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Accessible light detection and ranging: estimating large
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Abstract. Large trees are important to a wide variety of wildlife, including many species of conservation
concern, such as the California spotted owl (Strix occidentalis occidentalis). Light detection and ranging
(LiDAR) has been successfully utilized to identify the density of large-diameter trees, either by segmenting
the LiDAR point cloud into individual trees, or by building regression models between variables extracted
from the LiDAR point cloud and field data. Neither of these methods is easily accessible for most land
managers due to the reliance on specialized software, and much available LiDAR data are being underuti-
lized due to the steep learning curve required for advanced processing using these programs. This study
derived a simple, yet effective method for estimating the density of large-stemmed trees from the LiDAR
canopy height model, a standard raster product derived from the LiDAR point cloud that is often delivered
with the LiDAR and is easy to process by personnel trained in geographic information systems (GIS).
Ground plots needed to be large (1 ha) to build a robust model, but the spatial accuracy of plot center was
less crucial to model accuracy. We also showed that predicted large tree density is positively linked to
California spotted owl nest sites.
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INTRODUCTION

Large trees are critical components of many
temperate forest ecosystems (Franklin et al. 2002,
Lutz et al. 2012). Large trees have features that
directly provide habitat for wildlife (e.g., broken
tops and cavities), in addition to indirectly pro-
viding habitat by contributing to greater com-
plexity in forest structure. Both aspects of large
trees have been shown to be important for wild-
life species of conservation concern. Numerous
studies have shown the California spotted owl’s

(Strix occidentalis occidentalis) (CSO) association
with large, old-growth trees, and structurally
complex stands used for nesting and roosting
(Bias and Guti�errez 1992, Guti�errez et al. 1992,
Moen and Guti�errez 1997, Keane 2014). CSO
populations are declining in the Sierra Nevada,
and they are currently under review for potential
listing under the Endangered Species Act. Thus,
information on the distribution and abundance
of important large tree habitat elements and
structurally complex forest stands is needed
to inform assessment and development of
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conservation strategies for CSOs, and more
broadly, Sierra Nevada forest landscapes. In
addition to CSOs, large tree habitat is important
for numerous wildlife species including fishers
(Martes pennanti), northern goshawks (Accipiter
gentilis), woodpeckers, and others (Beier and
Drennan 1997, Greenwald et al. 2005, Seavy
et al. 2009, Hollenbeck et al. 2011, Zielinski
2014).

In the past, imagery from passive remote sen-
sors, such as LANDSAT, was widely used to esti-
mate the structure of forests (Forsman 1995,
Hunter et al. 1995, Moen and Guti�errez 1997,
McDermid et al. 2005). Light detection and rang-
ing (LiDAR) is a form of active remote sensing
that is better able to detect the height of vegeta-
tion than passive remote sensing, and therefore
may be a very useful tool for identifying wildlife
habitat (Lefsky et al. 2002, Vierling et al. 2008,
Martinuzzi et al. 2009, Selvarajan et al. 2009,
Kelly and Di Tommaso 2015, Kramer et al. 2016).
This is particularly true in areas with tall (and
likely large diameter) trees (Bergen et al. 2009,
Wing et al. 2010, Garc�ıa-Feced et al. 2011, Ackers
et al. 2015). Ackers et al. (2015) found that
LiDAR was a better predictor than LANDSAT of
Spotted Owl habitat, which depended heavily on
large tree density and overall canopy height
(Ackers et al. 2015).

Methods for estimating large tree density from
LiDAR include individual tree segmentation and
statistical modeling that utilizes one to many
LiDAR-derived independent variables. Tree seg-
mentation algorithms segment the canopies of
individual tree crowns from the LiDAR point
cloud (Popescu et al. 2003, Chen et al. 2006, Li
et al. 2012, Jakubowski et al. 2013a). Using these
algorithms, it is possible to estimate the location
of dominant or isolated stems and predict the
number of large trees in a given area; however,
the accuracy of these predictions decreases with
dense canopy cover, when stems are close
together, and when trees are codominant, inter-
mediate, or suppressed (Kaartinen et al. 2012,
Swetnam and Falk 2014). Tree segmentation has
been successfully implemented in wildlife stud-
ies (Garc�ıa-Feced et al. 2011), and while it
requires fairly simple LiDAR input, it necessi-
tates a multi-step process (where errors can be
compounded) to calculate the density of stems in
a given diameter class: (1) calculate each stem’s

