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Form and function of the apical extracellular matrix: new insights 
from Caenorhabditis elegans, Drosophila melanogaster, and the 
vertebrate inner ear

1 Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
2 Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA 

Abstract

Apical extracellular matrices (aECMs) are the extracellular layers on the apical sides of epithelia. aECMs form the outer layer of 
the skin in most animals and line the luminal surface of internal tubular epithelia. Compared to the more conserved basal ECMs 
(basement membranes), aECMs are highly diverse between tissues and between organisms and have been more challenging to 
understand at mechanistic levels. Studies in several genetic model organisms are revealing new insights into aECM composition, 
biogenesis, and function and have begun to illuminate common principles and themes of aECM organization. There is emerging 
evidence that, in addition to mechanical or structural roles, aECMs can participate in reciprocal signaling with associated epithelia 
and other cell types. Studies are also revealing mechanisms underlying the intricate nanopatterns exhibited by many aECMs. In 
this review, we highlight recent findings from well-studied model systems, including the external cuticle and ductal aECMs of 
Caenorhabditis elegans, Drosophila melanogaster, and other insects and the internal aECMs of the vertebrate inner ear.
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Introduction
The extracellular matrix (ECM) is the network of collagens,  
proteoglycans, lipids, enzymes, and other components that sur-
round cells. These networks provide structural and biochemical  
support to cells and tissues and are involved in the communi-
cation between a cell and its external environment, including  
surrounding cells. The ECM plays critical roles in many devel-
opmental processes, including tissue homeostasis, differentia-
tion, and morphogenesis in all animals1. ECMs can be classified  
as apical, basal, or stromal. Basal ECMs, also known as basal  
laminae or basement membranes, are universal and ancient fea-
tures of animal epithelia2 and contain conserved core proteins 
such as laminins and type IV collagens. In contrast to basal and  
stromal ECMs, which serve specialized functions on the inte-
rior sides of tissues, apical ECMs (aECMs) act as barriers along  
the outer surfaces of epithelial tissues such as the skin or inter-
nal tubular organs. External aECMs, such as the cuticle of  
nematodes and arthropods, are highly specialized for their eco-
logical niches yet share common features such as regulation by 
matrix crosslinking enzymes. External aECMs can incorporate  
lipid layers that provide desiccation resistance and perme-
ability barrier function. Internal aECMs, such as those of tubular  
epithelia, often have transient developmental roles in shaping  
tube morphology3,4. Other aECMs found in vertebrates include 
the vascular glycocalyx, the mucin-rich coating of the gastroin-
testinal tract and upper airways, and the alveolar surfactant of  
lungs. Compared to the conserved basal ECM, aECMs are 
diverse in composition and function but contain major conserved  
families such as collagens, lectins, and mucin-related glycopro-
teins (Table 1). Proteins with zona pellucida (ZP) domains5 are  
associated with early stages of aECM formation in multiple 
model systems, while the rigidity of external aECMs is often  
provided by layers of the amino polysaccharide chitin. Here 
we review recent advances in understanding the biosynthesis,  
patterning, and signaling roles of selected model aECMs.

Caenorhabditis elegans aECM components and 
biosynthesis
As the outermost layer of C. elegans skin, the cuticle is an  
accessible model for studies of aECMs. The C. elegans epider-
mis (known as the hypodermis) secretes a complex multilayered  
aECM beginning in late embryogenesis and thereafter in four  
molts, resulting in the mature adult cuticle consisting of an 
outer surface coat, a lipid-rich epicuticle, and the multilayered 
collagenous cuticle (Figure 1a)6–8. Other epithelial aECMs in  
C. elegans include those of internal tubes, such as the excre-
tory duct and vulva, and specialized aECMs of sensory organs4,9.  
Recent bioinformatic analysis has enumerated components 
of the C. elegans ECM (including aECMs), predicting a total  
“matrisome” of over 700 proteins10. The 43 C. elegans ZP pro-
teins have been further classified by phylogenetic methods11,12. 
This “parts list” for C. elegans aECMs remains dauntingly 
complex, with functional or expression data lacking for many  
proteins.

