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ABSTRACT OF THE DISSERTATION

Topics in Microeconometrics:

Estimation of a Dynamic Model of Occupational Transitions, Wage and Non-Wage Benefits

Cross Validation Bandwidth Selection for Derivatives of Various Dimensional Densities

Testing the Additive Separability of the Teacher Value Added Effect Semiparametrically

by

Matthew David Baird

Doctor of Philosophy in Economics

University of California, Los Angeles, 2012

Professor Moshe Buchinsky, Chair

I study three separate questions in this dissertation. In Chapter 1, I develop and estimate a

structural dynamic model of occupation and job choice to test hypotheses of the importance

of wages and non-wages and learning in occupational transitions, and find that wages are

approximately 3 times as important as non-wage benefits in decisions and that workers will

pay 70 cents of their hourly wage to avoid the uncertainty surrounding occupational choice.

Chapter 2 develops and tests criteria for cross-validation bandwidth selection for derivatives

of multidimensional densities; for conditional density, joint estimation of the numerator and

denominator bandwidths performs best. Chapter 3 tests the additive separability of the

teacher effect assumption common in the teacher value added models using data from the

Los Angeles Unified School District, and finds that interacting the teacher indicator vari-

ables with a function of the students’ lagged test scores captures most of the nonlinearities,

preserves the heterogeneity of teacher effects, and provides more accurate estimates.
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Preface

This dissertation explores three separate topics in microeconometrics. The first chapter

presents a stochastic dynamic discrete choice model of occupation and job choice. I model

wage and non-wage job offers to understand why agents change occupations, and what the

effects are. I estimate the model using data from the National Longitudinal Study of Youth

1979. Wages are the most important factor in decisions to change jobs and occupations, but

non-wage benefits are also important. Agents are better off most of the time, but not always.

They are willing to pay on average 70 cents of their hourly wage to avoid the uncertainty

surrounding occupational choice. Accurate beliefs and tenure improve efficiency. I would like

to thank Moshe Buchinsky and Maria Casanova for their invaluable and continual help in

this project, as well as Rosa Matzkin, Arturo Harker, Dan Ben-Moshe, and Peter Bergman,

and many other seminar participants.

In Chapter 2, I develop the criteria and consistency of cross validation methods for

bandwidth estimators for high dimensional derivatives of densities. I perform a Monte Carlo

simulation to test the various criteria. The joint estimation of bandwidths for derivatives of

conditional densities outperforms separate estimation. I would like to thank Rosa Matzkin

for financial support and research help, as well as seminar participants for helpful advice,

including Jinyong Hahn and Conan Snider.

In Chapter 3, I present joint research with co-author Peter Bergman analyzing data

from the Los Angeles Unified School District. We experiment with semiparametric estima-

tion strategies to test the additive separability of the teacher effect assumption common in

teacher value added models. Interacting lagged test score with the teacher indicator variables

captures most of the nonlinearities captured in the more flexible Ichimura non-separable in-

dexed model. We would like to thank Rosa Matzkin, Jinyong Hahn and Moshe Buchinsky

for research advice, as well as seminar participants for helpful advice.

I would also like to thank my wonderful and patient wife Michelle for all of her help and

support, and to my family for all of their support throughout my education.
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Chapter 1

Estimation of a Dynamic Model of

Occupational Transitions, Wage and

Non-Wage Benefits

1.1 Introduction

Occupational transitions are increasing in frequency.1 Transitions are not costless; occupational-

specific human capital is lost when switching away from an occupation and there are direct

switching costs, such as moving. However, if workers are in sub-optimal occupations, the

costs are mitigated by the benefits of moving into an occupation where they are more pro-

ductive and receive better benefits.

The proportion of workers switching occupations is high enough to warrant attention,

especially at younger ages. Kambourov and Manovskii (2008) use the Panel Study of Income

Dynamics (PSID) and estimate the average level of occupational mobility is around 13% at

1This result is documented by Kambourov and Manovskii (2008) using the PSID, Moscarini and Vella
(2003) using NLSY, and Perrado et al. (2007) using the PSID. For example, Kambourov and Manovskii
(2008) find, from 1968 to 1997, occupational mobility has increased from 10% to 15% at the one-digit level,
from 12% to 17% at the two-digit level, and from 16% to 20% at the three-digit level. Digit levels are the
level of specificity that the census employs; thus, the one-digit level yields 9 different occupations.
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the one-digit level, 15% at the two-digit level, and 18% at the three-digit level. Markey and

Parks (1989) find similar rates in the January Current Population Survey 1987, and Parrado

et al. (2007) also find a 7% to 11% change at one digit with the PSID. Using the Duncan

Index they also find increasing transition rates over time (through the 1970s and 1980s),

increasing from 20.1% for the 1970s to 26.3% for the 1980s.2 Moscarini and Vella (2003)

find higher transition rates at the three-digit level using the National Longitudinal Study

of Youth (NLSY) at transition rates of 57% to 70% when measuring occupation at a three

digit level. In the data sample used in this chapter from the NLSY, the transition rates, at

2 occupations, are higher than other one-digit levels because the data here is restricted to

young men, below age 32. Young men transition more often than older men, a trend which

this chapter will examine.

Occupational transitions are correlated with various factors, such as increased wages.

The effects of the transitions can, as a result, have a strong impact on the welfare of the

workers. Markey and Parks (1989), using data from the January Current Population Survey

1987, show that around 90% of workers who change occupations report receiving higher

wages, while many cite improved working situations. Longhi and Brynin (2010) use British

and German data sets, and in both samples find that both job and occupational transitions

yield positive changes in both wage and job satisfaction, with job changes that are also

occupation changes being the best off. The NLSY sample used in this chapter has a lower

value, at around 60%, partially as a results of using a younger sample of workers. Delfgaauw

(2007) uses 2003 survey data from the Netherlands and finds that lower job satisfaction leads

to higher job search, and that the type of dissatisfaction leads to where they look for a new

job (within the same organization or to a different organization). While Delfgaauw (2007)

does not investigate the effect of actually changing jobs or occupation on satisfaction, his

research illustrates the reasons for an increase in satisfaction when the change is voluntary.

Although occupation transitions on average are correlated with improved wage and non-

2The Duncan index is the sum across occupations of the absolute values of the change in the percentage
of employment
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wage benefits, there are also costs, including opportunity costs, associated with a transition.

When a worker switches occupations, they forfeit the accrued benefits of the returns to

occupation-specific knowledge. Kambourov and Manovskii (2008) find, ceteris paribus, that

five years of occupational experience is correlated with at least a 12% increase in wages,

while Buchinsky et al. (2010) use data from the PSID and find a return of 3.77-6.33% for

each additional year of occupation experience. The research in this chapter finds values in

between these, at 5.68-11.3%.

Using an estimated structural dynamic model, this chapter demonstrates that the uncer-

tainty surrounding occupational choice is more important to the youngest workers than the

uncertainty surrounding which job to choose. The chapter also shows that the common use

of lagged wage or non-wage offers as proxy for unaccepted offers can be misleading. A one

percent change in the wage offer changes the probability agents switch occupations by 3.1-28

percentage points on average. Wage is 1.8-8.9 times as important to workers as non-wage

benefits in the decision to change occupations, and agents, while better off on average for

an occupation switch, have a higher probability of making an ex-post efficient change with

higher occupational experience, and different direction effects for job tenure, skill level, and

accuracy of beliefs depending on which occupations they are switching from.

1.1.1 Models of Occupation Transitions

The model in this chapter is an expansion of previous economic models of occupational

choice. The Roy model (1951) allows workers to self-select into occupations based on wage-

specific skills and the returns to those skills. These elements are incorporated into the model

used in this chapter. One common model used to explain occupation and job transition is

a matching model. Matching models differentiate workers into types (e.g., high skill and

low skill) and also differentiate the labor market into different skill segments.3 Léné’s model

(2011) allows experience and education to be imperfect substitutes for each other, a feature

3Examples of matching models include Pissarides (1990), Van Ours and Ridder (1995), Gautier (2002),
Léné (2011), Albrecht and Vroman (2002), and Dolado et al. (2009)
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of my model. Léné’s model and the results suggest that there is an entry cost to different

labor segments; my model also includes these costs.

Blumen et al. (1955) develop a mover-stayer model, where high-productive workers

are better able to retain jobs than low productive workers and therefore higher educated

workers have lower transition rates. The search good model (Burdett 1978, Jovanovic 1979)

has transitions that are chosen by workers to improve situations through higher utility. The

model in this chapter is a form of a search good model. Search good models predict lower

transition rates with increased ages. Older workers have had more time to search and find

better jobs and occupations (in terms of overall satisfaction, which will include wage and

non-wage factors) and stay there.

The occupation decision process is well explained and matched in the data with a non-

linear, theory-backed dynamic model. Similar to this chapter, Keane and Wolpin (1997)

estimate a dynamic model of occupational choice using data from NLSY on young men.

Others have followed the use of their discrete choice dynamic model application to occupa-

tional choice.4 Postel-Vinay and Robin (2002) create and estimate a model that examines

firm and employee heterogeneity using data from the 1996-1998 in Déclarations Annuelles

des Données Sociales, a data set of employers and employees from France, and look at equi-

librium effects on wages. Meinicke’s (2010) model is a dynamic occupational choice model

with Bayesian updating for an individual-specific effect on wages. Agents have imperfect

knowledge about their ability within different occupations, but each period they work they

are able to observe a noisy measurement of their productivity and update their beliefs about

the unobserved portion of their ability. This chapter also has agents update their beliefs

about their productivity, but allows firms to update beliefs about the worker’s productivity

as well, and change wage offers according to their beliefs, similar to Felli and Harris (1996)

and Gibbons and Waldman (1999) in a theoretical model. The model in this chapter also

includes non-wage incentives as well as job choice and firing to expand upon the reasons

4For example, Lee 2005, Lee and Wolpin 2006, and Dix-Carneiro (2010)–see also Aguirregabiria and Mira
(2010) and Keane and Wolpin (2008) for a review on these types of models
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for the agent’s occupational choice. Kunze and Troske (2011) show that workers are by age

differentially affected by layoffs and the log wage changes before and after the layoff.

Motivated by the past research on these changes, I look to investigate the decision as

a dynamic process that is a function of job offers that combine both wages and non-wage

benefits, a unique contribution for these dynamic models. I allow for occupation and job

changes, and firing from the firms. Both agents and firms update their beliefs about the

productivity of the workers. The addition of non-wage benefits helps the data match the

model better by more accurately reflecting the reasons for occupational transition. The

model also allows for the comparison of the relative importance of wages and job satisfaction,

a unique contribution. Including wage and non-wage offers in the model gives insight into

how effective of a proxy the lagged wage and non-wage values are for the unaccepted offers.

Also, modeling the selection process controls for selection bias.

1.1.2 Preview of Results

My estimated dynamic model adds to the body of research by establishing five main results:

1) Occupational uncertainty is important to agents, as measured by how much agents will

pay to know which occupation is best for them. 2) The use of the lagged wage or non-wage

offer which is often used as a proxy for the unobserved wage/non-wage offer to measure

improvements can be inaccurate and potentially misleading when used to measure if agents

are better off and the reasons they change occupations. 3) The discounted sum of expected

future utility is the most important factor in an agent’s decision to change occupations,

and the change in the wage offer is 1.8-8.9 times as important as the change in the non-

wage offer. 4) Workers on average have higher lifetime welfare from an occupational change,

and the probability of a good transition increases with higher occupation experience; other

factors, such as job experience, skill level, and accuracy of the agent’s beliefs about their own

productivity, have different signed effects depending on the occupation from which they are

switching. 5) The information that firms gain on worker productivity has a greater influence

5



on whether a worker will change occupations than the information that the worker gains on

his own productivity.

Willingness to Pay for Occupational Knowledge

One important contribution a structural model can make is measuring counterfactuals and

the willingness to pay for information. This chapter adds to the literature on occupational

change by providing the first estimation of how much agents would pay to know which

occupation in any given period is optimal for them in terms of life-time discounted utility.

The importance of occupation changes, in particular for workers just entering the labor

market, is emphasized by the results of these estimates. 19 year olds are willing, on average,

to pay over 10 percent of their hourly wage to know the correct occupation to be in: 0.967

dollars of their hourly wage, which is on average around 8 dollars. On the other hand, they

will pay 0.929 dollars of their wage to know which job offer to accept; early on, making

the correct occupational decision has greater long-term effects than job choice. However, as

workers get older job choice becomes more important than occupation choice; for the entire

sample, workers will pay on average 0.73 dollars to know which occupation to be in, but 0.93

dollars to know which job to choose. These results strengthen the argument for researching

occupational change and in particular for studying the youngest workers who are making

their initial occupation decisions.

Use of Lagged Wage/Non-Wages as Proxy for Offers

Reduced form research that examines the reasons for or the effects of occupation changes

often use the lagged wage or non-wage benefits as a proxy for the current, unobserved,

and unaccepted wage/non-wage offers. This is common throughout the literature, such as

in Kambourov and Manovskii (2008), Markey and Parks (1989), Parrado et al. (2007),

and Longhi and Brynin (2010). However, workers typically make decisions based on the

wage/non-wage offer in their current job or occupation from the current period, and not
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from the previous period.

I test how suitable of a proxy the lagged wage/non-wage benefit is for the unobserved

current period offer during a switch. The correlation coefficients from the simulations be-

tween these two measures are .453-.819 for occupation changes and .379-.585 for job changes,

both low. Using the lagged values as proxy tends to underestimate the benefits from tran-

sitioning. In this chapter, lagged proxies are avoided by the use of a structural model that

includes job offers. By doing without the lagged proxies and its inherent complications of

mis-measurement, the effects of a transition and the reasons why an agent makes a transition

can be more accurately ascertained.

Explaining Transitions

Previous research has demonstrated connections between occupational transitions and many

variables. Kambourov and Manovskii (2008) with the PSID and Markey and Parks (1989)

with CPS data find mobility rates decline with worker’s age and education. Parrado et al.

(2007) come to the same result with the PSID, but argue that both effects have decreased

over time. With data from the British Household Panel Survey across 1984-2006, Longhi

and Brynin (2010) show that overqualified workers (those that have higher education than

the average in their occupation) are less likely to change jobs within occupation. They also

show that those with high wage residuals from their model, a proxy for unobserved factors

affecting wage, are more likely to change jobs but remain within the occupation, and are

less likely to change their occupation. They argue that these workers have high individual-

specific effects, and remain within the occupation to gain the returns from their fixed effects.

The model in this chapter includes a fixed unobserved portion of the wage equation unique

to each individual.

There are potential biases from not properly accounting for the selection process. By

directly modeling how occupations are chosen and switched between, I am able to have

better estimates of the reasons why agents change. Table A.2 demonstrates that workers
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making the transition from white collar to blue collar jobs have significantly lower wages

and non-wage benefits in all categories than their respective peers, at statistically significant

levels. White collar workers might switch into blue collar jobs because they are unable to

garner the wages and non-wage benefits of their peers. They might be able to find higher

wages and non-wage benefits in blue collar jobs. Alternatively, some of them lose their

white collar jobs and use this as an opportunity to switch occupations. The model in this

chapter allows for all of these decisions, and finds that wage is consistently a stronger factor

than non-wage benefits in transition probabilities. For white collar workers, a one percent

change in the wage offer (either in their current occupation or the alternative) has a 3.4-6.0

percentage point marginal effect on the probability they switch to a blue collar job. The

effect is even stronger for blue collar workers changing to white collar (10.9-28 percentage

point marginal effects).

Non-wage benefits also play a role, albeit a smaller one, in the decision to switch occu-

pations and jobs. The average hourly wage in simulations is 12.43 dollars with a standard

deviation of 8.56 dollars; for non-wage benefits, the estimated mean is 4.22 with a standard

deviation of 0.43. The lower standard deviation as well as the lower overall value shows how

non-wage benefits contribute less to the decision process, but does affect it. At mean values

of wage and non-wage benefits in the utility function, the difference between the average

non-wage benefits in white collar and blue collar is equivalent to giving 1.09 dollars higher

hourly wage to blue collar workers, suggesting a difference between the two occupations that

is unmeasured just by wage and the observed non-wage variables. The provision of health

insurance and retirement benefits are equivalent to 0.19 dollars and 0.195 dollars hourly wage

increases respectively. A pleasant work environment, going from a rating of 1 (worst) to 4

(best), is equivalent to a 0.38 dollar hourly wage increase, and an increase in job security

from 1 to 4 is valued at a 0.388 dollar hourly wage increase. Changes in the wage offers

are 1.843-4.218 and 4.855-8.923 times as important for blue and white collar workers respec-

tively as changes in the non-wage offer in their impact on the probability a worker changes
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occupations.

Welfare Effects

Research has established positive wage outcomes for occupation changes.5 Linear regressions

on my model show that leaving voluntarily leads to higher wages (Table A.1), although if the

worker stays within the same occupation while they switch jobs, they have even higher wages

(with two occupations; with ten occupations, log wages are higher if they switch occupations

as well). For the non-wage benefits of health insurance, retirement, pleasant environment,

and job security, I observe similar trends (Table A.3).

Reduced form research tends to look at the change in wages or non-wage benefits in the

next period (such as in Light and McGarry 1998, Longhi and Brynin 2010, Perrado et al.

2007 and Wilson and Green 1990), but fails to capture changes in welfare in the long run.

Many occupation changes are done for the benefits that will accrue over a span of years.

The use of a structural model allows for a natural summary statistic of welfare from an

occupational choice, as the discounted sum of utility combines wage and non-wage benefits

across all future years.

To explore the welfare effects of an occupation change, I estimate welfare through the

ex-post discounted sum of utility. Whenever a job change or an occupation change is made, I

simulate the model forward twice to the end of the model, once where the worker makes the

transition that was ex-ante optimal and once where they do not make the transition. I then

compare the proportion of workers that are ex-post better off, and see what characteristics

improve the likelihood of the transition being better. Workers are on average better off

5As previously mentioned, Perrado et al. (2007) use the PSID and find a negative but insignificant
relationship between occupational change and wages. On the other hand, Longhi and Brynin (2010) with
the British and German data and Wilson and Green (1990) find a positive relationship using the PSID.
There are similar measurements for job mobility; see for example Light and McGarry (1998), who use data
from the NLSY IV/GLS in the regression with deviations from in-job means for time varying variables as
their primary instruments. They find a negative correlation between job mobility and wages, which is near
zero at the beginning of an individual’s life cycle but becomes more negative as they get older. Also, Brand
(2006), using the Wisconsin Longitudinal Study, finds worse outcomes for displaced workers in both wage
and non-wage benefits.
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for both types of changes: 75.9 and 57.4 percent are better off for white and blue collar

occupation changes, and 51.7 and and 74.0 percent for white and blue collar job changes.

