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Abstract

We present a coherent picture of the quantum mechanics of black holes. The picture does
not require the introduction of any drastically new physical effect beyond what is already
known; it arises mostly from synthesizing and (re)interpreting existing results in appropriate
manners. We identify the Bekenstein-Hawking entropy as the entropy associated with coarse-
graining performed to obtain semiclassical field theory from a fundamental microscopic theory
of quantum gravity. This clarifies the issues around the unitary evolution, the existence of
the interior spacetime, and the thermodynamic nature in black hole physics—any result in
semiclassical field theory is a statement about the maximally mixed ensemble of microscopic
quantum states consistent with the specified background, within the precision allowed by
quantum mechanics. We present a detailed analysis of information transfer in Hawking emis-
sion and black hole mining processes, clarifying what aspects of the underlying dynamics are
(not) visible in semiclassical field theory. We also discuss relations between the black hole
entropy and the entanglement entropy across the horizon. We then extend our discussions
to more general contexts in quantum gravity. The subjects include extensions to de Sitter
and Minkowski spaces and implications for complementarity and cosmology, especially the
eternally inflating multiverse.
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1 Introduction

One of the major cornerstones in the pursuit of a quantum theory of gravity was the discovery of

the finite nonzero entropy of a black hole [1] and the associated thermal radiation from it [2]. The

precise interpretation of this result, however, has not been entirely clear. What does this entropy

represent? Where does it reside? The fact that a black hole emits radiation at the quantum level

allowed us to contemplate the possibility that a complete description of the system is obtained by

referring only to the spacetime region outside the horizon; in particular, the evolution of a black

hole can be unitary when described from a distance [3]. The existence of the interior spacetime

then becomes manifest only after changing the description to an infalling one, which is supposed

to provide a description complementary to the distant one [4, 5]. This last picture, however, has

recently been challenged [6]: if the emission process is indeed unitary, then an infalling observer

is claimed to encounter something drastic at the horizon, so that there is no such thing as the

interior spacetime, at least for an old black hole.

The main purpose of this paper is to present a coherent picture of the quantum mechanics of

black holes and to clarify the issues around their unitary evolution and the existence of the interior

spacetime, although we also extend our discussions to more general contexts in quantum gravity.

We adopt the hypothesis that, as postulated in Ref. [3], there is a unitary description of a black hole

which involves only the region outside the horizon. We discuss how this hypothesis is consistent

with the existence of the interior spacetime, in the sense of complementarity in Ref. [4]. Our picture

does not involve any drastically new physical effect beyond what is already known or postulated,

and yet it requires a certain revision of the applicability of semiclassical theory in discussing physics

around the black hole. We feel that this provides a significant advancement toward understanding

the structure of quantum gravity and its relation to the emergent semiclassical picture of spacetime.

Our discussion begins with studying the origin of the Bekenstein-Hawking entropy. In general,

the concept of entropy is associated with coarse-graining. What is the coarse-graining responsible

for the Bekenstein-Hawking entropy? Since the Bekenstein-Hawking entropy arises in semiclassical

field theory without doing any coarse-graining in the theory, it must be associated with the coarse-

graining performed to obtain the theory from a fundamental theory of quantum gravity. This picture

is indeed consonant with the fact that in quantum mechanics, having a well-defined geometry

of spacetime, e.g. a black hole formed in a well-defined spacetime location, requires taking a

superposition of an enormous number of energy-momentum eigenstates, so we expect that there

are many different ways to arrive at the same background for a semiclassical field theory within

the precision allowed by quantum mechanics. In particular, this implies that detailed microscopic

physics occurring within the fine-grained degrees of freedom, including the flow of microscopic

information in the Hawking emission process, cannot be seen in semiclassical field theory. This is

the origin of the apparent violation of unitarity [7] in the Hawking evaporation process.
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The fact that the microstates of a black hole cannot be resolved in semiclassical field theory

implies that for the purpose of describing physics of excitations in semiclassical field theory—

including an ordinary observer falling into the black hole—we may ignore the dynamics within the

fine-grained microscopic degrees of freedom, which is responsible for the fundamental unitarity of

the Hawking process. Specifically, we may view that a semiclassical field theory vacuum has a

hidden “vacuum index” k labeling the microstates, and can construct field theory operators that

act in the same way on each of these exponentially many vacuum states: k = 1, · · · , eS, where
S represents the Bekenstein-Hawking entropy. This allows us to construct operators describing

the interior spacetime following the standard method in semiclassical field theory [8]. Note that

this does not contradict the hypothesis that the evaporation of a black hole when described in the

fundamental theory is a unitary process.

Since emissions of later Hawking quanta occur within the causal future of the region in which

earlier Hawking emissions have occurred, there is no reason to expect that the information recovery

from a black hole must violate locality, or causality, in spacetime as described in a distant reference

frame. We perform a detailed analysis of the Hawking emission process, as well as black hole

mining, and argue that the modes of a black hole relevant for the information transfer are not

visible to semiclassical field theory—they are “too soft” to be resolved. In semiclassical field

theory, Hawking emission occurs because of an intrinsic quantum mechanical ambiguity of defining

particles in curved spacetime, and the information about the microstate of a black hole it carries

away is viewed as being stored nonlocally in states representing the field theory vacuum, which

extends into the whole zone region. Note that this does not contradict the locality of the dynamics;

in quantum mechanics, the information about a state can in general be delocalized even if the

dynamics is local. This also implies that the purifiers of the emitted Hawking quanta are what

semiclassical gravity describes as vacuum states; in particular, they are not outgoing field theory

modes as envisioned in Refs. [6, 9].

The picture described in this paper has been developed over the past years in Refs. [10, 11],

although its final form presented here does not agree in all respects with those given in these

earlier works. Following the inspirational work in Ref. [6], there appeared numerous attempts to

reconcile the unitary evolution of a black hole with the existence of the interior, some of which

introduce dramatic new physics; see, e.g., Refs. [12–16]. To give examples, Giddings [12] studied the

possibility that the dynamics in the exterior region may be nonlocal. Papadodimas and Raju [13]

and Verlinde and Verlinde [14] considered “state-dependent” maps to describe the interior region.

Maldacena and Susskind [15] considered the possibility that a part of the degrees of freedom

describing the interior region comes from Hawking radiation emitted earlier. Our picture does not

require the introduction of such new physics.

The organization of this paper is as follows. In Section 2, we discuss how to interpret the

Bekenstein-Hawking entropy, in particular the way it may manifest when the black hole inter-
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acts with other systems. In Section 3, we discuss how the microscopic structure of quantum

gravity is related to the semiclassical view of the world. We argue that semiclassical field the-

ory corresponds to the description arising after coarse-graining the degrees of freedom associated

with the Bekenstein-Hawking entropy, specifically after taking the maximally mixed ensemble of

microstates consistent with the given background within some precision. This explains various

confusing aspects of black hole physics regarding fundamental unitarity and the thermodynamic

nature of semiclassical gravity. We also discuss relations between the black hole entropy and the

entanglement entropy across the horizon. In Section 4, we present a detailed analysis of the infor-

mation transfer in the Hawking emission and black hole mining processes, especially focusing on

what aspects of the underlying dynamics can be captured in semiclassical field theory. Finally, in

Section 5, we extend our discussions to more general contexts in quantum gravity, including dis-

cussions of de Sitter and Minkowski spaces and implications for complementarity and cosmology,

especially the eternally inflating quantum multiverse.

Throughout the paper, we adopt the Schrödinger picture for quantum evolution, and adopt

natural units in which ~ = c = 1, unless otherwise stated. lP ≃ 1.62× 10−35 m denotes the Planck

length. In our discussion of black hole physics, we focus on a black hole that is well approximated

by a Schwarzschild black hole in 4-dimensional asymptotically flat spacetime. We do not expect

difficulty in extending it to other more general cases.

2 How to Interpret the Black Hole Entropy?

In this section, we discuss an interpretation of the black hole entropy, including how it manifests

when the black hole interacts with other systems. Understanding this issue correctly is important

in the development of our picture in later sections.

2.1 Bekenstein-Hawking entropy from spatial localization

We first remind the readers that the Bekenstein-Hawking entropy is an entropy density. It is a

finite function of the black hole mass M because we restrict our considerations to a black hole in

a specific spacetime region.

Let us begin our discussion by considering a simple quantum system consisting of massless

particles that do not have a conserved charge. The quantum states representing a single particle

can be labeled by three continuous numbers corresponding to the momentum of the particle k =

(kx, ky, kz), so that the states with N (weakly interacting) particles are labeled by 3N continuous

numbers. Consider now a set of quantum states |ψi〉 in which all the particles in the system

are confined in a spatial region with volume V at some time t = t0. These states are obtained

(only) by taking appropriate superpositions of states in which particles have well-defined momenta.
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How many such states exist? Assuming that the system has energy between E and E + δE,

quantum mechanics tells us that the number of independent |ψi〉 states is finite and of order

N ≈ eO(ρ3/4V )δE/E, where ρ ≡ E/V . Namely, the entropy density is S = ln(NE/δE) ≈ O(ρ3/4V ),

which does not depend on how δE is chosen as long as δE/E ≫ e−S. Note that physics described

here is intrinsically quantum mechanical in the sense that classical mechanics would allow the

specified spatial region to support a continuously infinite number of states with energy between E

and E + δE. This can be seen from the fact that S can be written as O(ρ3/4V/~3/4c3/4) when ~

and c are restored, so that S → ∞ for ~ → 0.

The finiteness of the Bekenstein-Hawking entropy suggests that the situation for a black hole

is similar. Let us consider forming a black hole of mass M by collapsing matter. In order to have

such a process in which the black hole is formed at a well-defined spacetime location, the initial

matter state must involve a superposition of energy-momentum eigenstates. Suppose we want

to identify the spacetime location of the black hole with precision comparable to the quantum

stretching of the horizon ∆r ≈ O(1/M), i.e. ∆d ≈ O(lP), and the timescale of Hawking emission

∆t ≈ O(Ml2P), where r and t are the Schwarzschild radial and time coordinates, respectively,

and d is the proper length. In this case the superposition must involve momenta with spread

∆p >∼ O(1/Ml2P) and energy with ∆E >∼ O(1/Ml2P), where ∆p and ∆E are both measured in the

asymptotic region, and these uncertainties must exist shortly before the formation of the black

hole in the branch we are interested in. For an older black hole, the stochastic nature of Hawking

radiation introduces macroscopic uncertainties for the black hole mass, location, and spin [17,18].

This effect, however, can be easily separated by focusing on appropriate branches in the full

quantum state. A consideration similar to the one above then applies in the limit that the induced

spin of the black hole is neglected, which is a reasonable approximation for a large black hole.