One longstanding question remains: how do complex aECM 
structures assemble, starting in the secretory pathway and  

concluding in the extracellular space? Elegant genetic screens 
identified the conserved protein family TMEM131 as being 
important for ER processing of cuticle collagen cargos13;  
TMEM131 may directly interact with collagens. Interestingly, 
TMEM131 function in collagen biosynthesis appears to be 
conserved, despite low sequence conservation between nema-
tode cuticle collagens and collagens in other organisms. Despite 
their molecular diversity, aECMs may share common factors in  
their biogenesis.

Just over 10% of the 180 C. elegans cuticle collagens were  
identified in classical phenotype-based screening. Loss or gain 
of function in certain cuticle collagens can have dramatic effects 
on body morphology, leading to phenotypes such as dumpy  
(Dpy), long (Lon), roller (Rol), or blistered (Bli); the lack of 
functional information on other collagens may reflect genetic 
redundancy. A recent report found that the laboratory “wild-
type” strain (N2) accumulated a loss-of-function mutation in the  
collagen col-182 that affects the phenotypes caused by other 
collagen mutations14. The standard wild-type strain itself may 
be sensitized to alterations in cuticle function compared to the  
ancestral C. elegans.

The first embryonic epidermal aECM, known as the pre-cuticle 
or embryonic sheath, precedes the collagenous cuticle and is  
essential for epidermal morphogenesis. The pre-cuticle con-
tains multiple ZP-domain proteins including FBN-115, NOAH-1, 
and NOAH-216, as well as extracellular leucine-rich repeat  
proteins17 and lipocalins18. The nidogen- and EGF-domain 
transmembrane protein DEX-1 localizes to multiple aECMs;  
dex-1 loss-of-function mutants resemble multiple ZP mutants, 
suggesting that DEX-1 may act together with one or more ZP  
proteins12. DEX-1 itself is upregulated in response to starva-
tion and is required for structural and functional remodeling of  
the cuticle during the dauer stage19. Subsets of ZP-domain pro-
teins or their interacting partners may contribute to the unique  
characteristics of other aECMs, such as those of the excretory  
canal lumen, sensory organs, or the vulva lumen9,20. Interest-
ingly, many of these aECMs play transient developmental roles in  
the initial establishment of an aECM.

Comparatively little remains known of the biogenesis or func-
tion of the lipid-rich epicuticle, which shares some ultrastruc-
tural similarities with lipid bilayers. Alterations in surface lipid 
composition have been linked to defects in cuticle integrity21  
and resistance to surface bacterial infections22. In C. elegans,  
lipid-binding lipocalins LPR-1 and LPR-3 are required for nor-
mal surface lipid organization and may play roles in transport  
or localization of aECM lipids to the epicuticle18.

The aECM as a signaling center: interactions 
between the C. elegans cuticle and other cells
Emerging evidence has revealed complex interactions between 
the cuticle and the epidermis. Many cuticle collagens are  
upregulated during the synthesis of new cuticle during embryo-
genesis and/or the four post-embryonic molts; within each molt,  
collagen transcription is precisely timed (within 1–2 hours) to  
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Table 1. Selected proteins of the apical extracellular matrix.

Protein family or role Caenorhabditis 
elegans

Drosophila melanogaster Vertebrates References

Collagens COL-182 
BLI-1

Collagens II, V, IX, 
and XI

14,23 
2

Collagen processing TMEM-131 13

Transcription factors LIN-29 
ELT-3

Blimp-1 
Yorkie (YAP/TAZ) 
Ichor 
Ubx

23,24 
25–28

ZP domains FBN-1 
NOAH-1 
NOAH-2

Dumpy (Dp) 
Piopio (Pio) 
NompA 
Trynity (Tyn)

α-tectorin (TECTA) 
β-tectorin (TECTB)

15,16 
3,12,29 
30,31

Nidogen + EGF DEX-1 α-tectorin (TECTA) 12,19 
30,31

eLRRon LET-4, EGG-6, 
SYM-1

Artichoke 17 
32

Extracellular signaling 
pathways

DAF-7/TGFβ 
DBL-1/BMP 
NPR-8

33–36

ABC transporters + 
related

Snustorr (Snu) 
Oskyddad (Osy) 
Snu-like (Snsl)

ABCA12 37,38 
39

Osiris Gore-tex (Gox) 40

Chitin biosynthesis/
deposition

Obstructor-A (ObstA) 
Expansion (Exp) 
Rebuff (Reb) 
Apnoia (Apn)