Each additional year of occupation experience makes a worker -0.6 to 6.2 percentage points

more likely to make an ex-post efficient occupation change, and each log wage dollar closer

in their beliefs about their true productivity makes them as much as 16.2 percentage points

more likely to make ex-post efficient occupation transition (for workers switching into white

collar jobs). Job changers are also more likely to make an ex-post efficient job change for

each additional year of job tenure (0.94-1.28 percentage points more likely).

Bayesian Learning

One of the possible factors for the change in occupation and job change over the worker’s

life cycle is learning on the part of the agents and the firms. For the agent, learning how

productive they are in different occupations increases the probability they stay in that occu-

pation. It also encourages longer job tenures for high-productivity workers, as they expect

firms to discover how productive they are and reward them accordingly, while switching jobs

would lead to firms undervaluing their unique contributions. A dynamic structural model

allows for direct estimation of the learning and the effects of that learning.

Other research has incorporated Bayesian learning into a dynamic model. Felli and Harris

(1996) build a dynamic model of workers and firms where both are Bayesian learners about

the productivity of the workers, and they show what equilibrium in their model looks like. In

their model, agents are either low or high productivity workers, and they update their beliefs

on the probability they are one or the other. In my model, workers and firms update their

beliefs on a continuous parameter of productivity. Gibbons and Waldman (1999) develop

a theoretical model where firms are Bayesian learners of workers productivity and adjust

wages as beliefs change. Meinecke (2010) includes Bayesian learning and finds that there is

significant learning that happens using NLSY data. However, he does not model the firms

learning, and does not investigate the impact on transition rates. Like Meinecke (2010), I use
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the updating methodology for partially observed data demonstrated by Ansley and Kohn

(1983). Arozamena and Centeno (2006) have learning in their theoretical model, but not in

the estimated, reduced form model. Ackerberg (2003) builds a model with dynamic learning

in an advertising as signaling model. He builds on Eckstein, Horsky and Raban (1988), as do

Clay, Goettler and Wolff (2004). Understanding the role of learning and limited information

opens up the possibility of testing policies that increase initial information accuracy or the

speed of learning.

In order to examine the impact of learning, I conduct counterfactuals; the results show

that the firms’ beliefs about productivity affect choices in the model more than workers’

beliefs. When firm’s have perfect knowledge about the workers’ productivity, the proportion

of white collar workers and those in education increase, and has different effects on the

probability of changing occupations depending on which occupation they are in (white collar

decreases and blue collar increases). The firms’ uncertainty in the model results in higher

occupation changes, as firms’ beliefs set the wages. If the firms know the type of each worker

perfectly, blue collar workers change occupations about the same–on average, 1.09 times as

often–while there is a larger reduction in the frequency of transitions for white collar workers,

at 0.5898 times as often.

1.1.3 Outline

Section 1.2 presents the model and Section 1.3 discusses the data, assumptions and restric-

tions made, and stylized trends and statistics in the data. Section 1.4 describes the empirical

strategy. Section 1.5 explores the results and the implications, including counterfactual stud-

ies. Section 1.6 then concludes.
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1.2 Theoretical Model

In this model, occupation is restricted to two choices: white collar and blue collar. The

division into two occupations retains many of the trends of interest of a more finely divided

categorization. For example, Tables A.1 and A.3 show the coefficients from linear regressions

of next periods wage and non-wage benefits on current wage and non-wage benefits and

various controls for changing job and occupation, and whether they were fired. The analysis

is performed both at the 2 occupation level (white collar vs. blue collar) and 10 occupation

level. The coefficients are very similar, suggesting that these trends are retained with only

two occupations; they also motivate understanding the evolution of wages and non-wage

benefits through job and occupation transitions.

Agents choose every period whether to work or attend school. At the beginning of each

period, they receive an offer from one firm in each occupation. Each offer is a bundle that

includes both a wage and non-wage benefits. If the worker has a previous employer, they

also receive a continuation offer from their previous employer in each occupation. Agents

maximize present value lifetime welfare by choosing every period to be in school or work in

a white collar or blue collar job, as well as whether to stay at their firm when possible or

accept a new job offer. These choices can be summarized in a sequence of dummy variables

{dkjt}k,j,t. k is the choice of schooling (k = 0), white collar (k = 1), or blue collar (k = 2).

j is the choice of a new firm (j = 0) or to stay at the old firm where possible (j = 1). t is

the period.6 Agents maximize lifetime discounted utility

E

[
T∑
t=1

δt−1
∑
k,j

dkjtUkjt|St

]

Ukjt is the per-period utility function. The utility function is constant elasticity of substi-

6For example, if the worker in period t has a job they can return to but accepts instead a job offer in
blue collar, then d00t = 0, d10t = 0, d11t = 0, d20t = 1, and d21t = 0
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tution (CES) as a function of wages and non-wage benefits with an additive random utility

shock. The values of these factors differ depending on their choice of dkjt. St is a vector

of state variables, some of which are individual specific (education, experience in an occu-

pation, etc.) and some of which are population wide (occupation characteristics that affect

job satisfaction). As the model possibilities differ depending on whether the agent has a job

from the previous period that they can return to, each option is separately explained.

1.2.1 Utility Function: Agent Has No Current Employer

First, consider the model when the agents have no previous job to return to, j=0. This

happens either from being the first period of the model, from choosing schooling the previ-

ous period, or from being laid off from their previous job. They chose between 3 options:

education, blue collar work, or white collar work.

Consider the utility function from choosing schooling (k = 0):

U00t = (wρ
00t + bρ00t)

1/ρ + ξ00t

w00t is the wage from schooling; it is set equal to a minimum consumption level cho-

sen exogenously from the model to be the poverty line. b00t is the non-wage benefit from

schooling, and is equal to

b00t = θ0 + βEDAFQT

θ0 is a parameter that measures the relative attractiveness of education vis-à-vis working.

AFQT is the Armed Forces Qualification Test score, a common measure from the NLSY

for mental aptitude. The extent to which agents receive non-wage benefits from schooling

differs by mental aptitude because schooling can be easier depending on their ability. ξ00t
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is a random utility shock, with a mean zero normal distribution and variance σξ, and is

uncorrelated across occupation or schooling.

The utility for choosing to work in occupation k = 1, 2 at a new job is given by

Uk0t = (wρ
k0t + bρk0t)

1/ρ +Mk + ξk0t

bk0t is the non-wage benefits, given by

bk0t = θk + βNWXNW
t

θk is the parameter that measures the relative attractiveness of occupation k against

the other choices. XNW
t is a vector of non-wage benefits, such as whether they offer health

insurance, retirement benefits, provide a pleasant working environment, or have good job

security. Mk is the entry cost associated with starting a new job. wk0t is the wage offer,

modeled by

wk0t = exp{θWk + λk + γkAFQT + βEXP
1k educt +

∑
`=2,3

βEXP
`k exper`t + εk0}

θWk is the occupation log wage intercept; γk is the return to ability (AFQT). λk is a firm-

employee match parameter, unique to a firm and employee. Job offers from new firms come

with a new, λk that is constant as long as the agent is working at that firm. λk is distributed

normally with variance σλ. Agents are more productive in some firms than others and so are

better compensated when working for those firms. If a worker stays with the same firm, then

future periods’ wage offers are a function of the same match parameter. educt is the number

of years they have chosen to do schooling, so that βEXP
1k is the return to education. White

collar and blue collar occupations will reward education differently. experk is the amount of
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experience the agent has in occupation k, given by the number of years they have chosen to

work in that occupation. βEXP
`k is the return to experience in occupation k for an additional

year worked in occupation `. εk0 is a random shock, correlated across occupations but not

across time or with other variables.

1.2.2 Utility Function: Agent Has Current Employer

If the agent has a job that they can return to, then they have 5 choices: education, 2 new

job offers, one for each occupation, and 2 continuation offers to stay with their current firm,

one in each occupation. This can be viewed as a promotion or change of duties between

white and blue collar.

3 of these utility functions are described above, namely Uk0t for k = 0, .., 2. Next, I show

the continuation offers, Uk1t for k = 1, 2.

Uk1t = (wρ
k1t + bρk1t)

1/ρ + ξk1t

The utility function is similar to that of returning to a job, except that the wage offer

differs and there is no job entry cost to be borne.

The wage is given now by

wk1t = exp{θWk + λk + γkafqt + βEXP
1 educt +

∑
`=2,3

βEXP
` exper`t + βTENtent + η̂Fkt + εk1}

The continuation wage function is similar to the initial wage offer, with two differences.

The first difference is a return to tenure in a firm, or the number of years the agent has

worked at the firm, βTENtent. I include returns to job tenure in the model because of

evidence of its importance in the wage equation and how it affects job transitions.7 The

7See Topel (91) for empirical evidence and Felli and Harris (96) for theoretical support
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second difference is that firms learn about their workers productivity after each year worked,

and adjust their wage offer according to their new beliefs.8 η̂Fkt is the firm’s estimate. Each

worker has some true occupation-specific, time-invariant fixed productivity heterogeneity,

ηk. This fixed heterogeneity is unobserved by the agents and the firms. At the end of each

period, both the agent and the firm they worked for that period observe a noisy measurement

of this parameter, and update their beliefs according to Bayes’ Law. Firms adjust their wage

offers depending on their beliefs concerning this parameter.

At the end of each period, there is a certain probability that a worker is laid off. These

probabilities differ depending on various variables, such as their firm tenure, their educa-

tion, which occupation they are in, and their age. These parameters come from exogenous

estimations using the NLSY data, so they can be of use to obtain the firing probabilities

necessary to simulate whether or not a worker is fired. The consequences of being fired are

that they have no job to return to, and so have only the choices between new job offers to

choose between, and the entry cost must be borne.

Additionally, in the data I observe global job satisfaction on a 1-4 scale, with 1 being

the highest report. I use this data to help fit the model, and assume that reports come

from the period utility function, given by whether the report, r, falls into certain parameter

thresholds. Specifically,

rkjt =



1 if Ukjt ≤ q1

2 if q1 < Ukjt ≤ q2

3 if q2 < Ukjt ≤ q3

4 if Ukjt > q3

1.2.3 Value Functions

Given this setup, the value functions for the Bellman equation are as follows:

8See Gibbons and Waldman (1999) for theoretical support for the inclusion of firms updating beliefs
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Vt(St) = max
k,j

{Vkjt(St)}

V00t(St) is the value function for choosing education, and is given by

V00t(St) = U00t + δE

[
max

j
{Vj0t+1(St+1|d00t = 1)}

]

Vk0t(St) for k = 1, ..., K

Vk0t(St) = Uk0t + δE

[
max
j,d

{πk0Vj0t+1(St+1|dk0t = 1) + (1− πk0)Vjdt+1(St+1|dk0t = 1)}
]

πk0 is the probability that the worker is fired from their job. The firing probability is a

function of AFQT, firm tenure, age, and education level.

The other value functions are very similar:

Vk1t(St) = Uk1t + δE

[
max
j,d

{πk1Vj0t+1(St+1|dk1t = 1) + (1− πk1)Vjdt+1(St+1|dk1t = 1)}
]

The terminal value function is given as a scalar multiple of the last periods’ utility:

VkjT (ST |dkjT = 1) = δTUkjT
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1.2.4 Bayesian Updating

I assume that both the agents and the firms that they work for learn about a fixed ability

parameter heterogeneous to each worker and occupation, given by η∗k. All learners start with

a zero mean prior. At the end of every working period, workers and firms observe a noisy

measurement of η∗k for the occupation k worked in, and update beliefs according to Bayes’

Law. This is comparable to each period, workers and firms observing the productivity

of each worker and differencing out all contributing factors to the productivity, such as

education and experience. All that is left after the differencing is η∗k, or fixed ability, and

other unobservables. From this, workers and firms are able to get a better sense of the

productivity of the worker. Firms adjust wage offers accordingly. While firms’ lowering

wages might seem odd, there is evidence of real wage decreases in firms.9 The beliefs of

the workers about their own productivity matter insofar as workers form expectations about

their future wage streams based on what they expect the firms to learn about their own

ability. A worker with a low productivity parameter in occupation k might choose to avoid

job offers from firms in occupation k, expecting the firms to learn about their poor ability

and lower wage offers in the future and lower their wage offer accordingly.

The updating is based on the work of Ansley and Kohn (1983), as also explained by

Meinecke (2010). I use similar notation to Meinecke (2010). Every period, firms and workers

receive a noisy measurement of η∗k given by ηkt = η∗k + vt

Assume that the noise shocks are i.i.d. across individuals and time, but possibly corre-

lated across occupations, and given by

vt ∼ N(0,Ω)

9see McLaughlin (1994) and Card and Hyslop (1997) for empirical evidence, and Gibbon and Waldman
(1997) for theoretical support
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Let η∗ = (η∗1, ..., η
∗
K)

′. Then, at the beginning, each agent receives a draw from

η∗ ∼ N(0,Σ)

The agent uses Bayesian updating according to the following rules. Let the agent have

an initial prior on η∗ be given by

η̂0 ∼ N(0,Σ)

Then, Meinecke (2010) demonstrates how by the independence of η∗ and vt, given an

observation of ηkt, and recognizing that only one ηkt is observed each period, for one occu-

pation,

η̂t+1 = η̂t +GtD
′
t(ηkt − η̂kt)

Gt = Σ̂tD
′
t(Dt(Σ̂t + Ω)D′

t)
−1

Σ̂t+1 = QtΣ̂tQ
′
t +GtΩG

′
t

Qt = IK −Gt

The estimation of the wage fixed effect can be estimated given a wage history and occu-

pational choice by these rules.

1.3 Data and Summary Statistics

The data is from the National Longitudinal Study of Youth 1997 (NLSY) from the years

that have the pertinent data on non-wage benefits and job satisfaction, from 1979-1994. I

restrict the data to agents observed from at least age 18, and limit the upper age to 31

years old to ensure sufficient observations for the later periods on which to estimate the
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model. This captures the years that I am most interested in modeling, when occupations

are decided, early learning happens, and transitions occur. The sample is restricted to males

to abstract from fertility and other cultural incentives of non-work for females. The data is

also restricted to agents that do not report being self-employed to improve the reliability of

wage measurements. Military interviewees are also dropped from the sample. This results in

3,484 agents in the estimated model, with varying amounts of years observed for each agent.

I use the self-reported occupational status to classify their occupation.10 Agents are

classified as in school if they report their primary activity for a year as schooling. A further

description of the methods used, including for selection of job assignment and transitions, is

in the Appendix in Section A.1.

ρ (the CES substitution parameter) and the minimum consumption parameter are chosen

exogenously. ρ is not identified in this model because there are no savings, and so no

intertemporal substitution. I choose a value equal to ρ = 0.75, consistent with the estimates

in Mankiw, Rotemberg, and Summers (1985). This is equivalent to a substitution between

consumption and non-wage benefits of 1/(1 − ρ) = 4. As for the minimum consumption

parameter, I set it equal to the poverty line in 1989, inflated using the same GNP deflator

into 2005 dollars to match the real wage data. The poverty line was 6,310 dollars (US Bureau

of the Census 1993), which inflated into real 2005 dollars is 9,079 dollars. For a forty hour

a week job, worked for 50 weeks in a year, this is equivalent to a 4.54 dollar hourly wage,

which is the minimum consumption parameter value used in this model.

Table 1.1 presents some of the summary statistics associated with this model. The average

log wage is higher in white collar, but so is the variance. This, along with job satisfaction

being higher (lower numbers are better, on a scale of 1-4), shows that on average, white

collar jobs are better. That more people are in blue collar jobs for many periods suggests

individual heterogeneity allows some workers to gain the better white collar offers. That the

average AFQT scores are so different, with white collar workers 14 points higher on average,

10I code their occupation as white collar if the 1990 census occupation recoding is under 400 and blue
collar if the occupation code is over 400. see Table A.5 for a description of the classifications
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or approximately half a standard deviation, reinforces the differences between the employees

in the two occupations. The likelihood of a job change is about twice that of an occupational

change, a trend that my model investigates.

Table 1.1: Summary Statistics

Variable Mean Std. Dev. Min. Max. N
ln(wage) 6.92207 0.565264 0.267677 15.1725 32745
ln(wage), White Collar 7.09365 0.603223 0.267677 13.2723 9864
ln(wage), Blue Collar 6.8481 0.531275 0.325748 15.1725 22881
AFQT 40.5254 29.3399 0 100 3484
AFQT, White Collar 47.2523 30.2847 0 100 19439
AFQT, Blue Collar 33.6001 26.4759 0 100 23730
Change Occs 0.206136 0.404535 0 1 38232
Change Job 0.397138 0.489312 0 1 35494
Change Job Voluntarily 0.618338 0.485813 0 1 12815
Job Satisfaction 1.79517 0.735337 1 4 22492
Job Sat., White Collar 1.6541 0.697299 1 4 10026
Job Sat., Blue Collar 1.79517 0.735337 1 4 22492

Figure 1.1 shows the proportion of the sample in each occupation by their age. The pro-

portion of people in school steadily decreases over the entire period. School is an investment

in the future, which a dynamic model is able to capture because of the future pay-offs. The

highest proportion of people is in blue collar early on, and there is a sharp increase until age

21, after which there is a slow decline. On the other hand, there is only an increase in the

proportion in white collar occupations, partially driven as high-ability agents in school enter

the workforce into white collar jobs.

Figure 1.2 presents the proportion changing occupations, separated into the effect by

origin occupation. Both trends are overall decreasing, but the proportion of workers leaving

blue collar jobs does not decrease much over time. There are different types of white collar

jobs that agents switch out of early or stay in later, captured in the model with higher wages

and non-wage benefits. The model in this chapter attributes the overall decrease in switching
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Figure 1.1: NLSY Sample Proportion in Each Choice by Age
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to learning over time, to occupation-specific human capital that would be lost, to less time

for benefits to offset new occupation entry costs, and to different types of jobs being offered.