How many black hole states do there exist in which the black hole is at a specific location within

an uncertainty of ∆r ≈ O(1/M) and ∆t ≈ O(Ml2P) measured in the asymptotic region? Because

of the required uncertainty in energy-momentum, we must consider the number of black hole states

of mass (which we may identify with the energy) in the range between M and M + δM where

δM >∼ O(1/Ml2P). As in the case before, quantum mechanics makes the number of independent

such localized states finite. Indeed, the logarithm of this number—the entropy density—is given

by the Bekenstein-Hawking formula

S =
A
4l2P

, (1)

at the leading order in expansion in inverse powers of A/l2P, where A = 16πM2l4P is the area of

the horizon. Here we identify the expression of Eq. (1) to represent the density of black hole

vacuum states, i.e. states representing a black hole that does not have an excitation in the interior

or the exterior region. This is reasonable because the Bekenstein-Hawking considerations apply to

a black hole after the horizon is classically stabilized. Possible higher order corrections to Eq. (1)
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do not affect our argument, so we will ignore them. The states in which there are excitations in

the interior or the near exterior region will be discussed below.

As can be easily seen, the expression in Eq. (1) is insensitive to the precise choice of δM as

long as δM/M ≫ e−S. For definiteness, we will mostly take the smallest possible value of δM :

δM ≈ O

(

1

Ml2P

)

. (2)

The corresponding uncertainty in timescale is then ∆t ≈ 1/δM ≈ O(Ml2P). Only an O(1) number

of Hawking quanta with energy E ≈ O(1/Ml2P) are emitted within ∆t, so a black hole does not

change its mass more than O(δM) in this timescale.

The discussion above demonstrates that the finite entropy of a black hole can be understood in a

similar manner to that of other quantum systems confined in a finite spatial region, although there

are important differences including the fact that the black hole entropy scales as the area unlike

those of usual (much) lower density materials which scale as the volume V for fixed intensive

quantities, e.g., ρ.1 (This leads to the conjecture for the universal entropy bound associated

with the area of a codimension-2 surface [19, 20]; a precise formulation of it must involve null

hypersurfaces rather than spatial regions [21].) In particular, it is not appropriate to consider that

quantum mechanics introduces an exponentially large number of degeneracies for the microstates

that do not exist in the corresponding classical black hole. In classical general relativity, a set of

Schwarzschild black holes located at some place at rest are parameterized by a continuous mass

parameter M ; i.e., there are a continuously infinite number of black hole states in the energy

interval between M and M + δM for any M and small δM . Quantum mechanics reduces this to

a finite number ≈ eSδM/M with S given by Eq. (1).2 This can also be seen from the fact that S

is written as Ac3/4l2P~ when ~ and c are restored, which becomes infinite for ~ → 0.

We now discuss black hole states having excitations in the interior or near exterior region. (In

a distant reference frame, an excitation in the interior region is described as an excitation of the

horizon.) Consider the set CI of the states which have specified excitations I in a background

of a black hole of mass M (more precisely between M and M + δM). As suggested, e.g., by a

representative estimate in Ref. [19], the entropy associated with all these sets is expected to be

written roughly as

S =
A
4l2P

+
∑

I

SI ;
∑

I

|SI | ≈ O

(Aq

l2qP
; q < 1

)

, (3)

where A = 16πM2l4P, and SI is the entropy associated with the class of excitations I. The

total entropy S, therefore, is simply A/4l2P up to fractional corrections in inverse powers of A/l2P.
1Following standard convention, here and below we use the term entropy to also mean entropy density.
2Of course, quantum mechanics allows for a superposition of these finite number of independent states, so the

number of possible (not necessarily independent) states is continuously infinite. The statement here applies to the
number of independent states, regarding classical black holes with different M as independent states.
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Namely, the existence of excitations provides only small perturbation in terms of the entropy

counting. (This point was particularly emphasized in Refs. [11, 22].) Note that being defined

as fluctuations with respect to a fixed background spacetime, the energy EI and entropy SI of

excitations can be either positive or negative.

The approximate nature of Eq. (3) needs to be emphasized. First, dividing a physical config-

uration into excitations and background is artificial. In the expression in Eq. (3), we have simply

added the entropies of the excitations to that of the black hole. This is appropriate since we can

view semiclassical physics occurring in a fixed black hole background to correspond to excitations

on each of the black hole vacuum states (see Section 3.2). On the other hand, it is clear that this

treatment involves an approximation—because the existence of excitations must affect geometry,

the “on-shell” Hilbert space (the space of states after the equations of motion are imposed) must

take the form more complicated than the one implied by Eq. (3). Nevertheless, Eq. (3) represents

the way semiclassical field theory treats physical systems, which, with some care, may capture

certain aspects of quantum gravitational physics.

2.2 Where does the black hole entropy reside?

Consider the set of all the independent black hole vacuum states |Ψk(M)〉 of mass between M and

M + δM , with the black hole localized in a specified spatial region with precision ∆r ≈ O(1/M).

As discussed in the previous subsection, the index k runs over

k = 1, · · · , eS = e4πM
2l2P ≡ n(M), (4)

representing the Bekenstein-Hawking entropy. Where does this entropy reside?

Let us assume that physics is local in the region outside the stretched horizon, in particular we

can use appropriately quantized Einstein gravity to calculate physical quantities within its regime

of validity. It is important to remind ourselves that locality is a property of dynamics, in particular

the Hamiltonian, and not that of states. In fact, in quantum mechanics the information about a

state is quite generally delocalized in space. Consider, for instance, states |1〉 and |2〉 representing,
respectively, a particle of species 1 and 2 in a momentum eigenstate, located in a finite box with

periodic boundary conditions. Suppose the system is in one of these two states. Where does the

information about the state exist? The answer is: everywhere. We may find out if the system is in

|1〉 or |2〉 anywhere in the box, as long as we are equipped with an appropriate detector and have

enough time for the measurement.3

3This does not mean that there is no physical information flow associated with the measurement process. It is
simply that to discuss the information flow, we need to consider the process preparing the state. For example, if the
particle is created at some point (e.g. in the form of a wavepacket, which later broadens), the information must be
regarded as being transferred from the creation point to the detector location in the branch in which the detector
has responded. If the dynamics is local, this information transfer does not violate causality in spacetime.
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Quite analogously, we assume that a part of the information about the index k of a black hole

vacuum state is delocalized over a large spatial region. In particular, we consider that this occurs

mostly in the region r <∼ 3Ml2P, which, in a distant view, consists of the stretched horizon at

r = rs = 2Ml2P + O(1/M) and near exterior “zone” rs < r <∼ 3Ml2P, the region inside the effective

gravitational potential barrier separating the near and far exterior regions. To isolate the part of

the state that carries a meaningful amount of information, let us separate the Hilbert space into

two factors: one representing states in the region r ≤ R, H<, and the other r > R, H>. Here, the

separation radius R may be conveniently chosen to be somewhere in the outer side of the potential

barrier, e.g. in the range (3 – 5)Ml2P. The black hole vacuum state |Ψk(M)〉 can then be written

approximately as

|Ψk(M)〉 =
∑

a

ca|ψka(M)〉|φa(M)〉, (5)

where |ψka(M)〉 and |φa(M)〉 are elements of H< and H>, respectively. The statement that the

information is spread essentially only in the region rs ≤ r <∼ 3Ml2P corresponds to the absence of

the index k for ca and |φa(M)〉.
We note that by the information delocalization above, we do not mean that the information is

spread uniformly over the region rs ≤ r <∼ 3Ml2P. In fact, we expect that most of the information

is localized in the region close to the horizon. Specifically, when we split the Hilbert space at

r = R′ < R, we have the expression

|Ψk(M)〉 =
∑

a

c′a|ψ′
ia(M)〉|φ′

ja(M)〉, (6)

where k = {i, j}, and i and j take values i = 1, · · · , I and j = 1, · · · , J with IJ = n(M). We

expect that s(R′) ≡ ln J , which is a function of R′, is given by the thermal entropy contained

in the region r > R′, calculated in semiclassical field theory using the blueshifted local Hawking

temperature. In particular,

s(R′) ≪ lnn(M), (7)

unless R′ − 2Ml2P <∼ O(1/M). Note that taking J = 1, which corresponds to R′ → R, Eq. (6) is

reduced to Eq. (5). An important point here is that some information about k can be extracted

by a physical process occurring as far as r ≃ 3Ml2P in timescale of order 1/δM (more precisely,

without directly interacting with the stretched horizon at the field theory level; see Section 4 for

further discussions).

From now on, we suppress the trivial entanglement in Eq. (5) that does not depend on k for

the simplicity of the notation. This allows us to write the black hole vacuum state |Ψk(M)〉 (very
roughly) as

|Ψk(M)〉 ≈ |ψk(M)〉|0ext〉, (8)
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where |0ext〉 is the vacuum state in the region r > R, which does not depend on k. While |0ext〉 has
some dependence onM , for our purposes here we will ignore it. We have also assumed the absence

of Hawking quanta emitted at earlier times. If there are excitations in the interior region (or of

the stretched horizon in a distant view) or in the zone, then |ψk(M)〉 in Eq. (8) must be replaced

with the corresponding excited states |ψ̃kn(M)〉, where n labels the excitations. The dimension of

the relevant Hilbert spaces satisfies

ln dimHψ̃k
≈ O

(

M2ql2qP ; q < 1
)

, (9)

where Hψ̃k
is the Hilbert space spanned by |ψk(M)〉 and |ψ̃kn(M)〉 for a fixed k, and all the Hψ̃k

’s

with different k (as well as the structure of field theory operators defined for each of them) are

isomorphic with each other; see Section 3.2. If the far exterior region is not in the vacuum, the

state |0ext〉 in Eq. (8) must be replaced accordingly.

How can we probe the microscopic information associated with a black hole vacuum state?

Consider a physical detector located somewhere in the region rs < r <∼ 3Ml2P whose ground state

|d0〉 represents the “ready” state while excited states |di〉 (i = 1, 2, . . . ) are the pointer states.

Suppose the proper energies needed to excite |d0〉 to |di〉 are given by Ed,i. The state representing

the region r ≤ R then evolves as

|ψk(M)〉|d0〉 →
∑

i

n(Mi)
∑

ki=1

αkkii|ψki(Mi)〉|di〉; Mi =M −Ed,i

√

1− 2Ml2P
rd

, (10)

where the function n(M) is defined in Eq. (4). The coefficients αkkii in general depend on the

location of the detector, and Mi for different i may belong to the same mass within the precision

δM , i.e. Mi = Mi′ for i 6= i′. Here, we have separated the detector state from the rest of the

system, although in a complete treatment the detector itself may be better viewed as an excitation

over |ψk(M)〉.
The process in Eq. (10) implies that (a part of) the information encoded in the index k can be

probed by the detector. In fact, the detailed microscopic process leading to Eq. (10) is somewhat

more subtle. In particular, in Eq. (10) we have assumed that the black hole states appearing in

the right-hand side are vacuum states, but this is the case only after multiple elementary processes

have occurred. We will discuss these processes in Section 4.

Emission of Hawking quanta to the asymptotic region also carries information away from the

black hole. Since the effective gravitational potential is damped in the region r >∼ R, Hawking

quanta emitted from the region r ∼ R propagate essentially freely to the asymptotic region (except

that they receive a small residual gravitational redshift of a factor of about 1.5). The elementary

emission process may thus be written as

|ψk(M)〉|0ext〉 →
∑

i

n(M−Ei)
∑

ki=1

βkkii|ψki(M −Ei)〉|iext〉, (11)
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where |iext〉 represents a state with energy Ei in which outgoing radiation modes are excited. Again,

we have put black hole vacuum states after the evolution in the right-hand side; the eligibility of

this will be discussed in Section 4. Since the final state depends on k, this evolution can be unitary,

which we assume to be the case.

