UC Irvine
UC Irvine Previously Published Works

Title
High-Performance Scalable Information Service for the ATLAS Experiment

Permalink
https://escholarship.org/uc/item/65d4b9wqg

Journal
Journal of Physics: Conference Series, 396(1)

ISSN
1742-6588 1742-6596

Authors

Kolos, S
Boutsioukis, G
Hauser, R

Publication Date
2012-12-13

DOI
10.1088/1742-6596/396/1/012026

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/65d4b9ws
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012026 doi:10.1088/1742-6596/396/1/012026

High-Performance Scalable Information Service for
the ATLAS Experiment

S. Kolos!, G. Boutsioukis?, R. Hauser?

!University of California, Irvine, USA
2 Aristotle University of Thessaloniki, Greece
3Michigan State University, USA

E-mail: Serguei.Kolos@cern.ch

Abstract. The ATLAS[1] experiment is operated by a highly distributed computing system
which is constantly producing a lot of status information which is used to monitor the experiment
operational conditions as well as to assess the quality of the physics data being taken. For
example the ATLAS High Level Trigger(HLT) algorithms are executed on the online computing
farm consisting from about 1500 nodes. Each HLT algorithm is producing few thousands
histograms, which have to be integrated over the whole farm and carefully analyzed in order
to properly tune the event rejection. In order to handle such non-physics data the Information
Service (IS) facility has been developed in the scope of the ATLAS Trigger and Data Acquisition
(TDAQ)[2] project. The IS provides a high-performance scalable solution for information
exchange in distributed environment. In the course of an ATLAS data taking session the
IS handles about a hundred gigabytes of information which is being constantly updated with
the update interval varying from a second to a few tens of seconds. IS provides access to
any information item on request as well as distributing notification to all the information
subscribers. In the latter case IS subscribers receive information within a few milliseconds after
it was updated. IS can handle arbitrary types of information, including histograms produced
by the HLT applications, and provides C++, Java and Python API. The Information Service
is a unique source of information for the majority of the online monitoring analysis and GUI
applications used to control and monitor the ATLAS experiment. Information Service provides
streaming functionality allowing efficient replication of all or part of the managed information.
This functionality is used to duplicate the subset of the ATLAS monitoring data to the CERN
public network with a latency of a few milliseconds, allowing efficient real-time monitoring of
the data taking from outside the protected ATLAS network. Each information item in IS has
an associated URL which can be used to access that item online via HT'TP protocol. This
functionality is being used by many online monitoring applications which can run in a WEB
browser, providing real-time monitoring information about the ATLAS experiment over the
globe. This paper describes the design and implementation of the IS and presents performance
results which have been taken in the ATLAS operational environment.

1. Introduction

ATLAS[1] is one of the two general-purpose Large Hadron Collider (LHC) experiments at CERN,
which has been put into production in 2010. The ATLAS detector is operated by the TDAQ
system[2] which transfers data from the detector readout to the mass-storage, reducing the data
rate from the initial design 40 MHz bunch crossing rate, delivered by the LHC machine, to a few
hundreds Hertz of recorded data. In order to perform this task the TDAQ system utilizes more

Published under licence by IOP Publishing Ltd 1

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012026 doi:10.1088/1742-6596/396/1/012026

then 2000 modern computing nodes inter-connected by 1Gbit network lines. Each computing
node, used by the TDAQ system, executes multiple software applications for various tasks, like
data-analysis for event rejection, full event building, event recording, event monitoring, etc.
In order to operate in a coherent way all those components require a low-latency and high
performance system for exchanging control and monitoring information in real time. Such a
system has been developed and is now successfully used for operating the experiment. The
system is called Information Service or IS. The IS is used by the TDAQ components for
exchanging their information and at any given moment holds a most up-to-date snapshot of that
information. The ATLAS experts and members of the shift crew can use various monitoring
GUI applications to retrieve and display that information from the IS.

Data Quality Monitoring
Monitoring GUI
Framework Applications

I i

Information Service

I

Event Event Analysis

Monitoring ::> Frameworks
Service

Figure 1. The ATLAS online monitoring system architecture.

