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 Abstract  

 

We construct a new, parsimonious, measure of disclosure quality – disaggregation quality 

(DQ) – and offer validation tests. DQ captures the level of disaggregation of accounting data 

through a count of non-missing Compustat line items, and reflects the extent of details in 

firms‟ annual reports. Conceptually DQ differs from existing disclosure measures in that it 

captures the „fineness‟ of data and is based on a comprehensive set of accounting line items 

in annual reports. Unlike existing measures which are usually applicable for a subset of firms 

or are based on a subset of information items, DQ can be generated for the universe of 

Compustat industrial firms. We conduct three sets of validation tests by examining DQ‟s 

association with variables predicted by prior literature to be associated with information 

quality. DQ is negatively (positively) associated with analyst forecast dispersion (accuracy), 

negatively associated with bid-ask spreads and cost of equity. These associations continue to 

hold after we control for firm fundamentals. Taken together, results from this battery of 

validation tests are consistent with our measure capturing disclosure quality. 
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A New Measure of Disclosure Quality: 

The Level of Disaggregation of Accounting Data in Annual Reports 

 

1. Introduction 

We construct a new measure of disclosure quality, disaggregation quality (DQ), based 

on the level of disaggregation of financial data items in firms‟ annual reports, and provide 

validation tests. We base DQ on the theoretical premise that finer information is of higher 

quality (Blackwell 1951). Greater disaggregation leads to more, finer information available to 

investors. More detailed disclosure reduces information asymmetry, arguably increases the 

precision of the information in the financial statements, and provides investors with more 

information for valuation and mitigates mispricing (Fairfield, Sweeney and Yohn 1996; 

Jegadeesh and Livnat 2006). Greater disaggregation also enhances the credibility of firms‟ 

financial report as it gives managers less degrees of freedom to manage the reported numbers 

(Hirst, Koonce, and Venkataraman 2007; D‟Souza, Ramesh and Shen 2010), enhancing the 

contracting and stewardship role of accounting information. Reasoning along this line, we 

argue that a greater degree of disaggregation represents higher disclosure quality. 

DQ is parsimonious and applicable to all Compustat industrial firms: we count the 

number of non-missing financial items reported in firms‟ annual reports, including items both 

in the financial statements and in the footnotes, as captured by Compustat. A higher count of 

non-missing accounting data items represents higher disclosure quality. Despite a vast 

empirical literature on disclosure in general and voluntary disclosure in particular, there is 

surprisingly no overall measure of disclosure quality based on a comprehensive set of 

accounting data as reported in financial reports.
1
  

                                                           
1
 While the concept of disaggregation has been explored by researchers in a segment reporting setting (e.g., 

Berger and Hann 2003, 2007; Bens, Berger and Monahan 2011), the concept of disaggregation of financial 

statement data items has received scant research attention. We are aware of only one other paper (D‟Souza et al. 

2010) that explicitly addresses the disaggregation of accounting data items in firms‟ earnings press releases.  
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DQ is conceptually very different from existing measures of disclosure quality, which 

are either voluntary disclosure measures such as management forecasts and conference calls, 

or researcher self-constructed indices (e.g., Botosan 1997; Francis, Nanda, and Olsson 2008), 

or analyst ratings such as the now-discontinued AIMR scores, or the narrative quality of 

MD&A in annual reports, such as the Fog Index (Li, 2008). DQ differs from all the above 

measures in that DQ captures the „fineness‟ of data, as reflected in the level of disaggregation 

of accounting data items in the financial statements.   

We capture the degree of disaggregation in GAAP line items in firms‟ annual reports 

by counting the number of non-missing Compustat items, with a bigger number representing 

higher disclosure quality. In constructing DQ we take multiple steps to mitigate the impact of 

Compustat‟s systematic coding scheme on the count of missing items: Compustat can code 

an item as missing when a firm does not report it, or when a firm does not have it because the 

item is irrelevant (e.g., inventory to an internet company). Our empirical screening 

mechanisms help purge cases where an item irrelevant to a firm‟s operations is coded as 

missing by Compustat. Assuming Compustat‟s data collection is not systematically biased
2
, 

missing data items (after our adjustments, to be discussed in detail in Section 3) would 

suggest that the firm does not provide the associated information in its annual reports. In 

other words, the number of non-missing items for each firm-year captures how detailed firms‟ 

financial statements are and can be used as an overall measure of disclosure quality of the 

company‟s annual reports filed that year. 

We employ the nesting feature of the Balance Sheet and, to a lesser extent, the 

Income Statement (i.e., the individual accounts, such as accounts receivable/payable, add up 

to total assets/total liabilities and shareholders‟ equity; on the income statement, current 

                                                           
2
 According to Compustat, the average tenure of its data collection staff in the US is 10.3 years, and some of 

them have been collecting data for over 20 years. Also, the staff is highly educated and primarily has finance 

and business degrees, as well as Masters Degrees and CFA certifications. Also, each of the staff goes through 

extensive training before updating the data on a company, and staff bonuses are awarded for low errors and 

productivity. 
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income tax and deferred income tax add up to total income tax expense) and implement 

multiple screening mechanisms to purge the effects of the Compustat coding scheme in 

counting missing items on the two financial statements. We do not have a DQ measure for 

the Statement of Cash Flows because the variation in the number of missing items from the 

Statement of Cash Flows is minimal.
3
   

We validate DQ through three sets of validation tests. We base our validation tests on 

the premise that if DQ reflects disclosure quality, then it should be systematically associated 

with variables predicted by prior literature to be associated with information quality. Thus, 

we examine the associations between DQ and analyst forecast dispersion and accuracy and 

bid-ask spreads. Lastly, we relate DQ to the cost of equity. Because DQ can be a result of 

firms‟ operating characteristics, such as operating complexity, we control for such firm 

factors in all of our validation tests. Our goal is to isolate the association between information 

quality and managers‟ discretionary contribution to DQ. Note our validation tests do not 

require us to demonstrate causality and we make no claim or inferences about causality: we 

only require DQ to be correlated with established measures of information quality in the 

predicted direction.
4
 The issue of causality is the most challenging issue in empirical research, 

and we caution against interpreting DQ‟s correlations with established measures of 

information quality as causality.  

Examining the association between analyst forecast properties and DQ further allows 

us to differentiate whether the number of non-missing items count, as reflected by DQ, is 

                                                           
3
 Another reason we do not construct a statement of cash flow DQ is because multiple reporting formats are 

allowed for the Statement of Cash Flows over our sampling period 1973-2009: the formats for pre-1989 and 

post-1989 years are dramatically different, and pre-1989 firms could employ three different formats in 

presenting their Statement of Cash Flows. This heterogeneity makes it difficult to construct a meaningful, 

parsimonious disclosure score for all years. This exclusion is a caveat to our DQ measure.     
4
 Both Beyer, Cohen, Lys, and Walther (2010) and Berger (2011) highlight the difficulty in drawing causality 

between disclosure and cost of capital. Neither theoretical nor empirical research agrees on whether information 

quality should impact cost of capital. While many researchers demonstrate that higher information quality 

should lead to lower cost of capital (Easley and O‟Hara 2004; Lambert, Leuz, Verrecchia 2007; Kelly and 

Ljungqvist 2012; Francis, LaFond, Olsson, and Schipper 2005), others argue that information asymmetry can be 

diversified away in large economies and thus should have no impact on cost of capital (e.g., Hughes, Liu and 

Liu 2007). See Shevlin (2013) for a summary of the literature. 
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capturing disclosure quality or firm‟s operating complexity, as firms with more complex 

operations can  have more data items included in their annual reports. If DQ is capturing 

disclosure quality, then higher DQ should be associated with lower forecast dispersion and 

higher accuracy. If DQ is capturing operating complexity, then the opposite association exists: 

higher DQ should be associated with higher forecast dispersion and lower accuracy.   

We find higher DQ to be associated with lower forecast dispersion and higher forecast 

accuracy – consistent with DQ capturing disclosure quality and inconsistent with DQ 

capturing complexity of operations. We also find DQ to be negatively associated with bid-ask 

spread and cost of equity. Taken together, the above three sets of tests offer strong and 

consistent evidence that DQ captures disclosure quality.
5
 

 We conduct a number of additional tests to yield further insight on the properties of 

DQ. These tests include: disaggregating DQ along two dimensions – DQ operating vs. DQ 

financing, and DQ Balance Sheet vs. DQ Income Statement; including firm fixed effects, and 

identifying large changes in DQ over time. These tests serve as a starting point for future 

research interested in using DQ as a disclosure quality measure. 

We contribute to the existing literature by proposing a new disclosure measure, DQ, 

which captures the level of disaggregation of accounting data items in firms‟ annual reports. 

DQ is an overall measure of the fineness of financial statement information presented in firms‟ 

annual reports. The level of details in firms‟ financial reports, though an important aspect of 

firms‟ disclosure behaviour, has not received much research attention to date. DQ is 

conceptually very different from existing measures of disclosures, which are often limited to 

                                                           
5
 Note our validation tests rely on the concurrent validity approach instead of the convergent validity approach. 

In the latter approach a new measure is validated through high correlation with existing measures of the same 

construct. Since DQ is capturing a fundamentally different construct from existing disclosure measures such as 

management forecasts and the Fog Index, the convergent validity approach is not appropriate for our setting. 

The concurrent validity approach examines how well one measure relates to other criterion that are presumed to 

occur simultaneously. We employ the concurrent validity approach for our validation tests, as disclosure quality 

should be positively correlated with concurrent variables prior literature has shown to be associated with 

information quality. For a more detailed discussion of convergent and concurrent validity approaches, please see 

Kline (2014). 
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a subset of firms, or to a subset of disclosed items, or to texts in MD&A. DQ can be 

constructed for the universe of Compustat industrial firms, is parsimonious and is based on 

machine readable data. In addition, DQ can be constructed for each firm-year and does not 

require time-series data to compute. These features make it easier for replication and 

researchers can use this measure to test new hypotheses on a much wider set of firms in the 

economy. For example, researchers can use DQ to further explore the relation between the 

level of details of accounting data in firms‟ annual reports and audit quality, and other aspects 

of financial reporting quality. 

We acknowledge the following three caveats with DQ. First, our goal is to construct a 

parsimonious measure that is concise, intuitive, and relatively devoid of researcher subjective 

judgement. Thus, we make the implicit assumption that more detailed information is better 

and we do not distinguish between recognition (financial statement items) and disclosure 

(footnote items).    
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Second, DQ proxies for the level of details of annual reports by capturing aggregation 

by omission more than aggregation by classification shifting (e.g., classifying short-term debt 

as long-term debt to present a better picture of short-term liquidity). DQ captures 

classification shifting under only certain circumstances, the details of which we provide in 

Section 3.  

Third, we note that though DQ exhibits considerable cross-sectional variation, by 

definition DQ might not exhibit large year-to-year change: all firms filing with the SEC must 

abide by Regulation S-X, which requires public companies to present comparative financial 

statements. Our additional analyses adding firm fixed effects (thus removing cross-sectional 

variation for identification) and restricting the sample to large changes in DQ over time 

generally yield significant though weaker results than the pooled cross-sectional tests. These 

results suggest that DQ is likely better suited to cross-sectional studies or event studies 

surrounding changes in firms‟ operations. For example, DQ can be used in settings where a 

firm changes its auditor, top management, or when a firm undergoes mergers and acquisitions. 

Further, we caution that since DQ captures a very unique aspect of disclosure quality 

– the level of details of accounting data in annual reports, DQ differs from all existing 

measures and as such cannot be construed as a simple replacement of existing measures 

without giving thought to the underlying theoretical construct of interest. 

The rest of our paper is organized as follows. In the next section we motivate our new 

measure of disclosure quality DQ. Section three offers detailed discussions of the 

construction of DQ. Section four presents descriptive statistics on DQ and section five 

presents results on the validation tests and additional tests separating DQ into components 

and on the temporal variation in DQ. We conclude in section six. 
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2. What does DQ capture? 

2.1 Background literature 

We base DQ on the theoretical premise that, ceteris paribus, finer information is of 

higher quality (Blackwell Theorem).
6
 In the setting of a firm‟s financial reports, DQ captures 

the degree to which a firm‟s financial information is disaggregated and more detailed. We 

operate on the maintained assumption that more finely disaggregated data are of higher 

quality.  

This assumption is supported by recent empirical evidence. For example, Hirst et al. 

(2007) find that investors perceive more disaggregated management earnings forecasts, i.e., 

forecasts that contain separate forecasts of line items, as more credible. Issuing a 

disaggregated forecast constrains earnings management opportunities, and leads to a 

perception of higher quality financial reporting and thus enhances the credibility of the 

earnings forecasts. In a similar vein, D‟Souza et al. (2010) find that opportunistic managers 

tend to limit GAAP line item disclosures in their earnings releases, and tend to provide more 

aggregated data in earnings announcements in order to guide investor attention to the bottom 

line numbers. In a segment reporting setting, Berger and Hann (2003, 2007) find that firm 

managers have incentives to conceal bad performance by aggregating segments incurring 

losses with profitable segments in order to avoid shareholder scrutiny. These empirical 

findings are consistent with more disaggregated financial statements allowing better 

monitoring of managerial actions thus better satisfying the stewardship demand for 

accounting information (Gjesdal 1981). 