We stress that the emission process in Eq. (11) can be viewed as occurring locally in the

potential barrier region because of the information delocalization discussed above. To elucidate

this point, we consider the tortoise coordinate

r∗ = r + 2Ml2P ln
r − 2Ml2P
2Ml2P

, (12)

in which the region outside the Schwarzschild horizon r ∈ (2Ml2P,∞) is mapped into r∗ ∈ (−∞,∞).

This coordinate is useful in that the kinetic term of an appropriately redefined field takes the

canonical form, so that its propagation can be analyzed as in flat space. In this coordinate, the

stretched horizon, located at r = 2Ml2P +O(l2s/Ml2P), is at

r∗s ≃ −4Ml2P ln
Ml2P
ls

, (13)

where ls is the string (cutoff) scale, which we take to be within a couple of orders of magnitude

of lP. This implies that there is a large distance between the stretched horizon and the potential

barrier region when measured in r∗: ∆r∗ ≈ 4Ml2P ln(MlP) ≫ O(Ml2P) for ln(MlP) ≫ 1. On the

other hand, a localized Hawking quantum is represented by a wavepacket with width of O(Ml2P)

in r∗, since it has an energy of order TH = 1/8πMl2P defined in the asymptotic region.

The point is that, given the black hole state |ψk(M)〉, the process in Eq. (11) occurs in the

region |r∗| ≈ O(Ml2P) without involving deep interior of the zone −r∗ ≫ Ml2P. In this region,

the information stored (nonlocally) in the vacuum state is converted into that of a particle state

outside the zone, where the concept of particles with frequencies ω <∼ 1/Ml2P is well defined. A

corollary of this statement is that if we evolve the system backward in time, an originally outgoing

Hawking quantum does not become a highly blueshifted ingoing quantum in a region deep in the

zone. Instead, it becomes “vacuum degrees of freedom,” k, due to interactions with spacetime

caused by the curvature. Since the concept of particles with ω <∼ 1/Ml2P is not well defined in the

zone region, we need not view this as new physics contradicting conventional low energy Einstein

gravity. It is simply that semiclassical field theory cannot be used to analyze these quanta within

the zone, where the scale of curvature length is of order Ml2P.

3 What Is the Semiclassical Approximation?

In this section, we discuss relations between the picture presented in the previous section and the

standard semiclassical treatment of a black hole. This will clarify the meaning of the Bekenstein-
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Hawking entropy further, and shed important light on the nature of the semiclassical approximation

in quantum gravity.

It is often stated that in the semiclassical approximation, in particular quantum field theory

on a fixed spacetime background, particle excitations are treated quantum mechanically while

the background spacetime classically. The interpretation of this statement, however, needs care.

As was seen in the previous section, if a black hole is treated “fully classically,” its entropy is

infinite, and so it has zero temperature (and hence does not radiate). On the other hand, Hawk-

ing’s calculation finds a nonzero temperature in semiclassical gravity [2]. This implies that, as in

any statistical mechanical understanding of entropy (which requires, e.g., quantization of a phase

space), semiclassical gravity is capturing certain, though not all, quantum aspects of the relevant

physical system, in this case the background spacetime.

So, what is the semiclassical approximation really? We assert that any result in the semiclassical

approximation is a statement about the (maximally mixed) ensemble of microscopic quantum states

consistent with the specified spacetime, within the precision allowed by quantum mechanics. In

the case of a black hole at a fixed location, the semiclassical approximation deals with the mixed

state

ρ(M) =
1

n(M)

n(M)
∑

k=1

|Ψk(M)〉〈Ψk(M)|. (14)

Because the relevant density matrix ρ in general takes the form of a maximally mixed state, results

in semiclassical gravity do not depend on the basis of the microscopic pure states chosen, in the

black hole case of the |Ψk(M)〉’s. Below we will elucidate the above assertion by considering the

thermal nature (in Section 3.1) and the interior spacetime (in Section 3.2) of a semiclassical black

hole.

By construction, the semiclassical approximation cannot capture unitarity of detailed micro-

scopic processes associated with spacetime because it involves coarse-graining in the sense of

Eq. (14). This is why Hawking’s calculation found apparent violation of unitarity in the black

hole evaporation process [7]. In this section, we limit our discussion to the level in which the

details of these microscopic processes are ignored. The underlying microscopic dynamics of quan-

tum gravity and its implications for the semiclassical approximation will be discussed further in

Section 4.

3.1 Thermal nature

According to the semiclassical calculation, a black hole of mass M emits black-body radiation,

corrected by gray-body factors, of temperature TH = 1/8πMl2P. In particular, if a detector is
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located at r = rd, then it will see blueshifted Hawking radiation with temperature

T (rd) =
1

8πMl2P

√

1− 2Ml2P
rd

. (15)

What does this mean at the microscopic level?

Suppose we put the model detector considered in Section 2.2 somewhere in the zone, rs < rd <∼
3Ml2P. Specifically, the detector has the ready state |d0〉 and pointer states |di〉 (i = 1, 2, · · · )
with the proper energies needed to excite |d0〉 to |di〉 given by Ed,i. Applying Eq. (10) (with the

understanding that we are focusing on the branch in which the detector has responded, and that

the right-hand side is normalized), the interaction between the detector and the mixed state in

Eq. (14) is given by

ρ(M)⊗ |d0〉〈d0| →
1

n(M)

n(M)
∑

k=1

∑

i,i′

n(Mi)
∑

ki=1

n(Mi′)
∑

k′
i′
=1

αkkiiα
k∗
k′
i′
i′ |ψki(Mi)〉|di〉〈ψk′

i′
(Mi′)|〈di′|. (16)

This leads to the density matrix describing the detector state after the interaction

ρd =
∑

i,i′

γii′ |di〉〈di′|; γii′ =
1

n(M)

n(M)
∑

k=1

n(Mi)
∑

ki=1

αkkiiα
k∗
kii
δii′, (17)

where we have assumedMi 6=Mi′ for i 6= i′ for simplicity. The result of the semiclassical calculation

implies that this density matrix takes the form as if the detector is immersed in the thermal bath

of temperature in Eq. (15). If the sensitivity of the detector does not depend on the excitation

level i,

γii′ ≈
1

Z
e
−

Ed,i
T (rd) δii′ , (18)

where Z =
∑

i e
−Ed,i/T (rd). Note that while the fundamental process in Eq. (10) leads to the

correlation between the detector and the microstate of the black hole k, the density matrix ρd in

Eq. (17) does not reflect it, because of the maximally mixed nature of the state ρ(M).

The situation in Hawking emission, in this respect, is similar. As discussed around Eq. (11), the

fundamental emission process, occurring in a time interval of order 1/δM ≈ Ml2P, can be written

as

|ψk(M)〉|φa〉 →
∑

i

n(M−Ei)
∑

ki=1

βkkii|ψki(M − Ei)〉|φa+i〉, (19)

where |φa〉 is a general far exterior state representing the region r > R, and |φa+i〉 is the state in

which newly emitted Hawking quanta, labeled by i and having total energy Ei, are added to the

appropriately time evolved |φa〉. Applying this to the “semiclassical state” in Eq. (14), i.e.

ρ(M) =
1

n(M)

n(M)
∑

k=1

|ψk(M)〉|φa〉〈ψk(M)|〈φa|, (20)

11



its evolution is given by

ρ(M) → 1

n(M)

n(M)
∑

k=1

∑

i,i′

n(M−Ei)
∑

ki=1

n(M−Ei′)
∑

k′
i′
=1

βkkiiβ
k∗
k′
i′
i′ |ψki(M −Ei)〉|φa+i〉〈ψk′

i′
(M −Ei′)|〈φa+i′|. (21)

The result of the semiclassical calculation implies that

1

n(M)

n(M)
∑

k=1

βkkiiβ
k∗
k′
i′
i′ ≈

1

Z̄
gie

−
Ei
TH δkik′i′δii

′, (22)

where Z̄ =
∑

i n(M − Ei)gie
−Ei/TH , and gi is the gray-body factor calculable in the semiclassical

analysis [23]. The evolution in Eq. (21) is then approximated by

ρ(M) → 1

Z̄

∑

i

n(M − Ei)gie
−

Ei
TH ρfin,i ≈

1

Z

∑

i

gie
−

Ei
TH ρfin,i, (23)

where Z =
∑

i gie
−Ei/TH , and we have ignored the i dependence of n(M−Ei) in the last expression.

The density matrix

ρfin,i =
1

n(M −Ei)

n(M−Ei)
∑

ki=1

|ψki(M − Ei)〉|φa+i〉〈ψki(M − Ei)|〈φa+i|, (24)

represents the coarse-grained state in which the newly created Hawking quanta are in state i,

so that Eq. (23) corresponds to the well-known result in semiclassical gravity. Again, the final

expression in Eq. (23) does not depend on microstates of the black hole, despite the fact that the

elementary process in Eq. (19) is unitary, so that the coefficients βkkii depend on k. This elucidates

why the semiclassical calculation sees apparent violation of unitarity in the Hawking emission

process—it deals with the mixed state, Eq. (20), from the beginning.

3.2 Interior spacetime

The fact that the semiclassical approximation is built on the maximally mixed state, Eq. (14),

implies that it cannot probe the index k labeling the microstates for the spacetime. In particular,

a structure seen in semiclassical gravity is either factored from k or arises as a result of taking

the maximal mixture. Here we elucidate how this picture works for the emergence of the interior

spacetime of a black hole.

Consider a black hole formed by a gravitational collapse. The spacetime region relevant for a dis-

tant description is then the region outside the event horizon, which we identify as the Schwarzschild

horizon ignoring a small difference (inessential here) between the two: r > 2Ml2P ≡ RS. We may

split the degrees of freedom in this region into two classes: those in RS < r ≤ rs and in r > rs. The

12



former is the stretched horizon degrees of freedom, which are intrinsically quantum gravitational,

while the latter is well described by a field theory at low energies. Now, consider Hilbert space

Hψ̃k
spanned by |ψk(M)〉 and all the excited states of it, |ψ̃kn(M)〉, for fixed k. Assuming that the

number of excitations is sufficiently small that Eq. (3) is satisfied, a basis vector of this Hilbert

space is effectively specified by the state of the stretched horizon, labeled by ı̃, and the number of

excitations nσ in each field theory mode σ in the zone region:

|ψ̃k;̃ı{nσ}(M)〉 = |̃ı; k〉|{nσ}; k〉. (25)

Here, we assume that the field theory modes σ are defined using the Schwarzschild time t at

a sufficiently late time when the geometry in the region r > RS is well approximated by the

Schwarzschild spacetime.