)
0]
—
(9]
(2}
—
o
=
n
~
)
>
Q
S
_|
=
(]
(o]
[¢)
3

As shown in Figure 1, IS plays the main role in the information exchange in the ATLAS
online environment. The Event Monitoring Service[3] provides statistical samples of physics
events which are selected according to the given physics properties, like stream, trigger or
sub-detector type. Event Analysis Frameworks produce histograms and publish them to the
Information Service(IS). The Data Quality Monitoring Framework[4] retrieves those histograms
from the IS, analyzes them with the pre-configured data quality algorithms and publishes the
Data Quality results produced by those algorithms back to the IS. All those services as well as
all other TDAQ applications publish their operational statistics to IS.

The core of the Monitoring System is the Information Service, which at any given moment
holds a snapshot of the most up-to-date monitoring information produced by the experiment.
The ATLAS experts and members of the shift crew can use various monitoring GUI applications
to retrieve and display specific information from the IS.

2. The Information Service

The Information Service uses client-server architecture, with the Information Repository acting
as a server to hold information provided by ATLAS software applications. Currently the
Information Repository is implemented by a number of processes, called IS Servers, which are
distributed over several computing nodes in a location transparent way. Each server has a unique
identifier, which a client application uses to communicate with this server. An IS server holds all
information in its memory, saving it on the local hard disk when it is terminated and reloading
this information from the disk at the next start.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012026 doi:10.1088/1742-6596/396/1/012026

2.1. The IS Object Model

The IS uses object model for the stored information. Each information object in IS has a type
and a value. An information value is represented by a fixed set of attributes where each attribute
is of one of the primitive types (like integer, float, double etc.) or of a vector of one of those types.
Information type defines the order of the attributes and their individual types. In addition IS
supports constructed types for attributes, i.e. an attribute of one IS type can be of another
custom IS type. Both type and value are available at run-time via the IS APIL.

The IS type system supports inheritance. An IS information type ’Derived’ may inherit
from another IS type ’'Base’, in which case one can use objects of the type 'Base’ for reading
information of the type 'Derived’. The type inheritance can also be used for the information
selection, as explained in the following sections.

IS types are fully dynamic, which means that each IS client can define its own type of the
information and use it at run-time to write and read objects of that type to and from the IS.
On top of that IS also provides an access to the meta-information for the available IS types.
This information includes the name and human readable description of the type’s attributes,
which was provided at the moment of this type declaration. In order to support this feature, IS
defines the XML format which has to be used for declaring information types and provides the
tool which generates the C++ and Java declarations from that XML. The generated code can
be used to read and write information objects of the given type, while XML description is used
for supporting the meta-type description.

2.2. The Object Identification
Each information object has a unique name in the IS repository. In the current implementation,
the name is a character string which must have the following format:

InformationName ::= ServerName ’.’ ObjectName

The ServerName must be a valid name of one of an existing IS server application. The
ObjectName must be unique for each information object in this IS server.

2.8. The IS Operations
The Information Repository supports three main types of client interactions which are shown in
Figure 2. Information Providers can add information to the IS repository as well as update or

sendCommand
Information\ / nformation
Provider % Information %ue Reader
update, Repository
remove

notify \I /]\ subscribe

Information
Subscriber

Figure 2. The Information Service architecture.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012026 doi:10.1088/1742-6596/396/1/012026

delete already existing information. Information Readers can retrieve the value of an information
from the repository while Information Subscribers can subscribe the repository to be notified
about any changes in it. Each time a Provider creates, updates or deletes an information all
relevant Subscribers are informed.

In addition to the basic getValue operation, the readers of the information can also use
iterators over the selected subset of information. Information can be selected by applying a
Posix style regular expression to the information names or by selecting information objects of
a certain type. IS API supports several advanced ways for the type based object selection, in
particular one can select:

objects of the given type

objects of the given type and of all its sub-types

objects of any type but the given one

objects of any type but the given one and all its sub-types

The type based selection can be combined with the name based one by using ’and’ and ’or’ logical
operations. The same approach is used for the ’subscribe’ operation, which allows subscribing
for a subset of information, which can be defined in the same way as the iterators subset.

