughly the same
amount. Based on pairwise likelihoods alone, individuals
1 and 3 would be classified as half cousins, and individuals
2 and 3 as full cousins. Piecing together such pairwise assign-
ments, however, would not produce a valid pedigree. Such
uncertainties in cousin inference were not uncommon:�20%
of true cousin pairs in Simulation A had nonzero posterior
probabilities for both full and half cousins.

Table 1 shows the pairwise prediction accuracy of MCMC
for the 50 independent datasets in Simulation A, where the
pairwise likelihoods were computed using the method by
Albrechtsen et al. (2009). Full siblings, half siblings, and half
cousins were classified correctly in almost all instances,
whereas�7% of full cousin pairs were classified as half cous-
ins. The rate of false detection of relatives was very low at
�0.01%, where the unrelated pairs were estimated as half
cousins.

Figure 2A shows the posterior distribution of Ne estimated
from the MCMC samples aggregated over the 50 datasets in
Simulation A. The mode of the posterior distribution was
close to the true value, indicated by the red vertical line.
Similarly, Figure 2B shows that the distribution of maximum
a posteriori (MAP) Ne for the 50 datasets was concentrated
around the true value. The three mating parameters that
make up the components terms of Ne (i.e., a, b, and N)
showed high correlations among them. Figure S1 shows that
high values of N tended to co-occur with low values of a for
this simulation, which suggests that these parameters should
not be estimated independently of each other, and that mar-
ginal point estimates of any of these parameters are likely to
be misleading.

Table 7 Pairwise prediction accuracy for datasets containing second
cousins (inference byMCMC), aggregated over 50 independent datasets

Predicted

FS HS UR FC HC

True FS 118 1 0 0 0
HS 0 108 2 0 1
UR 0 0 56,189 0 3
FC 5 5 0 386 95
HC 0 0 9 4 499
2FC 0 0 523 2 1388
2HC 0 0 1,482 0 430

Figure 5 (A) Estimated posterior distribution of Ne from MCMC samples
aggregated over 50 datasets, where the data contained second cousins.
(B) Distribution of MAP Ne for the 50 datasets.
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Table 2 and Table 3 compare the performance of our
method with that of COLONY. Since COLONY estimates up
to sibling relationships only, we also restricted the inference
of our method to the same scope. Furthermore, we computed
the likelihoods using the method discussed in Weir et al.
(2006), which assumes unlinked markers, an assumption
that COLONY makes in its likelihood computation. Here,
both our method and COLONY classified full siblings, half
siblings, and unrelated pairs without error. Both methods
also estimated all half cousin pairs to be unrelated. Further-
more, similar proportions of full cousin pairs were misclassi-
fied as half siblings by both methods: 22% by COLONY and
24% by our method. As shown in Figure 3, Ne was under-
estimated by both methods, which is consistent with the
higher proportion of half siblings in the estimated pedigrees,
caused by the misclassification of some full cousin pairs as
half siblings.

File S2 shows the performance of our method on a simu-
lated dataset with a different set of mating parameters (i.e.,
a ¼ 15;b ¼ 0:1;N ¼ 1000), which translates to Ne of 958.
The accuracy of pairwise relationship prediction and Ne esti-
mation was similar to that of Simulation A.

Table 4 shows the pairwise prediction accuracy of MCMC
for Simulation B (i.e., microsatellites), where the likelihoods
were computed using the method of Wang (2004). The ac-
curacy rates were significantly lower than those in Simula-
tion A (i.e., 10,000 SNPs). About 77% of full siblings and
27% of half siblings were classified correctly, and virtually
all cousin pairs were estimated to be unrelated. This is likely
due to the prior, which puts higher probabilities on sparsely
connected pedigrees, overwhelming the likelihoods that do
not show strong evidence for individuals being related. The
distribution of MAP Ne also had a much higher variance com-
pared to that of Simulation A (Figure 4A).