Prior research has also shown that disaggregated data better assists investors in 

valuation and forecasting. Fairfield et al. (1996) find that disaggregating earnings into its 

                                                           
6
 We acknowledge the possibility that finer information is not necessarily better information when strategic 

concerns are involved. If some firms or industries produce more aggregated information because of concerns 

with proprietary costs, DQ will be lower. Even though such strategic non-disclosure might benefit managers, the 

lower DQ score still reflects lower quality disclosure to users of annual reports.    
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components increases the predictive content of reported earnings. Others have found that 

investors are better able to interpret earnings when revenue surprises are also provided 

(Ertimur, Livnat and Martikainen 2003) and that revenue surprises convey useful information 

about future earnings growth over and above the information contained in contemporaneous 

earnings surprises (Jegadeesh and Livnat 2006). Hewitt (2009) finds that experimental 

participants are able to provide more accurate forecasts only if the income statement presents 

disaggregated cash and accruals components of earnings. Taken together, the above findings 

suggest that disaggregated data better satisfies the valuation demand for accounting 

information. 

While the SEC‟s mandatory disclosure requirements provide a basic framework and 

minimum standard for many financial disclosures, considerable latitude remains in 

determining what information is actually provided and how information is presented (Lang 

and Lundholm 1993).
7
 For example, research has shown that managers opportunistically shift 

expenses from core expenses, such as cost of goods sold and SG&A expenses, to special 

items (McVay 2006). Koh and Reeb‟s (2015) find that managers have significant freedom of 

choice in disclosing corporate R&D: some managers over-report R&D expenses by 

classifying normal operating expenses as R&D expenses, while others under-report R&D to 

maintain competitive position and prevent leaking of strategic information to other firms. 

Thus, managers have considerable discretion in choosing which line items to report 

separately and which line items to aggregate into other line items, and DQ reflects the 

discretionary choices managers make within mandatory filings.  

 

 

                                                           
7
 A voluminous body of literature on earnings management stands to attest to the existence of managerial 

discretion in financial reporting within the confines of GAAP. Other specific examples of managerial discretion 

include the choices between using LIFO versus FIFO for inventory costing and choices among different 

presentation formats for market risk disclosures under FRR48. 
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2.2 Difference between DQ and existing disclosure measures 

DQ is conceptually very different from existing measures of disclosure: it captures 

information fineness as reflected in the level of disaggregation of accounting data items in 

firms‟ annual reports. There are two broad types of disclosure measures in the literature: 

voluntary disclosure measures, and measures that capture firms‟ overall disclosure quality. 

The most common type of voluntary disclosure measures include management earnings 

forecasts and conference calls, in which forward-looking information is provided by 

management. The second type of disclosure measures are subjective disclosure indices 

constructed by researchers (e.g., Botosan 1997) or by analysts (e.g., AIMR scores). Though 

the second type of disclosure measures are sometimes loosely referred to as voluntary 

disclosure measures, these measures have both a voluntary and a mandatory element, as 

many of these metrics are ordinal rankings of what researchers/analysts deem as important 

information items in firms‟ mandatory filings. DQ is different from the first type of measures 

in that it captures the quality of historical information in mandatory filings instead of 

voluntary forecasts. DQ is different from the second type of disclosure measures in that it is 

based on all Balance Sheet and Income Statement line items, either reported in the financial 

statements or in the footnotes, not just the items judged to be most important by researchers 

and analysts. Thus, DQ is less subjective. DQ is also different from measures of the narrative 

quality such as the Fog Index (Li 2008) in that DQ captures the level of details of accounting 

data items included in annual reports. Thus, DQ is an overall measure of the fineness of 

financial statement (Balance Sheet and Income Statement) information. 

Though DQ is a count of the number of non-missing items in firms‟ financial reports, 

we emphasize that it is not simply a measure of quantity or frequency. For example, DQ is 

different from simply counting the number of management forecasts and using this quantity 

to proxy for voluntary disclosure quality. The count embedded in DQ captures the fineness 
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and the extent of details of information. There is a subtle yet important difference between 

using quantity to proxy for quality and using DQ, which captures the fineness of data, to 

proxy for disclosure quality. 

In addition to the above conceptual differences between DQ and existing measures of 

disclosure, DQ also has several important empirical advantages over existing measures. First, 

DQ is a parsimonious measure based on machine-readable data that is much easier to 

implement than, for example, self-constructed disclosure indices. Second, DQ can be 

constructed for all Compustat industrial firms (i.e., non-financial firms) for all years. This is a 

significant advantage over existing disclosure measures, which are either generally available 

only for a selected group of firms or are cost-prohibitive to collect. For example, common 

machine-readable measures of voluntary disclosure such as management earnings forecasts 

and conference calls are usually only applicable to the subset of firms that choose these 

voluntary disclosure mechanisms. The (now discontinued) AIMR ratings were only 

applicable to an even smaller number of firms and years.
8
 Researcher-constructed disclosure 

measures through manual coding (e.g., Botosan 1997; Francis et al. 2008) are very costly to 

develop and, as a result, the ensuing samples are usually very small. While the Fog Index can 

be applied to all firms, it is only applicable to MD&A, not to the entirety of annual reports.  

In sum, DQ is easy to construct and can be calculated for all Compustat industrial 

firms, and is more objective relative to other self-constructed measures of disclosure. These 

advantages of DQ make it possible for researchers to replicate or test new hypotheses on 

disclosure quality on a much wider set of firms.  

 

 

 

                                                           
8
 Lang and Lundholm (1993) report that a typical year‟s Financial Analysts Federation (FAF) report provides 

ratings for about 27 industries, each with an average of 17 firms evaluated by an average of 13 analysts in each 

industry. The firms covered by AIMR are the largest and most heavily followed firms in each industry. 
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3. Construction of DQ  

3.1 Compustat Balancing Model and counting non-missing items 

DQ rests on a count of non-missing data items in firms‟ annual reports as reported by 

Compustat. There are two possible scenarios that can lead to a Compustat missing line item: 

1) the firm has the underlying item but does not report it, and Compustat reports it as missing, 

and 2) the firm does not have the underlying item and Compustat codes it as missing.
9
 

Though we do not have reasons to believe that missing items as a result of scenario 2) will be 

systematically different across firms, and moreover systematically related to firms‟ disclosure 

behaviour, we nevertheless aim to only capture scenario 1) and purge from DQ items that 

firms do not have but appear as missing fields on Compustat. We build in screening 

mechanisms, based on the nesting feature (i.e., sum of the components equals the total) of the 

Balance Sheet and to a lesser extent, the Income Statement accounts, to mitigate the impact 

of scenario 2) on DQ. We discuss each of them in detail below. 

In capturing line items reported by firms, Compustat has three “Balancing Models” 

for each of the three financial statements, which Compustat uses as the basic templates in 

gathering financial statement data. These models lay out the inter-relations among 

standardized data items on the financial statements. Abbreviated versions of the templates 

(the “Balancing Models”) for the Balance Sheet and the Income Statement are attached in 

Appendix A.
10

 Since our coding of the Balance Sheet and Income Statement follows the same 

logic, we first illustrate our method to arrive at DQ using the Balance Sheet as an example. 

Counting non-missing items related to the Balance Sheet 

                                                           
9
 A third possible scenario is a firm reports an item but Compustat does not capture it, resulting in a missing 

field.  Our extensive communication with experienced Compustat data experts reveals that these cases are rare, 

and are usually a result of a firm misplacing an item in an irrelevant section.  
10

 The full-blown version of the Balancing Models are available from Compustat‟s website. 
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We refer to all line items under the column “Item Description” in the Balancing 

Model (Appendix A) as “sub accounts.” Our goal is to capture the variation in the disclosure 

of these accounts. We then classify 13 of the accounts, bolded in the column “mnemonic”, as 

“group” accounts. All sub accounts are nested to the group accounts. For example, all asset 

sub accounts add up to total assets, and all liabilities/shareholders‟ equity sub accounts add 

up to total liabilities/shareholders‟ equity.  

We use the nesting feature of the Balance Sheet to filter out the impact of the 

Compustat coding scheme on the count of missing items. Toward this end, we link sub 

accounts to an intermediate group of accounts, which we call “parent accounts.” The parent 

accounts are further nested to the 13 highest level group accounts on the balance sheet. And 

these 13 group accounts add up to total assets and total liabilities and shareholders‟ equity. 

We provide in Appendix B a schematic presentation of this three-level nesting structure for 

Balance Sheet items. For example, the parent account INVT (Inventory – Total) has four 

nested sub accounts: raw materials inventory (INVRM), work-in-progress inventory 

(INVWIP), finished goods inventory (INVFG), and inventory-other (INVO). These four sub 

accounts should add to the parent account INVT.  Furthermore, INVT is nested to the group 

account ACT (Current Assets – Total), together with the other seven current asset parent 

accounts such as RECT (Receivables – Total).
11

 The full listing of parent accounts are 

provided in Internet Appendix A. Two of the group accounts, MIB (Non-controlling interest 

– Redeemable) and IVAEQ (Investment and advances - Equity), have no sub accounts and 

are excluded, because there is no variation in the reporting of these items.
12

   

                                                           
11

 We read the detailed definition of each of the sub accounts on the Compustat data manual to link them to a 

specific parent account. The definitions are straight-forward, and only in rare cases do we need to exercise 

judgment. To minimize coding errors we communicate extensively with senior Compustat data representatives 

throughout the coding process to gain an accurate understanding of Compustat‟s balancing models.  
12

 Note while removing these two group accounts might render the assets not equal to the liabilities and 

shareholders‟ equity on the balance sheet, the impact of such removal is minimal on our DQ measure.  The 

correlation between DQ with and without these two group accounts is 99.9%. 
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A parent account on the Compustat Balancing Model has a zero balance if the firm 

does not have the underlying operation that produces such an account. For these firms we 

exclude such parent accounts and the associated sub accounts in counting the non-missing 

items. In other words, we only count the sub accounts if the parent account is non-zero. This 

step is our first screening mechanism to make sure we do not penalize firms for sub accounts 

that appear as missing fields on Compustat because the firm does not have the operations that 

generate these accounts. For example, an internet company typically has no inventory and 

hence the parent account INVT is reflected as zero, and all the four linked sub-accounts can 

be coded as missing by Compustat. This exclusion process removes from our counting 

scheme Balance Sheet items that are irrelevant to firms‟ operations even though they appear 

as missing fields on Compustat.
13

   

We further check if the sub accounts, where applicable, add up to the parent account 

in coding a missing sub account. This step is our second screening mechanism for the 

Balance Sheet DQ measure. For example, if three of the four inventory components, INVRM, 

INVWIP, and INVFG add up to inventory total INVT, then the fourth component INVO 

(inventory-other), though a missing field on Compustat, does not count as missing in DQ 

because the balance of this account should be zero, indicating the firm does not have INVO 

in that particular year.
14

  When the sub-account total does not equal the parent account, we 

treat a single missing sub account as missing.
15

 If two out of the four inventory sub-accounts 

have missing Compustat fields, then we count both as missing as we cannot distinguish 

                                                           
13

As another example, a firm that does not have long-term debt will have DLTT (Long-Term Debt – Total) 

appearing as zero on the Balancing Model and the associated sub accounts as missing fields. We do not count 

these missing fields as missing in our coding. 
14

 Our coding of inventory items takes into account the fact that a non-manufacturing firm does not have 

INVRM (raw materials), INVWIP (work-in-progress), and INVFG (finished goods) accounts. For non-

manufacturing firms we exclude these sub accounts when we count missing items.  
15

 We believe that even though a single missing account‟s magnitude can be determined by subtracting the sum 

of N-1 non-missing accounts from the total amount, it nevertheless imposes more information processing costs 

on users, and as such is not as transparent as if the firm itself disclosed it and constitutes lower disclosure quality 

than if all N accounts are disclosed. Empirically, only 3,757 observations out of 14,300,972 sub-account level 

observations are affected, and our results remain the same if we treat these accounts as non-missing. 
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between which one of these two sub-accounts is truly missing, or if both are missing. 

Nevertheless, this second screening mechanism produces a DQ measure that is strictly better 

than no screening because such a mechanism mitigates Type I error (coding an item as 

missing when in fact it is not missing).   

While this second screening mechanism for the balance sheet accounts mitigates Type 

I error – it corrects over 56% of the potential misclassification of sub-accounts – it does come 

with a cost: when the sub-accounts add up to the parent accounts, DQ captures only 

aggregation by omission and not aggregation by classification shifting. We note that to the 

extent DQ misses classification shifting and wrongly codes a firm engaging in classification 

shifting as having a higher DQ, it will work to weaken the association between DQ and the 

established information quality variables.  