location and maximum crown height, (2) back-
calculate each tree’s diameter, and (3) calculate
the stem density of the diameter range of inter-
est. Furthermore, this analysis also requires train-
ing data where all stems are mapped, which can
be very labor intensive, especially for larger plots
(>0.1 ha). Unfortunately, this work flow is not
possible for most land managers due to the lim-
ited availability of LiDAR with high point densi-
ties (due to funding limitations or age of LiDAR
acquisition), equipment, personnel for fieldwork,
limited training in and access to tree segmenta-
tion software, and limited time to carry out com-
plex processing tasks.
Statistical models using LiDAR to predict tree

density can be more abstract, and while less
accurate than predictions of tree height or basal
area, are also able to make useful predictions
(Hudak et al. 2006, Lee and Lucas 2007, Jaku-
bowski et al. 2013b). While these models do not
require the complex algorithms and high-density
LiDAR needed by tree detection algorithms, they
often utilize a suite of LiDAR-derived variables.
These variables are not standard deliverables
from LiDAR acquisitions and typically require
expertise of a LiDAR specialist. Furthermore,
once a model is created, it can be hard to under-
stand the ecological underpinnings, and the
model must be re-evaluated when moving
between different areas or forest types. Simpler
models (e.g., fewer variables, less intensive statis-
tics) are uncommon in LiDAR applications for
natural resources.
In this study, we explore regression-based

approaches for accurately quantifying the den-
sity of large trees. While tree segmentation is
another option, we intentionally avoided it to
investigate less demanding approaches in terms
of LiDAR point density, field plots, processing
hardware and software, and expertise of process-
ing personnel. Our specific research questions
were as follows: (1) When estimating large tree
density from LiDAR, what is the difference in
predictive accuracy between (A) a multiple
regression model comprised of many LiDAR-
derived variables and (B) a simple linear regres-
sion model derived from the canopy height
model (CHM)? (2) Does plot size or plot center
accuracy influence the strength of this relation-
ship? and (3) Can our LiDAR-derived large tree
density estimates be used to identify important

 ❖ www.esajournals.org 2 December 2016 ❖ Volume 7(12) ❖ Article e01593

KRAMER ET AL.



structural habitat characteristics of California
spotted owl (CSO) nest sites?

METHODS

Study area
Our study was conducted in the Meadow Val-

ley area of the Plumas National Forest, which is
in the northern Sierra Nevada of California (cen-
tered at 39°550 N, 121°030 W; Fig. 1). With a
Mediterranean climate, most of its 1050 mm/yr
of precipitation falls during the winter (Ansley
and Battles 1998). The 22,510-ha (55,623 ac) land-
scape is made up of forest, montane chaparral,
and meadows, and falls between 1050 and
2150 m in elevation (Collins et al. 2013, Kramer
et al. 2014). Mixed conifer tree species predomi-
nate, including ponderosa pine (Pinus ponderosa),
Jeffrey pine (Pinus jeffreyi), sugar pine (Pinus lam-
bertiana), Douglas-fir (Pseudotsuga menziesii),
white fir (Abies concolor), incense-cedar (Caloce-
drus decurrens), and California black oak (Quercus
kelloggii) (Schoenherr 1992, Barbour and Major
1995). At higher elevations, smaller pockets of
red fir (Abies magnifica) and western white pine
(Pinus monticola) can be found. Lower densities
of lodgepole pine (Pinus contorta), western juni-
per (Juniperus occidentalis), California hazelnut
(Corylus cornuta), dogwood (Cornus spp.), and
willow (Salix spp.) also occur. Before fire sup-
pression began in the early 1900s, the historic fire
regime consisted of primarily low- to moderate-
severity fires burning at 7- to 19-year intervals
(Moody et al. 2006).