3,41–43

C-type lectin Schlaff (Slf) 44

Crosslinking enzymes Alas 26

Proteases Lumens interrupted (Lint) 
Notopleural (Np) 
Tracheal-prostasin (Tpr)

27,45

Glycoproteins Otogelin (OTOG) 
Otogelin-like (OTOGL) 
Otoancorin 
Stereocilin

30,46

Only selected proteins are shown owing to limitations of space.

coincide with the cuticle layer being secreted47. Cuticle colla-
gens are also regulated by transcriptional pathways that control 
the developmental progression of stages; for example, multiple  
collagens are activated by the zinc finger transcription factor  
LIN-29, which coordinates the larval-to-adult switch. LIN-29  
and its collagen targets are also upregulated in response to loss 
of function in the collagen BLI-1, a model of cuticle damage23,  
suggesting that collagen expression by the epidermis is subject 
to feedback regulation to maintain cuticle integrity. Disruption  

of collagens localized to annular furrows triggers specific stress 
or antimicrobial responses, suggesting furrows are required for  
sensing environmental conditions48. Conversely, cuticle com-
position may be regulated by environmental conditions such as 
nutrition or population density, possibly via the epidermal  
GATA factor ELT-324.

Molting involves the loss of a cuticle layer and its replacement  
by a new, distinct layer. New findings suggest that the disruption 
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of contacts between the epidermis and cuticle may trigger  
transcriptional activation of epidermal lysosome function49.  
“Activated” lysosomes appear to degrade components of the old 
cuticle, possibly generating raw materials for fresh cuticle syn-
thesis. Loss of function in specific cuticle collagens increases  
autophagy in the epidermis, dependent on the ciliary transport 
function of ASI sensory neurons and the TGFβ signal DAF-733. 
Ciliated sensory neurons contact parts of the epidermis and  
cuticle and might sense cuticle integrity directly or indirectly. 
These studies also suggest overlap between molting path-
ways and factors involved in damage sensing in the mature  
epidermis.

The integrity or function of the cuticle may also be sensed by  
other tissues, implying complex systemic regulation of cuticle 
composition and function. For example, altered collagen lev-
els can affect the level of the neuronally expressed BMP signal  
DBL-134, which acts via SMADs in the epidermis to regulate 
cuticle collagen expression35. These observations suggest the 

operation of a feedback pathway that senses cuticle function; 
the precise mechanism of such feedback is not yet clear but 
could involve mechanosensing by neurons. Cuticle collagen  
synthesis is also inhibited by the neuronally expressed neuropep-
tide receptor NPR-8, leading to elevated Pseudomonas resist-
ance of npr-8 mutants36. How neuronal NPR-8 affects collagen  
expression also remains to be determined.

The aECM of the Drosophila melanogaster cuticle 
and trachea
Like the nematode cuticle, the D. melanogaster cuticle is lay-
ered and serves a protective role but is more rigid and highly  
pigmented; D. melanogaster also produces specialized aECMs 
for sensory organs, appendages, and organ tube formation. 
The D. melanogaster cuticle, like that of most insects, contains 
three major layers: the lipid-rich envelope, protein-rich epi-
cuticle, and a chitinous procuticle (Figure 1b). The procuticle  
provides mechanical strength, while the envelope has a barrier  
function.

