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Abstract
This brief review of current research progress on Charcot-Marie-Tooth (CMT)
disease is a summary of discussions initiated at the Hereditary Neuropathy
Foundation (HNF) scientific advisory board meeting on November 7, 2014. It
covers recent published and unpublished  and  research. Wein vitro in vivo
discuss recent promising preclinical work for CMT1A, the development of new
biomarkers, the characterization of different animal models, and the analysis of
the frequency of gene mutations in patients with CMT. We also describe how
progress in related fields may benefit CMT therapeutic development, including
the potential of gene therapy and stem cell research. We also discuss the
potential to assess and improve the quality of life of CMT patients. This
summary of CMT research identifies some of the gaps which may have an
impact on upcoming clinical trials. We provide some priorities for CMT research
and areas which HNF can support. The goal of this review is to inform the
scientific community about ongoing research and to avoid unnecessary

overlap, while also highlighting areas ripe for further investigation. The general
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 (0)Commentsoverlap, while also highlighting areas ripe for further investigation. The general
collaborative approach we have taken may be useful for other rare neurological
diseases.

 This article is included in the Rare diseases
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Introduction
Several recent reviews have focused on the need for discovery of 
therapies for rare diseases1 as well as the importance of increased 
collaboration2,3. There are few approved treatments for the approx-
imately 7000 rare diseases that affect ~6–7% of the population of 
the developed world1. Advances in technology are changing how 
rare diseases are discovered4 and deepening our understanding of 
them5. While suggestions on how to increase the number of drugs 
developed for rare conditions have been made1,6,7, it is unlikely that 
we are going to see a dramatic change unless there is a wholesale 
shift in the process of drug discovery and development, combined 
with increased collaboration between academics, industry, gov-
ernment labs and research foundations in the rare disease arena. 
Perhaps one of the ways this situation can best be changed is if 
patients and advocates work with the scientists they fund to iden-
tify the critical issues that need addressing4,8. This may enable 
developments that are most likely to show some direct benefit for 
the disease (and patients) to move research from the lab bench to 
the clinic.

Some rare diseases have recently been in the spotlight for their 
ability to inspire the raising of large sums of money, which can 
hopefully accelerate the search for a cure. Most notable is Amyo-
trophic Lateral Sclerosis (ALS) which became very high profile in 
2014 with the ALS ice bucket challenge9. For several years there 
has been a considerable discussion in this scientific community 
about difficulties translating the many preclinical studies for ALS 
from the mouse to the very costly human clinical trials10,11. It is 
now apparent that there are several factors that can impact the suc-
cess of drug discovery even from the very earliest stages, which can 
in turn influence the transition of new therapeutics into the clinic. 
When targeting the development of new therapeutics, it is impor-
tant to consider problematic issues that have prevented success in 
other disease areas early in the discovery progress. These broader 
issues can complicate the discovery of new drugs and include: tar-
get validation12, artifacts such as promiscuous compounds in small 
molecule screens13–15, false positives16, how liquids are moved17, 
leaching from plastics used in labware18, compound aggregation19, 
the solvent effects20, detergent effects21, data reproducibility21, data 
quality22,23, data access and standards24, data handling25, and biases 
introduced by filtering libraries26. Even the recent shift of drug dis-
covery from pharmaceutical laboratories to academic screening 
centers has issues27 and major gaps have been identified28. Many 
rare disease foundations or researchers are not even aware of these 
potential complications, which may ultimately impact the outcome 
and potential clinical feasibility of the work they fund or pursue, 
respectively.

We will briefly summarize recent developments in one rare disease, 
Charcot-Marie-Tooth disease (CMT), and propose further, cur-
rently untapped, opportunities as well as ultimately list what we 
believe should be the priorities for the field. While CMT may not 
be representative of every rare disease, this example may inspire 
other groups to consider not only the research they are funding but 
to go beyond the current dogma and consider what type of research 
needs to be funded to enable compounds to come to the clinic in 
the short, mid and long term. Drug discovery is not an overnight 
process as it usually takes well over a decade to go from a discov-
ery in the laboratory to a product that is approved for clinical use. 

The success transitioning from each stage is variable for drugs with 
orphan designation (with phase 1 and phase 2 success rates above 
average at 86.8 and 70%, respectively, while the phase 3 success 
rate at 66.9% was comparable with all indications)29. This would 
suggest that if we could slightly improve the success of each stage 
we would see far more drugs approved. We hope that by producing 
such a summary of recent work and priorities, there will be similar 
collaborative discussions between researchers and patient organiza-
tions for other rare diseases.