Note that in Eq. (25), we have kept the index k in the stretched horizon and zone states to

remind ourselves that they represent excitations on the black hole vacuum state |ψk(M)〉. This,

however, does not mean that the states |̃ı; k〉 and |̃ı; k′〉 for k 6= k′, or |{nσ}; k〉 and |{nσ}; k′〉 for
k 6= k′, are all independent. In fact, to see the structure of the independence of these states, it is

better to write Eq. (25) in a form analogous to Eq. (6):

|ψ̃k;̃ı{nσ}(M)〉 = |̃ı, g〉|{nσ}, h〉, (26)

where k = {g, h} with g = 1, · · · , G and h = 1, · · · , H . The states |̃ı, g〉 and |{nσ}, h〉 may then

be viewed as all independent:

〈ı̃, g |̃ı, g′〉 = δgg′ , 〈{nσ}, h|{nσ}, h′〉 = δhh′, (27)

with

GH = n(M). (28)

We expect that the dimensions of the Hilbert space factors for the stretched horizon and zone

states are roughly comparable, lnG ≈ lnH ≈ O(M2l2P); their precise ratio depends on how we

divide the degrees of freedom between the stretched horizon and the zone for the modes around

r ≈ rs. In the rest of the paper we adopt the notation in Eq. (25), which makes the connection

to the vacuum states clearer. It should, however, be understood that the index k represents the

information that is shared between (and not possessed by both) the stretched horizon and zone

states, in the sense of Eqs. (26, 28).

Now, the analysis in semiclassical gravity tells us that to describe the interior of a black hole,

we need quantum field theory modes corresponding to the second exterior region of a maximally

extended—or two-sided—black hole, in addition to the “original” exterior modes σ [8,24]. Where

do such modes come from? We assume that the required modes arise from excitations of the
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stretched horizon degrees of freedom. In particular, the intrinsically quantum gravitational dy-

namics at the stretched horizon organize these modes such that they “mirror” the structure of the

near exterior modes, which can be interpreted as being located in the region outside the stretched

horizon of the second exterior region [11]. In order to reproduce the relevant interior spacetime

region, the stretched horizon has to mirror the modes in the region r∗s < r∗ < 0 (corresponding to

the causal past of a t = 0 point on singularities, assuming the reflection symmetry between the

two exterior regions), but it need not do more; in particular, we expect that the stretched horizon

does not produce modes mirroring the far exterior modes.

General near horizon black hole states built on a vacuum state |ψk(M)〉 may then be written

as

|ψ̃k(M)〉 =
∑

{ñσ},{nσ}

d{ñσ}{nσ} |{ñσ}; k〉|{nσ}; k〉. (29)

The stretched horizon states are now labeled by the set of occupation numbers, ñσ, for all the

mirror modes, which we have labeled using the same symbol σ as the original modes.4 We can

now define mode operators b̃
(k)
σ and b̃

(k)†
σ acting on the states for each k as

b̃(k)σ |{ñσ′}; k′〉|{nσ′′}; k′〉 = δkk′
√

ñσ |{ñσ′ − δσσ′}; k〉|{nσ′′}; k〉, (30)

b̃(k)†σ |{ñσ′}; k′〉|{nσ′′}; k′〉 = δkk′
√

ñσ + 1 |{ñσ′ + δσσ′}; k〉|{nσ′′}; k〉, (31)

analogously to the annihilation-creation operators b
(k)
σ and b

(k)†
σ for the near exterior modes:

b(k)σ |{ñσ′′}; k′〉|{nσ′}; k′〉 = δkk′
√
nσ |{ñσ′′}; k〉|{nσ′ − δσσ′}; k〉, (32)

b(k)†σ |{ñσ′′}; k′〉|{nσ′}; k′〉 = δkk′
√
nσ + 1 |{ñσ′′}; k〉|{nσ′ + δσσ′}; k〉. (33)

These operators then satisfy the commutation relations

[b̃(k)σ , b̃
(k′)†
σ′ ] = δσσ′δkk′Pk, [b̃(k)σ , b̃

(k′)
σ′ ] = [b̃(k)†σ , b̃

(k′)†
σ′ ] = 0, (34)

[b(k)σ , b
(k′)†
σ′ ] = δσσ′δkk′Pk, [b(k)σ , b

(k′)
σ′ ] = [b(k)†σ , b

(k′)†
σ′ ] = 0, (35)

which imply that we can interpret b̃
(k)
σ and b̃

(k)†
σ as the annihilation-creation operators for “mirror

quanta” arising as collective excitation modes of the stretched horizon degrees of freedom. Here,

Pk is the projection operator on Hψ̃k
, i.e. Pk|ψ̃k′(M)〉 = δkk′|ψ̃k(M)〉, which appears because b̃

(k)
σ

and b
(k)
σ involve projection on Hψ̃k

, i.e. b̃
(k)
σ = b̃

(k)
σ Pk and b

(k)
σ = b

(k)
σ Pk. Note that this is not a

local operator in the usual sense of field theory, since the information about k is spread over the

4In a distant description, a stretched horizon mode specified by σ, being intrinsically quantum gravitational
degrees of freedom, need not have the same localization property in the angular directions as the corresponding
mode in the near exterior region.
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stretched horizon as well as the zone regions.5

The construction of the operators relevant for describing the black hole spacetime can now go

as in the semiclassical analysis [8]. Specifically, we can split the modes σ into two classes: outgoing,

σ+, and ingoing, σ−. For the outgoing modes, we introduce the mode operators associated with

the Killing vector on the past horizon, ∂/∂U where U = −Ml2Pe
(r∗−t)/4Ml2P , in the analytically

extended black hole background:

a
(k)
ξ =

∑

σ+

(

αξσ+b
(k)
σ+ + γξσ+b

(k)†
σ+ + ζξσ+ b̃

(k)
σ+ + ηξσ+ b̃

(k)†
σ+

)

, (36)

where ξ represents the quantum numbers labeling the modes, and αξσ+ , γξσ+ , ζξσ+ , and ηξσ+ are

the Bogoliubov coefficients, calculable using the standard quantum field theory method. These

operators satisfy the commutation relations for annihilation-creation operators

[a
(k)
ξ , a

(k′)†
ξ′ ] = δξξ′δkk′Pk, [a

(k)
ξ , a

(k′)
ξ′ ] = [a

(k)†
ξ , a

(k′)†
ξ′ ] = 0. (37)

The near horizon black hole vacuum state |ψk(M)〉 is then well approximated by the condition

∀ξ, σ− a
(k)
ξ |ψk(M)〉 = b

(k)
σ− |ψk(M)〉 = b̃

(k)
σ− |ψk(M)〉 = 0. (38)

Ignoring any excitations, this state takes approximately the thermofield double form:

|ψk(M)〉 = 1√
Z

∑

{nσ+}

e
−

E{n
σ+}

2TH |{ñσ+ = nσ+}; k〉|{nσ+}; k〉; Z =
∑

{nσ+}

e
−

E{n
σ+}

TH , (39)

where E{nσ+} is the energy of the state |{nσ+}; k〉 as measured in the asymptotic region, and the

occupation numbers for the ingoing modes in |{ñσ+ = nσ+}; k〉 and |{nσ+}; k〉 are zero.

In general, the microscopic Hamiltonian in quantum gravity may depend in a complicated way

on the sets of operators a
(k)
ξ , b

(k)
σ− , and b̃

(k)
σ− as well as other operators, including the ones that act

nontrivially on the index k:

H(M) = HQG

({

a
(k)
ξ

}

,
{

b
(k)
σ−

}

,
{

b̃
(k)
σ−

}

, · · · ;M
)

, (40)

even if we restrict our considerations to the states having spacetime with a black hole at a fixed

location of mass between M and M + δM . (If we consider processes in which M varies, the total

Hamiltonian must be taken as the sum of the H(M)’s with different M ’s, with terms allowing

5We consider that the states obtained by acting operators b
(k)
σ , b

(k)†
σ , b̃

(k)
σ , and b̃

(k)†
σ on a black hole vacuum

state are not all physically realized states, so that the actual physical Hilbert space is smaller than the Fock space
implied by the construction here. In particular, the dimension of the physical Hilbert space for the states in which
there are negative energy excitations (as defined in the asymptotic region) must be smaller than that of the naive
Fock space described here, implying that the entropy SI associated with a negative energy excitation I is negative
in Eq. (3). For more discussions on this point, see Section 4.2.
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hopping between different M ’s added. Of course, the segmentation of the black hole mass into

different discrete M ’s with some widths is completely artificial, and thus can be done in any

arbitrary way.) On the other hand, the semiclassical approximation is built on the maximally

mixed vacuum state, Eq. (14). What is the precise meaning of this statement?

Consider a general semiclassical state

ρ̃(M) = f
(

a†ξ, b
†
σ− , b̃

†
σ−

)

ρ(M) f
(

a†ξ, b
†
σ− , b̃

†
σ−

)†
, (41)

where ρ(M) is the semiclassical vacuum state in Eq. (14), and f represents the excitation. Here,

aξ, bσ− , and b̃σ− are (semiclassical) quantum field theory operators defined by

aξ =
∑

k

a
(k)
ξ , bσ− =

∑

k

b
(k)
σ− , b̃σ− =

∑

k

b̃
(k)
σ− , (42)

which satisfy the commutation relations

[aξ, a
†
ξ′] = δξξ′

∑

k

Pk, [bσ− , b
†
σ−′ ] = [b̃σ− , b̃

†
σ−′ ] = δσ−σ−′

∑

k

Pk, others = 0. (43)

Note that the operator
∑

k Pk becomes unity when acting on any normalized (pure or mixed)

state in
⊕

kHψ̃k
, so that Eq. (43) indeed represents the standard commutation relations for the

annihilation-creation operators.

The semiclassical approximation asserts that the evolution of the state in Eq. (41), which at

the microscopic level is generated by the Hamiltonian in Eq. (40), is well approximated by the

evolution caused by the standard quantum field theory Hamiltonian:

ρ̃(M) → e−iH(M)t ρ̃(M) eiH(M)t, H(M) ≈ HQFT

(

aξ, bσ− , b̃σ− ;M
)

, (44)

where the dependence of HQFT on the creation, as well as annihilation, operators is implied. Note

that here we have used the aξ operators to describe the outgoing modes in the semiclassical field

theory, but we may instead use bσ+ and b̃σ+ operators defined analogously to Eq. (42):

bσ+ =
∑

k

b
(k)

σ+ , b̃σ+ =
∑

k

b̃
(k)

σ+ . (45)

These two descriptions correspond, respectively, to seeing the system from an infalling and static

(or distant) observer’s viewpoints.6

The expression in Eq. (44) makes it clear that semiclassical gravity cannot describe detailed

microscopic physics associated with the index k. In fact, at this level of approximation, the

Hamiltonian can be written as

H(M) ≈ HQFT

(

aξ, bσ− , b̃σ− ;M
)

=
∑

k

HQFT

(

a
(k)
ξ , b

(k)
σ− , b̃

(k)
σ− ;M

)

, (46)

6The ξ modes correspond to the modes defined in the past null infinity using the Minkowski time if we treat the
collapsing geometry faithfully (without invoking the eternal black hole approximation at late times) ignoring the
trans-Planckian nature of the encounters of the modes with the collapsing matter.
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since a
(k)
ξ , b

(k)
σ− , and b̃

(k)
σ− (as well as b

(k)
σ+ and b̃

(k)
σ+) involve projection on Hψ̃k

. This implies that the

dynamics involving (only) excitations on a fixed black hole background is decomposed into n(M) =

e4πM
2l2P decoupled, identical copies. Since this statement also applies to any fixed spatial geometry

arising for a sufficiently short time interval (with the appropriate replacement of the number of

microstates), we may simply drop the index k in describing the dynamics of the excitations, and

write the evolution of the system as

|Ψ̃〉 → e−iHQFTt |Ψ̃〉. (47)

Here, |Ψ̃〉 is a field theoretical state of the system built on a field theoretical vacuum |Ψ〉, e.g.,
|Ψ̃〉 = f(a†ξ, b

†
σ− , b̃

†
σ−)|Ψ〉 with f in Eq. (41). This is what the semiclassical field theory is! It

provides a unitary description of physics unless we consider processes involving the microscopic

spacetime index k such as the Hawking emission process.