2.4. Inter-process Communication Technology

The current IS implementation is based on the Common Object Request Broker Architecture
(CORBA)[5] standard. The C++ implementation is done on top of the omniORB[6] CORBA
broker and Java implementation uses the one that is called JacORB[7]. However, both C++
and Java IS APIs are fully independent of the underlying communication layer, thus allowing
change to a different communication technology without affecting the IS client applications.

IS also relies on a proprietary CORBA Naming Service[8] implementation, where the CORBA
object references to all active IS server applications are held. The Naming Service provides the
principal mechanism through which most clients of an ORB-based system locate objects that
they intend to use. When an IS server application is started, it binds its name with its own
CORBA reference on that Naming Service. Each client, which needs to read or update an
information object on that server, has to obtain first its reference from the Naming Service and
then send the necessary request to the server using that reference.

2.5. The IS server

The server functionality of the Information Service are provided by the binary executable, which
is called IS server. This is a multi-threaded C++ application which implements the IS CORBA
IDL interface and is responsible for keeping all available information in its memory and replying
to client requests. The clients’ requests are processed by the pool of threads with configurable
size. Usually the number of threads in the pool equals to the number of CPU cores on the
computer where the IS server process is running. This is the most efficient configuration with
respect to the server’s performance.

The IS server implements efficient zero-copy scheme for delivering information to subscribers.
When an information update request arrives on the server, it delivers it to all subscribers of that
information from the same worker thread where the request is being processed. This saves the
memory and CPU resources as information copying is not required. This approach works fine
as soon as all subscribers are fast enough to process the incoming messages. However, if one or
several subscribers are not fast enough, there is a risk that all worker threads will be blocked
on delivery of messages to those subscribers. To avoid that, the IS server assigns priority to
each subscriber which is a number varying from zero to the number of worker threads in the
pool. Initially each subscriber has its priority set to the maximum. This defines the number

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012026 doi:10.1088/1742-6596/396/1/012026

of concurrent threads which the IS server can use for delivering messages to this subscriber.
Each time a slow subscriber condition is detected the priority of this subscriber is decremented,
which reduces the number of threads which can be allocated to this subscriber. For slow but
alive subscribers the right balance is reached at some priority number and the system keeps
working with reasonable message delivery rate. For a hanging subscriber, the priority reaches
zero very soon and the IS server starts placing messages to internal queue, which is dedicated to
the subscriber. When the queue gets full (it has configurable maximum size) the new messages
are dropped. As shown in the last chapter of this paper, this scheme works quite well for for
both fast and slow subscribers.

2.6. Programming Languages and Operating Systems

The IS Application Program Interface (API) is available in C++, Java and Python. For the
moment the C++ binaries of the Information Service are produced only for the Linux operating
system as this is the only OS being used by the ATLAS TDAQ. However, the IS code is
compatible with many other platforms, including MacOS, Solaris, HP-UX and few other flavors
of the Unix like operating systems.

3. The IS Graphical User Interfaces

Most of the GUI applications, used in the ATLAS online environment, read information from
IS and display it in various forms. There are two types of such applications: general displays
which can handle any type of IS information by presenting it in some unified way and specialized
displays, which can present only a well defined subset of the information from IS in a specific
way. In the first group, the most widely used applications are the IS Monitor, which allows
to browse the IS repository and shows the value of a currently selected information item, and
the Operational Monitoring Display(OMD), which can display the time evolution of the IS
information values in a form of time series graphs or a distribution of the values amongst a set
of homogeneous IS objects in a form of bar charts. Figures 3 and 4 show snapshots of those
applications.

[l Partition "ALFA 251", server RunParams' (on lxplus315-cern.)| @&
L5

%[<t o |

Hame (A-32) Type Modified Description

= FsH FsH =

RunInfo RunInfo 22/8/12 12104:08,174863 4]

20474 20 [General informat
SOR_RunPar-ans RurParans 447712 18141:25,07 7664 General informat:
Start0fTrigger Boolean 4/7/12 18:411265,747312 | Simple generic ¢!