Diagnosis and mutations
Our particular focus is on CMT, a rare disease which has multi-
ple genetic causes30 and is classified into nine genetic subtypes 
(CMT1, CMT2, CMT3, CMT4, CMT5, CMT6, CMTDI, CMTRI 
and CMTX). Research in many areas is redefining our view of this 
disease and the complexities involved. CMT affects approximately 
one in 2500 Americans31, who usually have distally pronounced 
muscle weakness, resulting in difficulty walking and later also 
gripping objects. Typically, CMT patients display foot deformities,  
decreased reflexes, and bilateral foot drop32. Recent efforts and 
progress on CMT emphasize that we are steadily and impressively 
improving our understanding of the complex underlying biology. 
At the time of writing, there were over 3800 papers in PubMed on 
this disease. There is however no treatment for any of this group 
of disorders encompassed by CMT for which symptoms usually 
present in the first two decades of life33, so this presents a huge 
untapped opportunity to improve the lives of the many patients with 
this debilitating disease.

Accurate diagnosis of CMT is important if we are to identify patients 
for future clinical trials with treatments for the disease. Currently 
a tiered approach to genetic testing is used and recommended by 
clinicians and relies on nerve conduction velocity assessment, dis-
ease inheritance pattern and population frequency34. This approach 
is however laborious, costly and based on recent studies may be 
ripe for reappraisal. A study in Norway looked at diagnostic labo-
ratory testing for CMT and the spectrum of gene defects in that 
country35. In total, 549 patients were studied. Nearly 96% of these 
patients had mutations in just four genes (PMP22, MPZ, GJB1 and 
MFN2) linked to CMT. These genetic findings are in accordance 
with what has also been observed in other countries. In the United 
Kingdom a study of 1607 patients showed mutations or rearrange-
ments in the same four genes in over 90% of the samples36. In these 
two studies, patients without a mutation in these four genes were 
then considered for referral31,37. A more recent study in the United 
States30 has evaluated over 17,000 patients using a variety of gene 
testing methods. The scale of this study is at least 10 times larger 
than previous analyses and reproduced the finding that almost 95% 
of patients had mutations in just four genes. Specifically, it showed 
that 78.6% of those tested were positive for copy number varia-
tions of PMP22. The genes GJB1, MPZ and MFN2 were present in 
6.7%, 5.3% and 4.3%, respectively. These combined studies point 
to an opportunity for changing the algorithm for CMT diagnosis 
with initial focus on testing just these 4 genes, and patients that are 
negative for these can then be evaluated further with nerve conduc-
tion velocity testing. Early diagnosis has important benefits as the 
downstream costs of not treating CMT are considerable, and it can 
prevent unknowingly exacerbating the disorder by avoiding drugs 
that are contraindicated.
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New CMT mutations are also continually being sought which may 
help with diagnosis and biological understanding of the disease. 
This is particularly important in CMT2, in which, unlike CMT1A, 
the most common mutations (MFN2 and GDAP1) account for only 
25% of the total. Next generation sequencing (NGS) was used to 
screen CMT2 genes in 15 patients in whom MFN2 and GDAP1 
mutations were excluded38. A new mutation in HSPB1 was iden-
tified, a c.404C>A transversion resulted in p.(Ser135Tyr) amino 
acid change. A previous p.(Ser135Phe) HSPB1 mutant was found 
to impact cell viability and neurofilament assembly in cultured cell 
experiments38. It is highly likely that the newly discovered mutation 
has a similar if not identical role. It was suggested that NGS is a tool 
for efficient mutation detection and exclusion in CMT238.

The role of aminoacyl-tRNA synthetases (ARS) has recently been 
reviewed as housekeeping enzymes39. That is to say ARS have a key 
role in ensuring accurate transfer of information in the genetic code. 
Mutations in GARS (glycyl-tRNA synthetase gene), KARS (lysyl-
tRNA synthetase gene), AARS (alanyl-tRNA synthetase gene) and 
YARS (tyrosyl-tRNA synthetase gene), all are definitively associ-
ated in causing axonal CMT40–43. Furthermore, evidence supports 
the additional association of lysy’-tRNA synthetase, methionyl-
tRNA synthetase and histidyl-tRNA synthetase in peripheral axon 
degeneration44,45. For example CMT2D is an axonal neuropathy 
characterized by a phenotype that is more severe in the upper 
extremities. Mutations in the gene encoding GARS have been 
implicated in CMT2D. Mutations in GARS show loss-of-function 
features46,47, suggesting that tRNA-charging deficits play a role in 
disease pathogenesis, but animal studies support a gain of function 
mechanism47,48. Yet the linkage between mutations and subsequent 
pathology is unclear. It is difficult to reconcile the mutations in 
these enzymes with CMT, and numerous possible etiologic mecha-
nisms from loss-of-function to gain-of-function including many 
that may be outside their usual role49. The latter may be outside 
their usual role. Yao and Fox39 also describe the role of the ARS pro-
teins in other organisms such as yeast and bacteria as well as drug 
targets (e.g. antitumor). This should be considered in light of pos-
sible complications one sees with other chemotherapeutic agents 
precipitating CMT. This would be a very important consideration if 
ARS were to be targeted for modulating various diseases and hints 
at the potential of how biological discoveries in one area like a rare 
disease can shed light on many other diseases at little extra cost.