Many different fuel reduction treatments were
implemented across this landscape between 1999
and 2008 as part of the Herger-Feinstein Quincy
Library Group Pilot Project (Herger and Fein-
stein 1998). The fuel treatments occurred across
approximately 20% of the landscape and were
intended to mitigate potential for uncharacteristi-
cally large and severe wildfire while conserving
critical habitat for CSO and other species
(Moghaddas et al. 2010). Multiple nesting sites of
CSO have also been located and monitored
across this study area (Stephens et al. 2014).

Field data
The entire Meadow Valley study area was sys-

tematically surveyed for CSO nesting sites
between 2002 and 2012 using standardized

survey protocols to determine occupancy and
reproductive status (Blakesley et al. 2010, Ste-
phens et al. 2014). As part of these protocols,
efforts were made to locate the specific nest tree
used by breeding owl pairs each year. A total of
13 CSO nest tree locations were documented and
sampled using the standard Forest Inventory
and Analysis (FIA) protocol described below.
Field plots were sampled between 2004 and
2009. Plots were centered on all 13 known CSO
nest trees within the study area and at 132 CSO
foraging locations. Foraging locations were esti-
mated from 10 owls using standard radio-tele-
metry techniques (White and Garrott 1990,
Kenward 2001); we conducted vegetation plots
at a random subsample from 436 total foraging
locations, with each owl sampled equally. In
addition, any foraging location within a fuels
treatment also received a vegetation plot. Error
ellipses for radio-telemetry locations are depen-
dent on distance to the animal, change in angle
between bearings, and elapsed time between
bearings; we sampled vegetation only at foraging
locations in which the error ellipse was less than
1 ha, the size of the largest vegetation subplot
(Gallagher 2010). A total of 145 plots were sam-
pled (of which 134 were used for our study due
to incomplete coverage by the LiDAR point
cloud or inaccuracies between spatial and non-
spatial datasets). Plot centers were recorded with
a Trimble GeoExplorer3, with a reported accu-
racy of 2–5 m (actual accuracies for each plot
were not recorded).
Standard FIA plot protocol was implemented

to collect plot and subplot data (USDA Forest
Service 2001). Additionally, trees over 76 cm
(30 in) in diameter at breast height (dbh) were
measured on a 1-ha plot that encompassed all
subplots. Only a single subplot of each size was
utilized to maintain subplot independence and
control for slight inaccuracies in plot center coor-
dinates due to lower accuracy GPS. These plots
measured 1 ha (2.47 ac), 1/10th ha (0.247 ac),
and 1/60th ha (0.041 ac), with plot radii of 56.41,
17.95, and 7.31 m (185.1, 58.9, and 24.0 ft),
respectively, laid out concentrically around the
recorded plot center. The plot and subplot
arrangement that we used is illustrated in Fig. 2.
In all plots, trees over 76 cm (30 in) in dbh were
measured and considered for our analyses to
reflect the harvesting regulations described in the
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US Forest Service 2001 Framework and the 2004
Sierra Nevada Forest Plan Amendment (US For-
est Service 2001, 2004).

LiDAR data and processing
Watershed Sciences, Inc. collected aerial LiDAR

over the Plumas and Lassen National Forests
between 31 July 2009 and 11 August 2009. A
Leica ALS50 Phase II laser system was used to
collect LiDAR points utilizing a scan angle of
�14° from nadir. A Leica RCD-105 39 megapixel
digital camera was used to capture orthopho-
tographs, which were processed with Leica’s Cal-
ibration Post Processing software v.1.0.4. IPASCO
v.1.3 (Heerbrugg, Switzerland) and the Leica Pho-
togrammetry Suite v.9.2 were used to spatially
place the photos. The vendor reported that

average vertical and horizontal accuracy were
2.6 cm (1.02 in) and 7.2 cm (2.83 in), respectively,
based on the mean divergence of points from
ground survey point coordinates (3089 ground
points were analyzed across four surveyed areas).
An average point density of 4.68 points/m2

(0.43 points/ft2) was achieved. Although a variety
of fuel reduction treatments were implemented
on the landscape between field plot sampling and
the LiDAR flight, no fuels were altered in the field
plots.
The LiDAR point cloud was normalized, and

variables were extracted for each 1-ha plot using
LAStools (Isenburg 2011). Topographic and
canopy structural variables were calculated (a
total of 21 metrics; see Appendix S1: Table S1 for
a detailed description of each metric). The CHM