Not all sub-accounts lend themselves neatly to a sum that equals the value of the 

parent account. For example, while the five sub accounts DCLO (Debt - Capitalized Lease 

Obligations), DCVT (Debt – Convertible), DD (Debt – Debentures), DN (Debt – Notes), DS 

(Debt-Subordinated), DLTO (Other Long Term Debt) on the Linking Table in Appendix B 

add up to the total DLTT (Long-Term Debt), DD2~DD5 (Debt Maturing 2
nd

~5
th

 years) do 

not necessarily add up to DLTT because sometimes companies report maturities including 

discounts or premiums. For the DD2~DD5 accounts, we code all missing fields as missing 

items. 

Counting non-missing items related to the Income Statement 
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For the Income Statement, we first identify 7 group accounts, and link each of the 51 

sub accounts to one of the group accounts according to the data definitions from 

COMPUSTAT.
16

 The linking table for the Income Statement items is presented in Internet 

Appendix B. Similar to our screening of Balance Sheet items, if a group account is zero, then 

all the associated sub accounts are excluded when counting the number of non-missing items. 

However, unlike for Balance Sheet items where we are able to identify an intermediate group 

of “parent” accounts and employ a three-level nesting structure to triangulate our counting of 

missing Balance Sheet items, such a structure is not feasible for the Income Statement due to 

both the different structures of the Income Statement and of Compustat‟s Balancing Model. 

First, there are far fewer Income Statement items that allow us to form an intermediate group 

without losing significant variation in the count of non-missing items. Second, many of the 

Income Statement sub accounts on the Balancing Model do not necessarily add up to the total 

group accounts. For example, the sub accounts linked to XOPR (Operating Expenses – Total) 

do not always add up to the total XOPR.  For other accounts, such as TXT (Income Taxes – 

Total), the sub accounts do add up to the total group account. Thus, in counting the non-

missing Income Statement items we are only able to apply the second screening mechanism 

for a subset of the items.       

Cross checking Compustat missing items against annual reports  

We further cross check Compustat missing items against actual annual reports. We 

randomly generate 50 firms for the year 2009 from our sample and check these firms‟ 2009 

annual reports for each item reported as missing by Compustat. In total we manually check 

1,380 data items reported as missing by Compustat against actual annual reports. The error 

rate for Balance Sheet missing item counts is 7.77%, and for Income Statement counts is 

                                                           
16

 Note that even though the group account CITOTAL (Comprehensive Income – Total), is not on the Income 

Statement Balancing Model, we classify the associated accounts as income statement accounts rather than 

balance sheet items.  
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8.31%, and range from 6.13% to 11.23% from the smallest to the largest firm size quintiles.
17

 

Though this is a relatively small sample check, it nevertheless mitigates concerns about 

Compustat systematically miss-representing non-missing items as missing.    

3.2 Construction of value-weighted/equal-weighted disclosure score DQ for the Balance 

Sheet/Income Statement  

 

We value weight Balance Sheet groups in an attempt to approximate the economic 

significance of the items based on the magnitude of the assets in that group relative to total 

assets by using the following formula: 2
AssetsTotal$

 $Assets

ItemsTotal#

ItemsNonmissing# k

k

11

1k






















 

Where k indexes group accounts. For the Balance Sheet, we are able to create 11 groups and 

link these group accounts to 25 second level accounts (parent accounts) which are in turn 

linked to 93 associated sub accounts (see Appendix B).
18

 For each of these 11 groups, we 

count the number of non-missing items in the sub accounts and divide this number by the 

total number of sub accounts in that group. For example, the group ACT (Current Assets- 

Total) is associated with 7 parent accounts which are in turn linked to 20 sub accounts. 

Assuming only two out of 20 sub-accounts under ACT are missing, then the ratio of non-

missing items in this group is 18/20. 

We then arrive at a value weighted DQ score for each of the 11 group accounts by 

multiplying the above ratio of non-missing items with a weight, defined as the asset value of 

that Balance Sheet group over total asset value. This value-weighting scheme gives more 

                                                           
17

 Note these percentages are upper bound estimates, as we consider a missing Compustat item as an error even 

if the firm only mentions the item (without a clear disaggregated dollar value for the associated magnitudes) in 

their annual reports. 
18

 Even though Compustat provides 212 items for the Balance Sheet and 131 items for the Income Statement, 

many of these items are not relevant for our research setting and are thus excluded.  In counting missing items 

we first exclude all items related to financial and utility firms.  We also exclude „formula‟ items; these „formula‟ 

items can be directly derived from other items on the face of the financial statements. For example, the item 

Operating Income before Depreciation (OIBDP) is by construction always equal to Sales (SALE) minus 

Operating Expense (XORP). Including such formula items would be double counting the underlying items twice. 

Other items excluded include items computed by Compustat (an example would be Compustat reference items 

that are not tied to annual reports) and moving average items.  Another example of items computed by 

Compustat is Invested Capital – Total (ICAPT).  This item is defined by Compustat as the sum of Long-Term 

Debt, Preferred Stock, Minority Interest, and Common Equity. We also exclude per share items as including 

them in the count of missing items would be counting the same underlying data item more than once. 



 

 

18 
 

This article is protected by copyright. All rights reserved. 

weight to items that presumably are more important to firms‟ operations and thus to 

investors.
19

 Lastly, we sum the value-weighted non-missing item ratios across the 11 Balance 

Sheet groups, leading to a disclosure score with a theoretical minimum of zero and a 

theoretical maximum of two (because we have both the asset side and the 

liabilities/shareholders‟ equity side of the Balance Sheet). We further divide the score by 2 so 

the Balance Sheet DQ score, DQ_BS, varies between 0 and 1. 

We provide a simple example in Internet Appendix C to illustrate the construction of the 

value-weighted balance sheet disclosure score DQ_BS. 

While the Balance Sheet lends itself naturally to a value-weighting scheme, for the 

Income Statement value-weighting is problematic for two reasons. First, the Income 

Statement has both positive (e.g., revenues) and negative (e.g. expenses) items, thus to value 

weight these items means taking absolute values of these items, making it more difficult to 

interpret the weight meaningfully. But more importantly, a value-weighting scheme, say 

using Sales as the natural denominator, would mean the Income Statement DQ score will be 

overly dominated by the variation in XOPR (Operating Expense – Total), as XOPR accounts 

for 90% of the weight when using Sales as a natural denominator in common-size statements. 

Recall our goal is to capture the variation in the number of non-missing items for all Income 

Statement items; a value-weighting scheme using Sales as the denominator will be capturing 

mostly the variation of missing items related to XOPR while severely biasing downward the 

variation of missing items in other Income Statement items, such as the income tax provision 

and the cumulative effect of accounting changes. Thus, for the Income Statement DQ score 

we use an equal-weighting scheme.
20

 For the Income Statement, we identify 7 group accounts 

                                                           
19

 If a firm‟s total assets consist of 20% intangibles and 80% tangibles, investors would want more information 

disclosed on the tangibles as such information presumably is more important to their decision making. 
20

 Untabulated results show that when we use an equal-weighting scheme to arrive at the Balance Sheet 

disclosure score, our results are qualitatively similar.  However, we believe that value-weighting for the Balance 

Sheet is conceptually superior to equal-weighting, hence we present all our results using the value-weighted 

Balance Sheet DQ_BS. 
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and link these accounts to 51 subaccounts.
21

 For each of these 7 groups, we count the number 

of non-missing items in the sub accounts and divide this number by the total number of sub 

accounts in that group. For example, the group XOPR (Operating Expenses – Total) is 

associated with 13 sub accounts. Assuming only 4 out of the 13 sub-accounts linked to XOPR 

are missing, then the ratio of non-missing items in this group is 9/13. We then compute an 

equal-weighted DQ score for the Income Statement (DQ_IS) by averaging the ratio of non-

missing items over the 7 groups. DQ_IS hence has a theoretical range between 0 and 1. 

Our summary measure that captures the level of disaggregation of Balance Sheet and 

Income Statement data is the simple average of DQ_BS and DQ_IS. We call this measure 

DQ. In untabulated analysis we examine the univariate distribution of all Balance Sheet and 

Income Statement group level accounts. All group level accounts exhibit considerable 

variations, and no one single account dominates other accounts in driving the variation in DQ. 

4. Sample and descriptive statistics 

4.1 Overall sample descriptive statistics 

Our sample consists of Compustat firms with available data to estimate the various 

variables in our validation tests. We exclude financial and utility firms since these firms have 

very different Compustat Balancing Models and likely have very different disclosure 

practices. Foreign companies are also excluded. Since we have multiple validation tests with 

different data requirements, our sample differs for each test and we describe the associated 

variable definition and the details for each sample in the respective tables. Since our central 

measure is the summary measure DQ, we focus on DQ in presenting and discussing the 

validation test results. 

Table 1 presents descriptive statistics of DQ calculated using available data for 

Compustat non-financial and non-utility U.S. firms from 1973-2011. We start in 1973 as 

                                                           
21

 An eighth group account, SALE, has only one subaccount, REVT (Revenue – Total), for which there is no 

variation as virtually all firms have non-missing value. Therefore we drop this group account in constructing our 

DQ measure. Including this group account has no impact on our results.  
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1973 is the year FASB was established and the first FASB standard was issued. We stop in 

2011 as many firms still show incomplete data on Compustat for 2013 reporting year and we 

need year t+1 data for the dependent variables in some of our validation tests. There are 

altogether 125,873 observations for which we can calculate the disclosure score DQ from 

1973-2011. Panel A of Table 1 shows that DQ exhibits considerable variation in our sample, 

with a standard deviation of 0.113, mean (median) of 0.583 (0.570), and an interquartile 

range of 0.143. The component scores DQ_BS and DQ_IS exhibit similar variation. In Panel 

B of Table 1 we present simple regression results of DQ, DQ_BS, and DQ_IS regressed on 

industry dummies based on Fama-French 12 Industry classification.
22

 The significant 

coefficients on the industry dummies confirm our intuition that different industries have 

different disclosure scores and we include industry fixed effects using the more detailed two-

digit SIC code in all our validation tests.
23

  

Figure 1 shows the temporal change in DQ. There is a noticeable upward trend over 

time. The evolvement of business models over the years and the response by FASB can 

contribute to the change in DQ over time as new items are added. Our communication with 

Compustat product experts confirms this: Compustat uses the same Balance Sheet and 

Income Statement template to gather data and adds items to this template when standard 

changes mandate new items. Thus, we include year fixed effects in all our validation 

regressions.  

In Panel C of Table 1 we present the time-series regression results of regressing the 

average DQ per year on variables proxying for changing business models and a measure of 

                                                           
22

 Since we exclude financial/utility firms from our sample the regression is based on the remaining 11 

industries. This industry classification is available from Professor Kenneth French‟s website 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
23

 Note each industry is compared to the base industry reflected in the intercept. The base industry, Consumer 

Durables, has a DQ score approximately equal to the sample average and is thus representative of the overall 

sample.  That is, the base industry does not represent an outlier which differs from all other industries.  
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the complexity of new FASB standards. Specifically, we run the following regression using 

data from 1973 to 2008:
24

  

ttWORDStAVEttAVEtt STDNSEGLOSSSIINTQD   ,6,54,321
 

Where DQ is the average DQ score across all firms for year t. Following Collins, 

Maydew and Weiss (1999), we include intangible intensity (INT), the magnitude of one-time 

items (SIAVE), and the prevalence of loss firms (LOSS) as explanatory variables for temporal 

change in DQ. We do not include firm size as firm size is highly correlated with all other 

variables. We also include an additional measure of business complexity (NSEGAVE) and a 

measure of new FASB standard complexity (STDwords) as potential explanatory variables. 

Detailed variable definitions are provided in the notes to Table 1.   

Panel C reveals that the most significant factor driving the upward trend in DQ over 

time is intangible intensity, INT, our measure of changing business models. Surprisingly, the 

coefficient on our measure of FASB standard complexity, STDwords, is not significant. It could 

be that the impact of changing business models subsumes the impact of new accounting 

standards. Untabulated results show high correlations of INT (Pearson correlation coefficient 

between 0.23 and 0.61) with all other variables used in this temporal model.  