Basic research: recent Charcot-Marie-Tooth preclinical 
research
The progress of CMT has been described in several steps recently50. 
Genetic defects in myelinating Schwann cells (e.g. PMP22 duplica-
tion, CMT1A30,51 or overexpression leads to missorting or the accu-
mulation of these mutated/overexpressed proteins. In addition to 
subsequent demyelination, the malfunctioning Schwann cells then 
fail to sustain axonal support which results in progressive axonal 
and neuronal loss. The clinical phenotype of CMT is ultimately 
determined by the resulting neurogenic muscle atrophy.

Several recent papers provide some encouraging news in the quest 
for treatments for CMT1A, which is a primary dysmyelinating dis-
ease, and have identified compounds that have reached preclinical 
or clinical stages (Table 1). In addition to these, one study described 

how the CMT1A rat model (in early postnatal development) 
could be treated with a recombinant human growth factor called 
neuregulin-1 which controls myelin thickness52. In CMT rats this 
appears to enhance the reduced signaling of phosphatidylinositol 
4,5-bisphosphate 3-kinase (PI3K)–v-Akt murine thymoma viral 
oncogene homolog 1 (Akt) and lower augmented mitogen-activated 
protein kinase kinase 1 (Mek)-mitogen –activated protein kinase 
(Erk), and is able to improve the differentiation of Schwann cells 
in CMT1A. Thus, neuregulin-1 can counter the effect of PMP22 
overexpression on downstream signaling. Neuregulin-1 was found 
to be less effective in treating older animals. This approach may be 
useful in children where it could be applied before disease onset. 
This work opens the door for using compounds that modify signal-
ing pathways and the kinases involved.

A second recent paper used genome editing to create an assay for 
high throughput screening to expand the targets for drug discovery 
in CMT1A53. The main result of this work was the identification of 
the protein kinase C modulator bryostatin (Table 1) which lowers 
PMP22 expression. Interestingly this compound was not identified 
in previous screens by the group which had delivered the protea-
some inhibitors such as bortezomib54 (Table 1). In summary, two 
independent groups have now focused on the role of kinases in 
pathways that control PMP22. This work may foster a broader con-
sideration of the many compounds already available that modulate 
different kinases.

Alternative approaches in ameliorating the disease phenotype 
in CMT1A have focused on protein quality control mechanisms, 
specifically autophagy and chaperones. Rapamycin, a calorie 
restriction mimetic was shown to improve myelination in neuron-
Schwann cell explant cultures from neuropathic mice, however this 
drug did not improve neuromuscular performance in mice in vivo55. 
The differential response of skeletal muscle and peripheral nerve 
tissue to rapamycin is hypothesized to be responsible for the lack 
of functional improvement in neuropathic mice. Additional efforts 
in identifying therapeutic target pathways for CMT1A neuropa-
thies involve studies on the normal function of PMP22 in myelin. 
A novel role for PMP22 has been found in the linkage of the actin 
cytoskeleton with the plasma membrane, possibly through regulat-
ing the cholesterol content of lipid rafts56.

Other targets of interest for CMT include histone deacetylase 6 
(HDAC6)57 as the inhibition of this can promote survival and regen-
eration of neurons. It was more recently shown that an increase of 
α-tubulin acetylation induced by inhibition of HDAC6 corrected 
axonal transport defects caused by HSPB1 mutations, rescued the 
CMT phenotype of mutant HSPB1 mice58.

One of the ways that some CMT patients first become aware of their 
disease is when they are given a drug treatment for another disease. 
This is termed chemotherapy-induced neurotoxicity. Drugs such as 
paclitaxel and the vinca alkaloids that are widely used in cancer 
treatment cause severe peripheral neuropathy and in some patients, 
this exacerbates CMT, revealing it perhaps for the first time. There 
have been recent developments in this area that may protect CMT 
patients in the future. A synthetic antioxidant called ethoxyquin59, 
which was approved by the US Food and Drug Administration 
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Table 1. Compounds tested for CMT 1A (impacting Pmp22) in vitro and or in vivo. (All structures were extracted from ChemSpider 
(www.chemspider.com)).

Compounds Target and 
status Source Ref.