Figure 1. Apical extracellular matrices of Caenorhabditis elegans, Drosophila melanogaster, and the vertebrate inner ear. a. Cartoon 
of adult C. elegans cuticle, longitudinal section. The cuticle consists of an outer surface coat (gold), a lipid-rich epicuticle (red), collagenous 
cuticle proper (divided into cortical [blue], medial [gray], fibrous [purple], and basal [navy] layers). The cuticle is secreted by the underlying 
cellular epidermis (green), internal to which is a basement membrane (burgundy). b. Cartoon of D. melanogaster cuticle, consisting of an 
outer lipid-rich envelope (red), glycoprotein-rich epicuticle (yellow), and the chitinous procuticle (blue), formed in the assembly zone at 
the apical surface of the underlying epidermis (green). Pore canals form channels through the cuticle layers to the surface. c. Cartoon of  
D. melanogaster mature tracheal cuticle, showing taenidial folds (blue). Envelope and epicuticle are not shown for simplicity. d. The vertebrate 
tectorial membrane (blue) is shown in cross section, attached to the underlying epithelial ridge of the organ of Corti at its medial edge and to 
the stereocilia of the outer hair cells at its lateral edge. The underlying basement membrane is known as the basilar membrane.
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Recent work has shed light on the formation of the lipid-rich 
envelope. The ZP-domain protein Trynity (Tyn) is required  
for epidermal barrier function; ultrastructural analysis indi-
cates Tyn is specifically required for the lipid envelope29. The  
envelope also contains cuticulin, a complex waterproof  
molecule composed of protein, lipid, and catecholamine. Cuticulin  
deposition requires nanopore canals connecting the apical  
epidermis to the exterior cuticle. The ABC transporter Snustorr 
(Snu) localizes to the apical plasma membrane and transport  
vesicles and is required for cuticulin and lipid deposition to the 
envelope37. The secreted Snu-like protein (Snsl) is also required 
for proper cuticulin deposition and localizes to pore canals,  
dependent on Snu37. Another ABC transporter, Oskyddad 
(Osy), localizes to pore canals and is required for transport of 
cuticular hydrocarbons to the cuticle surface38. Unlike Snu, 
Osy mutants do not affect envelope integrity, and Osy and Snu  
independently localize, suggesting that Osy and Snu act in  
parallel to establish the envelope barrier38. ABC transporters 
such as ABCA12 have also been implicated in the biogenesis of  
lipid-rich components of vertebrate aECM such as keratinocyte 
lamellar bodies and pulmonary surfactant, suggesting possi-
ble molecular similarities in extracellular lipid-based aECM  
formation39.

Nanopores in the cuticle of olfactory sensilla allow odorants to 
reach neurons while blocking large molecules and preventing  
significant fluid loss40. Ultrastructural analysis indicates that cells 
initially form electron-dense protrusions (plasma membrane 
plaques) which provide a scaffold for the assembly of cuticle  
envelope from envelope segments, thereby forming a nanopore. 
The Osiris family transmembrane protein Gore-tex (Gox)  
localizes to intracellular vesicles during cuticle secretion and 
may regulate trafficking of envelope components or patterning of  
endocytic or exocytic activity40.

Cuticle assembly occurs at the epidermal apical plasma  
membrane in the “assembly zone” (Figure 1b), where chitin  
fibers are organized into sheets (laminae) by enzymes and  
structural proteins including chitin synthase, chitin deacetylases, 
chitin-associated proteins (e.g. Obstructor-A/ObstA), ZP-domain 
proteins (Dumpy/Dp and Piopio/Pio), and chitinases3. Sta-
bilization of the cuticle depends on crosslinks mediated by  
catecholamines, glutamine–lysine bridges, and dityrosines. The  
C-type lectin Schlaff (Slf) is required for cuticle compactness 
and appears to promote dityrosine-mediated adhesion between 
the epicuticle and procuticle layers44. Studies in other insects are 
also revealing how the fine structure of the chitinous aECM may  
be regulated. In the locust Locusta migratoria, chitin orien-
tation is under circadian control, with unidirectional fibers 
forming during the day and helicoidal (left-twisting) fibers at  
night50. Day microvilli are oriented such that chitin fibers 
are secreted into the assembly zone in their final orientation, 
whereas night fibers are secreted then self-assembled into the  
final helicoidal structure51. This work suggests that fine aECM 
structure may be determined by the regulated interplay of  
templating on cellular structures and extracellular self-assembly  
mechanisms.

Tracheal tube morphogenesis and the D. melanogaster 
aECM
Respiration in D. melanogaster is mediated by tracheal tubes, 
which extend from the cuticle and ramify through the body. 
The aECM of the trachea forms in two phases: first, a central  
chitin filament forms along the tracheal lumen and promotes 
tube expansion at the expense of tube elongation, then this fila-
ment is degraded and cuticle ridges (taenidial folds) (Figure 1c)  
form in a supracellular helix that extends along the trachea. The 
regular spacing of these taenidial folds is thought to involve  
self-organizing processes in the cortical actin cytoskeleton 
of the tracheal epithelium52 as well as feedback regulation  
between the cytoskeleton and the aECM53. As tracheal aECM 
has been extensively reviewed3,53,54, we highlight selected recent 
insights.