Fig. 1. Meadow Valley study area on the Plumas National Forest, California, measuring 22,510 ha.
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was generated at 2 m resolution using FUSION
(McGaughey 2012). ArcGIS was then used to clip
the CHM to each plot area (1 ha, 1/10th ha, 1/
60th ha) and analyze these for “% tall cover.” The
“% tall cover” variable describes the proportion
of the plot area with a canopy height over a given
breakpoint. Breakpoints tested ranged from 26 to
38 m, at 2 m intervals (a total of seven metrics;
see Appendix S1: Table S1). Fig. 3 shows the
detailed work flow and illustrates how we used
the LiDAR data to answer our key questions.

Statistical analysis
We used a combination of methods in the R

software program (R Development Core Team
2008) to develop and evaluate linear regression
models that estimated large diameter (>76 cm
(30 in) dbh) tree density from LiDAR, without
the use of tree segmentation. We chose the

Fig. 2. Layout of the three concentric plot sizes that
were used for this study. Note that all standard Forest
Inventory and Analysis plots were collected, but only
a single plot of each size was used to minimize spatial
autocorrelation between macro- and subplots.

Fig. 3. Project work flow used to analyze light detection and ranging (LiDAR) and field data.
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threshold of >76 cm (30 in) dbh to match the size
threshold for trees collected in the largest, 1 ha
plot size, as well as for both subplot sizes. This is
also the maximum diameter limit guiding most
forest management treatments specified in the
2001 Framework and the 2004 Sierra Nevada
Forest Plan Amendment (US Forest Service 2001,
2004).

To avoid a non-normal response variable
distribution according to the Shapiro–Wilk
normality test (Shapiro and Wilk 1965), we
transformed the field-based large tree count by
taking its square root. We also used Q-Q plots to
visually identify non-normal distributions of
independent variables and bring their distribu-
tions closer to normality through transformation.
A complete record of transformations is detailed
in Appendix S1: Table S1. Applying these trans-
formations increased the predictive ability of
models and eliminated model heteroscedasticity,
tested with the Breusch–Pagan test in the car
package of R (Breusch and Pagan 1979, Fox et al.
2009).

Once variables were transformed, we calcu-
lated the best simple linear regression model (the
model with the highest R2 value), as well as the
best multiple regression model. Because LiDAR-
derived independent variables were highly corre-
lated, an iterative model building approach was
taken: (1) The best simple linear regression
model was chosen based on the lowest Akaike’s
information criterion (AIC) score (Akaike 1987)
using the leaps package in R (Lumley and Miller
2009). (2) Variables that were strongly correlated
with the chosen independent variable (correla-
tion >0.6 in either Pearson or Spearman correla-
tions) were removed. (3) The process was
repeated to find the next best independent vari-
able. The final model was that with the lowest
AIC and with all independent variables signifi-
cant at P < 0.05. We recorded both AIC values
and the 10-fold cross-validation error, calculated
with the CVTools package in R (Alfons 2012).

We also derived predictive models for large
tree density for the 1/10th ha (1012 m2; 0.247 ac)
and 1/60th ha (168 m2, 0.041 ac) plots using the
above methodology to test whether plot size
influences the strength of the relationship. We
wanted to evaluate whether the most reliable
predictor changed and by how much the correla-
tion coefficient degraded as plot size was

reduced, especially as the plot size recommended
for aerial LiDAR validation ranges between 300
and 600 m2 (0.074 and 0.15 ac; Laes et al. 2011,
Ruiz et al. 2014). Mascaro et al. (2011) examined
the influence of plot size on model accuracy for
predicting carbon density in a tropical forest and
found that prediction accuracy scales with plot
size due, in part, to decreased relative edge in
larger plots. We predict that this relationship will
be similar for estimating large tree density
because in both cases LiDAR returns from pri-
marily tree crowns are used to infer information
about tree boles. Some of these factors are illus-
trated by Fig. 4, where two nearly identical plots
have very different stem counts due to leaning
stems, stems near the plot edge, and trees with
uneven crowns.
Based on evaluation of model performance at

the 1/60th ha, 1/10th ha, and 1-ha plot scales (see
Results), we chose the simple linear regression
model and the 1-ha plot for further analysis. This
model was preferable as it had the highest
adjusted R2 value, uses the CHM (a commonly
derived LiDAR product) as its base for predic-
tion, and is simple enough to make logical sense
for its predictions.
To address whether plot center accuracy influ-

ences the strength of this relationship, we shifted
all 1-ha plots in a random direction (illustrated in