Vitamin C

cyclic adenosine 
monophosphate

Reached clinical 
trials and failed

INSERM [103]

Fenretinide 

Interaction 
with retinoic 
acid receptor 
and retinoid X 
receptor 

Preclinical

NCATS [54]

Olvanil 

Agonist for 
the transient 
receptor 
potential 
vanilloid type 1 

Preclinical

NCATS [54]

Bortezomib 

20S proteasome 
inhibitor 

Preclinical

NCATS [54]

Bryostatin
 

Protein kinase C 

Preclinical
NCATS [53]

Compounds Target and 
status Source Ref.

Baclofen 

Naltrexone

 

Sorbitol

 

PXT-3003 is a 
combination of 
3 compounds 
used at lower 
concentrations 
than approved 
Baclofen targets 
the gamma 
aminobutyric 
acid B receptor 
(GABA(B)), 
Naltrexone targets 
opiod receptors, 
Sorbitol may act 
as a chaperone 
and or bind 
muscarinic 
acetylcholine G-
protein coupled 
receptors 

Completed phase 2 
clinical trial

Pharnext [90,91] 

ADX71441 

GABA(B) targeted 
and reduces 
PMP22 expression 

Preclinical

Addex 
Therapeutics [89,104]

Ethoxyquin Heat shock protein 
90 (HSP90) 
modulator used 
to protect against 
chemotherapy 
induced 
neurotoxicity 

Preclinical

Johns 
Hopkins 

University
[59] 

O

OH

OH

HO

HO

H

O

CH3CH3CH3

CH3

H3C
O

OH

NH

OH

O

O

CH3

CH3

NH

N

N

O

O B

CH3

CH3

HO OH

NH
NH

O

O

O

O

OH OH

OH

H

O

O

O

H3C

H3C

H3C

H3C
H3C

H3C

CH3

CH3

CH3

H

O

O

H

O

O

O
HO

H

O
H

Cl

NH2

O
OH

O

OH
O

HO

N

H
H
H
H

HO

HO
HO

HO

HO

HO

O

CH3

N OF

Cl

N
H

OH3C

CH3

CH3

CH3

Page 5 of 14

F1000Research 2015, 4:53 Last updated: 01 APR 2015

http://www.chemspider.com


(FDA) 50 years ago, appears to protect against neurotoxicity in both 
cell and animal studies. This treatment does not appear to impact 
chemotherapy and also modulated a protein called heat shock pro-
tein 90 (HSP90). This work paves the way for further studies of 
the neuroprotective ability of this and other compounds and pos-
sibly clinical trials for patients with pre-existing CMT that need 
to undergo chemotherapy and for which there are few options. At 
the same time it may help reveal the mechanisms of neurotoxicity 
resulting from these chemotherapeutics. A recent study described 
how inducible HSP70 prevented aggregation and enhanced the 
processing of PMP22. The authors also proposed the further study 
of HSP90 inhibitors in models of PMP22-linked neuropathies60.

Basic research: new animal models
The creation of mouse models for CMT can be used to understand 
the mechanisms of the various types of this disease and for drug 
discovery61. Three mouse models of CMT1X, CMT1B and CMT1A 
were recently developed to study Schwann cells and show that they 
display a heterogeneous pattern of developmentally regulated mol-
ecules62. These could be useful for diagnostic purposes. They also 
described an inflammatory reaction as a common disease modula-
tor in the mouse and possibly humans with CMT1. LRSAM1 is a 
E3 ubiquitin ligase and mutations in LRSAM1 have recently been 
shown to cause CMT. Mouse mutations in Lrsam1 were created for 
a form of CMT (CMT2P) which had only a very mild neuropathy 
phenotype with age but was more sensitive to the neurotoxin acry-
lamide, causing axon degeneration63. LRSAM1 primarily localizes 
in a perinuclear compartment immediately beyond the Golgi, but 
its cellular function is not yet understood. However, the phenotype 
of the Lrsam1 mutant mice is so mild that it is of questionable util-
ity as a disease model, and similar findings in genes such as Hint1 
highlight the challenges of creating valid mouse models of axonal 
neuropathies64.

While we frequently see groups use mice and rat as animal models 
of diseases, sometimes they are unsuitable for knocking out genes 
as they can result in embryonic lethality. The zebrafish has been 
described as a model of CMT2A which affects the distal axons 
of motor and to a lesser extent, sensory neurons in humans65. The 
study assessed the phenotypic effects of mitofusin 2 (MFN2) muta-
tion in zebrafish. The Mfn2 mutant zebrafish do not develop abnor-
malities until later stages. Previously it had been shown by others 
that knocking out the MFN2 gene in mice resulted in embryonic 
lethality. Zebrafish created with this mutation in MFN2 developed 
normally, however they showed a progressive motor dysfunction as 
the fish were unable to swim correctly between 100 and 200 days65. 
Some patients with mutation of the MFN2 gene also show this pro-
gressive motor dysfunction. Fishes were monitored in the study65 
by video in their aquarium and those swimming at an angle of more 
than 30 degrees to the horizontal were specifically recorded65. In 
addition to these studies, in vitro cell culture was utilized to meas-
ure the mitochondrial transport in the neurons from the MFN2 
knock out zebrafish and it was found that retrograde transport was 
decreased. Obviously, while humans and zebrafish appear dis-
similar, their MFN2 proteins are very similar. This study therefore 
presents a potentially very useful animal model of CMT2A that can 
then be explored to test potential future drugs for their effect on 