Figure 1.2: NLSY Sample Proportion Changing Occupations, by Origin Occupation

18 20 22 24 26 28 30
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Age

P
ro

p
. 
C

h
a
n
g
e
 O

c
c

 

 

Avg Prop. Change Occ White Collar

Avg Prop. Change Occ Blue Collar

Figure A.1a shows average natural log of real wages by age. I deflate the wages using a
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Gross National Product (GNP) deflater to put wages in terms of 2005 dollars. White collar

workers have similar wages as blue collar workers on average in younger years, but follow a

different trajectory after only a few years. Some of these white collar workers are finishing

up school and joining the work force with higher wages, pulling up the average. White color

jobs in general have a higher wage growth profile. There is also sorting into white collar by

the highly productive, pulling up the average wage at a higher rate. Average job satisfaction

(Figure A.1b) steadily improves (lower numbers) for both white and blue collar workers,

and at about the same rate. However, white collar workers consistently report, on average,

higher job satisfaction. The overall improvement in job satisfaction might be reflective of

job and occupation sorting into both occupations, as workers are finding situations in which

they are happy and comfortable more often as more time passes.

Figure A.1c shows the proportion of individuals changing jobs from one year to the next,

by origin occupation. There is a decrease in this proportion as they get older, and blue collar

workers regularly are more likely to change their jobs.

Figure A.2 presents the trends for the four non-wage benefits used in estimation of this

model. The data is not available for all years for the final three variables; however, enough

years are present to allow for the regressions used in the model. There seems to be an overall

increase in each variable for both white and blue collar, except for perhaps in job security.

Workers are getting into better matches as more time passes.

Figure A.3a shows two conditional probabilities. The first is the proportion of job changes

that are within occupation (the complement being job changes that change occupations).

This trend decreases over time, as more and more job changes are part of a change in

occupation. Using a dynamic model that includes job offers will help capture the occupation

changes happening. As the proportion of actual job changes is decreasing over this time as

well, the decrease in overall job changes is outpaced by the decrease in those changing jobs

within occupation, and when a job change does happen, workers are more likely to change

occupations as well. The other plot in Figure A.3a shows the proportion of occupation
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changes that are within the same firm (the complement being occupation changes that

change jobs). This decreases slightly over time as well, but not as dramatically. Overall,

about 20% of workers that are changing occupations do so within the same job. This could

be a promotion or just a change in duties and responsibilities.

The model uses three groups of auxiliary regressions estimated from outside the model:

1) logit regressions to estimate probabilities of being fired, used to estimate firing probabili-

ties (Table A.7) 2) logit and OLS regressions to estimate probabilities of receiving non-wage

benefits or the level of the non-wage benefits, used to model non-wage benefit offers (Table

A.6), and 3) a regression of the probability that workers change jobs regressed on their log

wage, fringe benefits and other controls; the regression coefficients are part of the minimiza-

tion criterion, used to help the fit of the model, and in particular to help with identification

of the separate non-wage benefits (Table A.8).

The sample used to estimate this model is representative of young men in the United

States in general, a group of particular interest with regards to occupation changes for

many studies. More occupation switches happen at younger ages, and these decisions can

have strong long-run effects, as highlighted by the higher amount of money workers would

pay at younger ages to know which occupation is ideal for them (Table 1.3). Focusing on

workers between the ages of 18 and 32 represents the high switching group. The other

restrictions made (male, non-military, non-self-employed) keep the focus on the groups for

which researchers would be primarily interested. The NLSY is a nationally representative

sample of youth during this time period. While the data in use is from 1978-1994, and

the economy and parameters of the model are possibly different 20 years later, the research

in this chapter can be applied to understand historical movements and decisions and can

generally be applied to understand the dynamics of changes today.
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1.4 Estimation

The model is estimated using 14 periods. The value functions are solved recursively for all

periods. The expectations of the maximum value functions in any given period are estimated

using simulation, i.e.

E

[
max
k,j

{Vkjt+1(St+1|dkjt = 1)} |dkjt = 1

]
=

1

R

R∑
r=1

[
max
k,j

{
V r
kjt+1(St+1|dkjt = 1)

}
|dkjt = 1

]

where V r
kjt+1(St+1|dkjt = 1) is the value function given specific draws of the random shocks

ξ (random utility shocks), ε (wage shocks), v (measurement error on η∗), as well as shocks

that determine whether they are fired or not and whether they receive different non-wage

benefits.

Further, given the large state space, I use an interpolation technique, as suggested by Rust

(1997), by taking random draws from the state space at every time period and estimating

the value functions at these points in the state space. I estimate and store the coefficients

from a flexible linear regression with quadratics and certain interaction terms of the state

space on the value.11

I use two occupations: white collar and blue collar. I include four non-wage benefits of

a job: whether it includes health insurance, whether it includes retirement benefits, overall

pleasantness of the job environment, and the perceived job security. All of these variables are

available in the data. For the first two, as discrete variables, I estimate a logit model outside

of this system on the NLSY data. I estimate the probabilities that their job include health

insurance, for example, as a function of their age, age squared, education, AFQT score, age

interacted with education, and age interacted with AFQT score. Then, in the simulations,

I take a random uniform draw, and if the random draw exceeds the probability that, given

their state, they would receive health insurance, then they are modeled as getting a job offer

11Similar in spirit also to Keane and Wolpin (1994); see Aguirregabiria and Mira (2010) for a review of
this methodology
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that includes health insurance. Each occupation has its own set of coefficients.

The latter two non-wage benefits are not binary. In the data, they rank the questions

(such as pleasantness of the job) on a scale of 1 to 4, four being they most strongly agree.

For these regressors, I use the same state variables, but use OLS to estimate parameters and

offer an average score for them, given their state. This, plus a normal random shock (with

variance also determined from the data), yields the continuous variable included in their job

offer for these non-wage benefits.

The firing probabilities are estimated from the data, exogenous to the parameters of my

model. The probability of being fired differs by occupation, estimated using a logit model

including AFQT score, education, job tenure, age, age squared, and age interacted with

education, job tenure, and AFQT score as regressors. Similar to the case of the binary non-

wage benefits, random uniform draws are taken that, if they exceed the probability that that

worker would be fired, conditional on their state, then the agents are fired in the simulations

and have no job to return to the next period.

I estimate the parameters of the model using simulated annealing on a minimization

criterion determined by the method of indirect inference.12 The minimization criterion is

the squared distance between the moments in the data and those predicted by the model

in the simulations. Specifically, the moments (and weight put on those moments) are the

proportion of agents in schooling, white collar, and blue collar at each age (weight of 20);

mean log wage by occupation and age (weight of 2.5); standard deviation of log wages

by occupation but not by age (weight of 25); proportion changing occupations by origin

occupation and age (weight of 15); proportion changing jobs by occupation and age (weight

of 4); proportion changing job voluntarily by occupation and age (weight of 1); average

job satisfaction report by occupation and age (weight of 2); and an auxiliary regression of

whether they changed occupation regressed on the log wage, the non-wage benefits (health

insurance, retirement, job pleasantness, and job security), AFQT score, education, and age

12See Gouriéroux and Montford (1996) for a review on the method of indirect inference.
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(weight of 2).

The average differences in occupation selection after controlling for the wage and observed

non-wage benefits contribute to the identification of the non-wage threshold parameters

θ1 − θ3. The parameters are identified mechanically because there is no constant in the

utility function and no weights on wage or non-wage benefits. The margin across which

agents with different observed AFQT scores but the same wages choose different occupations

helps identify βED, the non-wage benefit return to AFQT. How non-wage benefits affect the

probability agents choose different occupations and make occupation and job changes in

response to non-wage offers contribute to the identification of βFV
j . Observation of the

log wage and its residual for different agents after controlling for agent fixed effects help

identify the variance-covariance matrix of idiosyncratic log wage shocks. Observing the wage

over time for individuals and separating out the fixed effects, and estimating the variance

across individuals and occupations contributes to the identification of the variance-covariance

matrix of individual fixed heterogeneity. The margin of observed log wages for workers with

different education and occupation experience levels helps identify the returns to occupation

experience and schooling. The different behavior of those already in a job and those not in

a job (through firing or schooling) and the margin across which agents will switch jobs help

towards the identification of Mk, the job entry costs. Direct observation of the log wage

contributes to identification of the log wage intercept θwk . Seeing the different behavior of

agents in the final period of the model and previous periods, and how much importance they

place in the second to last period on the value of the last period (which is a direction function

of the scaling parameter) and the utility in the second to last period help identify the terminal

value function scaling parameter δT . Agents with different AFQT scores and all else equal

receiving different wages help identify the log wage returns to ability γk. The variance of

utility shocks σξ is identified through the model; it is not a parameter of interest, and so non-

parametric identification is not important. The different wages of agents with different job

tenures contribute to the identification of the return to job tenure βTEN . The frequency of
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job changes contributes to the identification of the firm-employee match parameter variance

σλ, increasing with a higher variance in the parameter. The job satisfaction report thresholds

qj are identified through the different job satisfaction reports and the model utility; these

thresholds are model-specific and not nonparametrically identified or of interest outside of

this model.

1.5 Results

Figure 1.3 presents the true and simulated proportion in each occupation at different ages.

The model does very well in matching these trends, providing partial evidence in favor of the

model explaining the data. Figure 1.4 shows the proportion of workers switching occupations,

by origin occupation.13 Again, the model fits the data well.

Figure 1.3: Proportion that Choose Each Occupation: Simulated vs. True
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13Origin occupation implies that the graph labeled Blue Collar represents the fraction of workers that were
in a blue collar job and switched to a white collar job, out of the working population of blue collar workers
at a given age. The graph labeled white collar documents transitions in the other direction.
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Figure 1.4: Proportion Changing Occupations: Simulated vs. True
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Figures A.4a-A.4c show the estimated vs. true trends for the proportion changes, average

wages, and average job satisfaction report. The overall trends are captured and the model

is performing well.

Given utility is a function of wages and non-wage benefits, the means and variances of the

wage and the weighted sum of non-wage benefits give information about the decision process

of the agents. Table 1.2 presents the average (over the simulations) for the sample means and

standard deviations. The wage is the hourly wage in cents. Given the utility function, the

units of the non-wage benefits, as a substitute for wage, can roughly be interpreted in terms

of cents as well. The average wage is larger than the average non-wage benefits, which in

sum is equal to 4.22 dollars of the hourly wage in addition to the 12.43 dollars they are paid.

The standard deviation as a fraction of the mean for the wage is much larger than that of

non-wage benefits, suggesting that the higher variation in wages is important in occupation

choice and job sorting.

The estimated parameters for the structural model are given in Table A.10. The esti-

mated parameters highlight the difference between white collar jobs and blue collar jobs.
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Table 1.2: Average Means and Standard Deviations of Wages and Non-Wage Benefits

Mean Standard Deviation
Wage 1243.19 856.038
Non-Wage Ben 422.089 43.936

The log wage returns to education are higher for white collar than blue collar, although

the difference is not as high as the difference in the returns to ability (AFQT, seen in γj).

On the other hand, there is a higher non-wage benefit level for blue collar workers, all else

equal, as seen by the differences in θ. White collar jobs tend to pay more and tend to have

better observed benefits, but between white collar and blue collar jobs if all other factors

were equal, workers on average prefer blue collar jobs.

The correlation between the different occupations’ wage shocks are negative, while the

correlation between unobserved heterogeneities in occupations are positive. The negative

correlation helps spur occupation changes, while the positive heterogeneity correlation im-

plies a large fraction of workers that are better at white collar jobs will also be better at blue

collar jobs than the average. Relative differences will drive the sorting.

The return to job tenure is lower than the return to occupation experience, at about one

half to one quarter the size; for example, an additional blue collar year in a blue collar job

has an estimated return of 5.7%, while an additional year at the same employer increases log

wages only 3.12%. The results are in line with previous research. Kambourov and Manovskii

(2002) show five years of occupational experience have at least a 12% increase in wages, and

Buchinsky et al. (2010) with PSID data estimate a return of 3.77-6.33% for each additional

year of occupation experience. The results in this chapter estimate returns that range from

5.68-11.3, within the range of the other papers.

One way to investigate the dynamics of the model and the various contributing factors to

occupation and job changes is to look at how a change in a parameter affects the proportions

of workers changing occupation and job. I estimate the analytic gradient, the changes in the
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proportion of workers making these changes as each parameter is changed on the margin.14

The results are given in Tables A.11-A.13.

Changes in parameters that make the two occupations (or jobs) closer substitutes increase

probabilities of changes. For example, white collar jobs tend to have higher wages, so any

change in parameters that increase the wages of blue collar jobs (such as returns to blue

collar experience) or decrease the wages of white collar lead to an increase of the probability

that individuals change occupations. On the other hand, making the non-wage benefits less

important also makes the jobs in the different occupations less different, and so decreases

the proportion changing. An increase in the covariance between wage shocks increases the

likelihood of switching occupations, as the wage offers are more likely to be similar. This

reinforces the differences between white collar and blue collar jobs and workers. Increasing

the appeal of education also makes workers less likely to change jobs voluntarily.

1.5.1 Willingness to Pay for Occupational Knowledge

Using a structural model enables calculation of how much agents will pay to avoid the un-

certainty of not knowing the optimal occupation to be in for a given period. The calculation

estimates 1) a worker’s lifetime utility if they knew whether switching or not was optimal

and 2) the worker’s lifetime utility if they didn’t know. From these estimates, I determine

how much money agents would pay in the current period to know for sure which occupation

to be in, i.e. the monetary transfer that would equate the lifetime utility from knowing and

from not knowing. Table 1.3 shows the results for occupation changes, and Table 1.4 for job

changes. Occupational uncertainty is almost as important to workers as job placement un-

certainty, and even more important when workers are young. The average is approximately

the same for white collar and blue collar workers and for whether they have a job to return

14Let Θ be the vector of all of the parameters. ej is a vector of zeros with a value of one for the jth element.
The gradient of changes in the proportion changing occupations with respect to the various parameters is

given by ∂Pr(changeocc)/∂Θ by ∂ ̂Pr(changeocc)
∂Θj

=
Prop(changeocc|Θ+ejs)−Prop(changeocc|Θ)

s . s is set to be one

percent of each parameter value.
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to for occupation changes. There is a larger difference depending on the age of the worker.

The youngest workers that are faced with the decision of switching or not (19 year olds)

are willing to pay over a dollar an hour for white collar workers and 0.93 dollars for blue

collar workers, on average. The average hourly wages for 19 year old workers are 8.09 and

8.24 dollars for white and blue collar workers, respectively, so that workers at age 19 are

willing to give 12.9 and 11.3 percent of their hourly wage to be certain of which occupation

they should be in that early on. The uncertainty associated with which occupation to be in,

in particular early on, are quite large, and show understanding the dynamics surrounding

occupational transitions are important to understand for young workers.

Table 1.3: Portion of Their Hourly Wage Agents Are Willing to Pay to Remove Uncertainty
About Which Occupation

White Collar Blue Collar Both Occupations

A
ll
A
ge
s

Has No Current Job 0.675 0.745 0.718
(0.00190) (0.00178) (0.00183)

Has Current Job 0.750 0.724 0.737
(0.00218) (0.00201) (0.00209)

Both Job Situations 0.726 0.732 0.730
(0.00210) (0.00192) (0.00200)

19
Y
ea
r-
O
ld
s Has No Current Job 0.953 0.915 0.927

(0.00756) (0.00667) (0.00696)
Has Current Job 1.081 0.938 0.988

(0.00877) (0.00787) (0.00819)
Both Job Situations 1.041 0.930 0.967

(0.00841) (0.00747) (0.00780)
Standard Error of the Mean in Parentheses

For the uncertainty surrounding which job to choose, there is not a large difference

between 19 year olds and the whole sample. The differing decisions of which occupation to

be in have longer lasting effects through the returns to occupation experience and the agents’

learning than which job to take, and so have a larger change in how much agents will pay

to be certain as they grow older. The effects of choosing the right occupation early on have

long-lasting effects. Choosing the wrong occupation can mean the worker is stuck there for

years as the opportunity cost of switching increases with higher occupational experience.
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Table 1.4: Hourly Wage Agents Are Willing to Pay to Remove Uncertainty About Which
Job

White Collar Blue Collar Both Occupations
All Ages 1.3178 0.5955 0.9312

(0.0040) (0.0023) (0.0032)
19 Year-Olds 1.2829 0.7561 0.9286

(0.0117) (0.0084) (0.0097)
Standard Error of the Mean in Parentheses

1.5.2 Use of Lagged Wage/Non-Wages as Proxy for Offers

The research on the welfare effects of occupational change use either changes in wages or

non-wage benefits to measure welfare. For example, Longhi and Brynin (2010) and Wilson

and Green (1990) conclude that transitions are efficient based on reduced form estimates of

increased wages. However, typically unable to see wage and non-wage offers, these papers

use the previous period’s wage and non-wage benefits as proxies for what wage and non-wage

offers the agents received before they switched.15 Having a model that explicitly accounts

for the counterfactual offers helps explain how often this is a valid proxy.

The question is what value to use for the wage in their old (origin) occupation: the

wage offer they were given in the choice they did not make in the current switching period

(typically unobserved) or the lagged observed wage from the previous period (the value often

used). Figure A.5a presents kernel density estimates of the difference between the wage in

a worker’s new occupation and either the unaccepted wage offer in their old occupation

or the lagged wage proxy. For both blue collar and white collar workers, using the lagged

wage proxy underestimates the wage growth from switching occupations. Those switching

from blue collar to white collar experience on average a higher increase. However, not all

workers experience a wage increase from switching occupations among those fired. Table

A.14 presents some of these trends. 95 percent have a wage increase for switching from blue

collar after being fired from a white collar job (but only 83 percent if we use the lagged

15As done, for example, in Light and McGarry (1998), Longhi and Brynin (2010), Perrado et al. (2007)
and Wilson and Green (1990).
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test score). For those switching from white collar jobs, 71 percent have a higher wage after

the change. Workers switching from white collar to blue collar are more likely to have

better non-wage benefits, a strong contrast to the trends for blue collar. The correlations

between using the true wage offers and the lagged values reveal that the common practice

of using the previous periods’ values can be misleading and understated. Even for the case

of changing jobs, when both show very high rates of higher wages and non-wage benefits for

changing jobs, the correlation between the differences is surprisingly low, and they tend to

underpredict the true difference (except for the wage white collar case).