Fig. 4. Tree arrangements for two theoretical plots
with 25% cover. Plot 1 contains three stems, while plot
2 contains none. Three tree characteristics that can lead
to model inaccuracies, if they occur near the plot edge,
are as follows: (A) stem lean, (B) stem near plot bound-
ary, (C) uneven crown.
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Fig. 5) and recalculated the model coefficients, as
well as the correlation coefficient. We repeated
this shift and recalculation 100 times, and per-
formed the analysis at shift distances of 2, 5, 10,
and 15 m. For each shift distance, we compared
the distribution of values for the model coeffi-
cients and correlation coefficient. We chose these
distances because they are common values for
the horizontal accuracy of many mid-range GPS
units that are commonly used by a non-LiDAR-
specific field crew when recording plot centers.

Large tree density centered on CSO nest trees
was examined at multiple scales to evaluate the
potential utility of using this variable to quantify
habitat associations. Large tree density across the
Meadow Valley study area was estimated and
mapped using our single-regression model.
Large tree density was extracted from this layer
for areas within 50, 100, 500, and 1000 m of nest
trees and at 100 randomly chosen points on the
landscape for comparison. T tests were used to
compare large tree density between owl and ran-
dom sites at each spatial scale.

RESULTS

Large diameter tree density
Due to high collinearity between independent

variables (described in Appendix S1: Table S1),

combined with these variables quickly becoming
insignificant to the model at the P < 0.05 level,
the multiple linear regression only contained two
independent variables and was only slightly bet-
ter able to predict large tree density than the sin-
gle regression model, as shown in Table 1. Eq. 1
shows the best single regression linear model,
where the independent variable was the percent-
age of the plot area where the CHM was over
32 m (CHM32). Eq. 2 shows the best multiple
linear regression model, where the independent
variables included CHM32 and the variance of
point heights above 2 m (VAR).

Sqrtðtrees=haÞ ¼ 1:10þ 0:817� sqrtðCHM32Þ
(1)

Sqrtðtrees=haÞ ¼ 2:37þ 0:786� sqrtðCHM32Þ
� 0:909� ðlogðVARÞ þ 1Þ

(2)

Both models had very similar AIC and cross-
validated prediction error (Table 1). Both models
had a cross-validation error below a single tree
per ha, and an adjusted R2 value of 0.77, which is
accurate enough to be highly useful for managers.

Importance of plot size
Of the three plot sizes evaluated, the 1-ha plot

was the best predictor of large tree density, with
a model adjusted R2 of 0.77 (Table 1). Model pre-
diction accuracy decreased as plot size shrank.
Even plots 1/10th ha in size (considered large by
most managers and field crews) were poor pre-
dictors of large tree density, with the best model
producing an adjusted R2 of only 0.54 compared
with 0.77 for the 1-ha plot. This decrease in

Fig. 5. Illustration of plot center shift of 2, 5, 10, and
15 m. The black dot and dark circle represent the origi-
nal plot center and area, respectively, while the lighter
dot and circle represent the location of the 15-m shifted
plot. Other shifts are shown as outlines. At 15 m, this
shift represents a highly inaccurate GPS point, yet with
the 1 ha plot size, over 83% of the original plot is con-
tained by the shifted plot.

Table 1. Model statistics for the best single and multiple
linear regression models based on the 1-ha plot size.

Variables included
in model AIC

10-fold cross-
validation
error† Adjusted R2

CHM32 347 0.88 0.77
CHM32, VAR 344 0.87 0.77

Notes: These include the predictor variables, AIC score,
cross-validation error, and adjusted R2 value for each model.
CHM32 refers to the relative percentage of plot area where
the CHM is over 32 m; VAR refers to variance among point
heights. AIC, Akaike’s information criterion; CHM, canopy
height model.