mitochondrial dynamics and axonal transport in order to see if they 
can ameliorate the phenotype (swimming at an angle of more than 
30 degrees) observed.

When we think of the different animal models for diseases like 
CMT, the fruit fly (Drosophila melanogaster) is likely the furthest 
from our mind. Yet the fruit fly has quite possibly overturned our 
basic understanding of the disease mechanism behind CMT2B, by 
becoming the first animal model for this disease. CMT2B was long 
thought to be a “gain of function” disease. A recent study however 
showed that neurons lacking a gene for rab7 result in neuropathy, 
while addition of Rab7 proteins could restore function66. Funda-
mental insights like this can affect how we approach a treatment or 
cure for CMT2B. Perhaps experimental methods to increase Rab7 
protein levels, while opposite to the previous dogma, may actually 
be correct. There are still multiple hurdles to overcome because the 
fruit fly may not be a perfect disease model for human CMT2B. A 
second paper also suggests that the human Rab7 mutation mimics 
CMT2B in the fly67. In this study, a second fly model was developed 
and demonstrated attributes of the human disease. Flies have also 
been successfully used to model neuropathy associated with tRNA 
synthetases and to identify genetic modifiers of these diseases68,69. 
This model could be useful for screening compounds as potential 
therapies and understanding of the mechanism of the disease. This 
also represents another case of flies being useful of humans. The 
increasing utilization of different animal models of various CMTs 
suggests that their role will likely increase in importance and may 
lead to useful insights and help identify therapeutics.

Basic research: gene therapy and stem cells
There have been relatively few studies assessing gene therapy for 
CMT. One group recently used neurotrophin-3 (NT-3) gene ther-
apy via adeno-associated virus (AAV) delivery to muscle70. In the 
Trembler-J model of demyelinating CMT, this gene therapy led to 
measurable NT-3 secretion and improved motor function, histopa-
thology, and electrophysiology of peripheral nerves.

Other hereditary neuropathies have also been the subject of gene 
therapy. For example Giant axonal neuropathy (GAN) is caused 
by loss of function of the gigaxonin protein. In cells this is seen 
as intermediate filament (IF) aggregation, and leads to a progres-
sive and fatal peripheral neuropathy. GAN mice received an intra-
cisternal injection of an AAV9/GAN vector to globally deliver the 
GAN gene to the brainstem and spinal cord. These mice showed 
clearance of peripherin IF accumulations suggesting that gigaxonin 
gene transfer can reverse the pathology71. Other dominant CMTs 
may be best approached with allele-specific knockdown methods 
to try to eliminate the expression of the mutant mRNA. Piloting 
such approaches in CMT represents another way in which CMT 
translational research could have a broader impact for other rare 
diseases.

Induced pluripotent stem cells (iPSCs), which offer an unlimited 
supply of cells derived from adult patient cells, offer a unique oppor-
tunity for human disease modeling and investigation. After repro-
gramming, iPSCs can be differentiated into many different cell types 
including neurons and glia, which has led to important findings for 
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understanding disease mechanisms and therapeutic approaches72–75. 
For example, the derivation of iPSCs from three GAN patients with 
different GAN mutations was recently reported and key pathologi-
cal phenotypes observed. These cells were used to support the fea-
sibility of gene replacement therapy76. iPSC-derived motor neurons 
from axonal CMT patients identified common pathophysiological 
mechanisms in axonal CMT2A and CMT2E77. Differentiation of 
CMT iPSCs into Schwann cells, which are most affected cell type 
in CMT, will be an important next step. Despite progress recapitu-
lating Schwann cell developmental stages, improvement of differ-
entiation protocols is still required to achieve mature, functional 
Schwann cells with high efficiency78–80.