Table 5 and Table 6 compare the performance of our
method with that of COLONY for Simulation B. Again, we
restricted the inference by our method to sibships to make a
fair comparison with COLONY. Here, COLONY performed

better than our method in correctly inferring full siblings
and half siblings, but it also had a much higher false positive
rate of 2.8% compared to 0.04% in our method. In fact,
�87% of the pairs estimated as half siblings by COLONYwere
actually unrelated. We note, however, that this problem may
be addressed by adding an appropriate prior that is more
conservative in half sibling assignments. Furthermore, due
to the large number of unrelated pairs and cousins that were
misclassified as half siblings, Ne was significantly underesti-
mated by COLONY (Figure 4C).

For all the experiments, we checked the convergence of
MCMC by studying the likelihood trace of multiple indepen-
dent chains. As an illustration, we show an example of the log
likelihood trace for the last 1 million iterations for a single
experiment in Simulation A (Figure S2).

The running time for ourmethoddepends onmany factors,
suchas thesample size, theunderlyingpedigree structure, and
the maximum number of generation allowed in the pedigree
inference. As an example, an MCMC run with 6 million iter-
ations for a two-generation pedigree inference took �36 sec
on a laptop with 2.3 GHz Intel Core i5 processor for a single
dataset in Simulation A, excluding the precomputation
time for calculating the likelihoods. The precomputation time

Figure 6 Distribution of the Ne estimates for the 50 datasets after bias
correction. The red vertical line indicates the true value of Ne.

Figure 7 Estimated pedigrees of five sampled individuals in the sparrow
dataset. (A) Pedigree with estimated posterior probability of 0.77. (B) Pedigree
with estimated posterior probability of 0.23. (C) Most likely pedigree esti-
mated by COLONY, but whose posterior probability was zero in our method.
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for the marginal and pairwise likelihoods by the HMM
Albrechtsen et al. (2009) was �75 sec.

Effects of presence of relatives beyond first cousins

Table 7 shows the prediction accuracy for a simulation sce-
nario where second cousins were present in the sample. The
accuracy rates were similar to those of Simulation A for re-
lationships up to first cousins. However, �73% of full second
cousins (2FC) were classified as half first cousins (HC), the
most distant relationship type our method is designed to esti-
mate. Similarly,�22% of half second cousins (2HC) were clas-
sified as HC. As expected, Ne was biased downward due to the
high frequency of HC in the estimated pedigrees (Figure 5).

Figure 6 shows the distribution of the Ne estimates after
correcting for bias as described in Bias Correction. Although
the SE was higher than that of uncorrected estimates, the
median of the distribution (657) was much closer to the true
value (650) than before.

Sparrow dataset

Weanalyzed a subset of the house sparrowdataset sequenced
by Lundregan et al. (2018). After the filtering steps described
in Empirical Data, the sample consisted of 79 individuals and
4519 SNPs distributed across 29 autosomes. Here, we show
an example of the inferred pedigrees by our method, and
compare them to those estimated by COLONY.

Figure 7 shows the likely local pedigrees involving five
individuals (shaded) in the sparrow dataset. The estimated
posterior probabilities of the pedigrees shown in panels A
and B were 0.77 and 0.23, respectively. The difference be-
tween the two pedigrees was the pairwise relationship be-
tween individuals 1339 and 1450, which was estimated to be
full cousins in panel A and half cousins in panel B. Figure 7C
shows the pedigree with the highest likelihood estimated by
COLONY. This pedigree had posterior probability of zero in
ourmethod.We see that the half sibling relationship between
individuals 1390 and 1450 was recovered by COLONY, but
all cousin relationships that our method detected were esti-
mated to be unrelated. Based on the simulation studies in
Simulated Datasets, however, we expect the full first cousin
relationships inferred by our method to be either true first

cousins or, with considerably smaller probability, more dis-
tant relatives (e.g., second cousins).

Table 8 compares the pairwise relationship classifications
between our method and COLONY. Pairs that were classified
as full siblings, half siblings, or unrelated by our method
largely agreed with the classifications by COLONY. On the
other hand, �29% of pairs that were estimated to be full
cousins by our method were estimated to be half siblings by
COLONY, which is consistent with what was observed in the
simulation studies in Simulated Datasets. Furthermore, most
of the relationships that were inferred as half cousins by our
method were classified as unrelated by COLONY.