As Tables A.14-A.16 show, agents tend to have higher next period wages and non-wage

benefits for a transition. There is a fraction of agents that accept job offers with lower wages

or lower non-wage benefits, emphasizing the various motivations for changing occupations

or jobs.

1.5.3 Explaining Transitions

Workers choose occupation (and thus whether or not to change) based on which choice

maximizes

Vkdt(St) = (wρ
kdt + bρkdt)

1/ρ + ξkdt + δE [Vt+1(St+1|dkdt = 1)]

The choice is a function of wage, non-wage benefits, expectations for the future stream

of utility, and a random shock. The change in the values of these factors and the occupation

changing decisions of agents are informative for how agents respond to changes in the actors.

If workers choose a wage/non-wage offer that has a lower wage, for example, we know that

at least for some workers, they are not just deciding on wages. Using the structural model

allows for estimation of the effect of wage and non-wage offers on transition probabilities,

and not lagged proxy values, which would bias the results.
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For every period for each agent in the model, I store the percentage changes in each of the

four factors (wage, non-wage, expectations for the future utility, and the random shock), as

well as the lag baseline levels for each. Using a probit model, I estimate predictions for how

each factor affects the probability that they switch occupations. I estimate the regressions

separately for which occupation the agents previously were in. The regressors are a quadratic

in age, the percentage increase in the four factors, for both the current occupation and the

alternative occupation, and the previous period’s values for each of these variables. Table 1.5

shows the estimated marginal effects from the probit model by origin occupation for those

without a previous firm to return to (because they were laid off, or had been in school).

Tables A.17 and A.18 show the results for the probability of switching occupations for those

who can return to a job and the results for the probability of changing jobs, respectively.

Table 1.5: Probit Estimated Marginal Effects on Changing Occupations: Has No Current
Employer

Origin Occupation White Collar Blue Collar
Current Occupation: Wage -0.0651*** -0.284***

(0.00472) (0.00589)
Current Occupation: Non-Wage Benefits -0.0117*** -0.0734***

(0.00329) (0.00560)
Current Occupation: ξ 8.22e-06 -1.99e-05

(9.80e-06) (1.67e-05)
Current Occupation: EV -2.849*** -10.25***

(0.220) (0.301)
Other Occupation: Wage 0.0636*** 0.179***

(0.00464) (0.00487)
Other Occupation: Non-Wage Benefits 0.0131*** 0.0971***

(0.00259) (0.00672)
Other Occupation: ξ 8.95e-06 -2.40e-06

(1.09e-05) (2.07e-06)
Other Occupation: EV 2.824*** 10.18***

(0.219) (0.300)
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Wage is an important factor in the decision process for every subset of the sample. For

occupation changes, workers in blue collar jobs are much more responsive to wage changes
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(and to every other change), while for job changes, white collar workers and blue collar

workers respond to wage changes approximately equally. For workers who have jobs to return

to, increases in the wage offer for the firm they are already working for have a larger effect

than offers from other firms; workers who are offered a higher wage to change occupations

within the same firm are more likely to do so. The marginal effects are relatively large,

especially for blue collar. For white collar workers, the marginal effects of a one percent

change in a wage offer range from 3.1 to 6 percentage point change in the probability of

occupation changes, while for blue collars, the range is 10.9 to 28 percentage points. Even

at the lower end of the range, a five percent increase in the white collar wage offer makes a

blue collar worker over 50 percentage points more likely to switch occupations, all else equal.

These results are smaller than those found by Parrado el al. (2007), who determine a one

percentage point increase in the wage offer increases the probability of switching occupations

by 27.8 percentage points. However, Parrado el al. analyze using 8 occupations instead of 2,

so there are more frequent occupation changes. I find job changers are much more responsive

to changes in the wage at the firm they are currently at, with marginal effects of 24.6 to 36.5

percent increased probability of changing jobs for a one percent change in the wage offer.

Expectations for the future stream of utility are the most important factor in decisions

to change occupations or jobs. Expectations for the future value capture all future wages

and non-wage benefits from switching a job. That the future value has approximately 40

times as large of a marginal effect as that of wage is reasonable. Non-wage benefits play an

important role in both the decision to change occupations and to change jobs. Non-wage

benefits are relatively and absolutely more important for workers in blue collar switching to

white collar than workers switching in the other direction. Percentage changes in the wage

offer are only 1.843-4.248 times as important as percentage changes in the non-wage offer

(for white collar workers, the range is 4.855-8.923 times as important). Workers change jobs

because of non-wage offer changes as well, with wage being only 1.55 to 4.626 as important

in the new job offer as the non-wage factor. While wage is always more important than
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non-wage benefits for changing occupations or jobs, the non-wage benefits are an important

aspect of why agents change occupations and change jobs, especially for workers changing

from blue collar to white collar jobs.

I also look at the estimated marginal effects when the percentage increases are interacted

with a quadratic in age in the probit model to allow the effect to change over time. Figures

A.6a-A.6c show the estimated marginal effect by age for the three main factors. Increases in

the wage offer become slightly more important as agents get older, while non-wage benefits

become less important and expected future value’s marginal effects decrease at an even

sharper rate. The marginal effects for expectations for the future utility are approximately

3 times as large for 19 year olds as 31 year olds. After interacting the effects with age, the

marginal effect from a wage change is as large as 40 percent.

1.5.4 Ex-Post Efficiency of Transitions

Whenever an agent decides to change occupations or jobs, I simulate the model forward

along parallel paths, one where they do make this change, and one where they do not make

the transition. This allows calculations of the discounted sum of lifetime utility under the

two options and direct estimates of the difference in ex-post welfare. Figures A.7a and A.7b

are kernel estimations of the densities of the differences in welfare for making the change

and not making the change. There are many positive and many negative differences. Table

1.6 shows the fraction of the density above zero (those that are better off); most are better

off. The proportions better off in lifetime welfare are lower though than the proportions

with higher wages; the common practice of using wage increase to measure welfare benefits

of occupation or job changes overestimate improvements. Those in white collar occupations

are more likely to make good occupation changes to blue collar, while those in blue collar

are more likely to make good job changes.

Figures A.8a and A.8b show the proportion with higher welfare for changing by age of

switch. The longer a worker in a white collar occupation has been in the labor market,
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Table 1.6: Proportions Ex-Post Better Off in Simulations for Transitioning

White Collar Blue Collar

Prop. Better, Changed Occupation
0.759 0.574
(0.428) (0.494)

Prop. Better, Changed Job
0.517 0.740
(0.500) (0.439)

Standard Deviation in Parentheses

the more likely they are to make an ex-post better occupation transition. This reflects the

learning of the agents and the divergence of job offers in different occupations as agents

specialize. For both occupations, the older agents are, the more likely they are to make

an ex-post efficient job transition. A more thorough investigation through estimating the

contributing factors to ex-post efficient transitions using estimation of probit models helps

to explain what characteristics of an agent and their situation improve the likelihood of an

ex-post improving transition. I estimate the probit models for the probability the worker

makes a welfare improving transition whenever they change. I also estimate probit models

that include the difference in wage offers to see what portion of the probability that they

do better is just from the higher wage offer in the changing period. The estimated marginal

effects for occupation changers are given in Table 1.7. In the model, agents must either

work or go to school each period; therefore, age is perfectly collinear with education and

occupation experience, and is omitted as a control. Table A.19 presents the results for job

changers.

Experience in the labor market matters, and in particular, the strongest positive effect

for occupation changers is how long the worker has been in the occupation into which they

are switching. Workers are as much as 6.2 percentage points more likely to be better off

for a single year of occupation experience in the destination occupation, a hardly negligible

factor. For job switchers, on the other hand, the effect is actually negative for white collar

experience. The result is robust across the specifications, and is as large as -4.85 percentage

point decrease. However, this is likely an indirect effect, in that workers would have been
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Table 1.7: Probit Estimated Marginal Effects: Ex-Post Better Off for Occupation Change

White Collar Blue Collar White Collar Blue Collar
Years Education 0.00600 0.0153*** 0.0306*** 0.00266

(0.00470) (0.00512) (0.00467) (0.00520)
Years Experience WC 0.00150 0.0620*** 0.00954*** 0.0526***

(0.00178) (0.00208) (0.00175) (0.00215)
Years Experience BC 0.00646*** 0.00516*** 0.0190*** -0.00595***

(0.00126) (0.00136) (0.00128) (0.00142)
Years Job Tenure 0.0113*** -0.0191*** 0.0185*** -0.00733***

(0.00223) (0.00220) (0.00220) (0.00227)
AFQT -0.00341*** 0.00781*** -0.00237*** 0.00677***

(0.000145) (0.000169) (0.000144) (0.000173)
|η∗WC − η̂WC | 0.158*** -0.156*** 0.186*** -0.162***

(0.0416) (0.0405) (0.0409) (0.0410)
|η∗BC − η̂BC | 0.0353 0.0433 0.0268 0.0383

(0.0229) (0.0286) (0.0224) (0.0290)
|η∗WC − η̂FWC | 0.0937*** -0.0203 0.0974*** -0.0302

(0.0306) (0.0335) (0.0300) (0.0340)
|η∗BC − η̂FBC | -0.00111 0.0517*** -0.00214 0.0491***

(0.0164) (0.0174) (0.0161) (0.0176)
Difference in Wage Offers 0.335*** 0.299***

(0.00856) (0.00936)
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

better off with blue collar experience or education, and not that white collar experience

actually makes them worse off.

Job tenure matters even more than occupation experience, but the effect is not always

positive. For job switchers, more job tenure implies a better transition probability, by about

1 percentage point. The longer workers are with a firm, the more they know about the firm

and are more likely to make informed switching decisions. However, for occupation changes,

only workers switching from white collar to blue collar tend to be better off for higher job

tenures. Workers switching the other direction sometimes leave a good job situation in a

blue collar job for a seemingly better situation only to have the firms discover their type

and lower their wage offers. On the other hand, AFQT score has the opposite effect. Only

workers switching from blue collar to white collar jobs benefit from higher AFQT score. This
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supports the idea that workers with lower AFQT scores can be worse off for switching into

blue collar, where they might have hoped for a better long-term solution but not achieved

it and missed out on blue collar years of experience. AFQT is correlated with all workers

being worse off for a job change.

The accuracy of beliefs generally have no effect for job changers. The beliefs are con-

cerning occupation-specific ability and not job-specific ability, so this comes as no surprise.

However, accurate beliefs help the most for occupation switchers for their white collar pro-

ductivity. For each log-wage dollar closer to their true productivity in white collar, workers

are 15.6 percentage points more likely to be better off for switching into white collar. Firm

beliefs’ inaccuracy in the origin occupation is also correlated with improvements.

Workers are typically better off for their changes, but certain factors make them more

likely to improve their situation from a change. Primarily, longer experience and tenure are

the strongest factors, and the two different occupations are very similar for improving job

change coefficients, but different for improving occupation changes, switching signs on many

of the covariates.

1.5.5 Counterfactual Test: Information on Type: Type is Known

Figure A.9 shows the average absolute deviations in beliefs about ability and actual ability.

There is learning for both white collar and blue collar individual effects. Workers tend to

have less uncertainty about their white collar capabilities. 15 years of learning reduces the

deviations by about half.

This section tests what would happen if workers did not have to learn their occupation

productivity, but already knew, or if the firm knew the workers’ productivities, and workers

did not, or if both knew. The results are given in a series of figures that compare the

simulations for if they update and if they do not need to. Figure 1.5 shows the proportion

switching occupations. Whether or not agents update does not have much of an effect,

surprisingly. On the other hand, if the firms know the workers’ type (and offer them wages
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accordingly), this has a large effect on the probability that the workers switch occupations,

overall decreasing the amount of switching, but all through reduction in those switching

away from white collar jobs. These workers switch less than half as often as if the firms are

uncertain about their productivity.

Figure 1.5: Proportion Switching Occupations: Simulations Testing Information
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The remaining figures show more of what happens with less uncertainty. Again, the case

of the employers having full knowledge about the worker’s ability is the test that changes

the most factors. The wage is determined by the firm’s beliefs, and not the workers’ beliefs.

When the firms know the type of the workers, there are substantially more white collar

workers and less blue collar workers, and more people go to school for longer. Firms knowing

the type offer high wages to all productive white collar workers, and the workers do not need

to learn their type or deal with the uncertainty associated, and choose to work in white

collar jobs more.
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1.6 Conclusion

This chapter presents a dynamic stochastic discrete choice model of occupational choice in

order to examine the role of non-wage benefits and learning in occupational choice and tran-

sitions. The model is estimated using data from NLSY. The chapter reveals some interesting

results that coincide with results of previous non-dynamic estimates, but offers further in-

sight. Certain tests are only possible by using a structural model, such as the willingness of

agents to pay to avoid the uncertainty with occupational choice, lifetime welfare, Bayesian

learning, and the use of wage and non-wage offers instead of lagged proxies both for measur-

ing improvements in these factors and how they induce occupation and job changes. Workers

make switches mostly due to changes in their expectations concerning what wage they would

earn in each occupation, but non-wage benefits are also important, at about one third the

impact on transition probabilities. The structural model is able to show the effect of differ-

ent factors in the decision to switch in ways that previous literature has not been able to. I

find that workers have a change of 3.4-6.0 percentage points in their likelihood of changing

occupations from a one percentage point change in the wage offer for white collar, and even

higher for blue collar workers. The importance of expectations for the future become less

important as agents get older, as the agents have less years to enjoy those benefits. The

importance of non-wage benefits has ambiguous effects over time.

Agents are on average better off for both occupation and job transitions. However, the

probability of being better off from an occupation change increases with accuracy of beliefs

about their ability and with occupation and educational tenure, conditional on age. These

results, along with higher utility for when workers know their type, suggest that workers are

better off for any additional information they have about their productivity. Given workers

will pay almost a dollar on average of their hourly wage to know which occupation they

should switch into, understanding what affects the probability of an improvement transition

is helpful.

Information is important, non-wage benefits are part of the decision process but wages
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are more important, and policy makers would need to be careful with any policy changes,

as there could be numerous unintended consequences.
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A Appendix

A.1 Data Selection Procedure

Various methods have been used to code when an occupation has been changed and what

their occupation is. The most common and natural definition is when there is a change in the

reported occupation (for example, as used in Kambourov and Manovskii (2008) and Parrado

et al. 2007). Mellow and Snider (1983) argue that there is a great deal of misclassification

in occupation. They match self-reported occupation in the CPS with employer records and

find only 58 percent match rates at the three-digit level and 81 percent at the one-digit

level. Mathiowetz (1992) does a similar matching and finds a higher match rate at 87% at

the three-digit level. Longhi and Brynin (2010) argue that this is unreliable, overestimating

transitions when interviewees change their report when they actually haven’t changed their

occupation. They only record an occupation change when both a new occupation code is

recorded and a change of job is also recorded. They find that this significantly decreases the

measured amount of occupational transitions, and argue that this is the measure that should

be used. However, this underreports changes, because some occupation changes are clearly

within jobs. I allow for occupation changes within firms, such as through promotion. Sullivan

(2009) uses the job that is recorded in the most number of weeks as their occupation. I use the

definition of what the agent reports as their primary occupation each year, where possible,

to link the job to the wage and non-wage benefits reported annually. The misclassification

issues in this chapter are less severe because occupation is restricted to blue collar and white

collar jobs.

The first restriction imposed is that the interviewee is male and observed from at least

age 18 in the data. I drop those that report they are self-employed. The most consequential

decision I had to impose on the data interpretation process is the selection of which of their

various reported jobs each period was their primary job, and how long they had been there.

Some years and for some variables they reported their current job, and this was used as the
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most reliable classification. However, some years and some variables did not report current

occupation; instead, the agents reported on up to five jobs they had held this year. The

following rules, in order of the priority of the rule (rules with better, i.e. lower, priority

numbers overruled potentially conflicting assignments from worse priority numbers) were

used to select which was their primary current job:

1. The first in the priority list (1 > 2 > 3 > 4 > 5) that they say they are still in or do

not record a stop date

2. If there is none from step 1, set equal to occupation with most recent stop date

3. If there is no stop date for any, choose highest priority occupation listed

4. If no occupations are listed that year, but difference in tenure across the two periods

is greater than 52 (stayed at same job) and occupation is the same tenure before and

after is the same, set occupation in the intermediate (missing year) equal to that value

Using this assignment procedure, I then assign which wage, tenure, and non-wage benefits

belong to their current job.