As we discuss in the introduction, even though over time DQ exhibits a noticeable 

upward trend, for any specific firm DQ should not exhibit significant change in adjacent 

years: all public companies must abide by SEC Regulation S-X and present comparative 

financial statements.
25

  

                                                           
24

 We stop in 2008 for this temporal model estimation because the new accounting codification effective in 2009 

makes it difficult to measure one of our variables, STDWORDS, as it is difficult to unambiguously attribute the 

issuance of a new Accounting Standard Update as a new FASB standard. 
25

 Consistent with this, the average first-order autocorrelation for DQ is 0.668, calculated as the mean of firm-

specific autocorrelations for firms with a minimum of five years data available. Other researchers document 

similar „stickiness‟ in annual reports and 10-K filings of adjacent years. See for example, Francis, Nanda, and 

Olsson (2008). We note that our subsequent validation test results are strongly robust to clustering standard 

errors by firm. We further address temporal variation in DQ in Section 5.5. 
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In Table 2 we present the correlation matrix between DQ and existing measures of 

(voluntary) disclosure quality. We first discuss the correlation between DQ and the number of 

management forecasts MF, the Fog Index for readability of MD&A, and a count of the 

number of words in the 10-K.
26

 Because we restrict the sample to observations with all above 

three disclosure measures available, the sample size is much smaller than that presented in 

Table 1 and the sampling period starts in 1993, the first year of the First Call CIG (Company 

Issued Guidance) file and Feng Li‟s Fog index per his web site. Though DQ (as well as the 

component scores) is positively correlated with MF and the two readability measures FOG 

and #WORDS, the magnitudes of the correlation are fairly small – between 0.050 and 0.233 

for the Spearman correlations, all significant at the 1% level.   

Second, we also report the correlation of DQ with AIMR. The sample for this analysis 

is even smaller due to the inherent small sample size with available AIMR scores. All of the 

correlation coefficients are small and none of the correlation coefficients is significant.
27

  

These correlation results are expected as DQ conceptually captures a different aspect 

of disclosure quality. As such, our validation tests cannot employ the widely-used convergent 

validity approach – correlation of DQ with other existing disclosure measures. The 

convergent validity approach is only appropriate if the new measure is capturing the same 

underlying construct as existing measures. We instead rely on the concurrent validity 

approach by demonstrating DQ‟s correlation with variables prior literature has shown to be 

associated with information quality/asymmetry in the predicted direction. 

                                                           
26

 We obtain the Fog Index and the number of word counts in 10-K from Feng Li‟s website 

http://webuser.bus.umich.edu/feng. 
27

 This lack of a significant correlation can be due to a number of factors: First, financial statement and footnote 

details, the concept underlying DQ, is just one of the many aspects that analysts rate in constructing AIMR. 

AIMR also includes analysts ratings of many qualitative aspects of firms‟ disclosure quality, such as the “amount 

of detail about the corporate officers” and the “availability and timeliness of other written materials, such as 

press releases, proxy statements, summary of annual meeting proceedings and presentations to analyst groups” 

(Lang and Lundholm 1993). Second, AIMR includes analysts‟ quantification of “qualitative disclosure (e.g., 

management discussion and analysis) and disclosure which may not have been reflected in published financial 

statements” (Lang and Lundholm 1996). Third, AIMR is a weighted average of all the myriad components. Thus, 

it is possible the variation in AIMR is dominated by all the other aspects of non-financial statement quantitative 

and qualitative disclosure, yielding a low correlation between AIMR and DQ. 
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4.2 Operational factors that can impact cross-sectional variations in DQ 

Before we proceed to our validation tests, we offer exploratory evidence on firm 

fundamentals that can drive DQ. Firm fundamentals, such as restructuring and merger and 

acquisition activities and other operational factors, can systematically impact DQ. Our 

research purpose is to capture the discretionary component of DQ, that is, DQ driven by 

managerial incentives, and validate this discretionary DQ as a measure of discretionary 

disclosure quality. Thus, in all our subsequent validation tests we control for firm 

fundamentals.  

We use six variables to capture firm fundamentals that might impact DQ: Restructure 

and M&A are indicator variables for asset restructuring and merger and acquisition activities, 

respectively. SI is the magnitude of special items scaled by total assets. We expect DQ to be 

increasing in the above three measures. We use return volatility, (RET), the standard 

deviation of monthly returns, to capture volatility of operations. We also include firm size, 

log(AT), the natural log of total assets, and the log of the number of business segments, 

log(NSEG), to capture operational complexity. Conventional wisdom holds that larger firms 

have more resources for financial reporting and would thus predict a positive relation 

between DQ and log(AT). However, the underlying relationship between operational 

complexity and DQ is more complicated. The relationship can be negative if more complex 

firms are constrained by GAAP standards, which impose an upper bound on the number of 

items they can report, while inherently having more items available to be reported. 

Table 3 Panel A presents the correlation matrix between DQ and the six firm 

fundamental variables and Panel B the results of DQ regressed on these variables. We include 

industry and year fixed effects in this regression and cluster standard errors by year and 

industry. Panel A shows that DQ exhibits positive correlations with all firm fundamental 

variables except for log(NSEG), and highest correlation is that between DQ and Restructure. 
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The negative correlation between DQ and log(NSEG) is counter-intuitive, though it is similar 

to the finding in Li (2008) on the relation between Fog Index and the number of segments. 

The multiple regression results reported Panel B show that all of the firm fundamental 

variables are significant though some of the signs flip when controlling for other factors 

reflecting the correlation among the variables.  

5.  Validation tests 

We perform three sets of validation tests: we examine the association between DQ 

and variables prior literature has shown to be associated with information quality/asymmetry, 

namely analyst forecast dispersion and accuracy and bid-ask spreads. We then relate DQ to 

the cost of equity. In all our validation tests we include control variables for firm 

fundamentals so as to isolate the association between the discretionary component of DQ and 

established measures of information quality. We include industry – 2 digit SIC codes – and 

year fixed effects to control for unobserved industry and year effects. Additionally, we cluster 

standard errors by industry and year to guard against the effects of non-fixed (temporary) 

correlations between variables within industries and years.
28

  

5.1  Disclosure score and analyst forecast dispersion and accuracy 

Our first set of validation tests examines the relation between DQ and analyst forecast 

dispersion and accuracy. Higher firm disclosure quality should be associated with lower 

analyst forecast dispersion and higher analyst forecast accuracy (Hope 2003; Dhaliwal, 

Radhakrishnan, Tsang, and Yang 2012). We estimate the following regression: 
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where DISPi, t+1 is analyst forecast dispersion at time t, measured as the average of the 

standard deviations of analyst forecasts for year t+1 earnings sampled at each month over 
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 We also estimate all models using industry times year fixed effects, which allow for more flexible industry 

specific trends and shocks, and find our results on DQ are robust to these controls. 
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year t, and forecast accuracy |FE|i, t+1 is the average of the mean absolute forecast errors for 

year t+1 earnings sampled at each month of year t. Detailed variable definitions are provided 

in the notes to each table.  

This validation test has the added advantage in that it allows us to further distinguish 

if DQ is capturing disclosure quality or simply reflects operating complexity. If DQ captures 

disclosure quality, then we expect 2 to be negative as higher-quality disclosure should lead to 

lower forecast dispersion and higher forecast accuracy. In constrast, if DQ captures operating 

complexity rather than disclosure quality, then 2 should be positive, because ceteris paribus 

it is harder to forecast for firms with more complex operations and there will be more 

disagreement among analysts.
29

 
 

The results of this validation test are reported in Table 4. The sample for this set of 

tests starts in 1976 to coincide with I/B/E/S‟s more comprehensive coverage of firms. After 

controlling for other factors that can affect DISP (|FE|),  the coefficients on DQ are 

significantly negative at better than 5%, even after we include controls for firm fundamentals, 

with year-and-industry clustered t-statistics ranging from -2.26 to -3.05. Results on all control 

variables are consistent with prediction. These results show that higher DQ is related to lower 

analyst forecast dispersion and higher forecast accuracy, consistent with DQ capturing 

disclosure quality, not operating complexity.   

The estimated coefficient of -0.173 (-0.391) in Table 4 suggests that a one standard 

deviation increase in DQ of 0.113 (Table 1) is associated with a decrease in DISP of 0.019 

and a decrease in |FE| of 0.044, representing 23% and 19% of the interquartile range of DISP 

of 0.083 and |FE| of 0.227, respectively. An alternative way to assess economic significance 

is to estimate the conditional standard deviation of DQ using the residuals from the regression 

                                                           
29

 For example, Duru and Reeb (2002) document that analyst forecasts are less accurate for firms that are 

internationally diversified. Haw, Jung and Ruland (1994) find that analyst forecast accuracy decreases sharply 

after mergers. Lehavy, Li, and Merkley (2011) show that communication complexity (or the inverse of overall 

readability of corporate 10-K filings) reduces analyst forecast accuracy and increases forecast dispersion. 
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in Panel B of Table 3. A one standard deviation increase in the orthogonalized DQ of 0.054 

thus obtained is associated with a decrease in DISP (|FE|) of 11% (9%) of its interquartile 

range. 

5.2 Disclosure score and bid-ask spreads 

Our second set of validation tests examines the association between DQ and a widely- 

accepted measure of information asymmetry: bid-ask spreads. Specifically, we estimate a 

model based on finance theory (Stoll 1978; Demsetz 1968) and which is empirically 

implemented in extant literature (Coller and Yohn 1997; Amiram, Owens, and Rosenbaum 

2013). We estimate the following regression: 
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We use two bid-ask spread measures – QBASi,t+1 is the average daily quoted bid-ask 

spread and EBASi,t+1 is the average daily effective bid-ask spread, both measured over the 12 

months beginning 4 months after the current fiscal year.
30

 We include trading volume 

(log(VOL)) to control for the liquidity of firms‟ shares which can affect inventory holding 

costs (Demsetz 1968), and include stock price (log(PRICE)) to control for market makers‟ 

processing costs (Stoll 1978). We further include controls for firm growth (MTB) and size 

(log(AT)). As in our first set of validation tests, we include firm fundamentals in our 

regressions. Further, in all regressions we include industry and year fixed effects and report 

robust standard errors clustered by year and industry.  

If DQ captures disclosure quality then it should be negatively associated with 

information asymmetry. Thus we expect a negative coefficient 2 in the regression of bid-ask 
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 Daily quoted bid-ask spread is calculated as the average of all midquote-deflated bid-ask spreads, 0.5*(Ask-

Bid)/(Ask+Bid), quoted during regular trading hours (9:30-16:00). Effective bid-ask spread measures the 

difference between the actual execution price and the midpoint of the prevailing quote, and is calculated as 

(Price-MidQuote)/MidQuote, where MidQuote = (Bid+Ask)/2. Each trade is matched with the quote at the 

previous second, and the effective bid-ask spreads of all trades during regular trading hour are averaged to 

obtain the daily estimates. 
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spreads on DQ, ceteris paribus. Table 5 presents the results of estimating (2). The sample for 

this estimation starts in 1991 because the TAQ data starts in 1991. Table 5 shows that DQ is 

negatively associated with the information asymmetry component of bid-ask spreads: 2 is 

significantly negative at better than 5% level in both regressions. Given the average share 

price of $18 for our sample firms, the coefficient estimates of -0.0126 for QBAS and -0.0173 

and EBAS suggest that a one standard deviation increase in unconditional DQ of 0.113 is 

associated with a decrease in quoted (effective) bid-ask spread of 2.6 (3.5) cents per share. 

With a one standard deviation increase in the orthogonalized DQ of 0.054, the quoted and 

effective bid-ask spreads are estimated to decrease by 1.2 cent and 1.7 cent per share, 

respectively. These amounts are significant considering the bid-ask spread has collapsed 

tremendously market-wide in the post-decimalization period. This set of results corroborates 

the findings from our first set of validation tests.        

5.3 Disclosure score and cost of equity  

Our third set of validation tests examines the relationship between DQ and cost of 

equity.  We base our tests on the maintained assumption that higher disclosure quality should 

be associated with lower cost of capital. While some researchers, e.g. Hughes et al. 2007, 

under very restrictive assumptions, show that disclosure quality cannot affect cost of capital 

because it can be diversified away, recent theoretical and empirical studies in accounting and 

finance demonstrate that a link between disclosure quality and cost of capital can exist (e.g., 

Lambert et al. 2007; Kelly and Ljunqvist 2012), and more specifically, accounting 

information can affect cost of capital. Empirical research in accounting has linked reporting 

quality, broadly defined, to lower cost of equity (Leuz and Verrecchia 2000; Lang and 

Lundhom 2000; Francis, LaFond, Olsson, Schipper 2004; Hail and Leuz, 2006; Daske, Hail, 

Leuz and Verdi 2008; Francis et al. 2008; Ashbaugh-Skaiffe, Collins and Kinney 2009; 

Baginski and Rakow 2011; and Daske, Hail, Leuz and Verdi 2013).  Thus, we expect a 
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negative association between DQ and cost of equity.
31

  We estimate the following cost of 

equity regression: 
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where cost of equity, CofE, is estimated using the average of three implied cost of equity 

capital measures developed in prior literature  (MPEG, GM, and Claus and Thomas (2001)) 

evaluated in Botosan and Plumlee (2005) and Easton and Monahan (2005). The forecasts of 

future earnings in all three methods are based on the approach proposed in Li and Mohanram 

(2014) to address concerns that optimistic analysts forecasts lead to biased estimates of 

implied cost of capital (see Easton and Monahan 2005; and Kothari, Li, and Short 2009). 

Following prior research (Francis et al. 2004; Francis et al., 2008), we include beta (Beta) 

estimated using daily returns and the Scholes-Williams (Scholes and Williams 1977) 

adjustment method and book-to-market ratio (BTM).
32

 Under the maintained assumption that 

higher disclosure quality should be associated with lower cost of equity, we expect 2 to be 

negative. As in Francis et al. (2008), we expect positive coefficients on Beta and BTM. 