Basic research: improving collaboration and using 
computational approaches
We have previously described how research collaborations may 
enhance drug discovery and how computational approaches can be 
used to facilitate secure sharing of data between collaborators81,82. 
The NIH Blueprint Neurotherapeutics Network83 is one example 
which provides support for small molecule drug discovery and 
development, access to NIH-funded contract research organiza-
tions (CROs), and access to consultants with expertise in various 
aspects of drug discovery and development. At the center of this 
is secure collaborative software so that molecules and screen-
ing data with intellectual property IP are securely shared between 
the groups of collaborators84. With the various screening efforts 
undertaken for CMT1A to date53,54 perhaps it is also worth consid-
ering using computational approaches to help identify additional 
compounds to test using machine learning models built with the 
data85. Also considering some of the “molecule-centric” issues 
in drug discovery, the potential compound libraries to be tested 
could be filtered before HTS for potential PAINS13, false posi-
tives, aggregators, etc. As there has been considerable investment 
in developing chemical probes from various screens of the NIH 
MLSMR library, assessment by an experienced medicinal chem-
ist has created a score which has been used to derive a computa-
tional model86. This could also be used to provide some idea that 
the molecule may also be reasonable to a medicinal chemist’s 
perspective.

Clinical research: CMT biomarkers and natural history 
of disease
New clinical biomarkers are needed for CMT. Recently a novel 
magnetization transfer ratio (MTR) MRI assay of the proximal sci-
atic nerve (SN) was developed as a potential biomarker of myelin 
content changes in patients with CMT diseases87. The relation-
ship between MTR and clinical neuropathy scores was assessed. 
Mean volumetric MTR values were significantly decreased in the 
SN of patients with CMT1A and CMT2A relative to controls. Skin 
derived mRNA expression also holds promise to serve as biomark-
ers in CMT1A patients61.

The international Inherited Neuropathy Consortium (INC) recently 
analyzed clinical and genetic data from 1652 patients evaluated at 13 
INC centers88. The disease burden of all the mutations was assessed 
by the CMT Neuropathy Score (CMTNS) and CMT Examination 

Score (CMTES). Five subtypes of CMT (CMT1A/PMP22 duplica-
tion, CMT1X/GJB1 mutation, CMT2A/MFN2 mutation, CMT1B/
MPZ mutation, and hereditary neuropathy with liability to pressure 
palsy/PMP22 deletion) accounted for 89.2% of all genetically con-
firmed mutations. The study also confirmed that patients could be 
uniformly assessed between international centers and provides a 
baseline for future clinical studies.

Clinical research: clinical trials and outcomes research
We have recently described some of the compounds for CMT in 
preclinical52,89 or clinical trials. Two recent publications from Pharn-
ext described the novel combination of three drugs called PXT-3003 
and their effect on CMT1A both in the lab90 and in a phase 2 clini-
cal trial91. Initially three drugs approved for other uses (baclofen, 
naltrexone and sorbitol) were tested separately and were shown to 
work better at increasing myelination in Schwann cells when com-
bined together in the test tube (at concentrations far lower than their 
approved doses). The combination of the three drugs was shown 
to lower Pmp22 expression. In the rat model of CMT1A differ-
ent measures of effectiveness suggested that PXT-3003 was also 
promising and likely efficacious. The very low doses of all three 
components would also negate any adverse side effects. The clinical 
trial used three dose levels of PXT-3003 in 80 adults with mild to 
moderate CMT1A. This trial confirmed the safety of the combina-
tion drug and the best improvement was seen at the highest dose. 
No adverse events were observed. Efficacy was also assessed using 
the CMTNS and Overall Neuropathy Limitations Scale (ONLS). 
While a relatively modest but statistically significant improvement 
was observed, this represents the most promising potential treat-
ment to date surpassing the various clinical trials of ascorbic acid 
(vitamin C), which showed less change from baseline than high 
dose PXT-3003. There are still many gaps in understanding the 
mechanism of how PXT-3003 actually exerts its effect. It is hoped 
that looking at patients over a longer period and possibly treating 
them earlier before they become clinically affected by the disease, 
may improve their nerve conduction. PXT-3003 represents the most 
promising therapeutic for the disease in years but there is still a 
long way to go (several years at least as PXT-3003 will enter phase 
3 clinical trials in 2015) before it may be more widely available 
as an FDA or European Medicines Agency (EMEA) approved 
treatment for CMT1A.

What do we need for this and other clinical trials to be successful? 
The dependence on relatively crude outcome measures like the six 
minute walking test etc. which are still relied on need updating with 
technologies which track the patient continually92,93, rather than dur-
ing a visit to the neurologist. New measures or biomarkers could 
perhaps be developed and applied in clinical trials for CMT94. In 
addition, more subtle analysis based on surveying the patient and 
the caregiver may also be instructive.