Next, I need to determine when the interviewee changed jobs. The following rules were

used for assignment (again, in order of priority), conditional on their working that period

1. The job chosen has a recorded stop date in that year

2. If the job chosen next period is not the earliest start date next period...

3. The next year has an occupation with the same occupation number and larger tenure

but is not job X

4. The next year’s tenure is less than tenure in the current year + 25

5. They record they are no longer there

6. Change to not changed job if past year and future year suggest the same job throughout
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Finally, I need to assign whether they left their job voluntarily. Some of the time, the

agents reported on the reason they left their job. Conditional on them changing jobs, the

assignment rules are

1. If still working at the end of the year, but stop next year, among the jobs with tenures

greater than this year’s tenure and not still or unreported reason, choose the one with

the earliest quit date and use that reason

2. Use the job chosen that has a recorded stop date in that year, and that period’s quit

reason

With all of these methods, I performed numerous inspections of the raw data to see if

the assignments from the rules reflected what I would intuitively assumed happened on a

case by case level, and found it to be reliable.
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A.2 Tables

Table A.1: NLSY Sample Regressions on Next Period Log Wage to Compare 2 Occupations
vs. 10

2 occupations 10 occupations
ln(wage) 0.532*** 0.531***

(0.0159) (0.0159)
Change Occupation 0.0223 0.0331***

(0.0162) (0.0123)
Change Job -0.0670*** -0.0752***

(0.0128) (0.0132)
Period 0.0372*** 0.0391***

(0.00171) (0.00182)
Change Job × Period -0.0120*** -0.0107***

(0.00167) (0.00171)
Change Occupation × Period -0.00230 -0.00575***

(0.00214) (0.00157)
Left Voluntarily 0.102*** 0.101***

(0.0103) (0.0131)
Left Voluntarily × Change Occupation -0.0338** -0.00980

(0.0170) (0.0138)
Period is the Number of Years Older than 17

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table A.2: Average Job Characteristics, White Collar

Variable ln(wage) Health Ins. Retire. Pleasant Env. Job Secure
Stayed in White Collar 7.13926 0.84011 0.70363 3.36347 3.24771

(.00732) (.00474) (.00744) (.02252) (0.02508)
Switched to Blue Collar 6.84943 0.70666 0.54150 3.18322 3.05100

(0.01252) (0.01141) (0.01839) (0.03521) (0.04483)
Standard Errors of the Mean in Parentheses
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Table A.7: Probability Fired Coefficient Results

White Collar Blue Collar
AFQT -0.00169 -0.0107***

(0.00342) (0.00183)
Years of Education -0.0132 0.00414

(0.0833) (0.0781)
Years of Job Seniority -0.336*** -0.135***

(0.0846) (0.0492)
Period -0.114* -0.0718**

(0.0620) (0.0306)
Period × AFQT -0.000514 0.000541*

(0.000466) (0.000278)
Period × Years of Education -5.53e-05 -0.0152

(0.00925) (0.00980)
Period × Years of Job Seniority 0.0242*** 0.00862

(0.00848) (0.00526)
Period2 0.00858** 0.00479**

(0.00415) (0.00209)
Period is the Number of Years Older than 17

Table A.8: Auxiliary Regression Results: OLS Regression of Probability Changed Job

ln(wage) -0.0657***
(0.0199)

Years of Educ 0.00344
(0.00693)

Health Ins. -0.135***
(0.0283)

Retirement -0.0693***
(0.0246)

Pleasant Env. 0.0104
(0.0130)

Job Secure -0.0821***
(0.0126)

AFQT -0.000342
(0.000424)

Period -0.0274***
(0.00764)

Period is the Number of Years Older than 17
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Table A.9: Model Parameters

θk: non-wage benefits intercept for schooling, white collar, and blue collar
βED: non-wage marginal benefit for higher ability (AFQT score)
βFV
j : non-wage return for fringe benefit health insurance (j = 1), retirement (j = 2),

pleasant environment (j = 3), and job security (j = 4)
Σε: variance-covariance matrix for the shock to wages for white collar and blue collar
Ση: variance-covariance matrix for the unobserved ability that agents and firms update

beliefs on (this also effects the speed of learning)
βEXP
jk : log wage returns to experience for schooling (j = 1), white collar experience (j = 2),

and blue collar work (j = 3), having different returns in white collar jobs (k = 1)
and blue collar jobs (k = 2)

Mk: job entry cost for occupation k
θWk : log wage intercept for white collar (k = 1) and blue collar (k = 2)
δT : terminal value function scaling parameter
γk: log wage return to ability (AFQT) score for white collar (k = 1) and blue collar

(k = 2)
σξ: variance of random utility shocks
βTEN : log wage return to job tenure
σλ: firm-employee match parameter variance
qj: job satisfaction report thresholds
ρ: CES utility parameter

Table A.10: Parameter Values

θ1 θ2 θ3 βED βFV
1 βFV

2 βFV
3

87.62175 270.95601 357.36965 -3.10820 14.86137 15.01811 9.89115
βFV
4 Σε

11 Σε
22 Σε

12 Ση
11 Ση

22 Ση
12

10.00293 0.04559 0.07226 -0.01410 0.03130 0.11755 0.00589
βEXP
11 βEXP

21 βEXP
31 βEXP

12 βEXP
22 βEXP

32 M1

0.11732 0.11286 0.08143 0.07022 0.00025 0.05689 15.37853
M2 θW1 θW2 δT γ1 γ2 σξ

-42.32591 5.07054 5.92431 8.10474 0.01825 0.00992 16.80672
βTEN σλ q1 q2 q3
0.03125 0.04789 438.15201 740.43073 2243.70070
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Table A.11: ∂Pr(ChangeOcc)/∂Θ

θ1 θ2 θ3 βED βFV
1 βFV

2 βFV
3

0.00002 -0.00189 0.00164 0.00065 0.00264 -0.00058 -0.00243
βFV
4 Σε

11 Σε
22 Σε

12 Ση
11 Ση

22 Ση
12

-0.00144 0.19766 0.23079 1.00408 -1.96154 -0.10814 1.36659
βEXP
11 βEXP

21 βEXP
31 βEXP

12 βEXP
22 βEXP

32 M1

-0.21345 -13.09097 0.24027 0.76136 -3.35018 14.90318 -0.00037
M2 θW1 θW2 δT γ1 γ2 σξ

0.00021 -0.59318 0.81308 -0.00619 -53.91620 52.37938 -0.00021
βTEN σλ q1 q2 q3
0.05607 -1.14305 0.00000 0.00000 0.00000

Table A.12: ∂Pr(ChangeJob)/∂Θ

θ1 θ2 θ3 βED βFV
1 βFV

2 βFV
3

-0.00001 0.00059 -0.00052 0.00070 -0.00117 -0.00018 -0.00022
βFV
4 Σε

11 Σε
22 Σε

12 Ση
11 Ση

22 Ση
12

-0.00002 -0.13299 -0.28996 -0.19434 0.16505 0.07467 -0.79205
βEXP
11 βEXP

21 βEXP
31 βEXP

12 βEXP
22 βEXP

32 M1

0.11554 6.74482 -1.65788 0.11452 0.53241 -4.08157 -0.00015
M2 θW1 θW2 δT γ1 γ2 σξ

-0.00037 0.40231 -0.36844 0.00819 20.55622 -21.46550 -0.00022
βTEN σλ q1 q2 q3
2.94679 0.31494 0.00000 0.00000 0.00000

Table A.13: ∂Pr(LeaveV olunt.)/∂Θ

θ1 θ2 θ3 βED βFV
1 βFV

2 βFV
3

-0.00020 0.00007 0.00015 -0.00273 0.00217 -0.00061 -0.00205
βFV
4 Σε

11 Σε
22 Σε

12 Ση
11 Ση

22 Ση
12

-0.00198 -0.27198 -0.26966 0.17893 0.45996 0.16133 -0.26433
βEXP
11 βEXP

21 βEXP
31 βEXP

12 βEXP
22 βEXP

32 M1

-0.59384 -0.31435 0.79196 -1.15436 0.94397 1.59774 -0.00023
M2 θW1 θW2 δT γ1 γ2 σξ

-0.00008 -0.06945 -0.07737 -0.00680 -0.01539 1.82162 -0.00003
βTEN σλ q1 q2 q3
3.10272 -0.04343 0.00000 0.00000 0.00000
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Table A.14: Simulated Data Trends Comparing Accepted Offers in the Other Occupation
and Current Occupation: Has No Current Employer

(1) (2) (3) (4) (5)
Wage: White Collar 0.81224 0.94524 0.84609 509.50277 417.99300
Non-Wage Benefits: White Collar 0.42181 0.73195 0.36767 199.57978 -132.22954
Wage: Blue Collar 0.55496 0.37321 0.34211 -7.16490 -9.14055
Non-Wage Benefits: Blue Collar 0.45047 0.74012 0.70635 14.06388 11.69322

Table A.15: Simulated Data Trends Comparing Accepted Offers in the Other Occupation
and Current Occupation: Has Current Employer

(1) (2) (3) (4) (5)
Wage: White Collar 0.40767 0.95473 0.76575 535.25240 243.69172
Non-Wage Benefits: White Collar 0.33008 0.65808 0.25638 152.39689 -308.17574
Wage: Blue Collar 0.47969 0.83441 0.69150 435.49440 162.69235
Non-Wage Benefits: Blue Collar 0.35856 0.68641 0.39978 188.15580 -178.80537

Table A.16: Simulated Data Trends Comparing Accepted Offers in the Other Job and Cur-
rent Job

(1) (2) (3) (4) (5)
Wage: White Collar 0.35702 1.00000 1.00000 6917.89655 6980.04158
Non-Wage Benefits: White Collar 0.32531 1.00000 0.99885 3567.26469 3094.60481
Wage: Blue Collar 0.56997 1.00000 1.00000 69.23417 58.98680
Non-Wage Benefits: Blue Collar 0.57478 0.99994 0.99994 59.59530 49.62775

Tables A.14-A.16

1. Correlation Coefficient

2. Proportion Greater than Zero, Difference Offer in Other Occupation Minus Offer in
Current Occupation

3. Proportion Greater Than Zero, Difference Offer in Other Occupation Minus Previous
Period Wage/Non-wage

4. Mean Difference, Accepted Offer in Other Occupation Minus Offer in Current Occu-
pation

5. Mean Difference, Accepted Offer in Other Occupation Minus Previous Period’s
Wage/Non-Wage
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Table A.17: Probit Estimated Marginal Effects on Changing Occupations: Has Current
Employer

Origin Occupation White Collar Blue Collar
Current Occupation, Current Job: Wage -0.0430*** -0.213***

(0.00177) (0.00313)
Current Occupation, Current Job: ξ -1.95e-06 -1.11e-05

(2.86e-06) (9.88e-06)
Current Occupation, Current Job: EV -1.356*** -4.348***

(0.0743) (0.162)
Current Occupation, New Job: Wage -0.0346*** -0.116***

(0.00161) (0.00341)
Current Occupation, New Job: Non-Wage Benefits -0.00649*** -0.0275***

(0.00240) (0.00512)
Current Occupation, New Job: ξ 2.02e-07 3.00e-06

(1.31e-06) (4.60e-06)
Current Occupation, New Job: EV -1.783*** -4.831***

(0.0962) (0.213)
Other Occupation, Current Job: Wage 0.0550*** 0.120***

(0.00188) (0.00269)
Other Occupation, Current Job: ξ -1.44e-06 5.80e-06

(4.29e-06) (1.02e-05)
Other Occupation, Current Job: EV 1.348*** 4.241***

(0.0772) (0.151)
Other Occupation, New Job: Wage 0.0315*** 0.109***

(0.00121) (0.00298)
Other Occupation, New Job: Non-Wage Benefits 0.00353** 0.0308***

(0.00180) (0.00616)
Other Occupation, New Job: ξ -5.10e-07 -2.93e-06

(1.27e-06) (3.22e-06)
Other Occupation, New Job: EV 1.755*** 4.931***

(0.0963) (0.209)
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table A.18: Probit Estimated Marginal Effects Changing Job

Origin Occupation White Collar Blue Collar
Current Occupation, Current Job: Wage -0.246*** -0.365***

(0.00454) (0.00415)
Current Occupation, Current Job: ξ 4.45e-05 -1.78e-07

(3.19e-05) (9.60e-06)
Current Occupation, Current Job: EV -4.923*** 4.341***

(0.214) (0.272)
Current Occupation, New Job: Wage 0.248*** 0.282***

(0.00441) (0.00440)
Current Occupation, New Job: Non-Wage Benefits 0.0653*** 0.0869***

(0.00888) (0.00756)
Current Occupation, New Job: ξ 2.25e-06 1.35e-06

(3.77e-06) (5.50e-06)
Current Occupation, New Job: EV 3.345*** -2.377***

(0.243) (0.292)
Other Occupation, Current Job: Wage -0.0817*** -0.0832***

(0.00279) (0.00419)
Other Occupation, Current Job: ξ 1.34e-05 -5.22e-06

(1.46e-05) (1.48e-05)
Other Occupation, Current Job: EV 3.719*** -5.288***

(0.223) (0.258)
Other Occupation, New Job: Wage 0.0879*** 0.0924***

(0.00248) (0.00450)
Other Occupation, New Job: Non-Wage Benefits 0.0190*** 0.0594***

(0.00657) (0.00935)
Other Occupation, New Job: ξ 3.24e-06 6.92e-06

(4.90e-06) (1.77e-05)
Other Occupation, New Job: EV -2.243*** 3.260***

(0.248) (0.287)
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table A.19: Probit Estimated Marginal Effects: Ex-Post Better Off for Job Change

White Collar Blue Collar White Collar Blue Collar
Years Education 0.0428*** 0.0353*** 0.0262*** -0.000559

(0.00734) (0.00394) (0.00750) (0.00411)
Years Experience WC -0.00957*** -0.0485*** -0.00544*** -0.0485***

(0.00130) (0.00246) (0.00132) (0.00244)
Years Experience BC -0.00111 0.00840*** 0.000838 0.00454***

(0.00201) (0.00112) (0.00204) (0.00113)
Years Job Tenure 0.0112*** 0.0108*** 0.0128*** 0.00941***

(0.00356) (0.00328) (0.00359) (0.00329)
AFQT -0.00109*** -0.00392*** -0.000914*** -0.00504***

(0.000186) (0.000142) (0.000189) (0.000147)
|η∗WC − η̂WC | -0.0381 0.0553 -0.0350 0.0681**

(0.0512) (0.0343) (0.0518) (0.0344)
|η∗BC − η̂BC | 0.0308 -0.0220 0.0179 -0.0138

(0.0283) (0.0238) (0.0286) (0.0237)
|η∗WC − η̂FWC | -0.0519 0.0272 -0.0389 0.0266

(0.0391) (0.0273) (0.0397) (0.0273)
|η∗BC − η̂FBC | -0.0286 -0.0479*** -0.0311 -0.0454***

(0.0210) (0.0142) (0.0213) (0.0142)
Difference in Wage Offers 0.165*** 0.0479***

(0.00638) (0.00147)
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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A.3 Figures

Figure A.1: NLSY Data Trends

(a) Average Log Wage by Period and Occupation
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(b) Average Job Satisfaction by Age and Occupation
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(c) Proportion Changing Job, by Age and Origin Oc-
cupation
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Figure A.2: NLSY Sample Non-Wage Benefit Averages

Figure A.3: NLSY Sample Transition Densities

(a) Conditional Proportions of Job and Oc-
cupation Transitions

(b) Density Estimates of Total Number of Job
Changes and Occupational Changes in 14 Years
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Figure A.4: Simulated vs. True Trends

(a) Average Wages by Occupation
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(b) Average Job Satisfaction by Occupation
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(c) Proportion Changing Job, by Age and Oc-
cupation
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Figure A.5: Comparing Densities of Difference Between Accepted Wage Offer in the Other
Occupation and Wage in Current Job/Occupation

(a) Occupation Change
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Figure A.6: Estimated Marginal Effects of Percentage Change in Offers on ∆ Pr(Change
Occ) Across Different Ages

(a) Wage
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(b) Non-Wage Benefits
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(c) Expected Future Utility
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Figure A.7: Kernel Density Estimate of Switchers Lifetime Utility Minus Counterfactual
Non-Switch Utility

(a) Occupation Changers
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Figure A.8: Simulated Proportions Better Off by Age

(a) Occupation Changers
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(b) Job Changers
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Figure A.9: Learning Curves by Occupation Experience: |η̂ − η|
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Figure A.10: Trends for Simulations Testing Information

(a) Average Proportions in Occupations by Period

18 20 22 24 26 28 30 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Age

P
ro

p
o

rt
io

n
 i
n

 C
la

s
s
if
ic

a
ti
o

n

 

 

Schooling: Both Uncertain

Schooling: Firms Uncertain

Schooling: Workers Uncertain

Schooling: Both Full Knowledge

White Collar: Both Uncertain

White Collar: Firms Uncertain

White Collar: Workers Uncertain

White Collar: Both Full Knowledge

Blue Collar: Both Uncertain

Blue Collar: Firms Uncertain

Blue Collar: Workers Uncertain

Blue Collar: Both Full Knowledge

(b) Average Wage by Period and Changing Occupation
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(c) Average Job Satisfaction by Age and Occupational
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(d) Proportion Changing Job, by Age and Occupation
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Chapter 2

Cross Validation Bandwidth Selection

for Derivatives of Various

Dimensional Densities

2.1 Introduction

There are many cases when a researcher is interested in information about the shape of a

distribution of variables. Methods are well developed for nonparametric estimation of the

density created by the underlying data generating process, including methods for selecting

the bandwidth parameters for kernel density estimators.1 There is also substantial progress

in developing techniques for estimating derivatives of distributions. More complicated meth-

ods have been developed for choosing bandwidths for multivariate densities (Zhang et al.,

2005) and for derivatives of univariate densities (Wu 1997, Bearse and Rilstone 2008), but

less work has been done on densities of multivariate densities. In this chapter, I develop

cross validation criteria and investigate how well product kernels perform in estimating high

dimension derivatives of densities, both for joint and conditional distributions.

1Li and Racine (2007) provide a good review.
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I test various orders of Gaussian kernels with an extension of the univariate cross val-

idation criteria as well as with two other cross validation criteria: a weighted integrated

square error criterion and, for the derivative of a conditional density, a criterion that jointly

estimates the bandwidths for the numerator and denominator densities. The direct cross val-

idation is more robust against poor bandwidth selection than the weighted integrated square

error criterion with regards both to a mean square error (MSE) criterion and a maximum

deviation criterion. On the other hand, the criterion that jointly estimates the bandwidths

for the derivative of a multidimensional conditional density does substantially better than

the estimators that separately estimate the bandwidths. Higher order kernels tend to out-

perform lower order kernels, and its improvements increases both with sample size and with

density dimension.

Throughout the chapter, I give my attention to product kernels for their ease of use.

Cacoullos (1966) first presented product kernels as an option in estimating multivariate

densities. This disallows potentially more accurate kernels; however, the product kernel is

the easiest to use and to derive cross validation criteria for, and is frequently used in practice.

This chapter also focuses on kernels from the Gaussian family. Turlach (1993) and Hansen

(2005) show that the choice of kernel families has a much smaller impact on mean integrated

square error (MISE) than the kernel order. It is not difficult to take the generalized criteria

presented here and adapt them for use on a different kernel family. The orders of the kernel

(defined as the first non-zero moment of the kernel) used are 2,4,6,8,10, and the infinite order

(the Dirichlet kernel).