The sample for this test consists of 35,474 firm-year observations from 1976-2011.
33

 

Table 6 presents the cost of equity regression results. The coefficient on the summary 

measure DQ is significantly negative at better than 1% in both specifications, before and after 

we include controls for firm fundamentals. The coefficient estimate of -0.057 suggests that a 

one standard deviation increase in unconditional DQ of 0.113 is associated with a decrease in 
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 We acknowledge that the literature on the causality between information quality and cost of capital is 

controversial. Neither empirical nor theoretical research agrees on whether there is a causal link (see Berger 

2011; Shevlin 2013, section 4). We note that our research purpose only calls for a demonstration of correlation, 

not causality. 
32

 We do not include log(AT) in the cost of capital validation tests as we already include log(MV) in all our 

models.  The correlation coefficient between log(MV) and log(AT) exceeds 0.90 and would lead to severe 

multicollinearity if we include both variables in our models. 
33

 Untabulated descriptive statistics show that our cost of equity estimates yield statistics comparable to prior 

literature (Easton and Monahan 2005). The mean cost of equity, CofE, is 0.132 with a median of 0.111. Though 

the sample in this test is much smaller than the sample in Table 1 due to data restrictions, the distributions of 

DQ and the component scores DQ_BS and DQ_IS (untabulated) are very similar to that presented in Panel A of 

Table 1. 
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CofE 0.6%. A one standard deviation increase in orthogonalized DQ of 0.054 is associated 

with a decrease in CofE of 0.3%, which is still non-trivial. Thus higher DQ is associated with 

lower cost of equity capital. Taken together, our three sets of validation tests offer strong 

evidence consistent with DQ capturing disclosure quality. 

 

 

 

5.4 Additional analyses: Disaggregating DQ into Components 

 Our research goal is to advance one summary measure of firms‟ disclosure quality, 

DQ, 

based on the level of disaggregation of items in firms‟ annual reports covering both the 

body of the two financial statements and associated footnotes. In this section we report results 

disggregating DQ along two dimension: DQ arising from operating and from financing 

activities (DQ_OP and DQ_FIN), and DQ disaggregated into Balance Sheet and Income 

Statement components (DQ_BS and DQ_IS), respectively. Disaggregation along these two 

dimensions serves as a starting point for future researchers wishing to examine the 

components of DQ.  

It is possible that for a typical firm there is more information asymmetry about its 

operating performance than its financing decisions. If this is the case, then we would expect 

the link between established proxies for information asymmetry and DQ to be primarily 

driven by the disaggregation of operating items.
34

 

To explore this possibility, we classify items representing operating and financing 

activities into DQ_OP (DQ representing operating activities) and DQ_FIN (DQ representing 

financing activities) using the classification scheme advanced in Nissim and Penman (2001). 

We equal weight each line item and re-estimate all three sets of validation tests on both 

components. We present the results in Panel A of Table 7. For parsimony we omit the 
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tabulation of all control variables. Because the samples used in each estimation are identical 

to those for the main tests and the adjusted R
2
 are nearly identical, we omit the tabulation of 

these two items as well. 

Panel A results show that DQ_OP drives the link with analyst forecast dispersion and 

accuracy whereas DQ_FIN drives the link with bid-ask spreads. Both DQ_OP and DQ_FIN 

are significantly negatively associated with the cost of equity. Panel B of Table 7 presents the 

results separating DQ into DQ_BS and DQ_IS. The results show that both components drive 

the link with bid-ask spreads, and cost of equity capital, but the link with analyst earnings 

forecast properties is driven by DQ_IS.  

5.5 Additional Analyses: DQ’s Potential for Time-Series Studies 

As discussed in the introduction, DQ is by definition “sticky” due to SEC Regulation 

S-X requirement that all firms must file comparative financial statements.
35

 In this section we 

provide further evidence on the temporal variation of DQ, in order to help future researchers 

better understand the suitability of DQ for time-series studies. 

We conduct two tests: the first test adds firm fixed effects (FE) to all our validation tests. 

The second test identifies large increases and decreases in DQ over a five-year window, then 

employs a difference-in-differences (DiD) design to determine whether firms experiencing 

large increases in DQ exhibit lower means on the dependent variables, i.e., lower analyst 

forecast dispersion and absolute forecast error, lower bid-ask spreads, and lower cost of 

equity, than firms experiencing large decreases in DQ.  

We tabulate the results of these estimation in Table 8. For parsimony we omit the 

tabulation of all equation-specific control variables and controls for firm fundamentals. Panel 

A presents the coefficients (t-statistics) on DQ in equations (1) ~ (3) after adding firm FEs. 

Note industry FEs are removed because they are subsumed by the finer firm FEs. DQ 
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continues to be significantly negatively associated with analyst forecast dispersion, quoted 

and effective bid-ask spreads, and cost of equity. 

Panel B reports the results of estimating the following regression:  

Dep Var =  + 0DQINC + 1POST + 2 DQINCPOST + Controls + Fundamentals + e 

 

where Dep Var are analyst forecast dispersion and accuracy, quoted and effective bid-ask 

spreads, and cost of equity proxy, respectively. We employ an approach similar to that in 

Healy, Hutton, Palepu (1999; hereafter HHP) to identify large changes in DQ over a five year 

window. DQINC =1 for observations with increases in average DQ greater than 30%, and = 0 

for observations with decreases in DQ greater than 30%. POST is an indicator for years t ~ 

t+2. Controls are the various equation-specific controls in equations (1) ~ (3). Following 

HHP (1999) we do not include industry or year fixed effects, but the results remain 

qualitatively similar if we include these fixed effects.  

Our focus is on 2, the coefficient on the interaction variable DQINCPOST, which 

we expect to be negative. In other words, the large DQ increase group should exhibit lower 

(higher) analyst forecast dispersion (accuracy), lower bid-ask spreads, and lower cost of 

equity, than the large DQ decrease group. Panel B of Table 8 shows that 2 is significantly 

negative at better than 1% (one-sided) in six out of ten regressions and marginally 

significantly negative at 10% level (one-sided) in one regression.
 
 

5.6 Additional Concerns. 

5.6.1 Backing out the magnitude of missing items as an alternative measure of 

disaggregation 
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A possible alternative measure of disaggregation is to back out the magnitude of missing 

items by taking the difference between parent accounts and the sum of the associated sub 

accounts, where applicable. Larger magnitudes of the missing items indicate higher 

aggregation level and lower disclosure quality. Note this measure can only be calculated for 

balance sheet accounts to yield meaningful variations, and of the total 109 balance sheet 

accounts we are able to back out this number for 52 accounts.
36

 We then re-estimate 

equations (1) to (3) by substituting DQ with this measure, and by including this measure 

together with DQ in the regressions. In untabulated analyses we find: 1) this measure is not 

associated with analyst forecast and bid-ask spread, and exhibits the wrong sign in the cost of 

equity regression, and 2) DQ continues to be significant in the correct direction in the 

presence of this alternative measure. Thus the benefits of this alternative measure are likely 

limited. 

5.6.2 Is the variation in DQ dominated by larger firms? 

It might be argued that the variation in DQ is dominated by larger firms. This belief is 

based on the assumption that Compustat expends more effort in collecting and coding data 

for larger firms and minimum effort on small firms. To address this concern, throughout our 

data coding we communicate extensively with experienced senior Compustat analysts with 

very detailed understanding of the data coding process. Our communication reveals that 

Compustat uses the same template to gather data regardless of firm size and does not 

discriminate based on firm size.  

However, in addition to communicating with Compustat, we conduct an additional 

analysis: we examine the dispersion of the distribution of DQ, DQ_BS, and DQ_IS by size 

quartile based on total assets. One striking pattern emerges: all three DQ scores exhibit 

similar standard deviation across the four size quartiles. Specifically, the standard deviation 
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for the summary DQ ranges from 0.123 to 0.125 across the size quartiles, and the range is 

0.147-0.152 for DQ_BS and 0.118-0.127 for DQ_IS.  Note these numbers are very similar to 

those reported for the overall sample distribution in Table 1. Thus, the data does not support 

the assumption that larger firms dominate the variation in DQ.  

Furthermore, we note that our random sample check (detailed in Section 3.1) shows 

that Compustat coding error rate for the smallest size quintile is smaller than that for the 

largest size quintile. This result again is inconsistent with Compustat ignoring the collection 

of data on smaller firms and spending more effort on the collection of data on the largest 

firms. 

5.6.3 Do existing disclosure measures subsume DQ? 

Another concern regarding our disclosure score DQ is that it is subsumed by other 

existing measures of disclosure, such as management earnings forecasts (MF) or AIMR scores.  

We have argued that DQ is conceptually very different from existing measures and 

demonstrated that DQ has low correlations with these existing measures in Table 2.  As such, 

we do not expect existing measures can subsume DQ. Nevertheless, to alleviate the above 

concern, we include the existing measures of disclosure as tabulated in Table 2 in all our 

validation regressions from Tables 4 to 6. The sample sizes after the inclusion of these 

existing disclosure measures are much smaller. In untabulated analyses we find that the 

results on DQ after the inclusion of these variables are robust, while the correlations of these 

existing disclosure measures with the information quality variables are either insignificant or 

inconsistent in the presence of DQ.    
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5.6.4 Is DQ simply the inverse of immaterial items that are aggregated into other items? 

 

Another potential concern with DQ is that if managers simply aggregate immaterial 

items into other items, DQ will be capturing the inverse of immaterial items. Following this 

logic, managers aggregate the missing items into other items because the missing items are 

deemed immaterial and therefore unimportant by managers. If this is true, the quality of 

financial reporting should not be adversely affected by the exclusion of such immaterial items, 

and we should not expect higher DQ to represent higher disclosure quality.  

Our collective evidence from the three sets of validation tests does not support the 

above argument. In addition, the mean magnitude of the missing items backed out in section 

5.6.1 represent 17% of total assets.  This nontrivial amount is inconsistent with the concern 

that missing items are immaterial items. 

6.  Conclusion 

 We develop a new measure of disclosure quality, DQ, which captures the level of 

disaggregation of accounting line items in firms‟ annual reports, with greater disaggregation 

indicating higher disclosure quality. This measure is based on the premise that more detailed 

disclosure gives investors and lenders more information for valuation (Fairfield et al., 1996; 

Jegadeesh and Livnat 2006) and a higher level of disaggregation enhances the credibility of 

firms‟ financial reports (Hirst et al. 2007; D‟Souza et al. 2010). 

 We use the number of non-missing Balance Sheet and Income Statement items 

reported in Compustat to proxy for disclosure quality. A higher count indicates higher 

disclosure quality.  In developing DQ we employ the natural nesting feature of the Balance 

Sheet (and to a lesser extent the Income Statement) to impose multiple screens to filter out 

the impact of Compustat systematic coding scheme in the count of missing items. In 

particular, our screening steps mitigate Type I error – counting an item as missing when in 

fact it is not missing.   
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 We validate DQ through three sets of tests: if DQ captures disclosure quality, then it 

should 1) be related to lower analyst forecast dispersion and higher analyst forecast accuracy, 

2) be negatively associated with information asymmetry as proxied by bid-ask spread, and 3) 

be negatively associated with cost of equity. All three sets of tests yield evidence consistent 

with the predictions above and with DQ capturing disclosure quality. The tests on analyst 

forecasting properties further reinforces that DQ captures disclosure quality not complexity, 

as complexity should be associated with higher analyst forecast dispersion and lower forecast 

accuracy, exactly opposite to the relationship documented. These results continue to hold 

after we control for firm fundamentals, such as operating complexity, which can drive the 

cross-sectional variation in DQ. 

The consistent results across all three sets of validation tests also provide us further 

confidence that DQ is not simply reflecting Compustat‟s coding of missing items, as it is 

extremely unlikely that the way Compustat collects and codes data would be systematically 

associated with established information asymmetry metrics, or the cost of equity.  

 We contribute to the existing literature by developing a unique disclosure measure 

that captures an important aspect of firms‟ disclosure behaviour that has not received much 

research attention: the level of disaggregation of accounting data items in firms‟ annual 

reports. DQ differs from existing measures that either capture managers‟ voluntary disclosure 

behaviour (e.g., management earnings forecasts, conference calls) or self-constructed 

measures based on  researchers‟ or analysts‟ evaluation of selected items in the financial 

statement (e.g., AIMR scores).  Furthermore, DQ is a parsimonious measure that can be 

constructed for the universe of Compustat industrial firms for all years. This contrasts with 

existing measures, which are usually only applicable to a subset of firms (e.g., management 

forecasts, conference calls), or to a subset of financial statement items (e.g., AIMR), or 

capture the narrative aspect of MD&A (e.g., Fog index). DQ can be used by researchers for 
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replication or to study new questions on firms‟ disclosure behaviour on a much wider set of 

firms in the economy.  