3.3 UV/IR correspondence and relation to the entanglement entropy

Before concluding this section, we would like to highlight a key assumption adopted in Section 3.2

as well as its implications. The assumption may be called the stretched horizon/second exterior

(SH/SE) correspondence:

The stretched horizon degrees of freedom representing excitations on a black hole vacuum

state |ψk(M)〉 can be organized into the modes that are interpreted as being located outside

the stretched horizon of the second (near) exterior region of the corresponding extended, or

two-sided, black hole of mass M .

Under this correspondence, the “trans-Planckian”—or stringy—excitations in the region RS < r ≤
rs in the “original” one-sided picture are mapped into low energy field theory excitations outside the

stretched horizon of the second exterior region in the corresponding two-sided picture. This implies

that there are no (or few) excitations at a distance below the quantum gravitational lengthscale

in the latter picture (at least around the bifurcation surface). We may therefore colloquially

summarize this correspondence as: the full string theory excitations defined in the region outside

the mathematical Schwarzschild horizon, r > RS, correspond to field theory excitations defined in

the extended, two-sided black hole spacetime.

While we have motivated the correspondence by the physical picture in semiclassical gravity,

it would be desirable to derive or motivate it more directly in the fundamental theory of quantum

gravity. In fact, we view this as an interesting opportunity. The description in Section 3.2 requires

specific properties for the dynamics of the stretched horizon (the UV degrees of freedom above

the quantum gravitational scale), reminiscent of UV/IR relations seen in other settings in string

theory (such as AdS/CFT and T duality). This therefore provides an explicit suggestion on

what properties the fundamental theory of quantum gravity must have in order to reproduce the
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predictions of general relativity in the appropriate classical limit, in situations in which spacetime

is far from simple Minkowski or anti-de Sitter space.

The picture described here also provides a simple interpretation of possible relations between the

black hole and entanglement entropies contemplated long ago in Ref. [25]. As we have discussed, the

relevant spacetime region in a distant description of a black hole is the outside of the mathematical

horizon r > RS, namely the near side of the Schwarzschild horizon as viewed from the “origin of

the reference frame” located outside the horizon. The number of independent quantum states in

full quantum gravity describing this region—more precisely the near horizon part of it—is given by

n(M) = eA/4l
2
P , where A is the horizon area.7 How can we calculate this number without invoking

the thermodynamic argument as was originally done by Bekenstein and Hawking?

One way to do so is the following. We fictitiously extend the spacetime beyond the horizon

r = RS by considering another “mirror” region parameterized by r′ > RS sewn to the original

region at r = r′ = RS. (Note that the mirror region, r′ > RS, in this discussion is really fictitious,

since we are describing the system from a distant viewpoint using the fundamental theory, so

that the degrees of freedom in the original region, r > RS, already contain the stretched horizon

degrees of freedom, which are sufficient to construct the interior of the black hole.) We may then

consider a state in which the degrees of freedom in the two regions, r > RS and r′ > RS, are

(nearly) maximally entangled. The number of independent states available in one region can then

be obtained as the exponential of the entanglement entropy between the two regions.

For black hole spacetime, we may consider the intersection of the two regions, r = r′ = RS, to

be a bifurcation surface, and the mirror region to be the other side of that surface on an equal-

time hypersurface passing through it. Since we are interested in the number of microstates in full

quantum gravity, this construction must be done in the full theory of quantum gravity, implying

that the mirror region, r′ > RS, also “mirrors” the effective second exterior region of the extended

black hole, arising from the stretched horizon modes in the original region. Now, we expect that

the local inertial vacuum state around r ∼ RS in this “doubled spacetime” involves near maximal

entanglement between the states in the two regions, r > RS and r′ > RS, when viewed from a

static/distant observer because of a large relative acceleration between the two reference frames.

We may therefore obtain the black hole entropy by calculating the entanglement entropy between

the two regions for the local inertial vacuum state in the full theory of quantum gravity. This

corresponds to the calculation performed in Ref. [27] in string theory, which indeed found that the

entanglement entropy is A/4l2P at the leading order in l2P/A.

7This statement may be generalized to a more concrete statement if we include the “boundary” of the ambient
space as viewed from the origin of the reference frame p0: the number of independent quantum states representing
the region enclosed by the black hole horizon and the boundary (as viewed from p0) is given by the exponential of
the sum of the horizon and boundary areas in units of 4l2P. (In Minkowski space, the boundary may be located at
infinite distances away and may have an infinite area.) For further discussions, see Section 5 (and Ref. [26]).
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Do we really need string theory to calculate the entanglement entropy? In low energy quan-

tum field theories, the result of the calculation will be divergent, which must be made finite by

counterterms. The freedom in adjusting these counterterms represents a possible variation of UV

theories that lead to consistent quantum field theories at low energies. At the leading order in

l2P/A, however, no such freedom is left after the Planck length, lP, is renormalized to a finite value,

and the calculation in Ref. [28] indeed finds that the entanglement entropy after this renormal-

ization is finite and takes an unambiguous value of A/4l2P. (To be precise, Ref. [28] showed this

only for certain limited cases, but we may expect it applies more generally.) This implies that any

consistent UV theory leads to the entanglement entropy between the two regions of A/4l2P in the

local inertial vacuum state. As argued above, this measures the number of independent quantum

states available in one of the regions in the full theory of quantum gravity. In the context of a

black hole described in a distant reference frame, these states comprise all of the states in the near

horizon region, since the mirror region r′ > RS (again, not to be confused with the second exterior

region in the extended black hole approximation) does not really exist.

4 Nature of Microscopic Dynamics

We now discuss the nature of microscopic dynamics associated with Hawking emission and measur-

ing the black hole’s thermal atmosphere by a physical detector (the mining process). A complete

treatment of this issue requires the fundamental theory of quantum gravity. Our focus here is

how these dynamics manifest themselves in the semiclassical approximation, in particular what

physical conclusions we may draw using semiclassical analyses.

We argue that a measurement of the black hole’s atmosphere by a static detector consists of

two effects: the effect caused by acceleration of the detector (the Unruh effect) and that by nonzero

curvature of spacetime. The two combined make the detector respond as if it is immersed in the

thermal bath at a blueshifted local Hawking temperature. If the detector is located in a region

away from the black hole, then the former acceleration induced effect becomes negligible, and its

response is dominated by the latter curvature induced effect. It is this latter effect that represents

the Hawking radiation emitted to the asymptotic region.

We assert that the microscopic details associated with the information transfer are in general

not visible in semiclassical gravity, although a part of the backreaction of the acceleration induced

effect can be described in semiclassical field theory. In particular, this implies that at the level

of semiclassical gravity, the curvature induced effect is described only as “physics of a vacuum,”

which arises from an intrinsic quantum mechanical ambiguity of local vacuum energy density (or

particle numbers) of order 1/(Ml2P)
4 that cannot be resolved in semiclassical field theory. One

must therefore be careful in applying intuition from semiclassical field theory in analyzing the

microscopic processes underlying Hawking radiation.
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4.1 Response of a static detector

Consider a physical detector located at a fixed Schwarzschild radial coordinate r = rd. According

to the semiclassical calculation, the detector responds as if it is immersed in the thermal bath of

temperature T (rd) in Eq. (15). What causes this phenomenon?

First of all, since the detector at a fixed coordinate point r = rd is accelerated with respect to

local inertial frames, the effect in Ref. [8]—the Unruh effect—makes the detector react accordingly.

The magnitude of the proper acceleration of the detector is given by

a(rd) =
1

√

1− 2Ml2P
rd

Ml2P
r2d

. (48)

If this were the only effect, then the detector would see a thermal bath of temperature

TU(rd) =
a(rd)

2π
=

Ml2P

2πr2d

√

1− 2Ml2P
rd

, (49)

which does not agree with T (rd) except when the detector is located at the horizon, rd → 2Ml2P.

In particular, for rd → ∞ the effect from acceleration disappears, TU(rd) → 0, so that it cannot

be responsible for Hawking radiation measured at the asymptotic infinity. What is the remaining

effect making up the difference between TU(rd) and T (rd)?

To look for that effect, we can make the following heuristic argument. Consider a detector

placed somewhere in the zone. If there were the only acceleration effect, the local energy density

at the detector location (as defined in the asymptotic region) would be

ρU(rd) =
c

1− 2Ml2P
rd

(

Ml2P
2πr2d

)4

, (50)

where c = π2g∗/30 is a numerical coefficient with g∗ being the effective number of relativistic

degrees of freedom, and the quantity in the parentheses is the Unruh temperature in Eq. (49)

corrected by the redshift factor
√

1− 2Ml2P/rd. On the other hand, the semiclassical analysis tells

us that this quantity must be

ρ(rd) =
c T 4

H

1− 2Ml2P
rd

=
c

1− 2Ml2P
rd

(

1

8πMl2P

)4

, (51)

consistent with the blueshifted Hawking temperature. The difference is given by

ρ(rd)− ρU(rd) = c

(

1

8πMl2P

)4

f
( rd
2Ml2P

)

; f(x) =
1− 1

x8

1− 1
x

. (52)
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Since f(x), defined for x > 1, is a monotonically decreasing function with f(x → 1) = 8 and

f(x≫ 1) → 1, we find that the effect we seek is giving a contribution

ρ(r)− ρU(r) ≈ O

(

1

(8πMl2P)
4

)

, (53)

throughout the entire zone region.

The local energy density of the amount in Eq. (53) is precisely what we would expect to arise

from the intrinsic quantum mechanical ambiguity of defining particle states in semiclassical gravity.

Since the curvature lengthscale around the black hole is of order Ml2P, the concept of particles is

ambiguous beyond this lengthscale. This makes particle states with ω <∼ 1/Ml2P ambiguous, leading

to an uncertainty of the local vacuum energy density of order 1/(Ml2P)
4. Here, ω is the frequency

as defined in the asymptotic region. We assume that this curvature induced effect is responsible

for the difference in Eq. (53), i.e. the difference between TU(rd) and T (rd). In particular, this effect

is solely responsible for the response of a detector located in the far asymptotic region, i.e. the

original Hawking radiation effect calculated using the in-out formalism [2]. Unlike the acceleration

induced effect, this effect cannot be eliminated by going to a local inertial frame.

The separation of the origin of the detector response into the two effects as described above

is useful in discussing what aspects of the underlying process are visible in semiclassical gravity.