Multiple transcription factors regulate the expression of aECM 
components and enzymes for normal tracheal tube mor-
phogenesis, and, as in C. elegans, some appear to be under  
feedback control by cuticle integrity or function. Multiple  
aECM regulators are repressed by Blimp-125, whose activity 
may be regulated by the feedback mechanism that regulates tae-
nidial spacing53. The Hippo pathway transcription factor Yorkie 
(YAP/TAZ) has a dual role in tracheal morphogenesis, promot-
ing tube elongation via the expression of cytoskeletal factors, 
and promoting water tightness via expression of the crosslinking  
enzyme Alas26. YAP/TAZ signaling may coordinate the regula-
tion of tracheal cytoskeletal dynamics and the aECM. Finally, 
the zinc finger protein Ichor is required for correct lumen  
shaping in the seamless tubes of terminal tracheal branches27  
and promotes the transcription of multiple aECM regulators or 
components, including members of the Osiris family and the  
serine protease Lumens Interrupted (Lint)27.

Tracheal chitin deposition requires chitin synthase and two  
related proteins, Expansion (Exp) and Rebuff (Reb)41. Reb 
mutants display slightly reduced luminal chitin and severely 
reduced luminal chitin-binding protein ObstA, leading to overall 
reduced aECM42. Reb and Exp contain MH2 domains also found  
in SMAD proteins but are thought to act independently of  
canonical TGFβ signaling; Reb may be required for normal  
endocytosis or recycling of ObstA or other components42. 
Apnoia (Apn), a novel transmembrane protein localized to the  
apical side of the tracheal lumen, is required for normal 
tube length and aECM deposition and may be involved in  
vesicular trafficking of tracheal aECM43. Tracheal aECM is 
degraded and removed in a coordinated wave of endocytosis55, 
but how aECM is rapidly cleared from the lumen remains to 
be fully understood. Pore-like taenidial channels between the  
taenidial folds likely control the passage of aECM to the apical 
plasma membrane for endocytosis29. As well as having defec-
tive epidermal barrier function, Tyn mutants display aberrant  
taenidial channels, likely impairing endocytic clearance of lumi-
nal aECMs and resulting in defective gas filling of the trachea29. 
The matriptase-related protease Notopleural (Np) is also essen-
tial for liquid clearance and gas filling of the tracheal tubes45.  
Np mutant embryos have normal chitin deposition and  
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clearance but develop an unstructured aECM lacking taenidial 
folds. Np mutants deposit Dp in the aECM but are blocked in  
Dp condensation or degradation45. Targets of Np cleavage  
include the protease tracheal-prostasin (tpr) and another ZP  
protein, Pio45, suggesting conservation of the matriptase–prostasin  
proteolytic cascade between vertebrates and D. melanogaster. 

D. melanogaster appendage morphogenesis involves 
dynamic regulation of the aECM
Recent findings highlight the critical role aECMs play in  
morphogenesis in external appendages such as legs, wings, 
and halteres. Epithelial cells undergo three-dimensional shape 
changes to drive morphogenetic cell height expansion of the  
apical surface of the D. melanogaster wing and leg56. The protease 
Stubble (Sb) mediates degradation of aECM components such  
as the ZP-domain protein Dp, allowing convergent extension 
of the underlying epithelium and wing elongation56. Evolution-
ary changes in appendage morphology may also reflect changes 
in aECM function: modern-day two-winged flies evolved 
from four-winged ancestors, with the vestigial posterior wings 
now functioning as balancing organs (halteres). The HOX  
transcription factor Ultrabithorax (Ubx) represses wing devel-
opment and promotes haltere development, in part by repres-
sion of the aECM proteases Sb and Np, resulting in failure to 
degrade Dp and thereby preventing aECM remodeling and 
wing extension28. Development of another morphological  
novelty, the posterior lobe of D. melanogaster male genitalia, is 
also regulated by expanded expression of the aECM component  
Dp, revealing variation in aECM expression as a pathway of  
morphogenetic evolution57.

Patterning the aECM of the vertebrate inner ear
The function of the mammalian inner ear rests on a set of  
mechanosensory epithelia and associated aECMs that form 
highly organized 3D structures known in mammals as the cupula, 
the otoconial membrane, and the tectorial membrane (TM)  
(Figure 1d)58. The TM is an extended ribbon-like aECM over-
lying the sensory epithelium of the cochlea (the spiral organ 
of Corti). It is the most complex inner ear aECM and plays  
multiple roles in sensory transduction. Much knowledge of inner 
ear aECMs has come from genetic studies of deafness or other 
inner ear disorders in humans, mice, or zebrafish59,60. These and  
other studies identified key components of the inner ear 
aECMs, including collagens (primarily types II, V, IX, and 
XI) and non-collagenous glycoproteins, including the secreted 
mucin-like otogelins and the ZP-domain-containing α- and  
β-tectorins30. Mutations in α-tectorin are a common cause of 
non-syndromic hearing loss, displaying dominant or recessive  
effects depending on the type of mutation and domain affected.