For example, if we are to learn more about CMT and the effec-
tiveness of rehabilitation it is worth involving the patient and their 
caregiver. A recent Italian study described a survey of CMT patients 
and caregivers and their perspectives and perceptions of rehabilita-
tion efficacy and needs95. This cross-sectional study used several 
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standard questionnaires to survey 123 patients enrolled through 
clinical and genetic testing. Not surprisingly, the results suggested 
that patients believe it is important to feel better after physical ther-
apy. There was also a discrepancy between the perception of benefit 
from rehabilitation for the patient, and the caregiver’s perception of 
benefit. Such questionnaires might be a useful addition to clinical 
trials to justify a treatment approval.

Patient reported outcomes are instrumental in getting drugs 
approved and we are seeing an increase in drugs approved just on 
quality of life (QoL)96,97. One hundred and eighty-nine CMT1A 
patients were recently reported to have a QoL that was significantly 
worse versus the standard population, albeit slightly better than 
patients with multiple sclerosis98. In this study women had earlier 
CMT1A onset, higher deterioration of the QoL and when assessed 
by the ONLS, higher disability of the upper limb98. A recent study 
of pain in 176 children with CMT used QoL outcomes and other 
clinical assessments99. It was shown that increased pain correlated 
with deteriorating QoL scores but not with more severe neuropathy. 
What could we do to improve QoL of patients with CMT? Clearly, 
in children steps to alleviate pain would be an improvement.

Conclusion
We have briefly summarized some of the developments in CMT 
research of the last few years. This follows on from a meeting 
organized by HNF to seek different perspectives which could help 
us understand what areas may need support and further research. 
We have also attempted to prioritize areas of CMT research based 
on the need to bring treatments to market for the waiting patients 
(Table 2).

Currently, CMT1A is the only type of CMT for which there is a 
therapeutic in clinical trials90,91. We need to ensure that this com-
pound is successful because it will benefit the patient and CMT 
focused scientific community. In order to do this we may want to 
identify, develop and validate more robust outcome measures for 
CMT as described earlier. In addition to show the value of treat-
ments and impact on the QoL of patients for insurance companies 
who would reimburse treatment we need more studies that look into 
this. Based on our priorities of helping to translate treatments to the 
clinic and help patients, we perhaps could focus on the development 
of new clinical endpoints and any efforts to improve and quantify 
the impact of CMT on patient QoL. If we are to impact patients 
with CMT it is important to diagnose their disease early and to do 
this accurately.

High to medium level priorities include efforts to find new treat-
ments for other forms of CMT. This may require more col-
laborations to identify molecules for progression. Encouraging 
companies to collaborate is also in the best interests of the field 
but not without its complexities. We can be prepared for this by 
using software that enables secure collaboration between different 
parties earlier.

Certainly we still have only a partial understanding of CMT and the 
search for new mechanisms and targets would be important perhaps 
for future breakthroughs in treatment. Another important priority 
is to include recruiting more patients for future clinical trials as we 
may be underestimating the number of patients with CMT. Regis-
tries such as GRIN8 may help in this regard to both identify patients 
and understand their disease and treatment needs.

Table 2. Long and short term impacting priorities for CMT research.

Priority 
Level Projects

Highest Ensure clinical trials for potential treatments for CMT1A are successful and drugs are 
approved rapidly by regulators. (Short term impact)

Develop sensitive, robust outcome measures for CMT. (Long term impact)

Demonstrate the impact of therapeutics through a measurable impact on quality of life 
of CMT patients. (Short term and long term impact)

Ensure early accurate diagnosis of patients with CMT. (Long term impact)

Set up multiple HTS using FDA and proprietary compounds against various in vitro 
models for different CMT forms. (Long term impact)

Medium Translate early mid stage preclinical discoveries for CMT. (Mid-long term impact)

Prioritize promising preclinical candidates for other forms of CMT that can be quickly 
assessed for efficacy in multiple in vivo animal models. (Long term impact)

Foster increased academic-industry-foundation collaborations. (Long term impact)

Identify new mechanisms and targets for treatment of CMT. (Long term impact)

Recruit patients through registries for future clinical trials. (Short term impact)

Lower Provide research materials and models in central repositories. (Long term impact)

Explore gene therapy and stem cells as longer term approaches. (Long term impact)
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If we are to encourage more research on CMT, animal and cell 
models, chemicals and reagents need to be available readily and 
if possible centralized in a repository. Several animal and stem 
cell models have recently been developed, and it will be important 
to provide a repository so that other researchers can access them. 
Knowing which animal and cell models are valid and which are not 
could help to prevent costly clinical trials (as described for the ALS 
example earlier). While CMT is not a wide-spread disease and the 
funds available are limited, we have still to consider the develop-
ment of such a repository for scientists because it would facilitate 
compound testing, and such repositories have been successfully 
developed for other diseases. As compounds like PXT-3003 
progress through clinical trials and hopefully show an impact on 
the disease, other companies will likely show an interest in CMT. 
These companies will want to screen their libraries in cell and ani-
mal models. As we have seen in recent years, preclinical research 
is happening through collaboration with academic screening cent-
ers100. It will be important therefore that as a community we fully 
characterize these systems and have them available for testing.