This chapter investigates only cross validation methods instead of plug-in methods, as

plug-in methods become increasingly difficult to formulate with higher dimension kernels,

necessitating solving systems of equations. Also, Loader (1999) challenges the previous work

that suggested the superiority of plug-in methods over cross validation, and demonstrates

that this is not true in many cases (e.g., when there is misspecification of the pilot band-

widths).
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Hansen (2005) and Turlach (1993) both find that kernel order and bandwidth choice

(respectively) are more important than choice of kernel family. For that reason, similar to

the work of Hansen and Wand and Schucany (1990), I restrict attention to different orders

of the Gaussian kernel. Marron (1994) shows that higher order kernels perform well when

the curvature of what is being estimated is roughly constant, and poorly when there are

abrupt changes in curvature on neighborhoods about the size of the bandwidth. Wand and

Schucany (1990) examine Gaussian kernels from orders 2 to 10; they compare the efficiencies

of these kernels theoretically to the optimal kernels, and show that for low order kernels,

they are very close, and for ν derivative low (i.e., the zeroth derivative). The worst case they

present for the first derivative has a relative efficiency of 0.76. Marron and Wand (1992)

also show that the bandwidth that minimizes MISE is close to that which minimizes AMISE

(the plug-in estimator) only for sample sizes close to 1 million, discouraging use of plug-in

methods.

Wand and Schucany (1990) show that the 2rth degree Gaussian kernel can be represented

by

G2r(x) =
(−1)rφ(2r−1)(x)

2r−1(r − 1)!x

I use this to derive the cross validation criteria for the different order kernels. The infinite

order (Dirichlet) kernel, as Hansen (2005) presents it, is K(x) = sinx
πx

).

The cross validation methods are generalizations of the cross validation criteria set forth

by Hardle, Marron and Wand (1990) for the univariate density derivative. They demonstrate

that, for the univariate case and the first derivative, there is not much loss in efficiency (in the

sense that Silverman uses the term) from using the Gaussian kernel instead of the optimal

kernel. Various research connect to derivations of consistency and optimal convergence. Mar-

ron and Hardle (1986) generalizes the procedures for a variety of nonparametric estimators,
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including density estimators. Li and Racine (2007) present numerous derivations.

Chacon, Duoung, and Wand (2011) investigate derivatives of multidimensional densities,

just as in this chapter, but focus their attention just on second order kernels. They derive

the MISE and show convergence rates. They also allow for a bandwidth matrix, and show

that this general bandwidth matrix generally achieves better simulation results than that of

using a diagonal matrix (as is done in product kernels, and so in this chapter). Hall, Racine

and Li (2004) consider an estimation of a conditional density using bandwidths derived from

weighted integrated square error cross validation. This chapter develops a similar estimator

for the derivative of a conditional density.

Section 2.2 presents the direct cross validation criteria as well as a weighted cross valida-

tion criteria for the derivative of a multidimensional density and presents simulation results.

Section 2.3 examines the derivative of multivariate conditional densities, showing the method-

ology for estimating the bandwidths for the marginal and joint densities separately and for

estimating them jointly through a single cross validation criterion. Simulation results follow.

Section 2.4 concludes. Proof and criteria derivations, along with results tables, are in the

Appendix in Section B.

2.2 Bandwidth Selection for the Derivative of a Joint

Density

This section develops criteria for cross validation estimators for bandwidths of high dimen-

sional derivatives of densities, and investigates how effective these methods are in simulations.

The direct criteria for the various orders as well as a weighted integrated square error for

a second order Gaussian kernel are examined. The methods are compared across various

sample sizes.
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Assume that the density is of dimension q. Given the estimator

f̂(x) =
1

n
∏

x∈Gx
hs

n∑
i=1

∏
s∈Gx

K

(
xs − xis
hs

)

Then, the estimator for the derivative of the density is

∂f̂(x)

∂xk
=

1

nhk
∏

x∈Gx
hs

n∑
i=1

K ′
(
xk − xik
hk

) ∏
s∈Gx\k

K

(
xs − xis
hs

)

I first demonstrate conditions for consistent estimation of the derivative of the density,

and then derive two cross validation criteria connected to the integrated square error, and

show that these criteria provide bandwidth estimators that satisfy the consistency criteria.

I then perform a Monte Carlo study to compare the performance of different criteria and

kernel orders across different data sizes and dimensions.

2.2.1 Consistency

Theorem 1. Assume that the rth order kernel has the following characteristics:

1.
∫
· · ·
∫ ∏

s∈Gx
K(xs)dx1 · · · dxq = 1

2. K(xs) = K(−xs)

3.
∫
· · ·
∫
xr−1
k

∏
s∈Gx

K(xs)dx1 · · · dxq = 0

4.
∫
· · ·
∫
xrk
∏

s∈Gx
K(xs)dx1 · · · dxq > 0

5.
∫
· · ·
∫
xrk
∏

s∈Gx
K(xs)dx1 · · · dxq <∞

6. f(x) is (r + 1) times differentiable

where dx =
∏

s∈Gx
dxs. Then,
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MSE

(
∂f̂(x)

∂xk

)
=

(∫
K (x) xrdx

r!

q∑
t=1

hrt
∂r+1f(x)

∂xk∂rxt
+O

(
q∑

t=1

hr+1
t

))2

+
f(x)

nh2k
∏

s∈Gx
hs

∫
K ′ (x)2 dx

(∫
K (x)2 dx

)q−1

+O

(
1

nhk
∏

s∈Gx
hs

)

= O

( q∑
t=1

hr+1
t

)2

+
1

nhk
∏

s∈Gx
hs


and, if as n → ∞, maxj{hj} → 0 and nhk

∏
s∈Gx

hs → ∞, then the last statement

directly implies that ∂f̂(x)
∂xk

→ ∂f(x)
∂xk

in mean square error (MSE), implying also convergence

in probability, and consistency.

The proof of this theorem is contained in Section B.1.

2.2.2 Cross Validation Criteria: Integrated Square Error

For the direct cross validation method, the criterion minimizes the integrated difference

between the true and the estimated densities. This criterion is the same for any dimension

of the density. Let f(x) be the true density, and f̂(x) be the product kernel estimator of

f(x). Then the cross validation criterion (Integrated Square Error, or ISE) is given by

ISE(h) =

∫
· · ·
∫ (

∂f̂(x)

∂xk
− ∂f(x)

∂xk

)2

dx

Section B.1 provides the derivation for the cross validation: for given dimension, I ex-

press a criterion which yields equivalent minimizing arguments and is not a function of any

unknowns. This is given by
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ISE∗(h) =
1

n2h2k
∏

s∈Gx
hs

n∑
i=1

n∑
j=1

[∫
K ′ (x̃ijs + xis)K

′ (xis) dxis

]
× · · ·

∏
s∈Gx\k

(∫
K (x̃ijs + xis)K (xis) dxis

)
+

2
∑n

i=1

∑
j 6=iK

′′ (x̃ijk)
∏

s∈Gx\kK (x̃ijs)

n(n− 1)
(∏

s∈Gx
hs
)2
h2k

where x = (x1, ..., xK)
′ ∈ Gx is the point of evaluation, and xi = (xi1, ..., xiK)

′ is one

observation in the data. hs is the bandwidth for the sth random variable, and K(·) is the

kernel chosen for the estimation procedure.

2.2.3 Cross Validation Criteria: Weighted Integrate Square Error

I propose an alternative criterion which weights the difference between the true and the

estimated derivatives of the densities. The weight is provided by an estimate of the density.

The criterion is

WISE(h) =

∫
· · ·
∫ (

∂f̂(x;h)

∂xk
− ∂f(x)

∂xk

)2

f̂(x; b)dx

where b (and equivalently f̂(x; b)) is estimated prior to searching for the optimal band-

width h. The reason for this, and why they are not jointly searched for, is that a joint

search would require including
∫
· · ·
∫
f̂(x; b)2f(x)2dx. As f(x) is unknown, and the sample

analogue cannot simply be used as is done in the other cases, this evaluation becomes more

difficult to evaluate. For this reason, b is estimated before using cross validation methods.

Similar to the direct integrated square error cross validation derivation, I derive an ex-

pression that has the same minimizing argument and is a function only of observed data.
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This is done in Section B.1, and comes out to be

WISE∗(h) =
1

h2kn
3
∏

s∈Gx
h2sbs

n∑
i=1

n∑
j=1

n∑
m=1

∫
K ′
(
xk − xik

hk

)
K ′
(
xk − xjk

hk

)
K

(
xk − xmk

bk

)
dxk · · ·

×
∏

s∈Gx\k

∫
K

(
xs − xis

hs

)
K

(
xs − xjs

hs

)
K

(
xs − xms

bs

)
dxs

+ 2
1

n(n− 1)2h2k
∏

s∈Gx
h2s

n∑
m=1

∑
i6=m

K ′′
(
xmk − xik

hk

) ∏
s∈Gx

K

(
xms − xis

hs

)∑
j 6=m

∏
s∈Gx

K

(
xms − xjs

bs

)

+
∑
i6=m

K ′
(
xmk − xik

hk

) ∏
s∈Gx

K

(
xms − xis

hs

)∑
j 6=m

K ′
(
xmk − xjk

bk

) ∏
s∈Gx

K

(
xms − xjs

bs

)
As employed by Hardle, Marron and Wand (1990) for the derivative of a univariate

density, the theorems of Marron and Hardle (1986) can be applied here for the derivative

of a multivariate density to show that the criteria of ISE and WISE both converge to the

optimal criteria of MISE, and that the bandwidths resulting are not only valid for consistent

estimation, but converge to the optimal MISE bandwidths.

2.2.4 Simulation Results

I run a Monte Carlo with 100 simulations on the data, with various sample sizes (100,500,1000,5000)

and various density dimensions (1,2,4,8). Data is simulated from a multivariate normal dis-

tribution with zero mean and variance-covariance matrix with variances given by σ2
i = 1 and

covariance elements given by σij = 0.4. The simulations use Gaussian kernels of order 2,

4, 6, 8, and 10, as well as the infinite dimension Dirichlet kernel. The weighted integrated

square error is also tested, which uses a second order kernel. Two statistics of the simulations

are examined: the mean square error (
∑

i(∂f̂(xi)/∂xk − ∂f(xi)/∂xk)
2) and the maximum

absolute deviation (maxi

∣∣∣∂f̂(xi)/∂xk − ∂f(xi)/∂xk

∣∣∣).
Figure 2.1, an estimated univariate derivative of a density for 500 observations, demon-

strates different MSEs means. For this simulation, the Dirichlet kernel performed the best,

both in terms of MSE and an eyeball test, while the weighted integrated square error cross
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validation performs the worst.

Figure 2.1: Derivative of Univariate Normal Density and Estimations, N = 500
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True

Order 2 MSE = 0.0020392 max dev = 0.074528

Order 4 MSE = 0.001148 max dev = 0.058244

Order 6 MSE = 0.00089642 max dev = 0.051561

Order 8 MSE = 0.00077394 max dev = 0.047715

Order 10 MSE = 0.0007003 max dev = 0.045194

Dirichlet MSE = 0.00047436 max dev = 0.076991

WISE MSE = 0.0025486 max dev = 0.076991

Tables 2.1 and 2.2 show the Monte Carlo results for k = 2, a bivariate distribution.

Section B.2 contains tables of the results for the other values of k.

Higher order kernels outperform lower order kernels virtually universally. The Dirichlet

kernel is overall the best performing, although often the higher order kernels are almost as

good. Most of the gains from using higher order kernels are exhausted after a few increases

in order–often, just increasing the kernel order to 4 improves the mean square error on

average and the maximum deviations, but increasing the order beyond that does little more.
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Table 2.1: Monte Carlo Simulation Results: Mean Square Error Comparisons for Derivative
of 2-Dimensional Density

N=100 N=500 N=1000 N=5000
SIMS=100 SIMS=100 SIMS=100 SIMS=58

2nd Order 0.00849 0.0064 0.00633 0.000602
(0.0282) (0.0276) (0.0498) (0.00148)

4th Order 0.00493 0.00154 0.000543 0.000298
(0.0161) (0.00329) (0.000917) (0.000955)

6th Order 0.00302 0.00152 0.000498 0.000149
(0.00668) (0.00377) (0.000975) (0.000187)

8th Order 0.00306 0.00159 0.000499 0.000147
(0.0074) (0.00424) (0.00113) (0.000199)

10th Order 0.00259 0.00067 0.000387 0.000104
(0.0061) (0.001) (0.000745) (8.47e-05)

Dirichlet 0.000835 0.000447 0.00149 6.95e-05
(0.00173) (0.00105) (0.0113) (0.000101)

WISE 1.12 0.014 0.00865 0.0014
(11.1) (0.0471) (0.058) (0.00423)

Standard Deviations of MSE Simulation Estimates in Parentheses

Table 2.2: Monte Carlo Simulation Results: Mean Maximum Difference Comparisons for
Derivative of 2-Dimensional Density

N=100 N=500 N=1000 N=5000
SIMS=100 SIMS=100 SIMS=100 SIMS=58

2nd Order 0.164 0.144 0.112 0.0658
(0.238) (0.234) (0.297) (0.0541)

4th Order 0.121 0.0849 0.0535 0.0406
(0.161) (0.0805) (0.0399) (0.0374)

6th Order 0.101 0.0804 0.0487 0.0314
(0.0959) (0.0816) (0.0375) (0.021)

8th Order 0.0972 0.0805 0.0471 0.03
(0.0978) (0.0856) (0.0396) (0.021)

10th Order 0.0901 0.0573 0.0408 0.0239
(0.0916) (0.0438) (0.028) (0.00973)

Dirichlet 0.0557 0.0413 0.0426 0.0177
(0.0357) (0.0281) (0.0785) (0.0108)

WISE 0.786 0.216 0.15 0.093
(6.14) (0.38) (0.35) (0.112)

Standard Deviations of Maximum Deviation Simulation Estimates in Parentheses
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The second order term in the Taylor expansion, the bias of the 2nd order kernels, is more

important to control for than higher order terms. Higher order kernels’ improvement is

most dramatic for low sample sizes and small dimensions, but the effect persists both with

higher sample sizes and dimensions. Larger sample sizes yield more accurate results, and the

weighted square error does poorly for small sample sizes, and only slightly worse than its 2nd

order counterpart for large sample sizes. With the univariate case, it seems to do slightly

better than its 2nd order counterpart, but higher dimension densities are poorly estimated

using the WISE minimization criterion.

To offer comparison across dimension size, I look at how large the absolute maximum

heights of the derivative of the densities are. While the higher dimensional densities have

lower MSEs and maximum deviations, they are also coming from densities with much lower

maximum and average absolute heights. The maximum and average heights of the densities

are shown in Table B.13. The ratios of the best maximum deviation for the various sample

sizes and densities (i.e., the maximum that is the smallest for all kernel orders) to both the

average and the maximum absolute derivative of the density height are calculated (Tables

B.14 and B.15). For example, for a univariate density derivative and N = 100, the best

average maximum deviation comes from using the Dirichlet kernel, which has an average

maximum deviation of 0.117 (Table B.4). Table B.13 shows that, for a univariate density of

the type used in the Monte Carlo simulations, the maximum absolute height is 0.242, and

the average absolute height is 0.1628.

This helps to frame how good of an estimate the .117 is–it is smaller than the average

absolute height, but not by much. In fact, the ratio of the average maximum deviation in

the simulations to the maximum absolute height is 0.117/0.2420=0.4835, meaning that the

density estimator is off on average by almost half of the highest height of the true derivative

of the density, or 0.718 of the average height. Clearly, this is not a satisfactory outcome.

Higher values of N quickly yield much better results. This accentuates how much worse

some of the higher densities estimates are, even with the best estimators used here. Looking
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at the ratio of the average maximum deviation to the average absolute height in Table B.15,

for N = 1000, the univariate density yields the acceptable ratio of .3274 (compare this to the

plot in Figure 2.1, where the best estimator, which looks very close, has a ratio of 0.473). For

an 8-dimensional density derivative, this fraction jumps all the way up to 7.09, much too high

for meaningful estimation of the underlying true derivative of the density. Theoretically, for

some N high enough, the ratio would fall back into an acceptable range; however, the sample

sizes that would be required for accurate estimation would be too large to be tractable.2

Overall, these results suggest that when trying to estimate a derivative of an unconditional

multivariate density, higher order kernels and the straightforward cross validation criterion

yield the best outcomes.

2.3 Bandwidth Selection for the Derivative of a Con-

ditional Density

There are times when the researcher is interested in estimating the derivative of a conditional

density. This chapter gives attention to the case when the derivative is with respect to the

random variable, as opposed to the conditioning variable. It extends the work of Hall, Racine

and Li (2004), who examine bandwidth choice for a conditional density, by looking instead at

the derivative of a density, and by explicitly allowing for higher order kernels. They allow for

a weighting function, which here is assumed to be one. Random vector y is conditioned on

vector x; the conditional distribution is given by fY |X(y|x), the numerator joint distribution

is f(y, x), and the multivariate marginal denominator distribution is m(x). Then

∂fY |X(y|x)
∂yk

=
∂f(y, x)

∂yk
(m(x))−1

2The estimation of the bandwidth parameter using the methods in this chapter would take far too long,
even with parallel processing, as was used in this project.
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One natural estimator for this which has been suggested and used is

∂f̂Y |X(y|x)
∂yk

=
∂f̂(y, x)

∂yk
(m̂(x))−1

The estimator requires bandwidths both for the marginal denominator density and for the

derivative of the joint numerator density. Hall, Racine and Li (2004) restrict the bandwidths

for variables x to be the same for the joint and for the marginal, an assumption not made in

this chapter. I also test the initial candidate for bandwidth selection that use the bandwidths

from the methods in the previous section, i.e. cross validation of ISE for = ∂f̂(y,x)
∂yk

and m̂(x)

separately, and investigate how well these perform. As before, I also establish conditions for

consistent estimation of derivative of a conditional density.