Value Type Hame Deseription
1341420085 us2 run_nunber ATLAS run number

0 uz2 nax_gvents Maximum number of events

|

]

o uz2 recording_enabled Recording enabled

0 uz2 trigger_type Trigger type for this run

Physics String run_tupe Fun type for this run
5294995342712 g4 detectar_nask Detector Hask for this run
0 uz2 bean_tupe Bean tupe

0 532 beam_energy Eeam Energy

| 10 objects | | 43 attributes

Figure 3. IS Monitor. Figure 4. Operational Monitoring Display.

The second group of the GUI applications contains a number of common tools, used to
present some specific monitoring information in real-time fashion, like for example the Data
Quality Monitoring Display[9], used to show the results of the online data quality assessment
and the Online Histogram Presenter[10], which displays the evolution of online histograms.
Figures 5 and 6 show snapshots of those applications.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012026 doi:10.1088/1742-6596/396/1/012026

wen | zoc | Status (=)

Status ACTIVE

Browser

SieA | SdeC | HilDistibution | TimeAlignment |
== == == e == | mputRae |

e B
3 Received# | |12
] Routed s | [
) =
| amming
ing

i
i
d

f
1
|
j
}
i
|
q
('
i
|
|
I
I
3
!
i
|

SOOIV Q .

P | tar | Lacewen | casciobal |
i
i
il
!
‘
i
!
i
!
f
|
i
!
'
i
i

Figure 5. Online DQM Display. Figure 6. Online Histogram Presenter.

4. The Web IS interface

The IS gives access to every single item in the IS on demand via the HTTP protocol. This
feature is provided by the special Python wrapper script, which accepts a special class of HT'TP
requests (GET URL) and sends back dynamically formed XML text, which contains the value
of the IS object, pointed by the given URL. The idea is depicted in Figure 7. The online ATLAS
web server provides the interface to the outside world while internally it interfaces to multiple
servers written in Python, communicating with them via the Simple Common Gateway Interface
(SCGI) protocol. The latter ones are talking to the online IS Repository.

Information Web IS Web
Service < @=p>| (Python CGI) |@==p»| Server Web
(Apache)
Browser

Figure 7. Web interface to the Information Service

In order to get the value of an IS object from a running ATLAS online system, one can put
a specially formed URL into the any Web browser. The URL must have the following format:

Web-IS-URL ::= ’https://’
Web-IS-host-name ’/’
Web-IS-prefix ’/’
IS-server-name ’/’
InformationName

Here the InformationName is the information ID described in the section 2.2, the Web-IS-host-
name defines the name of the Web server where the service is hosted, and the Web-IS-prefix is a
special pre-defined token which instructs the Apache HTTP daemon that the given URL must
be passed to the Web IS Python server for processing. Below is an example of a Web IS URL,
valid for the the actual system setup!:

https://atlasop.cern.ch/info/current/ATLAS/is/RunParams/RunParams.RunInfo

! One has to take into account that this facility requires authentication and is available only for the members of
the ATLAS collaboration

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012026 doi:10.1088/1742-6596/396/1/012026

This URL points to the information object which contains the number of seconds elapsed
from the start of the current run. When the Python scripts receives such URL, it extracts
the IS information object name from it, reads the corresponding object from IS and sends its
representation in XML format back to the Apache server, which uses it to replay to the client,
originated the request. As an example, you can find below an XML representation of the
RunParams.RunlInfo object, received from the Web IS service:

<obj name="RunParams.RunInfo" type="RunInfo" time="5/9/12 16:21:48.262329">
<attr name="activeTime" descr="Integral time the run is active" type="u32">
<v>22317</v>
</attr>
</obj>
On the client side, one can use CSS, XSL, JavaScript or some other technics to render this
data in an appropriate form. Figure 8 shows a result of applying pre-defined XSL template to
the RunParams.RunInfo XML data, which was developed to produce table representation of any
IS information.

| | 1S Object

i o I & https://atlasop.cern.ch/info/current/; nParams/RunParams.Runinfo O A
RunParams.Runlnfo (5/9/12 16:21:48.262329)
activeTime A :’;;]]j.;

Figure 8. IS information object representation in Web Browser.