We should also be open to considering biotherapeutic approaches 
which could complement small molecule drugs. It would appear 
that there has been relatively little research in gene therapy for 
CMT. We could certainly leverage the considerable developments 
that have been occurring for other diseases in this regard. As a small 
rare disease foundation we have to consider carefully where we put 
our resources.

Clearly there are many other fascinating areas of research that are 
ongoing or may be required. The clinical trials for CMT recently 
undertaken are using relatively crude measures for determining 
efficacy. Longer-term assessments of patients using proteomic and 
metabolomic approaches may help to identify new biomarkers for 
CMT. In addition, the development of new scores for the disease101 
as well as standardizing them across institutions is important. 
Developing and accessing approaches that offer a real-time readout 
on the disease in patients would also be valuable for future clinical 
trials.

From the diagnostic side it would appear that assessing just four 
genes including PMP22 duplication/deletions, GJB1, MPZ, and 
MFN, would capture most of the patients with a CMT phenotype. If 
we are to simplify diagnosis and perhaps reduce costs, a more sim-
plistic algorithm is needed. What other factors may be important 

for CMT that could modify the disease or the QoL? For example a 
recent study of meal frequency from studies of animal and human 
subjects suggests that intermittent energy restriction can improve 
health indicators and counteract disease processes102. These changes 
in meal frequency could have an impact on overall health. Should 
we be studying the effect of this intermittent energy restriction on 
specific diseases like CMT also?

In summary, we have drawn attention to some of the most recent 
advances in CMT research and made suggestions of where fund-
ing bodies such as HNF could invest to have maximum short term 
impact (e.g. ensuring a treatment for CMT1A is approved quickly), 
as well as long term impact (e.g. prioritizing compounds for other 
forms of CMT) (Table 2). Our hope is that once a treatment for 
CMT1A is approved more drug companies will be interested 
in CMT, investment in research will increase and therefore we 
have to be prepared for that and the downstream implications on 
resources, research materials, researchers and ultimately patients 
themselves.
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The authors discuss the many issues that can complicate the discovery of new drugs.

The authors summarize recent developments in Charcot-Marie-Tooth disease which may be used as an
example of what can or should be done to improve development of drugs in rare disease.

The vast majority of CMT patients have copy number variations of The authors propose aPMP22. 
method destined to accelerate the identification of the different mutations associated with the CMT
phenotype.

The authors briefly review the treatment used in CMT1A rat models and consider their application to
humans.
Recently association of small doses of baclofen, naltrexone and sorbitol (PXT-3003) seemed promising
and well tolerated. Phase 3 study is going to start in 2015, and it will take several years before a
significant effect of the medication on CMT1A can be confirmed and the drug approved for treatment.

The different methods of evaluation of the benefit of treatment are discussed. In addition, it must be kept
in mind that CMT1A is a very slowly progressive disease, with phenotypic variations especially in
presentation and course. A large number of patients carrying the same mutation thus need to be included
in the studies and followed over many years. It will not be an easy task in a rare disease.

This paper is useful in delineating the different steps that can lead to discovery of new drug in rare
diseases, emphasizing the need for collaboration between geneticists, biochemists, drug companies  and
clinicians

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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This report reviews recent research on Charcot-Marie-Tooth neuropathies. The report is the result of a
recent meeting of the scientific advisory board of the Hereditary Neuropathy Foundation and summarises
suggestions made there. The article includes suggestions for improvements to diagnosis, including
stratified testing for the most common mutations before screening for the rarer ones, and discussion of
new and old animal models that have been developed to study and understand disease mechanisms and
for the exploration of possible therapeutic strategies. It reviews other avenues of active research,
including selective use of adenoviral vectors and stem cells that are being investigated for possible use in
gene therapy for some forms of the disease, for understanding disease mechanisms, and for screening
programmes for therapeutic drugs. It highlights the possibility that chemotherapy-induced toxicity may
exacerbate some forms of CMT. It suggests that there is room for improved collaboration between
different research groups and clinicians and more use of computational approaches. To my knowledge
there are already several consortia in addition to the Hereditary Neuropathy Foundation that are already
very active in trying to advance therapeutic strategies so I am not sure how much of a deficit there is in
this area.  On the clinical side a need for reliable biomarkers of the various disease forms is highlighted
and the review ends with a discussion of clinical trials and the importance of involving patients and
caregivers in the trial outcome measures is emphasised.

Overall the article provides an up to date review of the research and possible treatments for this group of
relatively rare diseases which will be of use to both researchers and clinicians in the field.
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it is of an acceptable scientific standard.
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