† The cross-validation error is reported for the square root
of trees/ha.
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predictive accuracy based on plot size has been
demonstrated by Mascaro et al. (2011). Even so,
large tree density in both the 1-ha and 1/10th ha
plots was best predicted by a CHM-derived vari-
able. The best independent variable for each plot
size, as well as coefficient of determination for
each model for 1/10th and 1/60th ha plots are
reported in Table 2. Note that while multiple
regression was attempted, no variables beyond
the first were significant.

To help explain the difference in model accu-
racy, Table 3 details the average number of large-
diameter trees, as well as the proportional
amount of edge to area, for the three plot sizes.
These factors were likely both contributors to the
poor predictive power of models built using
smaller plot sizes. Table 3 shows that 1/60th and
1/10th ha plots had less than 0.5 and two large
trees per plot, respectively, making prediction
inherently difficult. Furthermore, the large ratio
of plot edge to plot area likely contributed to
model inaccuracy as well, with 1/60th ha plots
having eight times as much relative edge than
1-ha plots (Table 3).

Importance of plot center accuracy
Plot centers were randomly shifted up to 15 m,

but none of these shifts dramatically changed the
single linear regression model accuracy or coeffi-
cient values. Boxplots displaying the model fit

and coefficients are shown in Fig. 6. Adjusted R2

ranged between 0.72 and 0.78 for models built
with shifted plot centers (the non-shifted model
had an adjusted R2 value of 0.77). Values for
slope and intercept varied between 1.06 and 1.22,
and 0.78 and 0.84, respectively (unshifted model
values were 1.10 and 0.82, respectively).

Large trees around nest sites
Large diameter tree density was modeled for

the entire study area and is shown with 13 CSO
nest sites in Fig. 7. Smaller buffers around nest
trees had a disproportionately high density of
large trees, which dropped off gradually as the
search radius from the nest tree increased, illus-
trated in Fig. 8. Within 50 m of nest trees, com-
pared to random locations, large tree densities
were significantly different, with 31 vs. 12 trees/
ha, respectively. Area near nest sites remained

Table 2. Plot area with corresponding best linear
model information for plot sizes <1 ha.

Plot type Plot area
Explanatory
variable Adjusted R2 P-value

Subplot 1/60th ha COV32-34 0.21 <0.01
Macroplot 1/10th ha CHM34 0.54 <0.01

Notes: COV32-34 represents the relative percent cover of
all LiDAR returns between 32 and 34 m. CHM34 refers to the
relative percentage of plot area where the CHM is over 34 m.
CHM, canopy height model.

Table 3. Plot characteristics for the different plot sizes analyzed.

Plot area
Average large
trees per plot Radius (m) Circumference (m) Area (ha) Edge:Area

1/60th ha 0.47 7.31 45 0.016 0.273
1/10th ha 1.74 17.95 112 0.101 0.111
1 ha 15.56 56.41 354 0.999 0.035

Notes: Large trees are >76 cm (30 in) in diameter at breast height. A lower edge to area ratio indicates less edge effect. Note
that the 1/60th ha plot has almost eight times as much relative edge as the 1-ha plot.

Fig. 6. The distribution of model values associated
with predicting the large tree density using single
linear regression (R2, as well as the slope and intercept
of the model), and how these changed on the 1-ha plot
size as the coordinates of plot center were shifted 2, 5,
10, and 15 m in a random direction (n = 100). Original
model values are shown as a gray dashed line.
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significantly different from random at distances
of 50, 100, and 500 m. Only at a buffer distance
of one km was large tree density no longer signif-
icantly different between CSO nest sites and
random locations.

DISCUSSION

Large trees are a critical habitat component for
several wildlife species of concern and are pre-
sently lacking in many western forests relative to
historical forest conditions (Franklin and Johnson

2012). In the case of the CSO, reductions in the
number of large trees and structurally complex
older forest stands due to past forest manage-
ment and the more recent effects of wildland fire
may be a contributing factor to current CSO pop-
ulation declines (Stephens et al. 2016a). Further,
recent studies have documented high rates of
large tree mortality due to interacting effects of
drought, climate change, wildfire and insect
activity (Lutz et al. 2009, Knapp et al. 2013,
Dolanc et al. 2014). Thus, estimating large tree
distribution and abundance is important for