2.3.1 Consistency

Theorem 2. Assume that the rth order kernel has the following characteristics:

1.
∫
· · ·
∫ ∏

s∈Gx
K(xs)dx1 · · · dxq = 1

2. K(xs) = K(−xs)

3.
∫
· · ·
∫
xr−1
k

∏
s∈Gx

K(xs)dx1 · · · dxq = 0

4.
∫
· · ·
∫
xrk
∏

s∈Gx
K(xs)dx1 · · · dxq > 0

5.
∫
· · ·
∫
xrk
∏

s∈Gx
K(xs)dx1 · · · dxq <∞

6. f(x) is (r + 1) times differentiable

where dx =
∏

s∈Gx
dxs. Then, if as n → ∞, maxj{hj} → 0 and nhk

∏
s∈Gx

hs → ∞, and

n
∏

s∈Gx
bs → ∞, then

∂f̂Y |X(y|x)
∂yk

p→ ∂fY |X(y|x)
∂yk

.

The proof of this theorem is contained in Section B.1.
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2.3.2 Joint Bandwidth Selection for the Derivative of Conditional

Density

The criterion for the joint estimation of the bandwidths of a conditional density requires the

joint integrated square error, given by

ISE(h, b, x) =

∫
· · ·
∫ (

∂f̂Y |X(y|x)
∂yk

−
∂fY |X(y|x)

∂yk

)2

dy

However, this chapter focuses on the case for bandwidths that would be good at any

value of x, so I integrate over x as well, after multiplying through by m(x):

ISE(h, b) = EX(ISE(h, b, x)) =

∫
· · ·
∫ (

∂f̂Y |X(y|x)
∂yk

−
∂fY |X(y|x)

∂yk

)2

m(x)dydx

Section B.1 shows that a cross validation criteria with the same minimizing argument

can be given, which is equal to

ISE(h, b) =∏
s∈GX

b2s
nh2k

∏
s∈Gy

hs
∏

s∈Gx
h2s

n∑
i=1

∑
j 6=i

∑
` 6=i

∏
s∈Gx

Rh
x,ij`sRy,ij`k

∏
s∈Gy\k Ry,ij`s(∑n

j=1,6=i

∏
s∈Gx

K
(
x̃bijs
))2

+ 2

∏
s∈Gx

bs

nh2k
∏

s∈Gx∪Gy
hs

n∑
i=1

∑j 6=iK
′′ (ỹijk)

[∏
s∈Gy\kK(ỹijk)

]∏
s∈Gx

K(x̃hijs)∑
j 6=i

∏
s∈Gx

K
(
x̃bijs
)


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where

yis =
ys − yis
hs

ỹijs =
yis − yjs
hs

xhis =
x∗s − xis
hs

xbis =
x∗s − xis

bs

and

Rh
x,ij`s = K (x̃ijs)K

(
x̃hi`s
)

Ry,ij`s =

∫
K
(
ỹj`s + yjs

)
K
(
yjs
)
dyjs

Ry,ij`k =

∫
K
(
ỹj`k + yjk

)
K ′ (yjk) dyjk

This is estimable from the data.

As for convergence of the parameters to the optimal parameters, it seems that an ex-

tension of the proof contained in Hall, Racine and Li (2004) for the joint estimation of a

multivariate conditional density would apply here for the derivative of a multivariate condi-

tional density.

2.3.3 Simulation

I run a Monte Carlo simulation. Data is simulated from a multivariate normal distribution

with zero mean and variance-covariance matrix with variances given by σ2
i = 1 and covariance

elements given by σij = 0.4. The simulation tests use the criterion that estimates the

bandwidths separately. A separate, smaller Monte Carlo study compares the results for using

the criterion that estimates the bandwidths separately and the one that jointly estimates

the bandwidths. Figure 2.2 presents one result for N = 500 and k = 2, conditioning on one
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variable.

Figure 2.2: Derivative of Conditional Normal Density and Estimations, N = 500,k = 1
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True

Sep. Order 2 MSE=0.0033 Max. Dev.=0.1247

Sep. Order 4 MSE=0.0038 Max Dev.=0.1403

Sep. Dirichlet MSE=0.0022 Max. Dev.=0.1131

Joint Order 2 MSE=0.0022 Max. Dev.=0.0986

Joint Order 4 MSE=0.0039 Max. Dev.=0.1432

Joint Dirichlet MSE=0.0010 Max. Dev.=0.0775

The following table are the results of k = 2; further results are in Section B.2.

Tables 2.5 and 2.6 show the results for the Monte Carlo study comparing joint and

separate estimation for a two dimensional density derivative conditioned on one variable.

The results for 4 dimensional densities conditioned on 1,2 or 3 variables are in the Appendix

in Tables B.16-B.21.

When using the separate bandwidth criteria, the results are very mixed, but overall, 2nd

or 4th order kernels actually seem to perform the best. The Dirichlet kernel often runs into
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Table 2.3: Monte Carlo Simulation Results: Mean Square Error Comparisons for Derivative
of 2-Dimensional Density Conditioned on 1 of the Variables

N=100 N=500 N=1000
SIMS=100 SIMS=100 SIMS=100

2nd Order 0.112 0.0398 0.0774
(0.35) (0.0706) (0.272)

4th Order 2.66 0.0379 0.241
(26) (0.053) (1.48)

6th Order 0.161 0.621 1.71
(0.648) (5.25) (14.5)

8th Order 0.466 0.132 2.48
(3.52) (0.448) (22.3)

10th Order 0.696 2.06 0.641
(6.04) (19.5) (4.57)

Dirichlet 6.04 132 48.6
(49.9) (1.31e+03) (481)

Standard Deviations of MSE Simulation Estimates in Parentheses

Table 2.4: Monte Carlo Simulation Results: Mean Maximum Difference Comparisons for
Derivative of 2-Dimensional Density Conditioned on 1 of the Variables

N=100 N=500 N=1000
SIMS=100 SIMS=100 SIMS=100

2nd Order 0.73 0.804 1.37
(1.22) (0.76) (2.92)

4th Order 2.27 1.47 3.77
(16) (2.04) (12.5)

6th Order 1.28 3.94 8.93
(3.17) (16.5) (40.2)

8th Order 1.61 3.03 9.42
(6.37) (5.83) (48.8)

10th Order 1.89 6.02 7.27
(7.94) (31.5) (21.7)

Dirichlet 5.82 31.7 27.8
(23.8) (256) (220)

Standard Deviations of Maximum Deviation Simulation Estimates in Parentheses

problems when estimating numerator and denominator bandwidths separately. Looking at

the ratio of deviations to function height in Tables B.14-B.15 shows that larger densities

and more parameters to estimate decrease the accuracy. As more variables are conditioned

on, even the best estimators get more unstable and the results are worse. Perhaps this
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Table 2.5: Monte Carlo Simulation Results: Mean Square Error Comparisons for Derivative
of 2-Dimensional Density Conditioned on 1 of the Variables

Sep, N=100 Joint, N=100 Sep, N=500 Joint, N=500
SIMS=50 SIMS=50 SIMS=50 SIMS=50

2nd Order 17246 0.44272 9.0201e+10 0.10818
(1.0341e+05) (2.5078) (5.8601e+11) (0.42864)

4th Order 1.2819 0.078906 2.7963 0.028441
(8.1813) (0.14188) (12.621) (0.059)

Dirichlet 0.10719 0.034195 0.32468 0.015824
(0.19442) (0.1056) (1.3278) (0.0059094)

Sep. separately estimates the bandwidths for the numerator density and denominator
density; Joint uses the joint criteria to estimate both bandwidths jointly

Standard Deviations of MSE Simulation Estimates in Parentheses

Table 2.6: Monte Carlo Simulation Results: Mean Maximum Difference Comparisons for
Derivative of 2-Dimensional Density Conditioned on 1 of the Variables

Sep, N=100 Joint, N=100 Sep, N=500 Joint, N=500
SIMS=50 SIMS=50 SIMS=50 SIMS=50

2nd Order 248.51 1.0512 1.1953e+06 1.5753
(1302.6) (2.0256) (6.6756e+06) (4.7528)

4th Order 2.6252 0.82402 11.411 0.87319
(8.8802) (0.61743) (34.012) (0.83264)

Dirichlet 1.7764 0.43967 4.6449 0.56448
(2.0053) (0.24731) (9.2914) (0.31097)

Sep. separately estimates the bandwidths for the numerator density and denominator
density; Joint uses the joint criteria to estimate both bandwidths jointly

Standard Deviations of MSE Simulation Estimates in Parentheses

instability also leads to worse ratio results for higher values of N , a counter-intuitive result.

Higher values of n increase the likelihood of drawing outliers, which, when estimated in the

denominator, blows up the point estimate beyond what it should be.

However, when comparing the use of the separate bandwidth estimators vs. the cri-

terion that jointly estimates the bandwidths, the new criterion that jointly estimates the

bandwidths consistently outperforms the separate estimation, and the Dirichlet kernel also

performs the best. The results are encouraging for estimation of a derivative of a conditional

density, as the joint bandwidth estimator using a Dirichlet kernel consistently does the best,

with results that are sufficiently accurate for analysis.
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2.4 Conclusion

Researchers have developed and employed various methods to evaluate derivatives of uni-

variate densities nonparametrically. However, little attention has been given to multivariate

cases. In this chapter, I examine cross validation methods for higher dimension densities,

comparing different kernel orders and various criteria. I develop various minimizing criteria

for both the estimation of joint and conditional densities and establish consistency of the

estimators.

A Monte Carlo simulation to test out the criteria suggests the complications inherent with

estimating high dimensional density derivatives, as the accuracy of the estimates sharply

decreases with increased dimension. The computational requirements are prohibitively large

for increasing the sample size to compensate for the larger dimension when the dimension is

overly large. However, when high dimensional derivative densities need to be estimated, the

simulations suggest that higher order kernels are more effective, and in particular, use of the

Dirichlet infinite order kernel performs the best in the class of Gaussian kernels. Weighted

integrated square error methods are both slower and less effective generally, so I recommend

for derivatives of multidimensional densities using the direct cross validation methods.

For the estimation of the derivative of a conditional density, the criterion that jointly

estimates the bandwidths using a Dirichlet kernel yields the best results in the simulations,

suggesting the best results would come from using this cross validation criterion. A possible

extension is to test using a trimming function in the criterion and the estimator, which

should lead to more accurate estimators for these cases.
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B Appendix

B.1 Proofs and Derivations

Proofs

Theorem 1. Assume that the rth order kernel has the following characteristics:

1.
∫
· · ·
∫ ∏

s∈Gx
K(xs)dx1 · · · dxq = 1

2. K(xs) = K(−xs)

3.
∫
· · ·
∫
xr−1
k

∏
s∈Gx

K(xs)dx1 · · · dxq = 0

4.
∫
· · ·
∫
xrk
∏

s∈Gx
K(xs)dx1 · · · dxq > 0

5.
∫
· · ·
∫
xrk
∏

s∈Gx
K(xs)dx1 · · · dxq <∞

6. f(x) is (r + 1) times differentiable

where dx =
∏

s∈Gx
dxs. Then,

MSE

(
∂f̂(x)

∂xk

)
=

(∫
K (x) xrdx

r!

q∑
t=1

hrt
∂r+1f(x)

∂xk∂rxt
+O

(
q∑

t=1

hr+1
t

))2

+
f(x)

nh2k
∏

s∈Gx
hs

∫
K ′ (x)2 dx

(∫
K (x)2 dx

)q−1

+O

(
1

nhk
∏

s∈Gx
hs

)

= O

( q∑
t=1

hr+1
t

)2

+
1

nhk
∏

s∈Gx
hs


and, if as n → ∞, maxj{hj} → 0 and nhk

∏
s∈Gx

hs → ∞, then the last statement

directly implies that ∂f̂(x)
∂xk

→ ∂f(x)
∂xk

in MSE, implying also convergence in probability, and

consistency.
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Proof.

MSE

(
∂f̂(x)

∂xk

)
= var

(
∂f̂(x)

∂xk

)
+

[
bias

(
∂f̂(x)

∂xk

)]2

First, examine the bias:

bias

(
∂f̂(x)

∂xk

)
= E

(
∂f̂(x)

∂xk

)
− ∂f(x)

∂xk

= E

 1

nhk
∏

s∈Gx
hs

n∑
i=1

K ′
(
xk − xik
hk

) ∏
s∈Gx\k

K

(
xs − xis
hs

)− ∂f(x)

∂xk

=
1

nhk
∏

s∈Gx
hs

n∑
i=1

E

K ′
(
xk − xik
hk

) ∏
s∈Gx\k

K

(
xs − xis
hs

)− ∂f(x)

∂xk

=
1

hk
∏

s∈Gx
hs
E

K ′
(
xk − xik
hk

) ∏
s∈Gx\k

K

(
xs − xis
hs

)− ∂f(x)

∂xk

=
1

hk
∏

s∈Gx
hs

∫
· · ·
∫
K ′
(
xk − xik
hk

) ∏
s∈Gx\k

K

(
xs − xis
hs

)
f(xi)dxi −

∂f(x)

∂xk

Substitute zis =
xis−xs

hs
, Note that this implies xis = xs + hszs and dxis = hsdzis. This yields

1

hk
∏

s∈Gx
hs

∫
· · ·
∫
K ′
(
xk − xik
hk

) ∏
s∈Gx\k

K

(
xs − xis
hs

)
f(xi)dxi −

∂f(x)

∂xk

=
1

hk

∫
· · ·
∫
K ′ (−zik)

∏
s∈Gx\k

K (−zis) f(x+ hzi)dzi −
∂f(x)

∂xk

Next, assume that K (−zis) = K (zis). This also implies that K ′ (−zis) = −K ′ (zis). Then

1

hk

∫
· · ·
∫
K ′ (−zik)

∏
s∈Gx\k

K (−zis) f(x+ hzi)dzi −
∂f(x)

∂xk

=
−1

hk

∫
· · ·
∫
K ′ (zik)

∏
s∈Gx\k

K (zis) f(x+ hzi)dzi −
∂f(x)

∂xk
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Using integration by parts, and noting that f(xi + hzi)K(zk)|∞−∞ = 0,

−1

hk

∫
· · ·
∫
K ′ (zik)

∏
s∈Gx\k

K (zis) f(x+ hzi)dzi −
∂f(x)

∂xk

=

∫
· · ·
∫ ∏

s∈Gx

K (zis) fk(x+ hzi)dzi −
∂f(x)

∂xk

Next, take a (r+1) degree Taylor expansion of fk(x+hzi) around x. Separating the expansion

into relevant groupings:

fk(x+ hzi) =
∑

j1,...jq |ji≥0,
∑

i ji∈[0,r−1]

∂
∑q

i=1 ji+1f(x)

∂xk∂j1x1∂j2x2 · · · ∂jqxq

q∏
`=1

(h`zi`)
j`

j`!

+
∑

j1,...jq |ji≥0,
∑

i ji=r

∂
∑q

i=1 ji+1f(x)

∂xk∂j1x1∂j2x2 · · · ∂jqxq

q∏
`=1

(h`zi`)
j`

j`!

+
∑

j1,...jq |ji≥0,
∑

i ji=r+1

· · ·
r+1∑

jq=(r+1)×1(t=q)

∂
∑q

i=1 ji+1f(ξ)

∂xk∂j1x1∂j2x2 · · · ∂jqxq

q∏
`=1

(h`zi`)
j`

j`!

where ξ ∈ [x, x+ hzi]. Substituting this in,

bias

(
∂f̂(x)

∂xk

)
=

∫
· · ·
∫ ∏

s∈Gx

K (zis)
∑

j1,...jq |ji≥0,
∑

i ji∈[0,r−1]

∂
∑q

i=1 ji+1f(x)

∂xk∂j1x1∂j2x2 · · · ∂jqxq

q∏
`=1

(h`zi`)
j`

j`!
dzi

+

∫
· · ·
∫ ∏

s∈Gx

K (zis)
∑

j1,...jq |ji≥0,
∑

i ji=r

∂
∑q

i=1 ji+1f(x)

∂xk∂j1x1∂j2x2 · · · ∂jqxq

q∏
`=1

(h`zi`)
j`

j`!
dzi

+

∫
· · ·
∫ ∏

s∈Gx

K (zis)
∑

j1,...jq |ji≥0,
∑

i ji=r+1

∂
∑q

i=1 ji+1f(ξ)

∂xk∂j1x1∂j2x2 · · · ∂jqxq

q∏
`=1

(h`zi`)
j`

j`!

Consider the first term; this yields
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∫
· · ·
∫ ∏

s∈Gx

K (zis)
∑

j1,...jq |ji≥0,
∑

i ji∈[0,r−1]

∂
∑q

i=1 ji+1f(x)

∂xk∂j1x1∂j2x2 · · · ∂jqxq

q∏
`=1

(h`zi`)
j`

j`!
dzi

=
∑

j1,...jq |ji≥0,
∑

i ji∈[0,r−1]

∂
∑q

i=1 ji+1f(x)

∂xk∂j1x1∂j2x2 · · · ∂jqxq

∫
· · ·
∫ ∏

s∈Gx

K (zis)

q∏
`=1

(h`zi`)
j`

j`!
dzi

Given Assumption 3, all of the integrals evaluate to zero here except for the one where all j

are equal to zero. When all s are equal to zero, Assumption 1 says that
∫
· · ·
∫ ∏

s∈Gx
K (zis) dzi =

1. Therefore,

∑
j1,...jq |ji≥0,

∑
i ji∈[0,r−1]

∂
∑q

i=1 ji+1f(x)

∂xk∂j1x1∂j2x2 · · · ∂jqxq

∫
· · ·
∫ ∏

s∈Gx

K (zis)

q∏
`=1

(h`zi`)
j`

j`!
dzi =

∂f(x)

∂xk

Next, consider the second term. Now, by Assumption 3, all of the summands that have

any ji ∈ (0, r) is equal to zero. Therefore, the only remaining elements are those where

one is equal to r and the rest are equal to zero (these, by Assumption 2, integrate to one).

Therefore, the second term is

∫
· · ·
∫ ∏

s∈Gx

K (zis)
∑

j1,...jq |ji≥0,
∑

i ji=r

∂
∑q

i=1 ji+1f(x)

∂xk∂j1x1∂j2x2 · · · ∂jqxq

q∏
`=1

(h`zi`)
j`

j`!
dzi

=
1

r!

q∑
t=1

hrt
∂r+1f(x)

∂xk∂rxt

∫
· · ·
∫ ∏

s∈Gx

K (zis) z
r
itdzi

=
1

r!

q∑
t=1

hrt
∂r+1f(x)

∂xk∂rxt

∫
K (zit) z

r
itdzit

=

∫
K (x)xrdx

r!

q∑
t=1

hrt
∂r+1f(x)

∂xk∂rxt

Next, consider the final term. Again, any of the summands that include zi` for ` ∈ [0, r]

91



is equal to zero.