At the microscopic level, both these effects occur according to the full Hamiltonian evolution in

quantum gravity, and all the microscopic details associated with them can be calculated, at least,

in principle. The same, however, is not true in the semiclassical approximation. We now see to

what extent the details of the underlying dynamics can be captured in semiclassical field theory

for each of these two effects.

4.2 Effect from acceleration

Imagine that a physical detector is held near the horizon. The detector then responds to a highly

blueshifted Hawking temperature. As can be seen from the fact that

ρU(r)

ρ(r)− ρU(r)
=

1
(

r
2Ml2P

)4 − 1
≫ 1 for r ≃ 2Ml2P, (54)

this response is caused mostly by the acceleration of the detector with respect to local inertial

frames. The dynamics of this effect, including the backreaction, was analyzed in Ref. [29] in

semiclassical field theory, which we may import to study our black hole problem here.

Suppose the detector is coupled to a field ϕ. When described in a static reference frame, the

backreaction of a detector response eliminates a ϕ particle from the thermal bath, interpreted as

being absorbed by the detector: |Ψ(M)〉 → bσ|Ψ(M)〉, where |Ψ(M)〉 represents the field theory

black hole vacuum, and an appropriate superposition of bσ is implied. In an infalling frame,
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however, the same process is described as an emission of a ϕ particle by the detector, i.e. the

backreaction of the detector response is the creation of a particle, as can be seen from the fact

that bσ involves a superposition of aξ and a†ξ, and aξ|Ψ(M)〉 = 0. As expected, the effect of this

backreaction is limited within the causal future of the detector response event. In this region,

however, the backreaction indeed does make the system deviate from the vacuum state, which is

visible in the semiclassical approximation. In fact, the effect can be quite significant if the detector

is located very close to the horizon.

It is important to understand the physical origin of this backreaction. Suppose we describe the

detector in an infalling reference frame. When it responds, i.e. gets excited, it emits a ϕ particle to

the environment, so that the (appropriately defined) total energy of the system increases. Where

does this energy come from? In order for the detector to measure a ϕ particle, it must be held at

r = rd for a Schwarzschild time of order ∆t ≈Ml2P. This requires an external force—without it, the

detector would fall into the horizon within a much shorter time. It is this force that is responsible

for the energy needed for the detector response as well as the ϕ emission, i.e. the backreaction.

Since the vacuum is physically disturbed by the external non-gravitational force, it is no surprise

that there is a backreaction effect visible clearly in the semiclassical approximation.

What about the information transfer? It is known that one can accelerate the energy loss rate

of a black hole by extracting its energy from the atmosphere using a physical apparatus: the mining

process [30]. The most efficient, and essentially the only, way to do this is to thread the horizon

with strings that have the maximal tension-to-linear-mass-density ratio allowed by the null energy

condition, which can make the black hole lifetime as short as O(M2l3P) [31]. Now, the fact that

the energy is extracted by the apparatus means that the information must also be extracted, since

otherwise the entropy of the black hole would be oversaturated beyond the Bekenstein-Hawking

value. How can information be transferred in such a process?8

Suppose we mine a black hole with the model “detector” considered before, around Eqs. (10)

and (16). This detector may be viewed as a toy model for the strings described above. The

evolution of the combined black hole and detector system then occurs in steps. First, due to the

acceleration effect, the detector responds with some probability:

|ψk(M)〉|d0〉 →
imax
∑

i=0

n(M)
∑

k′=1

ζkk′i |ψ̃k′i(M)〉|di〉, (55)

where we have included the possibility that no response occurs in the relevant time interval,

represented by i = 0 in the sum. The states |ψ̃k′i(M)〉 arise as a result of the backreaction of the

detector response, and are not vacuum states. In the static description, the evolution in Eq. (55)

occurs because the detector may absorb particles from the thermal bath; in the inertial description,

8Our analysis in the previous version of this paper on this issue contained an error. We thank Joseph Polchinski
for a comment that made us identify and correct that error.
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it represents the (probabilistic) emission of particles from the detector, accompanied by the internal

excitation.

It is important that the coefficients ζkk′i in Eq. (55) represents a unitary map from the k space

to its image in the (k′i) space, not in the k′ space. More specifically, for a fixed i the rank of the

matrix (ζ i)kk′ ≡ ζkk′i in the k-k′ space is n(Mi), which is smaller than n(M), where Mi is given

in Eq. (10). This is because in the static description, which we adopt here, the excitations in the

states |ψ̃k′i(M)〉 have negative energy resulting from the elimination of particles from the thermal

bath, so that they carry negative entropy. In other words, we are assuming that only a subspace

of the entire space spanned by all the values of k′ = 1, · · · , n(M) is realized by a physical process

when the state is accompanied by negative energy excitations i (which implies that the physical

Hilbert space for the states having negative energy excitations is smaller than that of the naive

Fock space suggested by the construction in Section 3.2). This dynamical assumption allows us

to avoid the argument for firewalls presented in Ref. [9]. (In the inertial, or infalling, description,

there is no acceleration induced thermal bath, so that the corresponding part of the k index is not

accessible locally by the detector. This is consistent because the description in spacetime in this

case is available only for the timescale of the fall.9)

The excitations in |ψ̃k′i(M)〉 are “emitted” from the detector. These excitations propagate

within the causal future of the detector response event, and most of them will interact with the

black hole degrees of freedom, in particular the stretched horizon. This results in the evolution of

the states

|ψ̃k′i(M)〉 →
n(Mi)
∑

ki=1

ηk
′i
ki

|ψki(Mi)〉, (56)

where we have made the simplifying assumption that all the excitations interact with the black

hole degrees of freedom, and the resulting states are fully relaxed into (superpositions of) vacuum

states. Substituting Eq. (56) into Eq. (55), we obtain the expression in Eq. (10):

|ψk(M)〉|d0〉 →
∑

i

n(Mi)
∑

ki=1

αkkii|ψki(Mi)〉|di〉, (57)

where αkkii =
∑n(M)

k′=1 ζ
k
k′i η

k′i
ki
. Since the distribution of the information about the vacuum state

is expected to follow the thermal entropy calculated in semiclassical field theory, as discussed in

Eq. (6) and below, the rate of information recovery through a mining at r = rd will be determined

9We may still suspect that the infalling picture provides a unitarily equivalent description for the distant one
because of the existence of the “horizon” surrounding the origin, p0, of the infalling reference frame [26] (not to
be confused with the horizon as viewed from the distant reference frame). As p0 approaches the singularity, the
“horizon” approaches p0, eventually making the whole quantum state a “singularity state” [32]; see Section 5. This
allows us to contemplate the possibility that the fate of the information mined by the detector is mapped to the
intrinsically quantum gravitational dynamics of singularity states after p0 hits the singularity.
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by the thermal entropy at r = rd, associated with the blueshifted local Hawking temperature.

This implies that the mining process, in fact, is expected to achieve the required acceleration of

the information transfer.

In the semiclassical approximation, the indices such as k and k′ are not visible because the

degrees of freedom represented by these indices cannot be resolved. In practice, this implies that

semiclassical field theory describes a process as if these indices were absent. For example, it

describes the process in Eq. (55) as

|ψ(M)〉|d0〉 →
imax
∑

i=0

ζi |ψ̃i(M)〉|di〉, (58)

where |ψ(M)〉 is the field theory vacuum state, and |ψ̃i(M)〉 represents the state having a negative

energy excitation labeled by i on |ψ(M)〉. This corresponds to the description given in Ref. [29].

The state |ψ̃i(M)〉 may be considered to relax into the vacuum state |ψ(Mi)〉 after the excitation

interacts with the stretched horizon, although this process cannot be described in semiclassical

field theory. In any event, in the semiclassical approximation, the detector does not have any

information about the original black hole microstate—the reduced density matrix representing the

detector state after the response is simply (ρ)ii′ = |ζi|2δii′ , which does not depend on k.

It is instructive to consider what happens in the limitM → ∞, in which the relevant spacetime

in the static description reduces to a Rindler wedge, a portion of Minkowski space. In this case,

the entropy density of Eq. (1) diverges, S = 4πM2l2P → ∞, so that we have an infinitely large de-

generacy of microscopic vacuum states in any finite energy interval.10 This implies that to describe

any experiment performed in finite time, we must coarse-grain an infinite number of microstates

labeled by the index k. This makes Eq. (58) “exact” in the sense that any finite resolution (or

finite time interval) forces us to describe the process as in Eq. (58), in which the vacuum index

k does not appear. In this way, the uniqueness of the Minkowski vacuum is recovered, which is

crucial for our ability to describe physics without having (an infinite amount of) information about

the specific vacuum we live in. (Another way to see the uniqueness of the Minkowski vacuum, in

an inertial description, will be discussed in Section 5.)

4.3 Effect from spacetime curvature

We now consider the other effect responsible for the detector response: the curvature induced

effect. As discussed before, this effect is solely responsible for the spontaneous Hawking emission

process, where the detection of emitted quanta is envisioned only in the asymptotic region. The

10The exact Minkowski vacuum space may be an artifact of mathematical idealization, and it is possible that in
any physically relevant case, there is a boundary/horizon at a finite affine distance in any direction from the origin
of the reference frame. Our argument below persists even in this case by replacing the infinities by appropriately
large numbers.
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situation in this case is different from that described above, in that the effect does not require

an operation of a non-gravitational force. There is therefore no reason to expect that there must

be any backreaction effect visible in the semiclassical approximation. In fact, we assert that the

phenomenon of particle creation due to spacetime curvature must be viewed purely as an “activity

of a vacuum,” whose details are invisible in semiclassical field theory.

Consider a process in which Hawking quanta are emitted from the black hole to the far exterior

region. (We can imagine measuring these quanta by a physical detector at a faraway place, but we

are not interested in that process here.) At the microscopic level, the elementary emission process

occurring in a time interval of t′−t ≈ O(Ml2P) is given as in Eq. (19), which, ignoring the difference

between various Ei’s, reads

|ψk(M(t))〉|φa〉 →
∑

i

n(M(t′))
∑

k′=1

βkk′i|ψk′(M(t′))〉|φa+i〉. (59)

We assert that the states |ψk′(M(t′))〉 appearing here are vacuum states from the viewpoint of semi-

classical field theory. In particular, when we act a field theory operator of the form in Eqs. (42, 45)

which has a support in a near horizon region, then all these states respond as the thermofield

double state of the form in Eq. (39).

Let us now discuss a physical picture behind the information extraction processes in Eq. (59)

and in Eq. (55). The black hole vacuum states |ψk(M)〉 represent the set of microscopic quantum

states which, in the semiclassical approximation, all look like the vacuum state in the background of

a black hole of mass M in a fixed location. While invisible in semiclassical gravity, these |ψk(M)〉’s
have nontrivial structures representing subtle quantum fluctuations of the spacetime beyond the

resolution of the semiclassical approximation. The expressions in Eqs. (55, 59) imply that the

backreactions on the black hole relevant for the information transfer go into these subtle quantum

modes associated with the spacetime. (Note that the excitation i of |ψ̃k′i(M)〉 in Eq. (55) is not

directly relevant for the information transfer as can be seen in Eq. (58).) These backreactions

are not visible in semiclassical field theory—they are “too soft” to be resolved. In particular, the

emission of a Hawking quantum must be viewed at the semiclassical level as occurring around

the barrier region of the effective gravitational potential, with the associated information transfer

occurring through the delocalization of the black hole information to the entire zone.