 We caution that the applicability of DQ is limited by the following factors. First, 

future research intending on establishing causality will need to include controls variables that 

will likely result in considerable reduction of sample sizes. Second, DQ, as a measure of 

annual report disaggregation level, does not capture the timeliness of new information, 

because annual reports provide perhaps predominantly a confirmation role to earlier or more 

timely voluntary disclosures. Third, it is possible that the complentarity between mandatory 

and voluntary disclosure can induce an upward bias in the estimation of the impacts of DQ. 

Future researchers interested in using DQ should take these limitations into consideration. 
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Appendix A  Compustat Template (“Balancing Model”) for the Balance Sheet 

 
Item Description Balancing Mnemonic 

ASSETSS 
    

Current Assets 
  

Current Assets - Total 
 ACT 

Non-Current Assets 
 

 
 

Property Plant and Equipment - Total (Net) 
 PPENT 

 
Investment and Advances - Equity 

 IVAEQ 

 
Investment and Advances - Other 

 IVAO 

 
Intangible Assets - Total 

 INTAN 

 
Assets - Other - Total 

 AO 

Assets - Total ACT + PPENT + IVAEQ + IVAO + INTAN + AO AT 

 

 
LIABILITIES & SHAREHOLDES' EQUITY 

 
 Current Liabilities 

 
 Current Liabilities - Total 

 LCT 

Long-Term Liabilities 
 

 
 

Long-Term Debt - Total 
 DLTT 

 
Deferred Taxes and Investment Tax Credit 

 TXDITC 

 
Liabilities - Other 

 LO 

Liabilities - Total LCT + DLTT + TXDITC + LO LT 

Noncontrolling Interest - Redeemable - Balance Sheet  MIB 

Shareholders' Equity 
 

 
 

Preferred/Preference Stock (Capital) - Total 
 PSTK 

 
Common/Ordinary Equity - Total 

 CEQ 

Stockholders Equity - Parent - Total PSTK + CEQ SEQ 

 
Noncontrolling Interest - Nonredeemable - Balance Sheet 

 
MIBN 

Stockholders Equity - Total SEQ + MIBN TEQ 

Liabilities and Stockholders Equity - Total LT + MIB + TEQ LSE 
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Appendix A  (Continued) 

Compustat Template (“Balancing Model”) for the Income Statement* 

 
Item Description Balancing Mnemonic 

Sales/Turnover (Net if Excise Tax TXW) 
 

SALE 

Operating Expenses - Total COGS + XSGA XOPR 

 
Cost of Goods Sold 

 
COGS 

 
Selling, General and Administrative Expenses 

 
XSGA 

Depreciation and Amortization - Total   DP 

Interest and Related Expense 
 

XINT 

Nonoperating Income (Expense) - Total IDIT + NOPIO NOPI 

 
Nonoperating Income (Expense) - Excluding Interest Income 

 
NOPIO 

 
Interest Income - Total 

 
IDIT 

Special Items 
 

SPI 

Pretax Income OIADP - XINT + NOPI + SPI PI 

Income Taxes - Total   TXT 

 
Income Taxes - Current TXFED+TXS+TXFO+TXO  TXC 

 
Income Taxes - Deferred TXDFED + TXDS + TXDFO TXDI 

Noncontrolling Interest - Income Account 
 

MII 

Income Before Extraordinary Items 
 

IB 

Dividends - Preferred/Preference 
 

DVP 

Income Before Extraordinary Items - Available for Common IB - DVP IBCOM 

Extraordinary Items and Discontinued Operations XI + DO XIDO 

 
Extraordinary Items (including Accounting Changes CCHG) 

 
XI 

 
Discontinued Operations 

 
DO 

Net Income (Loss) IBADJ + XIDO NIADJ 

  

*Note even though the group account CITOTAL (Comprehensive Income – Total) is not on Compustat‟s 

Income Statement Balancing Model, we classify the associated accounts as income statement accounts rather 

than balance sheet accounts. 
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Appendix B  The Three Level Structure to Link Sub Accounts to Group Accounts 

SUB ACCOUNTS  

[93] 

PARENT ACCOUNTS  

[25] 

GROUP ACCOUNTS  

[11] 

Item 1  

 

Parent account A 

 

 

 

Group Account #1 

Item 2 

Item 3 

Item 4 

Item 5  

Parent account B Item 6 

Item 7 

…… …… …… 

…… …… Group Account #11 

  TOTAL ASSETS 
 

EXAMPLE 

 

SUB ACCOUNTS 

 

PARENT ACCOUNTS 

 

GROUP ACCOUNTS  

 

INVRM (INV- raw material)  

      INVT  

(Inventory –total)  

 

 

ACT 

(Current Assets- Total) 

INVWIP (INV - work-in-

progress) 

INVFG (INV - finished 

goods) 

INVO (INV – other) 

…… ….. 

…… Other seven parent 

accounts 

 

……  Other 10 GROUP accounts 

  TOTAL ASSETS 
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Figure 1    Temporal Trend of DQ 
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Table 1    Descriptive Statistics on DQ 
 

Panel A: Descriptive Statistics on Balance Sheet and Income Statement DQ score 

 
Mean Std Dev Q1 Median Q3 

 DQ 0.583 0.113 0.504 0.570 0.647 

DQ_BS 0.716 0.135 0.618 0.718 0.809 

DQ_IS 0.450 0.119 0.365 0.418 0.519 

 

 

Panel B: Regression Analysis of Variation by Industry  

      ∑       + 
 

Industry  Parameter Estimates 

  DQ DQ_BS DQ_IS 

Business Equipment  0.050 0.049 0.052 

Chemicals and Allied Products  0.002
# 

-0.011 0.015 

Others  -0.011 -0.025 0.003
# 

Oil, Gas and Coal Extraction and Products  -0.080 -0.140 -0.019 

Healthcare, Medical Equipment, and Drugs  0.051 0.052 0.050 

Manufacturing  -0.005 -0.010 -0.001
# 

Consumer Non-Durables  -0.008 -0.013 -0.002
# 

Wholesale, Retail, and Some services  -0.002
# 

-0.015 0.011 

Telephone and Television Transmission  -0.012 -0.039 0.015 

Consumer Durables (Intercept)  0.575 0.718 0.432 

Adjusted- R
2
  8.72% 11.32% 3.93% 

 

 

Panel C: Regression Analysis of Temporal Variation (N = 36) 

ttWORDStAVEttAVEtt STDNSEGLOSSSIINTQD   1,6,54,321
 

 
Intercept 

 

INT 

 

SIAVE 

 

LOSS 

 

NSEGAVE 

 

STDWORDS 

 

Adj. R
2
 

DQ 
0.333 1.621*** -1.564 0.131 -0.018 0.010 

0.890 
(0.94) (5.56) (-2.01) (0.73) (-0.36) (0.36) 

DQ_BS 
0.561 1.557*** -1.938** 0.458** -0.011 -0.003 

0.871 
(1.39) (4.68) (-2.18) (2.23) (-0.18) (-0.10) 

DQ_IS 
0.105 1.686*** -1.190 -0.196 -0.256 0.024 

0.850 
(0.25) (4.87) (-1.29) (-0.92) (-0.43) (0.70) 
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Table 1 (continued) 

 
Notes to Table 1: 

 

Panel A‟s sample consists of 125,837 firm-year observations from 1973 to 2011. Financial, utility, and foreign 

companies are excluded from this sample. 

 

For Panel B, all regression coefficients are significant at 1% level except for coefficients marked with #, which 

are insignificant at conventional levels. 

 

The sample in Panel C consists of 36 years (1976-2008).   

 

Variable definitions: 

 

DQ_BS = Value-weighted disclosure quality score of balance sheet items, [0,1]; 

DQ_IS = Equally-weighted disclosure quality score of income statement items, [0,1]; 

DQ = The simple average of DQ_BS and DQ_IS (DQ = 0.5 * (DQ_BS + DQ_IS); 

INT = Average ratio of intangible assets/total assets in year t; 

SIAVE = Average magnitude of special items (SPI) /total assets in year t; 

LOSS = Percentage of firms that report losses in year t; 

NSEGAVE = Natural log of average # of business segments in year t; 

STDWORDS = Natural log of cumulative # of words in all FASB standards issued from 1973 to year t-1. 
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Table 2     Correlation between DQ and other Disclosure Measures 

(Pearson Upper Triangle, Spearman Lower Triangle) 

 
The sample consists of 41,692 firm-year observations from 1993 to 2011. The AIMR sample consists of 3,265 

firm-year observations from 1981 to 1995. Financial, utility, and foreign companies are excluded from this 

sample. All correlations are significant at 1%, except for those marked with 
$
, which are significant at 10%, and 

#
, which are insignificant at conventional levels. 

 

 

 

DQ 
DQ_BS 

DQ_IS 
MF FOG 

#WORD

S 

AIMR 

DQ - 0.876 0.884 0.292 0.036 -0.000
# -0.021

# 

DQ_BS 0.884 - 0.548 0.262 0.041 -0.026 -0.030
# 

DQ_IS 0.867 0.563 - 0.252 0.024 0.026 0.006
# 

MF 0.233 0.211 0.206 - 0.038 0.084 - 

FOG 0.135 0.125 0.117 0.015 - 0.264 - 

# WORDS 0.078 0.050 0.106 0.142 0.327 - - 

AIMR 0.017
# 

-0.025
# -0.022

# 
- - - - 

 
Notes to Table 2: 

 

Variable definitions: 

MF = # of management forecasts, year t.  If a firm does not provide management forecast, MF is set to 

be zero; 

FOG = Fog Index on readability of MD&A, available from Feng Li‟s website 

http://webuser.bus.umich.edu/feng; 

# WORDS =    The total # of words in 10-K, year t, available also from Feng Li‟s website; 

AIMR = Percentage rank of AIMR annual report disclosure score; 

DQ_BS = Value-weighted disclosure quality score of balance sheet items, [0,1]; 

DQ_IS = Equally-weighted disclosure quality score of income statement items, [0,1]; 

DQ = The simple average of DQ_BS and DQ_IS (DQ = 0.5 * (DQ_BS + DQ_IS). 

  

http://webuser.bus.umich.edu/feng
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Table 3     DQ and Firm Fundamentals  

Panel A: Correlation Matrix between DQ and Firm Fundamentals (Pearson Upper Triangle, 

Spearman Lower Triangle) 

 

 

 

DQ 
 

Restructure 

 

M&A 
 

SI 

 

(RET) 

 

log(AT) 

 

log(NSEG) 

DQ - 0.398 0.128 0.091 0.018 0.192 -0.024 

Restructure 0.361 - 0.112 0.157 0.020 0.244 0.068 

M&A 0.121 0.112 - 0.029 -0.081 0.298 0.075 

SI 0.203 0.320 0.118 - 0.173 -0.046 -0.020 

(RET) 0.032 0.007 -0.102 0.124 - -0.324 -0.125 

log(AT) 0.174 0.235 0.292 0.141 -0.399 - 0.289 

log(NSEG) -0.054 0.065 0.071 0.042 -0.180 0.280 - 

 

Panel B: Regression of DQ on Firm Fundamentals 

itititititititit eNSEGATRETSIAMstructureDQ  )log()log()(&Re 6543210   

 

 

Restructure 

 

M&A 
 

SI 

 

(RET) 

 

log(AT) 

 

log(NSEG) 

Predicted Signs + + + + +/- +/- 

Coefficients 1.682*** -0.399*** 0.701* -1.539*** -0.100** -0.732*** 

(t-statistics) (6.88) (-3.04) (1.70) (-3.06) (-2.03) (-2.95) 

       

NOBS 114,146      

Adjusted R
2
 0.753      

 

Notes to Table 3: 

The sample consists of 114,146 firm-years from 1976 to 2011. All coefficients are multiplied by 100 for 

exposition convenience. Year and industry fixed effects are included and standard errors are two-way clustered 

by year and industry.  *,**, *** indicate significance at 10%, 5%, and 1% (two-sided), respectively. 

Variable definitions: 

Restructure = An indicator variable for asset restructuring, which is set to one if Restructuring Costs 

Pretax (RCP) is nonzero, and zero otherwise; 

M&A = An indicator variable for merger and acquisitions, which is set to one if the firm 

engaged in merger and acquisitions during the current year as reported by SDC 

database, and zero otherwise; 

SI = The absolute value of special items (SPI) divided by total assets; 

(RET) = Standard deviation of monthly return over year t; 

AT = Total assets ($billions), year t; 

NSEG = Number of business segment; 
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Table 4    DQ and Analyst Forecast Properties 

)1(..)log(

)log()(}|{|

,,,7

,6,5,4,3,211,1,

tititi

tititititititi

FEYrFEIndsfundamenalAT

AFROAGROWTHEPSDQFEDISP












 

 

 

Predict

. 