The system provides authentication, caching and proxying of the information via widely used
web industry standards and can be accessed via normal browsers or from any programming
language that supports HT'TP. For histograms, the server side can do the rasterization of images
using the ROOT libraries and return those in a number of standard formats (PNG, JPEG, GIF).
Therefore there is no need for any HEP specific software on the client machine.

This design allows users to present the information they are interested in their preferable
form. It strikes a balance between having to copy all available information to the outside world,
even if it is not used, and having only a predefined static sub-set available. The latency to
access an item is determined by the HTTP access, typically in the order of 100 ms if one is
outside of CERN. There are limits on the maximum number of concurrent requests, enforced by
the servers in order to control the load on the online monitoring system, which otherwise might
impact data taking.

Client usage can be as easy as including an IMG tag into a web page where the source is
a URL pointing to the web service. More complicated scenarios include full browsers for all
information written in JavaScript. Scripts are used to regularly access information and post-
process it outside of the ATLAS online network. That is very useful for providing sub-system
specific monitoring view, which requires a sub-set of monitoring data available for the whole
experiment. Different sub-systems may have different ways of post-processing and presenting
their specific information.

5. IS Streaming
The IS Streaming facility provides real-time copy of the online monitoring information from
the master IS Repository to its mirror counterpart. The information is always passed one-way,

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012026 doi:10.1088/1742-6596/396/1/012026

from master to mirror, in order to minimize the impact to the master repository. The delay of
information transfer is at the order of few milliseconds, so the users of the mirror IS repository
practically have the same information snapshot as the ones which are connected to the master
repository. The 'mirror’ Information Service provides the same API as the master one so all
software applications which are capable of interacting with the master IS, will work in the same
way with the mirror one. This makes this facility very attractive for supporting the ATLAS
Remote Shifts, described in the following section, as it involves no additional learning curve for
the shifters and at the same time has zero maintenance cost for the software developers.

5.1. Remote Shift facility

e e — = T Ty

P

] \ : !
! ATLAS Control v CERN Global Public Network(GPN, | Remote
| Network X i ' | Site i
: : \ | . /
| v |

' Information b ‘Mirror’ Monitoring v s N
! Service ﬁ Inform:ation GUI Applications : Remote
' [Service ' Site !
\ ’ \ ! |

Figure 9. Using IS Streaming for Remote Shift facility

In a typical use case, shown in Figure 9 the master repository is the one used by the ATLAS
TDAQ system and the mirror is running in the CERN Global Public Network (GPN), where
it can be used by a limited number of users for the purpose of performing shifts outside the
ATLAS control room. Special network configuration restrictions are applied to prevent any
kind of network connections from the 'mirror’ monitoring nodes to the nodes inside the ATLAS
control network.

6. IS performance measurements

A performance analysis of IS was conducted on the same hardware that was used by the ATLAS
production system at the time of writing. The IS was running on a host with two 4-core Intel
Xeon E5420 CPUs using the default IS configuration with the number of worker threads set to
8.

6.1. Throughput

The maximum throughput is measured using the maximum delivery rate under optimal
conditions, which is the sum of all the messages received by the subscribers in each second.
The maximum rate presented on Figure 10, although theoretical, should be representative of
the overall efficiency of the implementation; it can be thought as the rate of internal queue
operations executed each second by the server application. To reach the maximum rate rate, a
configuration of 3 sending processes and 100 subscribers were used. The sending processes were
emitting messages at a combined rate of just over 2000 messages per second, while the total
delivery rate was recorded to be about 200KHz.

In the next test, IS performance was compared against ActiveMQ[11] and Qpid[12] systems.
ActiveMQ and Qpid are general-purpose messaging systems with publish-subscribe functionality
very similar to the one provided by IS. However, it must be stressed that the design requirements
and purpose of these systems are somewhat broader than those of IS.