Discussion

We have shown that, given enough marker information, our
method is able to jointly estimate Ne and relationships up to
first cousins accurately and efficiently. Unlike existing pedigree
inference methods, our method not only allows estimation of
pedigrees andNe, but also provides an uncertainty measure on
the estimates via posterior probabilities. Furthermore, our
method provides a framework for incorporating different types
of population models in the prior for the pedigrees, which can
potentially allow us to estimate other population parameters,
such as migration rates between subpopulations.

Our method also improves upon one of the most widely
used pedigree reconstruction programs, COLONY, by estimat-
ing relationships beyond sibships. This not only expands the
types of pedigreeswe can infer, but also increases the accuracy
of sibship inference. In particular, first cousins were often
misclassified as half siblings if the estimation method did not
allow inference of cousins. For example,�44%of half siblings
estimated by COLONY using 10,000 SNPs were actually first
cousins (Table 3). Furthermore, we showed that Ne can be
underestimated if the sample contains cousins but the pedi-
gree inference is restricted to sibships only (Figure 3). By
explicitly including first cousins in the inference, our method
was able to infer half siblings with higher precision (Table 1),
as well as estimate Ne more accurately (Figure 2). However,
we note that the problem persists when the sample contains
relatives more distant than first cousins. When datasets con-
tained second cousins, for example, they were often esti-
mated as half first cousins—the most distant relationship
our method is designed to estimate—and, consequently,
caused a downward bias in Ne estimates. Therefore, we must
use caution in interpreting inferred half cousins, as the true
relationship could be more distant, and use the simulation
method discussed in Effects of Presence of Relatives Beyond
First Cousins to correct for potential bias in Ne estimates.

We note that the performance of ourmethod relies heavily
on the accuracy of pairwise likelihoods. The accuracy of
pairwise likelihoods depends onmany factors, such asmarker
density, level of LD, sequencing error rates, and population
allele frequency estimates. Ignoring the linkage between
markers, in particular, significantly decreased the power to
detect first cousins (File S3). Due to linkage, close relatives

Table 8 Comparison of pairwise relationship classification by
MCMC and COLONY

COLONYa

FS HS UR

MCMCb FS 33 0 0
HS 0 23 0
UR 0 1 2909
FC 0 15 37
HC 1 4 57

aInference was based on the full likelihood method, assuming independent
markers.

bThe likelihoods were computed by Albrechtsen et al. (2009) for linked markers and
the inference allowed pedigrees going up to two generations back in time (i.e., up
to first cousins).
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such as first cousins are expected to share, with high prob-
ability, long IBD segments that are on the order ofmegabases
in length, although the probability of IBD per marker is
relatively low (Chapman and Thompson 2003). The pres-
ence of such long IBD segments should make detecting
relatives quite easy even though identifying the exact rela-
tionship can be more difficult (Hill and White 2013). Treat-
ing the markers as independent, however, does not take
advantage of the presence of long IBD segments, and, thus,
decreases our ability to detect relatives (Table 2 and Table
3). Therefore, likelihood computation methods, such as that
of Albrechtsen et al. (2009), that take into account the link-
age information between markers should be used instead
for detecting relatives, and, naturally, for pedigree inference
as well.

Marker type and density also have a significant impact on
the quality of pairwise likelihoods. We have seen that using
20 highly informative microsatellites performed worse than
using 10,000 SNPs. The accuracy rates of COLONY (Table 6)
suggest that the use of microsatellites to estimate sibships
might be misguided in practice since first cousins can often
be misclassified as half siblings in methods that do not explic-
itly model first cousins. Furthermore, microsatellites may not
provide enough information to easily distinguish between
full and half siblings (Table 4, Table 5, and Table 6). Also,
20 microsatellites with 10 alleles of equal frequency in our
simulations is more generous than what is available in many
real datasets, and the performance on less informative data-
sets is likely to be worse than what was shown in this study.
We note that finding the best ways to address the various
challenges in pairwise likelihood computation is an active
area of research and requires further investigation.