Fig. 7. Study area, showing large (over 76 cm (30 in) diameter at breast height) tree density and California
spotted owl nest sites. Large tree density was derived from the canopy height model via single linear regression.
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identifying and managing large tree habitat ele-
ments and older forest stands important to CSOs
and other associated species. We show that aerial
LiDAR can be successfully utilized to estimate
the density of large trees, and that areas near CSO
nest sites have a disproportionately high density
of large trees, which corroborates the current
understanding of preferred CSO habitat (Garc�ıa-
Feced et al. 2011, Ackers et al. 2015). Both multi-
ple and simple linear models accurately predicted
the density of trees over 76 cm (30 in) dbh across
1-ha plot areas. However, the strength of this rela-
tionship decreased as plot size shrank to 1/10th
ha and 1/60th ha, indicating that the plot size
should be at least 1 ha when using the CHM to
predict the density of large trees. Mascaro et al.
(2011) found that for carbon density estimations,
error associated with edge effect stabilized at a
1-ha plot size. We suspect that much of this differ-
ence in model accuracy was due to edge effect,
illustrated by Fig. 4, and small sample size for
smaller plots. Other factors that can decrease the
accuracy of this estimate include trees that have
non-standard crown:dbh relationships, including
individuals with damaged crowns, sheared
branches, or broken tops, and species with differ-
ent ratios of crown area:stem diameter.

We also show that while shifting the place-
ment of plot center (simulating decreased gps

spatial accuracy of plot center) slightly decreases
the accuracy of the large tree density model
when 1-ha plots are used and marginally
changes the model’s coefficients, the model is still
strong (adjusted R2 never dropped below 0.72)
with shifts in plot center of up to 15 m. This is
likely due to the fact that with such a large plot
size, much of the original plot area is included in
the sampled LiDAR (83% of the original 1-ha plot
is retained when the center is shifted 15 m). This
indicates that for variables such as large tree den-
sity, which require large plots to accurately mea-
sure, a highly accurate (sub-meter) plot center
may not be necessary. While most long-term plot
networks do not utilize plot sizes as large as
1 ha, this study stands as a reminder that some
datasets can still be useful to LiDAR validation,
despite having less than ideal accuracy for plot
centers.
Recently, many researchers have focused on

producing a standardized LiDAR plot protocol
(Laes et al. 2011, Ruiz et al. 2014), where recom-
mended plot sizes range between 300 and
600 m2 and nothing less than a mapping grade
GPS is required. While this is an excellent step
toward helping managers best prepare for maxi-
mizing the utility of new LiDAR acquisitions, it
may also lead managers to assume that plots col-
lected outside of these standards are useless for
LiDAR analysis. This study suggests that these
protocols might be less rigid for a variable such
as large diameter tree density, where much larger
plots are necessary to develop a robust predictive
model. A similar relationship was found between
plot size and prediction error by Mascaro et al.
(2011), who show that relative prediction error
decreases with increasing plot area for carbon
density estimations in tropical forest. We suspect
that in addition to large tree density and carbon
density, this would also be the case for forest
attributes such as basal area, where stem loca-
tions and characteristics are modeled from
LiDAR returns that primarily represent the
crowns of trees. We advise managers and
researchers to critically examine the scale of the
variable in which they are interested before
deciding on an ideal plot design. This was an
observational study based on one location, albeit
a relatively large area, introducing the potential
for locational bias in our analysis. Furthermore,
because our study area is a single sample of the

Fig. 8. Large (over 76 cm (30 in) diameter at breast
height) tree density near 13 California spotted owl nest
sites and 100 random sites over a range of search radii
is shown. Plots with significantly different distribu-
tions (at P < 0.01) of large tree density are indicated by
“*.” Large tree density was derived from the canopy
height model via single linear regression.
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landscape, results from this study should be
carefully applied to other areas, and may require
additional groundtruth analysis based on large
plots from the new area. Regarding the plots
themselves, placement was designed and imple-
mented to sample CSO use areas and may not be
representative of the entire landscape. Further-
more, plot center accuracy was not high by cur-
rent standards (likely below 2 m, but possibly up
to 5 m). However, our analysis showed that
slight shifts in plot center did not influence
results, so model inaccuracy from this source
should be minimal.