Figure 11 shows the delivery rates for equivalent implementations of the same error reporting
interface over the above three publish-subscribe systems. The message payload for those tests

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing

Journal of Physics: Conference Series 396 (2012) 012026 doi:10.1088/1742-6596/396/1/012026

250
i 200
‘E 150
g Figure 10. The maximum delivery rate
g 100 achieved by IS for a message payload size
g of 9 bytes.
s

0 T T T T T 1
0 100 200 300 400 500 600
time(s)

was 50 bytes. For the IS, to reach the maximum rate, a configuration of 12 sending processes
and 44 subscribers was used. In order to reach the maximum delivery rate for both Qpid and
ActiveMQ it was necessary to use more senders and smaller number of receivers. For the Qpid
tests 18 receivers and 40 senders were used, and for the ActiveMQ - 15 receivers and 12 senders.
The disparity between the rate of delivery of IS and the two other evaluated systems can be
attributed to the much larger message header sizes used by their more complex, general purpose
protocols.

—_—S e Qpid = = -ActiveMQ
250

200 Figure 11. The maximum message delivery

150 rate for IS, Qpid and ActiveMQ with payload
: size of 50 bytes. The rates of the Qpid and
ActiveMQ are practically the same, so the
lines are interleaved.

100

g A YWl syl

50

Message Delivery Rate (kHz)

0 100 200 300 400 time (s)

6.2. Slow subscriber use case

A particular case that highlights the design differences between IS and other publish-subscribe
systems is a configuration with a slow subscriber. In this problematic scenario, one of the
subscribers is accepting messages at a much lower rate than the rest (1/5 of the normal rate in
this test). This forces the messaging server to retain the undelivered messages until it reaches a
certain queue size limit, at which point a certain policy of flow control will be enforced.

- —_—IS e Qpid = = -ActiveMQ
I
X 140
£ 120 . . .
2 0 Figure 12. Delivery rates with a slow
bl
JPI S— receiver for IS, Qpid and ActiveMQ. Qpid
8 60 : and ActiveMQ were configured to use a
,,, [. . .
& ‘2‘2 : message dropping policy, which IS uses by
8 S SRS ITTTTIINIIT TS default.
s o ‘ : ‘ :

0 100 200 300 400 time (s)

In this case, the response of a publish-subscribe system can be either to block the producers
from sending new messages, or to start dropping some of the messages for the slow receiver.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012026 doi:10.1088/1742-6596/396/1/012026

IS implements the latter policy; when IS reaches a certain threshold of stored messages, it
begins to drop the slow subscriber’s incoming messages (which does not affect the rest of the
subscribers). This is acceptable as Information Service, by design, does not provide a strong
guarantee of message delivery. This is one of the reasons why control messages in the ATLAS
online environment are not passed via IS.

Both Qpid and ActiveMQ support and use a similar implementation of this policy; however,
unlike IS, both systems will sacrifice the system’s overall performance in order to minimize the
number of dropped messages and to ensure that the messages are dropped in the order they
were received. This effect is responsible for the sharp drop of the delivery rate in Figure 12.

6.3. Latency

To evaluate the latency profile of IS, the average latency was measured against two factors that
typically have an impact on it, the size of the broadcast message and the number of subscribers
to a particular type of message. In both cases the messaging system has to deal with a larger
volume of data as the two factors increase, reducing the amount of available resources per
message and increasing the time that each message will spend on the messaging infrastructure.
Results of the measurements are presented below.

7 25
6 g
— 20 7ol
g > / 2 /
z
=4 / E15
g, pd g e
o
[3 10
&2 /0 3 /
1 /0/ 5
0 é ‘ ‘ ‘ ‘ ‘ o (9‘0/ ‘ ‘ ‘ ‘ ‘
0 2000 4000 6000 8000 10000 o 1000 2000 3000 4000 5000
Message Size (Bytes) Receivers Number

Figure 13. The average recorded latency
against the message size.

Figure 14. The average recorded latency
against the number of subscribers.