The TM forms a “roof” between ridges of the sensory epithe-
lium (see Figure 1d). At its medial edge, the TM is anchored to 
the apical surface of the epithelium via the GPI-anchored protein  
otoancorin; at its lower lateral edge, the TM contacts the  
apical stereocilia of three rows of sensorimotor outer hair cells  
(OHCs). Recent genetic and morphological analysis has revealed 
that otogelin, otogelin-like, and the membrane-anchored stere-
ocilin play interrelated roles in connecting the tips of OHC  

stereocilia to the TM46. While otogelin, otogelin-like, and stere-
ocilin all localize independently within OHC hair bundles, 
loss of any one protein disrupts the distribution of the other  
two, suggesting interdependent roles in TM-OHC attachment.

The TM has been thought to have a primarily mechanical role,  
both by virtue of its direct connection to OHC stereocilia and 
via effects on fluid flow in the endolymph of the cochlea61.  
Recent evidence suggests the TM may also regulate the ionic 
environment surrounding the stereocilia. Fluorescence imaging  
revealed that the TM had elevated levels of Ca2+ compared to 
surrounding endolymph; loud sounds decrease the concentra-
tion of TM Ca2+, reducing auditory sensitivity62. It is not yet 
known how the TM regulates Ca2+; however, this study suggests 
that aECMs might have additional unappreciated roles in  
extracellular calcium flux.

Ultrastructural analysis has revealed the remarkably complex  
spatial organization of the inner ear aECMs. The mature TM 
contains multiple structurally distinct layers and regions63 as 
well as other less well-understood structures formed tran-
siently during development64. Recent ultrastructural analyses 
of otoconia or otoliths have also yielded insights into how the  
aECM regulates biomineralization65 and are revealing structural 
changes in the TM during aging and age-related hearing loss66.

The TM in mice develops gradually in late embryogenesis 
and early postnatal development; in its early stages, the TM is  
largely composed of the α- and β-tectorins, followed by ori-
ented collagen fibrils67. Orientation of the collagen fibrils in the  
various TM layers is controlled by signals from the epithe-
lium, as planar cell polarity defects in the epithelium disrupt  
collagen fibril organization67. The fine structure of the TM 
has been thought to arise largely from self-organization in 
the extracellular space, but recent work suggests that both the  
membrane-anchored and the secreted forms of α-tectorin are 
required for organization of the TM31. α-tectorin is GPI anchored 
and recruits collagen fibrils that support the formation of the TM 
at the cell surface. Subsequent release of α-tectorin by cleav-
age of the GPI anchor allows the organization of collagens into 
a multilayered TM, suggesting a model in which the TM devel-
ops by “3D printing” of successive layers on the cell surface  
concomitant with release of the previously patterned layer.

Remaining questions and future directions
In summary, recent studies have expanded our understand-
ing of aECM biogenesis and function across multiple model 
organisms and have begun to highlight shared structural and  
functional principles. With a comprehensive aECM parts list 
in hand, a clear future goal will be systematic analysis of 
expression, along the lines of the basement membrane toolkit 
recently generated for C. elegans68. In comparison to the protein  
components of aECM, a key knowledge gap remains the  
composition and assembly of extracellular lipid layers such as  
the epicuticle and envelope. High-resolution analytical approaches 
such as secondary ion mass spectrometry (SIMS) may offer  
fresh ways to address this problem69. Analysis of aECM assembly 
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continues to rely on in vivo studies, although a long-term 
goal remains the development of in vitro reconstitution 
assays for aECM factors. Such assays could generate a better  
understanding of the interplay between cell-based templating 
and self-organization in aECM patterning. Improved mechanistic 
understanding of aECMs could shed light on the complexi-
ties of the genotype–phenotype interaction in studies of hearing  
loss related to TM dysfunction. Finally, although recent work 
has begun to reveal signaling between aECMs and internal  
tissues, more studies will be required to understand these  
pathways at mechanistic levels.
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