Signs 

Dependent Variable 

= DISP 

 Dependent Variable 

= |FE| 

Intercept ? 
7.725 4.255  27.564* 16.689 

(1.52) (0.80)  (1.92) (1.06) 

DQ - 
-18.934*** -17.305***  -42.703** -39.13** 

(-3.05) (-2.82)  (-2.47) (-2.26) 

σ(EPS) + 
1.099*** 1.067***  2.563*** 2.375*** 

(7.11) (6.97)  (6.60) (6.35) 

GROWTH + 
2.902*** 2.072***  8.675*** 6.085** 

(3.86) (2.85)  (4.02) (3.53) 

ROA - 
-38.568*** -40.619***  -94.993*** -95.19*** 

(-6.77) (-7.14)  (-6.54) (-6.04) 

log(AF) - 
-4.655*** -4.800***  -19.215*** -19.516*** 

(-5.83) (-5.94)  (-7.11) (-7.20) 

Log(AT) + 
2.953*** 3.389***  8.391*** 9.458*** 

(6.44) (6.88)  (7.16) (7.30) 

Control for 

firm 

fundamentals 

 
NO YES 

  

NO 

 

YES 

Ind and Year 

Fixed Effects 

 

 

 
Included Included  Included Included 

NOBS  31,202 31,202  31,202 31,202 

Adjusted R
2
  0.179 0.186  0.084 0.087 
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Table 4 (continued) 

 
Notes to Table 4: 

 

The sample consists of 31,202 firm-years with at least 3 analyst forecasts of annual earnings from 1976 to 2011. 

DISP, |FE|, ROA, and GROWTH are winsorized at the extreme 1%. Standard errors are two-way clustered by 

year and industry. *, **, *** indicate significance levels at 10%, 5%, and 1% (two-tailed). All coefficients are 

multiplied by 100 for exposition convenience. 

 

Variable definitions (all other variables are defined as in the notes to Table 3): 

DISPi, t+1 = Forecast dispersion, measured as the average of standard deviation of analyst forecast of year t+1 

earnings sampled at each month over year t; 

|FE| i,t+1 = Forecast accuracy, measured as the average of the mean absolute forecast error of year t+1 

earnings samples at each month of year t; 

σ (EPS) = Decile ranks of earnings volatility, measured as standard deviation of EPS over yeat t-4 to year t, 

deflated by share price at the end of year t; 

GROWTH = Average percentage growth in sales over year t-4 to year t; 

ROA = Income before extraordinary items divided by total assets; 

AF = Number of analysts issuing EPS forecasts for the current year. 
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Table 5    DQ and Bid-Ask Spread 

 

)2(..

)log()log()log(/
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Predicted 

Signs 

Dependent Variable 

= QBAS 

 Dependent Variable 

 = EBAS 

Intercept ? 
8.786*** 8.418***  6.673*** 6.414*** 

(11.73) (11.69)  (14.15) (14.10) 

DQ - 
-1.287** -1.260**  -1.188*** -1.173*** 

(-2.32) (-2.35)  (-2.94) (-3.01) 

log(VOL) - 
-

0.518*** 
-0.565***  -0.232*** -0.267*** 

(-14.70) (-17.36)  (-9.89) (-11.65) 

Log(PRICE) - 
-

1.369*** 
-1.319***  -0.875*** -0.84*** 

(-10.52) (-10.63)  (-11.59) (-11.65) 

BTM + 
0.181*** 0.176***  0.172*** 0.168*** 

(3.00) (2.84)  (3.86) (3.65) 

log(AT) ? 
-0.104* -0.075  -0.202*** -0.181*** 

(-1.96) (-1.52)  (-4.39) (-4.19) 

Control for firm fundamentals  NO YES  NO YES 

Ind and Year Fixed Effects  Included Included  Included Included 

NOBS  63,462 63,462  63,948 63,948 

Adjusted R
2
 

 
 0.597 0.599  0.557 0.560 

  
Notes to Table 5: 

The sample consists of 63,462 firm-years from 1991 to 2011 for QBAS regressions and 63,948 firm-years for 

EBAS regressions. BTM is winsorized at the extreme 1%. All coefficients are multiplied by 100 for exposition 

convenience. Standard errors are two-way clustered by year and industry. *,**,*** indicate significance levels 

at 10%, 5%, and 1% (two-tailed). 

Variable definitions: 

QBAS = Average daily quoted bid-ask spread over the 12-month period beginning with 4 months after 

the end of current fiscal year. Daily quoted bid-ask spread is calculated as the average of all 

bid-ask spreads, 0.5*(Ask-Bid)/(Ask+Bid), quoted during regular trading hour (9:30-16:00). 

Intraday quotes data are from TAQ; 

EBAS = Average daily effective bid-ask spread over the 12-month period beginning with 4 months 

after the end of current fiscal year. Daily effective bid-ask spread is calculated using all trades 

during regular trading hour (9:30-16:00). Trades are matched with prevailing quotes at the 

previous second to estimate effective bid-ask spread using the equation (Price-

MidQuote)/MidQuote, where MidQuote = (Bid+Ask)/2. Intraday trades and quotes data are 

from TAQ; VOL = Average daily trading volume over year t; 

PRICE = Average daily closing price over year t; 

BTM = Book value of common equity divided by market value of common equity. 

All other variables are defined as in notes to Table 3 and Table 4. 
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Table 6    DQ and Cost of Equity 
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Predicted 

Signs 
(1) (2) 

Intercept ? 
19.060*** 15.355*** 

(10.98) (9.27) 

DQ - 
-5.591*** -5.721*** 

(-4.05) (-4.42) 

Beta + 
0.284* -0.166 

(1.68) (-1.15) 

BTM + 
3.501*** 3.737*** 

(12.75) (12.75) 

Log(MV) - 
-1.997*** -1.821*** 

(-7.76) (-7.43) 

Control for firm  

fundamentals 
 NO YES 

Industry and Year  

Fixed Effects 
 Included Included 

NOBS  35,474 35,474 

Adjusted-R
2
  0.414 0.432 

 

Notes to Table 6: 

The sample consists of 35,474 firm-year observations from 1976 to 2011. All coefficients are multiplied by 100 

for exposition convenience. Standard errors are two-way clustered by year and industry. *, **, *** indicate 

significance levels at 10%, 5%, and 1% (two-tailed). 

 

Variable definitions: 

CofE = Average of implied cost of equity estimated using the MPEG, GM and CT methods. The 

forecasts of future earnings used in all three estimation methods are based on the approach 

proposed in Li and Mohanram (2014); 

Beta = CAPM beta estimated using the Scholes-Williams method over the most recent calendar year 

ending before current fiscal year end; 

MV = Market value of equity at current fiscal year end. 

 

All other variables are defined as in notes to Table 3 and Table 4. 
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Table 7  

Separating DQ into Operating (DQ_OP) vs. Financing (DQ_FIN) Components 

& Balance Sheet (DQ_BS) vs Income Statement (DQ_IS) Components   

 
This table presents the coefficients on DQ_OP vs. DQ_FIN & DQ_BS vs. DQ_IS from re-estimating 

equations (1)~(3) by replacing summary DQ with these components. Column (1) models exclude 

controls for firm fundamentals whereas Column (2) models include controls for firm fundamentals. 

Intercepts, equation-specific control variables, and industry and year fixed effects are included in all 

estimations. Standard errors are two-way clustered by year and industry. The number of observations 

(the adjusted R
2
) for each equation are (nearly) identical to those presented in the main Tables 4~6 

respectively. *, **, *** indicate significance levels of 1%, 5%, and 10% (one-sided). 

 
Panel A Separating DQ into DQ_OP & DQ_FIN  

Panel A1 Analyst Forecasting Properties (re-estimating equation 1) 

 

 
 Dependent Variable = DISP  Dependent Variable = |FE| 

Predicted 

Signs 
(1) (2)  (1) (2) 

DQ_OP - 
-22.995*** -19.409***  -52.515** -45.033** 

(-3.05) (-2.57) 
 

(-2.47) (-2.02) 

DQ_FIN - 
-3.301 -4.107 

 
-18.734 -20.674 

(-0.89) (-1.11) 
 

(-1.43) (-1.57) 
 

Panel A2 Bid Ask Spreads (re-estimating equation 2) 

 

 
 

Dependent Variable =  

Bid Ask Spread 
 

Dependent Variable =  

Effective Bid Ask Spread 

Predicted 

Signs 
(1) (2)  (1) (2) 

DQ_OP - 
-0.648 -0.889  -0.397 -0.579 

(-0.91) (-1.27) 
 

(-0.87) (-1.26) 

DQ_FIN - 
-0.878*** -0.755*** 

 
-0.856*** -0.761*** 

(-3.90) (-3.41) 
 

(-4.57) (-4.23) 

 
Panel A3 DQ and Cost of Capital (re-estimating equation 3) 

 
 

Dependent Variable  

=  

Cost of Equity  

 

Predicted 

Signs 
(1) (2)  

DQ_OP - 
-3.869* -4.186*  

(-1.65) (-1.90) 
 

DQ_FIN - 
-2.841** -2.778** 

 

(-2.45) (-2.46) 
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Table 7 (continued) 

 

 
Panel B Separating DQ into DQ_BS & DQ_IS  

Panel B1 Analyst Forecasting Properties (re-estimating equation 1) 

 

 
 Dependent Variable = DISP  Dependent Variable = |FE| 

Predicted 

Signs 
(1) (2)  (1) (2) 

DQ_BS - 
-10.364 -9.988  -12.218 -11.769 

(-1.45) (-1.43)  (-0.65) (-0.64) 

DQ_IS - 
-8.665*** -7.449***  -29.516*** -26.589*** 

(-3.88) (-3.60)  (-3.39) (-3.14) 
 

Panel B2  Bid Ask Spreads (re-estimating equation 2) 

 

 
 

Dependent Variable =  

Quoted Bid Ask Spread 
 

Dependent Variable = 

Effective Bid Ask Spread 

Predicted 

Signs 
(1) (2)  (1) (2) 

DQ_BS - 
-0.678* -0.645*  -0.587** -0.564** 

(-1.79) (-1.72)  (-2.16) (-2.09) 

DQ_IS - 
-0.614* -0.617*  -0.600** -0.606** 

(-1.89) (-1.99)  (-2.31) (-2.44) 
 

Panel B3 Cost of Capital (re-estimating equation 3) 

 

 
 

Dependent Variable  

=  

Cost of Equity  

Predicted 

Signs 
(1) (2)  

DQ_BS - 
-3.516*** -3.664***  

(-3.40) (-3.37) 
 

DQ_IS - 
-2.153** -2.14** 

 

(-2.29) (-2.37) 
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Table 8 Additional Analyses: Adding Firm FE and Identifying Big Changes in DQ 

Panel A Adding Firm Fixed Effects to Equations (1)~(3) 

 
This panel presents the coefficients (t-statistics) on DQ after adding firm fixed effects and removing industry 

fixed effects to Equations (1)~(3). Column (1) models exclude controls for firm fundamentals whereas Column 

(2) models include controls for firm fundamentals. The last two rows present the number of observations used in 

each regression and adjusted R
2
. *, **, *** indicate significance levels of 1%, 5%, and 10% (one-sided). 

 

Analyst Forecast Properties 

(Eq. 1) 

Quoted and Effective Bid-Ask 

Spreads 

(Eq. 2) 

Cost of Equity 

(Eq. 3) 

DISP |FE| QBAS EBAS COE 
(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) 

-

5.29**

* 

-

4.71**

* -7.49 -6.94 -0.28 

-

0.49**

* 

-

0.29**

* 

-

0.46**

* -1.77** -1.98** 

(-3.42) (-3.03) (-0.97) (-0.89) (-1.48) (-2.62) (-2.18) (-3.44) (-1.93) (-2.17) 

N=31,2

02 

N=31,2

02 

N=31,2

02 

N=31,2

02 

N=63,4

62 

N=63,4

62 

N=63,9

48 

N=63,9

48 

N=35,4

74 

N=35,4

74 

0.780 0.780 0.619 0.620 0.802 0.803 0.779 0.781 0.688 0.692 

 

Panel B Analysis Identifying Big Changes in DQ over a Five-Year Window 

 
This panel presents coefficients 2 (firm clustered t-statistics) on the interaction variable DQINCPOST from 

the model: Dep. Var. =  + 0*DQINC +1* POST  

+ 2 *(DQINCPOST) + Control Variables + Control for Fundamentals + error term. The dependent 

variables are DISP, |FE|, QBAS, EBAS, and COE, respectively. DQINC is an indicator variable identifying 

changes in in average DQ greater than 30% from years t-2, t-1 to years t, t+1, and t+2: if DQ increases by more 

than 30% over the five-year window, DQINC=1; if DQ decreases by more than 30% over the five-year window, 

DQINC=0. POST  is an indicator variable coded as 1 for years years t, t+1, and t+2 and 0 for years t-2 and t-1. 

The “Control Variables” are regression-specific controls employed in Equations (1) through (3), respectively. 

Column (1) models exclude controls for firm fundamentals whereas Column (2) models include controls for 

firm fundamentals. The last two rows present the number of observations used in each regression and adjusted 

R
2
. *, **, *** indicate significance levels of 1%, 5%, and 10% (one-sided). 