The latency on Figure 13 was measured for message sizes between 8 to 8192 bytes, using a
fixed configuration of 100 receivers and a single sender emitting messages at a rate of 100Hz,
reaching a total delivery rate of 10KHz at all times. For the measurements presented on Figure
14 the size of the emitted messages was set to 8 bytes while a single sender was emitting messages
at a frequency of 10Hz. The number of subscribers was in the range of 10 to 4000 subscribers,
which translates to the range of total delivery rates from 100Hz to 40KHz.

7. Operational experience
Currently the ATLAS TDAQ system consists of about 10000 processes, each of them publishing
some information to the IS. The minimal information, published by any single process is the
one that reflects its state. In addition many applications publish some extra information which
represents, for example, the status of the hardware those processes are controlling or the the
quality of the collected physics data. In the end the total amount of information available in
the IS for an average data taking session is at the order of few tens Gigabytes. This information
is periodically updated with the update period varying from 5 to 100 seconds for different
information types. This information is handled by 260 IS server applications distributed on
about 100 computers.

Originally in the first few months of the ATLAS exploitation the some of the IS servers were
prone to the slow subscriber issue, when a hanging or half-dead subscriber can slow down one or

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012026 doi:10.1088/1742-6596/396/1/012026

several IS servers. This issue was affecting the performance of the information update operations,
thus slowing down many online applications, communicating with those servers. In order to fix
the issue the thread pool strategy, described in the section 2.5 had been implemented. After
that fix the Information Service has been working very stably without any major problems.

8. Status and Conclusions

In order to provide efficient information exchange between software applications of the highly
distributed Trigger and DAQ system of the ATLAS experiment, the Information Service has
been implemented and commissioned in the ATLAS production environment. The service
supports arbitrary information types and offers a large variety of access methods for the available
information. By using the efficient communication middle-ware, which is based on the CORBA
standard, the IS provides very good performance and scalability with respect to the number of
information providers and receivers.

Due to its power and flexibility the IS became a central part of the monitoring system for
the ATLAS experiment, providing the main source of the real-time monitoring information for
the ATLAS shifters in the main control room as well as for the remote shifters who can get
the same information via the dedicated remote monitoring system based on the IS information
replication mechanism. Experience gained in the two years of the ATLAS production running,
establishes the evidence on the IS robustness, while the recent tests, which have been conducted
for comparing IS with the other messaging systems available on the market, proves that the IS
has a good performance and scaling potential for the future evolution of the TDAQ system.

References
[1] G. Aad et al.,, The ATLAS experiment at the CERN large hadron collider, Journal of Instrumentation, vol.
3, no. 08, p. S08003, Aug. 2008. [Online]. Available: http://iopscience.iop.org/1748-0221/3/08/S08003
[2] ATLAS high-level trigger, data-acquisition and controls, CERN, Technical Design Report ATLAS-TDR-016
CERN-LHCC-2003-022, 2003. [Online]. Available: http://cdsweb.cern.ch/record/616089/
[3] Scholtes I The ATLAS Event Monitoring Service - Peer-to-Peer Data Distribution in High Energy Physics
(IEEE Trans. Nucl. Sci. vol 55, iss 1, pp 1610-1620).
[4] Kolos S 2007 Data Quality Monitoring Framework for the ATLAS Experiment at the LHC (IEEE Trans. Nucl.
Sci. vol 55, iss 1, pp 1-5).
Common Object Request Broker Architecture home, www.corba.org
omniORB home, omniorb.sourceforge.net
JacORB home, www. jacorb.org
OMG Naming Service specification, http://www.omg.org/spec/NAM/
Iichenko Y Data Quality Monitoring Display for the ATLAS experiment at the LHC, (2010 J. Phys.: Conf.
Ser. 219 022035)
[10] Dotti A The Online Histogram Presenter for the ATLAS experiment: A modular system for histogram
visualization, (2010 J. Phys.: Conf. Ser. 219 032037)
[11] ActiveMQ home, activemq.apache.org
[12] Qpid home, qpid.apache.org

NN =N