The discussion above says that one must be careful in applying intuition from semiclassical field

theory to the black hole information release processes. In Hawking emission, the purifiers of the

emitted Hawking quanta are what semiclassical gravity describes as vacuum states. In particular,

they are not field theory modes associated with operators b
(k)

σ+ and b
(k)†

σ+ as envisioned in Refs. [6,9].

A similar statement also applies to the mining process; the purifiers of the modes mined from black

hole degrees of freedom are black hole vacuum states. The microscopic details of the information

transfer processes, in particular the flow of information within the black hole degrees of freedom,
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are not visible in semiclassical field theory; one can only see certain inclusive quantities that can be

calculated as expectation values of field theory operators in the vacuum, e.g. the total energy flux

over a large surface [33]. If one wants to include the backreaction on spacetime at the semiclassical

level, the best one can do seems to do it “by hand” such that the semiclassical Einstein equation,

Rµν − (1/2)gµνR = 8πl2P〈Tµν〉, is satisfied [34], which employs the Vaidya metric near the horizon.

4.4 Horizon of an evaporating black hole

Consider describing the formation and evaporation of a black hole in a distant reference frame. At

the microscopic level, the whole process is described as a unitary evolution:11

|minit〉 →
n(M(t))
∑

k=1

ck(t) |ψk(M(t))〉 |rk(t)〉 → |rfin〉, (60)

where |minit〉, |rk(t)〉, and |rfin〉 represent the states for the initial collapsing matter, the subsystem

complement to the black hole at time t (which includes Hawking radiation emitted earlier), and the

final Hawking quanta after the black hole is completely evaporated. For generic initial states and

microscopic emission dynamics, this evolution indeed satisfies the behavior outlined by Page [35]

on general grounds.

We here highlight two important aspects of the evolution that have not been stated explicitly:

(i) Microscopic dynamics need not violate locality at large distances in the description based on

a distant reference frame — Since later Hawking emissions occur within the causal future

of the region in which an earlier emission took place, there is no reason to expect that the

information recovery process must violate locality, or causality, of the spacetime structure.

Namely, while the detailed flow of information is not visible to semiclassical field theory, the

speed at which physical information is transferred can still be bounded by the causal structure

of the spacetime.

(ii) The semiclassical description of the evolution violates unitarity at all stages of the black hole

formation and evaporation processes — First, since the same semiclassical black hole (within

the uncertainties needed to localize it in spacetime) can be formed by collapsing matter in

different initial states, the description of the black hole formation is not unitary in semiclassical

gravity. After the formation, the microscopic dynamics makes the black hole emit Hawking

quanta through the unitary process in Eq. (19) that occurs successively in each time interval

of orderM(t)l2P. Semiclassical gravity, however, describes this as a succession of the process in

Eq. (23); in particular, the state of the emitted Hawking quanta in each time interval is given

by the incoherent thermal superposition, making the final Hawking radiation state a mixed

11As before, we ignore macroscopic dispersions of the black hole mass and location, which may be included
explicitly if one wants.
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thermal state. The semiclassical description of a process involving “microscopic degrees of

freedom of spacetime” (the index k) is fundamentally non-unitary.

We now ask what a physical object will find if it falls into the horizon of an evaporating black

hole. At the microscopic level, the state of a black hole is in general given by

ρBH(M(t)) =

n(M(t))
∑

k,l=1

ck(t)c
∗
l (t) |ψk(M(t))〉 〈ψl(M(t))|, (61)

obtained by integrating out the rest of the system in the middle expression in Eq. (60). As discussed

in Section 4.3, the states |ψk(M(t))〉 are all vacuum states in the sense that their responses to the

field theory operators are those of the vacuum state in semiclassical field theory. If a physical

object is falling into the black hole, it is represented as excitations on the background: a†ξ, b
†
σ− , and

b̃†σ− acting on the microstate. What happens to the object afterward?

Since a†ξ consists of a linear combination of operators in the both exterior regions, bσ+ , b
†
σ+ and

b̃σ+ , b̃
†
σ+ , the excitations in general involve entanglement between those in the two regions. One

might think this violates causality because the object that has just entered the zone already involves

“excitations” in the second exterior region generated by b̃σ+ , b̃
†
σ+ . This apparent violation, however,

is not physical—exciting a black hole vacuum state by mode operators in the first or second region,

by itself, does not have an invariant meaning (as can be seen, e.g., from the fact that operating

b†σ+ and b̃σ+ lead to the same state), so that the physical excitations are still confined in the

first exterior region near the edge of the zone. The entangled nature of the excitations, however,

becomes important when the object enters the horizon.

Because the algebra of the operators representing the object and the structure of the (vacuum)

states on which they act are the same as in the semiclassical field theory in the regime of their

validity indicated by Eq. (3), the only condition needed for the object to smoothly pass the hori-

zon is that the dynamics is also the same. Therefore, assuming that the microscopic dynamics

describing the fallen object is well approximated by the Hamiltonian of the quantum field theory

form in the relevant timescale for the fall:

H(M(t)) ≈ HQFT

(

aξ, bσ− , b̃σ− ;M(t)
)

=
∑

k

HQFT

(

a
(k)
ξ , b

(k)

σ− , b̃
(k)

σ− ;M(t)
)

, (62)

we can conclude that the object does not see anything special at the horizon; in particular, it does

not see a violation of the equivalence principle there. Of course, Eq. (62) is not directly derived

from the microscopic theory of quantum gravity, but it is a well motivated assumption based on

the success of general relativity. In fact, we do not find any inconsistency in postulating it; in

particular, we do not find a necessity of introducing a drastically new physical effect such as the

firewall discussed in Refs. [6, 36]. If we mine the black hole by a physical detector, a part of its

backreaction is visible to a semiclassical observer. This effect, however, is confined in the causal

27



future of the mining event, and is caused by the (non-gravitational) force supporting the detector;

this is not the firewall phenomenon.

5 Discussions

In this paper, we have discussed relations between the microscopic structure of quantum gravity and

what is called the semiclassical approximation. In particular, we have discussed what semiclassical

field theory really is, and how its salient features—including the existence of the interior of a black

hole—might arise from the fundamental theory of quantum gravity.

This emergence of the semiclassical description by no means implies that semiclassical field

theory is always valid in the regime in which it is conventionally thought to be valid. As is

well known, the global spacetime picture of general relativity contradicts the assumption that the

final state of Hawking evaporation carries the complete information about the initial state [37], the

assumption also suggested by gauge/gravity duality [38]. To prevent the resulting inconsistency, the

fundamental (presumably covariant) theory of quantum gravity must possess certain nonlocality

beyond cutting off the ultraviolet region of semiclassical field theory. To explore further aspects of

quantum gravity, our discussions must be put in this larger context.

In this section, we expand our discussions in more general contexts in quantum gravity. We first

present relatively straightforward extensions of our analyses to de Sitter and Minkowski spaces.

We then discuss how our picture applies in understanding complementarity, both in black hole and

more general spacetimes. Finally, we discuss how all these ingredients might help to understand

cosmology, especially the issue of the beginning/end of the eternally inflating multiverse.

The discussions in this section become more conjectural as we move forward. This is especially

so in the discussions of the last two subjects—complementarity and the multiverse—which are

mostly based on the picture one of the authors (Y.N.) has been promoting in the past few years.

Our hope is that they set a ground for, or provide useful intuition for, further explorations of

quantum gravity, which may eventually lead to a “complete understanding” of the world we live

in.

Simple extensions — de Sitter and Minkowski spaces

Our analyses can be extended relatively straightforwardly to de Sitter space. Consider de Sitter

space with the Hubble radius α. In cosmology, de Sitter space appears as a meta-stable state in

the middle of the evolution of the universe, and in this sense it is similar to spacetimes with a

black hole. Indeed, string theory suggests that there is no absolutely stable de Sitter vacuum state

in full quantum gravity—it must decay, at least, before the recurrence time [39]. This implies that

what we call de Sitter space cannot be an eigenstate of energy (at least in this context).
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Suppose we want to determine the time at which the de Sitter space is created or decays within

an uncertainty of order δt ≈ α, where t is taken as the proper time for a static observer (see later

for more discussions on this point). This implies the existence of uncertainty in the corresponding

energy of order δE ≈ 1/α. Estimating this energy to be of order the vacuum energy ρΛ integrated

over a Hubble volume, E ≈ O(ρΛα
3) ≈ O(α/l2P), this uncertainty is translated into

δα ≈ O

(

l2P
α

)

. (63)

As in the case for black holes, we may consider the Gibbons-Hawking entropy [40]

SdS =
AdS

4l2P
=
πα2

l2P
, (64)

to be the entropy density for de Sitter vacuum states; namely, the number of de Sitter vacuum

states with the Hubble radius between α and α+ δα is given by ≈ eSdSδα/α. Here, AdS = 4πα2 is

the area of the de Sitter horizon, and the expression in Eq. (64) is understood to be valid at the

leading order in expansion in powers of lP/α. It is easy to see that the entropy density of Eq. (64),

in fact, does not depend on the precise choice of δα as long as δα/α≫ e−SdS .

Using static coordinates, appropriate for a static observer, the de Sitter horizon is located at

the radius r = α, and the stretched horizon is at rs = α − O(l2P/α), where we have identified the

string (cutoff) scale, ls, with the Planck scale, lP. When a physical detector is located at r = rd,

it sees the blue-shifted local Gibbons-Hawking temperature

TdS(rd) =
1

2πα

1
√

1− (rd/α)2
. (65)

The interpretation of this phenomenon goes as in the black hole case. If the detector is held

at a constant radius rd which is close to the horizon, then most of the detector response arises

because of the acceleration of the detector with respect to local inertial frames there. (This effect

by itself would give a response with temperature TU(rd) = rdTdS(rd)/α.) The energy responsible

for the response of the detector as well as the backreaction disturbing the vacuum comes from the

external force needed to hold the detector at a constant r = rd for time interval of order ∆t ≈ α,

as measured at r = 0. This acceleration induced effect, however, does not fully explain Eq. (65); in

particular, it cannot make a detector located at r = 0 click as implied by Eq. (65). As in the case

of black holes, the remaining effect comes from spacetime curvature, which leads to the uncertainty

of the local vacuum energy density of order (1/2πα)4 throughout the Hubble volume. It is this

curvature induced effect that is responsible for the response of inertial detectors, including the

detector located at r = 0.

If we denote the de Sitter vacuum states with the Hubble radius between α and α + δα by

|Ψk(α)〉, the “vacuum index” k runs over

k = 1, · · · , eSdS = e
πα2

l2
P . (66)
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As in the black hole case, most of this information will be in the region close to the horizon r = α,

although some of the information must spread over the entire Hubble volume. The expected

distribution follows that of the thermal entropy calculated in semiclassical field theory using the

local temperature in Eq. (65). The existence of excitations in the interior or near exterior region

is expected to provide only a small perturbation in terms of the entropy counting.