 

Analyst Forecast Properties 

(Eq. 1) 

Quoted and Effective Bid-Ask 

Spreads 

(Eq. 2) 

Cost of Equity  

(Eq. 3) 

DISP |FE| QBAS EBAS COE 

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) 
-

2.32**

* 

-

1.90**

* 

-

10.52*

** 

-

9.53**

* -0.12* -0.062 -0.053 -0.014 

-

1.27**

* 

-

1.26**

* 

(-3.13) (-2.52) (-3.31) (-2.98) (-1.47) (-0.78) (-1.01) (-0.27) (-3.97) (-4.00) 

N=7,5

92 

N=7,5

92 

N=7,59

2 

N=7,5

92 

N=14,1

57 

N=14,1

57 

N=14,0

81 

N=14,0

81 

N=9,4

50 

N=9,4

50 

0.073 0.094 0.041 0.049 0.549 0.555 0.532 0.538 0.252 0.291 
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Internet Appendix A. Linking Table for the Balance Sheet 

SUB ACCOUNTS DESCRIPTION PARENT  GROUP 

ACODO Other Current Assets Excl Discontinued Operations ACO ACT 

ACOX Current Assets - Other - Sundry ACO ACT 

XPP Prepaid Expenses ACO ACT 

ACDO Current Assets of Discontinued Operations ACOX ACT 

ACO Current Assets - Other - Total ACT ACT 

CHE Cash and Short-Term Investments ACT ACT 

INVT Inventories - Total ACT ACT 

RECT Receivables - Total ACT ACT 

CB Compensating Balance CH ACT 

CH Cash CHE ACT 

IVST Short-Term Investments - Total CHE ACT 

INVFG Inventories - Finished Goods INVT ACT 

INVO Inventories - Other INVT ACT 

INVRM Inventories - Raw Materials INVT ACT 

INVWIP Inventories - Work In Process INVT ACT 

RECCO Receivables - Current - Other RECT ACT 

RECD Receivables - Estimated Doubtful RECT ACT 

RECTR Receivables - Trade RECT ACT 

RECUB Unbilled Receivables RECT ACT 

TXR Income Tax Refund RECT ACT 

ALDO Long-term Assets of Discontinued Operations AO AO 

AODO Other Assets excluding Discontinued Operations AO AO 

AOX Assets - Other - Sundry AO AO 

DC Deferred Charges AO AO 

AOCIDERGL 
Accum Other Comp Inc - Derivatives Unrealized 
Gain/Loss ACOMINC CEQ 

AOCIOTHER Accum Other Comp Inc - Other Adjustments ACOMINC CEQ 

AOCIPEN Accum Other Comp Inc - Min Pension Liab Adj ACOMINC CEQ 

AOCISECGL Accum Other Comp Inc - Unreal G/L Ret Int in Sec Assets ACOMINC CEQ 

RECTA Retained Earnings - Cumulative Translation Adjustment ACOMINC CEQ 

CAPS Capital Surplus/Share Premium Reserve CEQ CEQ 

CEQL Common Equity - Liquidation Value CEQ CEQ 

CEQT Common Equity - Tangible CEQ CEQ 

CSTK Common/Ordinary Stock (Capital) CEQ CEQ 

RE Retained Earnings CEQ CEQ 

TSTK Treasury Stock - Total (All Capital) CEQ CEQ 

CSTKCV Common Stock-Carrying Value CSTK CEQ 

ACOMINC Accumulated Other Comprehensive Income (Loss) RE CEQ 

REA Retained Earnings - Restatement RE CEQ 

REAJO Retained Earnings - Other Adjustments RE CEQ 
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Internet Appendix A.  Linking Table for the Balance Sheet (continued) 

 

SUB ACCOUNTS DESCRIPTION PARENT  GROUP 

REAJO Retained Earnings - Other Adjustments RE CEQ 

REUNA Retained Earnings - Unadjusted RE CEQ 

REUNR Retained Earnings - Unrestricted RE CEQ 

SEQO Other Stockholders- Equity Adjustments RE CEQ 

TSTKC Treasury Stock - Common TSTK CEQ 

TSTKP Treasury Stock - Preferrred TSTK CEQ 

DCLO Debt - Capitalized Lease Obligations DLTT DLTT 

DCS Debt - Consolidated Subsidiary DLTT DLTT 

DCVSR Debt - Senior Convertible DLTT DLTT 

DCVSUB Debt - Subordinated Convertible DLTT DLTT 

DCVT Debt - Convertible DLTT DLTT 

DD Debt - Debentures DLTT DLTT 

DD2 Debt - Due in 2nd Year DLTT DLTT 

DD3 Debt - Due in 3rd Year DLTT DLTT 

DD4 Debt - Due in 4th Year DLTT DLTT 

DD5 Debt - Due in 5th Year DLTT DLTT 

DFS Debt - Finance Subsidiary DLTT DLTT 

DLTO Other Long-term Debt DLTT DLTT 

DLTP Long-Term Debt - Tied to Prime DLTT DLTT 

DM Debt - Mortgages & Other Secured DLTT DLTT 

DN Debt - Notes DLTT DLTT 

DS Debt-Subordinated DLTT DLTT 

DUDD Debt - Unamortized Debt Discount and Other DLTT DLTT 

GDWL Goodwill INTAN INTAN 

INTANO Other Intangibles INTAN INTAN 

MSA Marketable Securities Adjustment IVAO IVAO 

BASTR Average Short-Term Borrowings Rate BAST LCT 

BAST Average Short-Term Borrowings DLC LCT 

DD1 Long-Term Debt Due in One Year DLC LCT 

NP Notes Payable - Short-Term Borrowings DLC LCT 

DRC Deferred Revenue - Current LCO LCT 

LCOX Current Liabilities - Other - Sundry LCO LCT 

XACC Accrued Expenses LCO LCT 

AP Accounts Payable - Trade LCT LCT 

DLC Debt in Current Liabilities - Total LCT LCT 

LCO Current Liabilities - Other - Total LCT LCT 

TXP Income Taxes Payable LCT LCT 

DRLT Deferred Revenue - Long-term LO LO 
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Internet Appendix A.  Linking Table for the Balance Sheet (continued) 

 

SUB ACCOUNTS DESCRIPTION PARENT  GROUP 

DPACO Depreciation (Accumulated) - Other DPACT PPENT 

DPACT Depreciation, Depletion and Amortization (Accumulated) PPENT PPENT 

FATB PPE - Buildings  PPENT PPENT 

FATC PPE - Construction in Progress  PPENT PPENT 

FATE PPE - Mach. & Equip.  PPENT PPENT 

FATL PPE - Leases  PPENT PPENT 

FATN PPE - Natural Resources  PPENT PPENT 

FATO PPE - Other  PPENT PPENT 

PPEGT PPE - Total (Gross) PPENT PPENT 

DVPA Preferred Dividends in Arrears PSTK PSTK 

PSTKC Preferred Stock - Convertible PSTK PSTK 

PSTKL Preferred Stock - Liquidating Value PSTK PSTK 

PSTKN Preferred/Preference Stock - Nonredeemable PSTK PSTK 

PSTKR Preferred/Preference Stock - Redeemable PSTK PSTK 

PSTKRV Preferred Stock - Redemption Value PSTK PSTK 

ITCB Investment Tax Credit (Balance Sheet) TXDITC TXDITC 

TXDB Deferred Taxes (Balance Sheet) TXDITC TXDITC 
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Internet Appendix B. Linking Table for Income Statement 

 

SUB ACCOUNTS DESCRIPTION GROUP 

CIBEGNI Comp Inc - Beginning Net Income CITOTAL 

CICURR Comp Inc - Currency Trans Adj CITOTAL 

CIDERGL Comp Inc - Derivative Gains/Losses CITOTAL 

CIOTHER Comp Inc - Other Adj CITOTAL 

CIPEN Comp Inc - Minimum Pension Adj CITOTAL 

CISECGL Comp Inc - Securities Gains/Losses CITOTAL 

ESUB Equity in Earnings - Unconsolidated Subsidiaries NOPI 

FCA Foreign Exchange Income (Loss) NOPI 

IDIT Interest and Related Income - Total NOPI 

INTC Interest Capitalized NOPI 

IRENT Rental Income NOPI 

NOPIO Nonoperating Income (Expense) - Other NOPI 

AQP Acquisition/Merger Pretax SPI 

DTEP Extinguishment of Debt Pretax SPI 

GDWLIP Impairments of Goodwill Pretax SPI 

GLP Gain/Loss Pretax SPI 

NRTXT Nonrecurring Income Taxes After-tax SPI 

RCP Restructuring Costs Pretax SPI 

RDIP In Process R&D Expense SPI 

RRP Reversal - Restructruring/Acquisition Pretax SPI 

SETP Settlement (Litigation/Insurance) Pretax SPI 

SPIOP Other Special Items Pretax SPI 

WDP Writedowns Pretax SPI 

ITCI Investment Tax Credit (Income Account) TXT 

TXC Income Taxes - Current TXT 

TXDFED Deferred Taxes-Federal TXT 

TXDFO Deferred Taxes-Foreign TXT 

TXDI Income Taxes - Deferred TXT 

TXDS Deferred Taxes-State TXT 

TXFED Income Taxes - Federal TXT 

TXFO Income Taxes - Foreign TXT 

TXO Income Taxes - Other TXT 

TXS Income Taxes - State TXT 

TXW Excise Taxes TXT 

ACCHG Accounting Changes - Cumulative Effect XIDO 

DO Discontinued Operations XIDO 

DONR Nonrecurring Disc Operations XIDO 
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Internet Appendix B. Linking Table for Income Statement (continued) 

 

Subaccount Description GROUP 

XI Extraordinary Items XIDO 

XINTD Interest Expense - Long-Term Debt XINT 

AM Amortization of Intangibles XOPR 

COGS Cost of Goods Sold XOPR 

DFXA Depreciation of Tangible Fixed Assets XOPR 

DP Depreciation and Amortization XOPR 

STKCPA After-tax stock compensation XOPR 

XAD Advertising Expense XOPR 

XLR Staff Expense - Total XOPR 

XPR Pension and Retirement Expense XOPR 

XRD Research and Development Expense XOPR 

XRENT Rental Expense XOPR 

XSGA Selling, General and Administrative Expense XOPR 

XSTFO Staff Expense - Other XOPR 
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Internet Appendix C. An Example for Constructing Value-Weighted DQ_BS 

We use a hypothetical company A‟s Balance Sheet below as classified by our 11 

group accounts to illustrate our coding process and the construction of value-weighted 

balance sheet disclosure score DQ_BS. To simplify the illustration we assume all but three of 

the 11 groups have zero values: 

 

Assets Liabilities and Shareholders’ Equity 

ACT (Current Assets – Total) $400 LCT (Current Liabilities- Total) $0 

INTAN (Intangible Assets – Total) $0 DLTT (Long-Term Debt – Total) $1,000 

IVAO (Investment and Advances – 

Other) 

$0 LO (Liabilities – Other) $0 

AO (Assets – Other) $0   

PPENT (PPE – Total) $600 CEQ (Common Equity – Total) $0 

TXDITC (Deferred Taxes) $0 PSTK (Preferred Stock – Total) $0 

 

 

 

More specifically, the non-zero groups are represented by the following condensed Balance 

Sheet: 

Assets Liabilities and  

shareholders’ equity 

Inventory $400 Long-term debt 

 

$1000 

 PPE $600 Shareholders‟ equity 

 

$0 

 Total $1,000 Total $1,000 

 

For this hypothetical company A, we assign a weight of 0.4 to the Inventory/ACT 

group, 0.6 to the PPE/PPENT group, a weight of 1 to the Long-term debt/DLTT group, and a 

weight of zero to all other groups.  Our linking process yields 20 sub-counts for ACT, 9 for 

PPENT, and 17 for DLTT. Assume the number of non-missing items for ACT is 18 (i.e. only 

two inventory accounts are missing), for PPE is 6 and for DLTT is 13, then the value 

weighted disclosure score is 1.52 = (18/20)×0.4 + (6/9)×0.6 + (13/17)×1. This process yields 

a theoretical maximum score of 2 and minimum score of 0 for the Balance Sheet.  We then 

divide the value-weighted scores by 2, thus all Balance Sheet disclosure scores vary between 
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0 and 1. For the above stylized example, the Balance Sheet disclosure score is 0.76. This 

score is our measure of disclosure quality for the Balance Sheet, DQ_BS. Note that in this 

simple example, all other parent accounts in the Balance Sheet (such as intangibles, 

receivables, and accounts payable) are excluded because they have $0 balances and are 

assigned a weight of zero. The linked sub-accounts for the parent accounts with zero values 

are excluded from the calculation of the disclosure score. This process ensures that only 

relevant items are included in arriving at our Balance Sheet disclosure score, and irrelevant 

items, i.e., items that firms do not have, are excluded.    

 

 