Because this canopy-height-derived variable
identifies the area of tall canopy, it assumes a link
between canopy area and tree density, as well as
a link between stem diameter and tree height.
This means that our statistical model likely is
unable to capture large trees when a significant
portion of the tree tops are broken. However, to
the extent that broken-top trees are still emergent
in the dominant tree canopy or these large bro-
ken-top trees are often found near other large-
diameter individuals without broken tops, our
model would be expected to predict an accurate
large tree density. Because tree species differ in
the relationship between canopy height, canopy
volume, and stem diameter, this model will need
to be evaluated and perhaps recalibrated based
on local knowledge of tree species and crown
extents. However, for the purpose of a general
prediction, this basic model performed surpris-
ingly well, and is a simple and relatively accurate
method for managers and researchers to evaluate
large diameter stem density across the landscape
in Sierra Nevada mixed conifer forests.

Future research
Additional studies to augment this research

include carrying out similar analyses in different
forest types. We suspect that these results will
perform best in forests where the majority of
large trees are coniferous, as these are identified
by the CHM. Because of the variable quality of
LiDAR available to land managers, investigation
of the necessary point density to make accurate
predictions is also essential.

Our work indicates that estimation of large
tree density via LiDAR-derived CHM could be a
useful method for identifying CSO nesting
habitat. We encourage wildlife researchers to

investigate the usefulness or improvement of this
variable for modeling wildlife habitat for species
associated with large tree habitat elements or for-
est stands with high densities of large trees, such
as the CSO.
Our results show that older plots, which may

not be ideal for traditional LiDAR-based deriva-
tions due to imprecise data or inaccurate plot
center coordinates, could still be useful for other
variables. We encourage others to explore their
plot data and think critically about what can be
compared to available LiDAR data.

Immediate implications for managers
Forest managers are challenged by the need to

identify and manage large tree habitat across the
Sierra Nevada. Information needs may range
from identifying individual large trees that func-
tion as an important nesting/den habitat element
within an area of generally younger, smaller for-
est, to identifying forest stands or patches with
high densities of large trees across a landscape.
We encourage thoughtful implementation of our
methods to identify large trees and assess large
tree density across landscapes. Such information
on distribution and abundance of large trees can
be used to identify areas of importance to associ-
ated wildlife species, such as the CSO, and to
inform forest management options. Further, little
to no information exists on large tree densities
across the Sierra Nevada; thus, estimates of large
tree density may be an important variable to
incorporate into models of wildlife habitat. How-
ever, site productivity, dominant tree species
composition, and management history are linked
to the specific CHM threshold that is most appro-
priate, and we caution users to test multiple
CHM cutoffs before finalizing their model. In
other Sierra mixed conifer forests, we encourage
managers with access to a LiDAR-derived CHM
and a network of FIA plots that include the 1 ha
plot size to derive a similar equation to predict
the density of large trees. This would be a
relatively simple project for anyone familiar
with GIS and statistics, and could result in a
highly useful layer for managers and wildlife
ecologists. Large tree information could assist in
the development of a long term management
plan to conserve the CSO with an overall goal of
increasing forest resilience to fires, insects, and
drought (Stephens et al. 2016b).
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CONCLUSIONS

Based on our method, managers can use the
CHM, a common LiDAR deliverable, to accu-
rately estimate large tree density, even when only
lower density LiDAR (inappropriate for tree seg-
mentation) is available. This can be accomplished
without any specific LiDAR-processing hard-
ware, software, or expertise, and does not require
any LiDAR-specific plot protocol. This method
demonstrates an excellent method for managers
to put their LiDAR to practical use, although
there are a few caveats.

We also show that older data traditionally
labeled as “unusable” for LiDAR comparison,
due to inaccurate plot center GPS coordinates,
can provide valuable information for certain
LiDAR-derived variables. For plots such as these
to be successfully compared to LiDAR data,
either (1) plots must be large enough to minimize
GPS inaccuracy or (2) the variable must vary at a
larger spatial scale than the potential inaccuracy
of plot center.

Estimates of large tree density across the Sierra
Nevada are lacking. Such information is needed
to inform development of conservation and
restoration strategies for CSOs and Sierra
Nevada landscapes. Our methods provide an
approach for generating this information in areas
where LiDAR data are available.
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