There are limitations to our method that require further
work. Our method does not support pedigrees that contain
cycles, except those caused by full sibling relationships. More
specifically, we do not consider pedigrees that are inbred or
have complex, cyclic relationships such asdoublefirst cousins.
A simulation study by Ko and Nielsen (2017) suggests that, in
the presence of inbred individuals, the method will tend to
estimate individuals to be genealogically closer than they
actually are (e.g., inbred first cousins estimated as half sib-
lings). Furthermore, our method assumes that all samples
belong in a single generation, which may not typically be true
for many real datasets. This may be addressed by adding
updates in theMCMC that allow sampled individuals tomove
between generations. Furthermore, our method does not yet
scale up to sample sizes typical of GWAS as the number of
pairwise comparisons still increases rapidly with sample size.
One possible approach to address this issue is partitioning the
sample into smaller sets using methods such as Manichaikul
et al. (2010) and estimating the pedigrees for each smaller
subset of individuals.

Overall, our method provides a way to jointly estimate
pedigrees and Ne, and measure the uncertainty of the esti-
mates in a computationally efficient way. Importantly, our
method also provides a basic framework for estimating

demographic parameters of the current population from ped-
igrees—analogous to population genetic methods based on
coalescent trees—thus opening up new possibilities for learn-
ing about the demographic history of the recent past.
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Appendix

Pedigree as a Graph

In our method, we represent pedigrees as an undirected graph, where each node represents an individual and an edge
corresponds to a parent-offspring relationship. A node has the following features: sex, sample status, list of children, and list of
parents. Sex refers to the sex of the node; sample status indicates whether the node was sampled and thus has genetic data
associatedwith it; depth is the generation towhich it belongs (e.g.most recent generation has depth 0); list of children contains
the node’s children nodes, if any; list of parents contains the node’s parent nodes.

A valid pedigree is a graph that satisfies all of the following conditions:

1. Each individual, or node, has 0, 1, or 2 parent nodes. If it has 2 parents, then one parent must be female and the
other male.

2. Graphs that contain cycles are not allowed, except for cycles caused by full sibling relationships. For example, any inbred
pedigrees or non-full-sibling, cyclic relationships such as double first cousins are invalid.

3. If a node has two parents, the parents belong in the same generation. That is, the generations are nonoverlapping.
4. The height of the graph is#3. That is, the maximum number of generations in the pedigree we consider is 3, which includes

up to first-cousin relationships.
5. All sampled individuals belong in the most recent generation.

We describe below the transitions between pedigree graphs used in the MCMC. For all of these transitions, or moves, if the
resulting graph is invalid, we reject the move.

Transitions Between Pedigree Graphs

1. Link: join two pedigrees.
(a) Choose a random pair of nodes i and j. Choose target depth k, drawn from a geometric distribution with P ¼ 0:5: k is the

depth at which i and j will share a common ancestor. If k is larger than the maximum depth of the pedigree, reject the
move.

(b) With equal probability, choose sex s (male or female) of thewould-be common ancestor. Take a randompath from node i
up to the ancestor of sex s at depth k, choosing either the mother or the father at each step with equal probability. Do the
same for node j.

(c) At depth k, merge the two ancestors of i and j.

The reverse move is a combination of Cut and Split (see below).

2. Cut: detach a child and its subpedigree from a parent.
(a) Choose node i at random. Choose sex s (male or female) with equal probability, which is the sex of the parent fromwhich

i will be cut. If the parent with sex s is not represented in the pedigree, reject the move.
(b) Delete the edge between i and the parent.

The reverse move is Link (see above).

3. Split: detach a set of children and its subpedigrees from a parent.
(a) Choose node i at random. Choose a random set of i’s children, where each set has an equal probability of being chosen.
(b) Delete the edges between i and the set of children selected. Make a new parent node j and add edges between j and the

set of children.

The reverse move is Link (see above).