Given the absence of evidence otherwise, we could expect that the stretched horizon of de Sitter

space behaves similarly to that of a black hole. When viewed from a static reference frame, a basis

vector of the Hilbert space HΨ̃k
, spanned by |Ψk(α)〉 and its excited states for fixed k, will be

specified by the state of the stretched horizon, ı̃, as well as the number of excitations nσ in each

field theory mode σ inside the stretched horizon:

|Ψ̃k;̃ı{nσ}(α)〉 = |̃ı; k〉|{nσ}; k〉. (67)

Here, the meaning of the index k must be understood similarly to the black hole case in Eq. (25);

see the discussion in the paragraph containing Eqs. (26 – 28). While it is not fully clear how the

region outside the horizon is encoded in general in a given state, we may expect in analogy with

the black hole case that some of the stretched horizon degrees of freedom are organized such that

they can be viewed as the mirror modes for σ. The vacuum states will then take the form

|Ψk(α)〉 ≈
1√
Z

∑

{nσ}

e
−

E{nσ}
2TdS |{ñσ = nσ}; k〉|{nσ}; k〉; Z =

∑

{nσ}

e
−

E{nσ}
TdS , (68)

in the near horizon region. Here, TdS = 1/2πα, and E{nσ} is the energy of the state |{nσ}; k〉 as

defined at r = 0. This structure will ensure that the de Sitter horizon is smooth.

When an object hits the horizon in a static description, it can be thought of as going to space

outside the horizon. The information about the object that goes outside will be stored in the

state, consisting of the interior and the stretched horizon degrees of freedom (although there will

be some maximum capacity for this information content). We expect that such information can

be recovered later; otherwise, there is no Poincaré recurrence. This information recovery may not

be necessarily in the form of Hawking radiation if the system evolves, for example, into Minkowski

space or another de Sitter space with a smaller vacuum energy. Indeed, this is believed to have

happened to density fluctuations generated in the early inflationary phase in our own universe [41].

The situation in Minkowski space is obtained by taking the limit α → ∞. In this limit, the

“horizon” area becomes infinity, AMin → ∞, so that the number of vacuum states also becomes

infinity, eSMin → ∞. Since the “horizon” is located at an infinite distance, however, a local observer

cannot probe which vacuum he/she is in by directly interacting with the “horizon.” Also, while

the information about the vacuum is to some extent delocalized, the effect the observer can probe

locally away from the “horizon” in any finite time is expected to be suppressed exponentially in

AMin/l
2
P (and suppressed, at least, by powers of AMin/l

2
P), and hence negligible. The uniqueness
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of the Minkowski vacuum is thus recovered for the purpose of describing physics in any finite

spacetime region. Note that this provides a way of arriving at the same conclusion in an inertial

reference frame as the one reached at the end of Section 4.2 using an accelerated reference frame.

Complementarity

A naive formulation of local quantum field theory on spacetime in general relativity allows us to

use arbitrary spacelike (or null) hypersurfaces as the quantization surfaces, as long as spacetime

curvature is sufficiently small everywhere on it. In black hole physics, this allows for a hypersurface

that passes through both an object fallen inside the horizon as well as late Hawking quanta, contra-

dicting the idea that final-state Hawking radiation contains the full information about the system

that collapsed and fell into the black hole (since it leads to a cloning of quantum information) [37].

We expect that this problem is avoided in the fundamental theory of quantum gravity due to

some nonlocality at large distances that becomes prominent when certain quantization surfaces

are chosen.

The idea of black hole complementarity [4,5] is that we may quantize the system such that this

nonlocality is “minimized,” and that there are multiple equivalent ways to do so. For example,

by restricting the quantization surfaces appropriately to foliate only the exterior region, we may

obtain a unitary description of physics in which the long-range nonlocality effect described above

is absent. In addition, there are other “infalling” ways to quantize the system in which portions

of the interior spacetime are included in the descriptions. Our discussions in this paper support

this idea. In particular, we do not find any fundamental inconsistency between the existence of

infalling descriptions and unitarity of the Hawking evaporation process as viewed from a distant

reference frame.

While the general and precise formulation of complementarity is not yet known, a simple

way to implement it seems to describe a system as viewed from a freely falling (local Lorentz)

reference frame [26, 32, 42]. Specifically, we may consider a fixed reference point p0 and a null

or spacelike hypersurface associated with it, which in general is bounded by certain “horizons”

signaling the breakdown of the local spacetime picture. It is important that the procedure to

determine the hypersurface here is given independently of background spacetime; for example, it

can be generated by past-directed light rays emanating from p0 in all angular directions, with

each light ray terminated when a certain condition on its expansion or other quantities is met. A

quantum state that allows for a semiclassical spacetime interpretation is then given by specifying

the configuration of physical degrees of freedom on the hypersurface using a coordinate system

related to a local Lorentz frame elected at p0. In the fundamental theory of quantum gravity,

restricting quantum states to this kind corresponds to partially fixing the gauge associated with

spacetime transformations; after fixing the coordinates on the hypersurface, the remaining gauge
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freedom corresponds to the choice of the reference frame, whose generators we denote by H , Pi,

J[ij], and Ki, borrowing the standard notation for the Poincaré algebra.

Let us denote the Hilbert space spanned by all the states obtained as described above by

Hspacetime. The relevant, partially gauge-fixed Hilbert space H is then given by the direct sum

of Hspacetime and another Hilbert space Hsing containing quantum states that do not allow for a

spacetime interpretation (which become relevant when p0 hits a spacetime singularity):12

H = Hspacetime ⊕Hsing. (69)

Describing a system from a fixed reference frame corresponds to further fixing the gauge for the

transformations associated with Pi, J[ij], and Ki by taking an appropriate section of the corre-

sponding gauge orbit in H. A quantum state representing the system at a fixed time is then given

by an element in H, which may involve a superposition of macroscopically different spacetimes or

even a superposition of spacetime and singularity states. Its evolution is given by the (effective)

Hamiltonian HQG, generating a translation of the proper time τ measured at p0. (This transfor-

mation corresponds to the remaining gauge freedom represented by generator H . The emergence

of the effective time evolution picture from a more fundamental description in quantum gravity

will be discussed below.)

In this framework, a complementarity transformation is simply choosing a different local Lorentz

frame at some time τ , which corresponds to choosing a different section in the orbit of the gauge

transformations generated by Pi and Ki (and J[ij], which however yields only a trivial rotation of

the frame). This framework was applied in particular to black hole physics in Ref. [17], in which

it was shown how the interior spacetime may appear effectively by combining various descriptions

in different reference frames.

We may take a basis in Hspacetime in which a basis element represents a hypersurface that

contains p0 and is surrounded by the boundary (horizon) that indicates the breakdown of the

semiclassical spacetime picture. For example, if p0 is located outside the Schwarzschild horizon

of a black hole in de Sitter space, then p0 will “see” the black hole horizon in some directions

and the de Sitter horizon in the others; specifically, if the hypersurface is generated by past-

directed light rays emanating from p0, then each light ray hits either the (stretched) black hole or

de Sitter horizon, depending on the angular direction in which it is emitted. A general criterion

for determining the location of the boundary is not fully understood, but a possible procedure

was described in Ref. [26] which applies to certain simple cases. Now, consider a set of quantum

states that share the “same boundary” ∂M in some appropriate sense (although the precise general

definition of this statement is also not yet available). We may then expect, based on the conjectured

entropy bound in Ref. [21], that the dimension of the Hilbert spaceH∂M spanned by all these states

12Here, we have changed the notation from that in Ref. [26]. The Hilbert spaces denoted by H and Hspacetime

here correspond to HQG and H in Ref. [26], respectively.
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is given by

ln dimH∂M ≈ A∂M

4l2P
, (70)

where A∂M is the total area of the boundary; in the above example, A∂M = ABH + AdS where

ABH and AdS are the areas of the black hole and de Sitter portions of the boundary. In our present

context, dimH∂M represents the number of independent microstates that must be coarse-grained

to obtain the semiclassical description on a hypersurface bounded by ∂M.

The static quantum multiverse

By describing a system from a fixed reference frame, we are fixing all the relevant gauge redun-

dancies except for that associated with H : translation of the proper time τ at p0. In the most

fundamental treatment of quantum gravity, this residual gauge redundancy must also be fixed,

which we may do by imposing the constraint on an element |Φ〉 of H in Eq. (69) (equivalent to

taking an appropriate section in the corresponding gauge orbit):

H|Φ〉 = 0. (71)

The effective time evolution picture may then arise as correlations between physical configurations

of subsystems [43]. Specifically, in |Φ〉 we can identify a (small) subsystem as the “clock” degrees

of freedom, and reinterpret the entanglement of these degrees of freedom—represented e.g. by a set

of states |i〉—with the rest of the degrees of freedom—represented e.g. by a set of states |Ψi〉—as

the time evolution of a state |Ψi〉 with i playing the role of time.

We emphasize that |Φ〉 in Eq. (71) is the quantum state for the entire system, including all

the degrees of freedom existing in the world. If we omit any, even small, subsystem from our

description, then the resulting state need not satisfy Eq. (71) (hence making the time evolution

picture possible). In Ref. [44], it was conjectured that the condition of Eq. (71) together with the

normalizability of the state in H, 〈Φ|Φ〉 <∞, is enough to select the state of the multiverse.13 In

this picture, practically all the systems we observe, including the whole universe of our own, are

tiny portions of the branches of |Φ〉, and their “evolutions” are well described by

|Ψ(τ)〉 → |Ψ(τ +∆τ)〉 = e−iH∆τ |Ψ(τ)〉, (72)

using the proper time τ at p0. This is the time evolution of a state we have been discussing so far—

it is a parametric representation of correlations between configurations of subsystems, analogous to

a parametric representation of a curve on a plane, (x(τ), y(τ)). Note that this does not contradict

the fact that the state of the entire multiverse is static: e−iH∆τ |Φ〉 = |Φ〉.
13If the state is not uniquely selected, but multiple discrete states |Φn〉 (n = 1, · · · , N) are allowed, then we may

expect that the state of the multiverse is mixed:
∑N

n=1 |Φn〉〈Φn|/N . Our argument below still applies in this case
with appropriate modifications.
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If the state of the multiverse is indeed selected as described above, then we may, in principle,

predict everything we are allowed to predict once the rule of extracting it is given (assuming that

the explicit form of relevant operators, such as H , and their algebra is known). This rule must

reduce to the standard Born rule in appropriate circumstances, but it will involve ingredients

beyond that because the state of the multiverse |Φ〉 does not have any environment to interact

with, whose existence is implicitly assumed by the standard Born rule (e.g. in determining the basis

for projections). In fact, the normalizability of |Φ〉 would mean that the number of components

in |Φ〉, when expanded in a basis in which locality is manifest, is effectively finite, and the rule

would have to be formulated in a way that it works internally in the finite-dimensional Hilbert

space spanned by these components. Since we cannot use an external environment to select a

measurement basis, such a rule will have to involve the structure of operators, rather than just a

state. In our view, this may very well comprise one of the most important challenges to obtain

a complete theory of quantum gravity, about which the current formulation of string theory has

little to say.
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