4. Switch Sex: switch the sex of a node.
(a) Choose a random node i. Reject the move if i’s sex cannot be changed (i.e., i is sampled and its sex is fixed; or i has a

spouse with fixed sex).
(b) If i is female, switch its sex to male (and vice versa if i is male). If this sex change conflicts with the sex of other nodes,

switch the sex of the other nodes as well. (e.g., if i has a spouse, then the spouse must switch its sex as well).

The reverse move is Switch Sex itself.
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5. Full Sibs to Self: merge a pair of full sibling nodes into one node.
(a) Choose node i at random. Choose at random node j among full siblings of iwhose sex is the same as that of i. If no such

node exists or if both i and j are sampled nodes, reject the move.
(b) Merge i and j.

The reverse move is Self to Full Sibs (see below).

6. Self to Full Sibs: split a node into a pair of full siblings.
(a) Choose node i at random. Make a new node j, where the sex is the same as that of i.
(b) Choose a random set of i’s children, where each set has an equal probability of being chosen. Remove edges between the

chosen children and i, and add edges between the children and j (i.e., some of i’s children are transferred to j).
(c) Make i and j full siblings (i.e., make them share the same mother and father).

The reverse move is Full Sibs to Self (see above).

7. Self to Parents: split a single parent into a pair of parents (mother and father).
(a) Choose node i at random. If i does not have exactly one parent, reject the move. Let p1 be the parent of i.
(b) Make a new node p2 and set its sex to the opposite of p1’s sex. Set p2 to be the other parent of i.
(c) Choose a random set of p1’s parents, where each set has an equal probability of being chosen. Remove the edges

between the chosen nodes and p1, and add edges between the nodes and p2 (i.e., transfer some of p1’s parents to
be p2’s parents).

The reverse move is Parents to Self (see below).

8. Parents to Self: merge two parents into one node.
(a) Choose node i at random. Reject if it does not have exactly 2 parents: p1 and p2.
(b) Choose sex s (male or female) with equal probability.
(c) Merge p1 and p2 into one node and set the sex to s.

The reverse move is Self to Parents (see above).

9. MaternalHC to PaternalHC: change maternal half cousins into paternal half cousins.
(a) Choose node i at random. If i does not have any maternal half cousins, reject the move. Choose at random node j among

the maternal aunts and uncles of i.
(b) Detach j and its children from i’s maternal grandparent and attach them to i’s paternal grandparent. In other words, i

and the children of j are now paternal half cousins, not maternal.

The reverse move is PaternalHC to MaternalHC (see below).

10. PaternalHC to MaternalHC: change paternal half cousins into maternal half cousins.
(a) Similar to MaternalHC to PaternalHC above.

The reverse move is MaternalHC to PaternalHC (see above).

11. MaternalHS to PaternalHS: change maternal half sibs into paternal half sibs, and vice versa.
(a) Choose node i at random. Choose at random node j among the maternal half siblings of i. If no such node exists, reject

the move.
(b) Detach j and its children from i’s mother and attach them to i’s father. In other words, i and j are paternal half sibs, not

maternal.The reverse move is PaternalHS to MaternalHS (see below).

12. PaternalHS to MaternalHS: change maternal half sibs into paternal half sibs, and vice versa.
(a) Similar to MaternalHS to PaternalHS above.

The reverse move is MaternalHS to PaternalHS (see above).
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13. Update a

(a) Given acurrent and for some fixed variance s2
a, draw anew from Nðacurrent;s

2
aÞ.

(b) If anew does not lie between the prespecified bounds [amin, amax], reject the move.The reverse move is Update a itself.

14. Update b

(a) Given bcurrent and for some fixed variance s2
b, draw bnew from Nðbcurrent;s

2
bÞ.

(b) If bnew does not lie between the prespecified bounds [bmin, bmax], reject the move.

The reverse move is Update b itself.

15. Update N
(a) Given Ncurrent and for some fixed variance s2

N , draw Nnew from NðNcurrent;s
2
NÞ. Round Ncurrent to be an integer.

(b) If Nnew does not lie between the prespecified bounds [Nmin, Nmax], reject the move.

The reverse move is Update N itself.
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