∫
· · ·
∫ ∏

s∈Gx

K (zis)
∑

j1,...jq |ji≥0,
∑

i ji=r+1

∂
∑q

i=1 ji+1f(ξ)

∂xk∂j1x1∂j2x2 · · · ∂jqxq

q∏
`=1

(h`zi`)
j`

j`!
dzi

=
1

(1 + r)!

q∑
t=1

hr+1
t

∂r+2f(ξ)

∂xk∂r+1xt

∫
· · ·
∫ ∏

s∈Gx

K (zis) z
r+1
it dzi

=
1

(1 + r)!

q∑
t=1

hr+1
t

∂r+2f(ξ)

∂xk∂r+1xt

∫
K (zit) z

r+1
it dzit

Using Assumption 5, for some C

1

(1 + r)!

q∑
t=1

hr+1
t

∂r+2f(ξ)

∂xk∂r+1xt

∫
K (zit) z

r+1
it dzit < C

q∑
t=1

hr+1
t = O

(
q∑

t=1

hr+1
t

)

Combining these results,

bias

(
∂f̂(x)

∂xk

)
=

∫
K (x)xrdx

r!

q∑
t=1

hrt
∂r+1f(x)

∂xk∂rxt
+O

(
q∑

t=1

hr+1
t

)

Next, examine the variance.

var

(
∂f̂(x)

∂xk

)

= var

 1

nhk
∏

s∈Gx
hs

n∑
i=1

K ′
(
xk − xik
hk

) ∏
s∈Gx\k

K

(
xs − xis
hs

)
=

1

nh2k
∏

s∈Gx
h2s
var

K ′
(
xk − xik
hk

) ∏
s∈Gx\k

K

(
xs − xis
hs

)
=

1

nh2k
∏

s∈Gx
h2s

E
K ′

(
xk − xik
hk

)2 ∏
s∈Gx\k

K

(
xs − xis
hs

)2


−E

K ′
(
xk − xik
hk

) ∏
s∈Gx\k

K

(
xs − xis
hs

)2
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Consider the terms separately. The first term is

1

nh2k
∏

s∈Gx
h2s

E
K ′

(
xk − xik
hk

)2 ∏
s∈Gx\k

K

(
xs − xis
hs

)2


=
1

nh2k
∏

s∈Gx
h2s

∫
· · ·
∫
K ′
(
xk − xik
hk

)2 ∏
s∈Gx\k

K

(
xs − xis
hs

)2

f(xi)dxi

=
1

nhk
∏

s∈Gx
hs

∫
· · ·
∫
K ′ (−zik)2

∏
s∈Gx\k

K (−zis)2 f(x+ zih)dzi

=
1

nhk
∏

s∈Gx
hs

∫
· · ·
∫
K ′ (zik)

2
∏

s∈Gx\k

K (zis)
2

[
f(x) +

q∑
t=1

∂f(ξ)

∂xk
htzit

]
dzi

=
f(x)

nhk
∏

s∈Gx
hs

∫
K ′ (x)2 dx

(∫
K (x)2 dx

)q−1

+O

(
1

nhk
∏

s∈Gx
hs

)

Next consider the second term

1

nh2k
∏

s∈Gx
h2s
E

K ′
(
xk − xik
hk

) ∏
s∈Gx\k

K

(
xs − xis
hs

)2

=
1

nh2k

∫ · · ·
∫
K ′ (zik)

∏
s∈Gx\k

K (zis) dzi

2

= O

(
1

nh2k

)

Therefore,

var

(
∂f̂(x)

∂xk

)
=

f(x)

nhk
∏

s∈Gx
hs

∫
K ′ (x)2 dx

(∫
K (x)2 dx

)q−1

+O

(
1

nhk
∏

s∈Gx
hs

)
−O

(
1

nh2k

)
=

f(x)

nhk
∏

s∈Gx
hs

∫
K ′ (x)2 dx

(∫
K (x)2 dx

)q−1

+O

(
1

nhk
∏

s∈Gx
hs

)
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Combining these results

MSE

(
∂f̂(x)

∂xk

)
=

(∫
K (x) xrdx

r!

q∑
t=1

hrt
∂r+1f(x)

∂xk∂rxt
+O

(
q∑

t=1

hr+1
t

))2

+
f(x)

nh2k
∏

s∈Gx
hs

∫
K ′ (x)2 dx

(∫
K (x)2 dx

)q−1

+O

(
1

nhk
∏

s∈Gx
hs

)

= O

( q∑
t=1

hr+1
t

)2

+
1

nhk
∏

s∈Gx
hs


Therefore, if as n → ∞, maxj{hj} → 0 and nhk

∏
s∈Gx

hs → ∞, then the last statement

directly implies that ∂f̂(x)
∂xk

→ ∂f(x)
∂xk

in MSE, implying also convergence in probability, and

consistency.

Theorem 2. Assume that the rth order kernel has the following characteristics:

1.
∫
· · ·
∫ ∏

s∈Gx
K(xs)dx1 · · · dxq = 1

2. K(xs) = K(−xs)

3.
∫
· · ·
∫
xr−1
k

∏
s∈Gx

K(xs)dx1 · · · dxq = 0

4.
∫
· · ·
∫
xrk
∏

s∈Gx
K(xs)dx1 · · · dxq > 0

5.
∫
· · ·
∫
xrk
∏

s∈Gx
K(xs)dx1 · · · dxq <∞

6. f(x) is (r + 1) times differentiable

where dx =
∏

s∈Gx
dxs. Then, if as n → ∞, maxj{hj} → 0 and nhk

∏
s∈Gx

hs → ∞, then

∂f̂Y |X(y|x)
∂yk

p→ ∂fY |X(y|x)
∂yk

.

Proof.

∂f̂Y |X(y|x)
∂yk

=
∂f̂Y,X(y, x)

∂yk
f̂X(x)

−1
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By Theorem 1,

∂f̂Y,X(y, x)

∂yk

p→ ∂fY,X(y, x)

∂yk

By a similar theorem (such as is contained in Li and Racine 2007),

f̂X(x)
p→ fX(x)

Then, by Slutsky’s Theorem,

∂f̂Y,X(y, x)

∂yk
f̂X(x)

−1 p→ ∂fY,X(y, x)

∂yk
fX(x)

−1 =
∂fY |X(y|x)

∂yk

Derivation of CV bandwidth for Derivative of Joint

I consider the derivative of a joint density with respect to variable xk ∈ x.

ISE(h) =

∫
· · ·
∫ (

∂f̂(x)

∂xk
− ∂f(x)

∂xk

)2

dx

=

∫
· · ·
∫
∂f̂(x)

∂xk

2

dx− 2

∫
· · ·
∫
∂f̂(x)

∂xm

∂f(x)

∂xk
dx+

∫
· · ·
∫
∂f(x)

∂xk

2

dx

= ISE1(h)− 2 ∗ ISE2(h) + ISE3

Again, ISE3 is not a function of the bandwidth selection, so minimizing ISE is identical to

minimizing

ISE∗(h) = ISE1(h)− 2 ∗ ISE2(h)

Examine each term separately
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ISE1(h) =
1

n2
(∏

s∈Gx
hs
)2
h2k

n∑
i=1

n∑
j=1

∫
· · ·
∫
K ′
(
xk − xik
hk

)
K ′
(
xk − xjk
hk

)
· · ·

×
∏

s∈Gx\k

K

(
xs − xis
hs

)
K

(
xs − xjs
hs

)
dx

Let

xis =
xs − xis
hs

x̃ijs =
xis − xjs

hs

Then

ISE1(h) =
1

n2
(∏

s∈Gx
hs
)2
h2k

n∑
i=1

n∑
j=1

∫
· · ·
∫ [∫

hkK
′ (x̃ijk + xik)K

′ (xik) dxik

]
· · ·

×
∏

s∈Gx\k

(hsK (x̃ijs + xis)K (xis) dxis)

=
1

n2h2k
∏

s∈Gx
hs

n∑
i=1

n∑
j=1

[∫
K ′ (x̃ijs + xis)K

′ (xis) dxis

] ∏
s∈Gx\k

(∫
K (x̃ijs + xis)K (xis) dxis

)
(B.1)

As in the joint density case, the evaluation of these integrals depend on the kernel chosen.

Section 1 provides an example of this, the analogy of which carries directly into this example,

except now derivatives of the kernel must also be taken prior to integration of that section.

Next, examine ISE2(h):

ISE2(h) =

∫
· · ·
∫
∂f̂(x)

∂xk

∂f(x)

∂xk
dx
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Integrating by parts,

∫
· · ·
∫
∂f̂(x)

∂xk

∂f(x)

∂xk
dx = −

∫
· · ·
∫
∂2f̂(x)

∂x2k
f(x)dx

= −E

(
∂2f̂(x)

∂x2k

)

=
−1

n(n− 1)
(∏

s∈Gx
hs
)2
h2k

n∑
i=1

∑
j 6=i

K ′′ (x̃ijk)
∏

s∈Gx\k

K (x̃ijs)

Putting these together

ISE∗(h) =

1

n2h2k
∏

s∈Gx
hs

n∑
i=1

n∑
j=1

[∫
K ′ (x̃ijs + xis)K

′ (xis) dxis

] ∏
s∈Gx\k

(∫
K (x̃ijs + xis)K (xis) dxis

)

+
2

n(n− 1)
(∏

s∈Gx
hs
)2
h2k

n∑
i=1

∑
j 6=i

K ′′ (x̃ijk)
∏

s∈Gx\k

K (x̃ijs)

In the example kernel, this would mean

ISE∗(h) =
1

n2h2k
∏

s∈Gx
hs

n∑
i=1

n∑
j=1

(
40x̃ijk − 84x̃2ijk

) ∏
s∈Gx\k

(
8

3
− 10x̃2ijk + 7x̃4ijk

)

+
2

n(n− 1)
(∏

s∈Gx
hs
)2
h2k

n∑
i=1

∑
j 6=i

(
84x̃2ijk − 20

) ∏
s∈Gx\k

(
7x̃4ijk − 10x̃2ijk + 3

)

Derivation of Weighted CV bandwidth for Derivative of Joint

I consider the derivative of a joint density with respect to variable xk ∈ x. Let h be the

bandwidth that the researcher is trying to minimize with respect to, and f̂(x; b) be the

weighting function. b is estimated prior to this, so that the weighting is independent of the

97



bandwidth selection h. Then, the weighted integrated square error is given by

WISE(h) =

∫
· · ·
∫ (

∂f̂(x;h)

∂xk
− ∂f(x)

∂xk

)2

f̂(x; b)dx

=

∫
· · ·
∫
∂f̂(x;h)

∂xk

2

f̂(x; b)dx− 2

∫
· · ·
∫
∂f̂(x;h)

∂xm

∂f(x)

∂xk
f̂(x; b)dx

+

∫
· · ·
∫
∂f(x)

∂xk

2

f̂(x; b)dx

= WISE1(h)− 2 ∗WISE2(h) +WISE3

WISE3 is not a function of the bandwidth (h) selection, so minimizing WISE is identical

to minimizing

WISE∗(h) = WISE1(h)− 2 ∗WISE2(h)

I examine each term

WISE1(h) =

∫
· · ·
∫
∂f̂(x;h)

∂xk

2

f̂(x; b)dx

=

∫
· · ·
∫

1

h2kn
3
∏

s∈Gx
h2sbs

n∑
i=1

n∑
j=1

n∑
m=1

K ′
(
xk − xik
hk

)
K ′
(
xk − xjk
hk

)
K

(
xk − xmk

bk

)
· · ·

×
∏

s∈Gx\k

K

(
xs − xis
hs

)
K

(
xs − xjs
hs

)
K

(
xs − xms

bs

)
dx

=
1

h2kn
3
∏

s∈Gx
h2sbs

n∑
i=1

n∑
j=1

n∑
m=1

∫
K ′
(
xk − xik
hk

)
K ′
(
xk − xjk
hk

)
K

(
xk − xmk

bk

)
dxk · · ·

×
∏

s∈Gx\k

∫
K

(
xs − xis
hs

)
K

(
xs − xjs
hs

)
K

(
xs − xms

bs

)
dxs

This depends on the choice of the kernel. Evaluate the integrals and WISE1 is estimable.
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Next, I examine WISE2(h):

WISE2(h) =

∫
· · ·
∫
∂f̂(x;h)

∂xk

∂f(x)

∂xk
f̂(x; b)dx

Integrating by parts, and assuming that the value of the derivative is bounded, this becomes

WISE2(h) = −E

[
∂2f̂(x;h)

∂x2k
f̂(x; b) +

∂f̂(x;h)

∂xk

∂f̂(x; b)

∂xk

]

= C1

n∑
m=1

[∑
i6=m

K ′′
(
xmk − xik

hk

) ∏
s∈Gx

K

(
xms − xis

hs

)∑
j 6=m

∏
s∈Gx

K

(
xms − xjs

bs

)]

+ C2

n∑
m=1

[∑
i6=m

K ′
(
xmk − xik

hk

) ∏
s∈Gx

K

(
xms − xis

hs

)∑
j 6=m

K ′
(
xmk − xjk

bk

) ∏
s∈Gx

K

(
xms − xjs

bs

)]

where

C1 =
1

n(n− 1)2h2k
∏

s∈Gx
hsbs

C2 =
1

n(n− 1)2hkbk
∏

s∈Gx
hsbs

All of the elements are now evaluated in order to estimate the WISE and minimize with

respect to h. However, note that it does become very complicated when trying to evaluate

WISE1 for a given kernel, as the integral across the derivatives of the kernels is in general

not a simple task. Because of this, the researcher will most likely need to limit attention to

simpler (generally lower order) kernels. Here, I give the example of the 2nd order Gaussian

Kernel for exposition. In that case,
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K(x) =
1√
2π

exp{−.5x2} ≡ φ(x)

K ′(x) = −xφ(x)

K ′′(x) = (x2 − 1)φ(x)

For
∫
K
(
x−r
h

)
K
(
x−s
h

)
K
(
x−t
b

)
dx

=

∫
1

(2π)3/2
exp

{
−.5

((
x− r

h

)2

+

(
x− s

h

)2

+

(
x− t

b

)2
)}

dx

=

∫
1

(2π)3/2
exp

{
− 1

2Ω

(
(x− µ)2 +D

)}
dx

=

√
Ωexp{1

2
Ω−1D}

2π

∫
1√
2πΩ

exp

{
− 1

2Ω
(x− µ)2

}
dx

=

√
Ωexp{1

2
Ω−1D}

2π

where

Ω =
b2h2

2b2 + h2

µ =
b2r + b2s+ h2t

2b2 + h2

D =
r2b2 + s2b2 + t2h2

2b2 + h2
− µ2
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Similarly, for
∫
K ′ (x−r

h

)
K ′ (x−s

h

)
K
(
x−t
b

)
dx

=

∫
(x− r)(x− s)

h2(2π)3/2
exp

{
−.5

((
x− r

h

)2

+

(
x− s

h

)2

+

(
x− t

b

)2
)}

dx

=

∫
x2 − (r + s)x+ rs

h2(2π)3/2
exp

{
− 1

2Ω

(
(x− µ)2 +D

)}
dx

=

√
Ωexp{1

2
Ω−1D}

2h2π

∫
1√
2πΩ

(
x2 − (r + s)x+ rs

)
exp

{
− 1

2Ω
(x− µ)2

}
dx

=

√
Ωexp{1

2
Ω−1D}

2h2π

(
Var(x) + E[x]2 − (r + s)E[x] + rs

)
=

√
Ωexp{1

2
Ω−1D}

2h2π

(
Ω + µ2 − (r + s)µ+ rs

)
where Ω, µ, and D are similarly defined.

Derivation of CV bandwidth for Derivative of Conditional

Let Gy be the set of bandwidths associated with variables y, and Gx the set of bandwidths

associated with variables x. Then x ∈ R|Gx| and y ∈ R|Gy |.

This procedure chooses bandwidths both for the full joint (numerator) and the marginal

(conditioning, denominator) densities, given by h and b. The cross validation is given by

ISE(h, b) =

∫
· · ·
∫ (

∂f̂Y |X(y|x)
∂yk

−
∂fY |X(y|x)

∂yk

)2

m(x)dydx

=

∫
· · ·
∫ (

∂

∂yk

(
f̂(y, x)

m̂(x)

)
− ∂

∂yk

(
f(y, x)

m(x)

))2

m(x)dydx

=

∫
· · ·
∫ (

∂f̂(y, x)

∂yk
m̂(x)−1 − ∂f(y, x)

∂yk
m(x)−1

)2

m(x)dydx

=

∫
· · ·
∫ (

∂f̂(y, x)

∂yk

)2

m̂(x)−2m(x)dydx− 2

∫
· · ·
∫
∂f̂(y, x)

∂yk

∂f(y, x)

∂yk
m̂(x)−1dydx · · ·

+

∫
· · ·
∫ (

∂f(y, x)

∂yk

)2

m(x)−1dy

=ISE1(h, b)− 2 ∗ ISE2(h, b) + ISE3
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As usual, ISE3 is not a function of the bandwidth, so that the minimization of ISE(h, b, )

is identical to that of

ISE∗(h, b) = ISE1(h, b)− 2 ∗ ISE2(h, b)

I examine each term

ISE1(h, b) =

∫
· · ·
∫ (

∂f̂(y, x)

∂yk

)2

m̂(x)−2m(x)dydx

= E

[∫
· · ·
∫
∂f̂(y, x)

∂yk

2

m̂(x)−2dy

]

This I approximate with the sample analogue

ÎSE1(h, b) =
1

n

n∑
i=1

 1

(n− 1)2
∏

s∈GX
b2s

 n∑
j=1,6=i

∏
s∈Gx

K

(
xis − xjs

hs

)2−1

· · ·

×
∑
j 6=i

∑
` 6=i

∏
s∈Gx

K

(
xis − xjs

hs

)
K

(
xis − x`s

hs

)[∫
K ′
(
yk − yjk

hk

)
K ′
(
yk − y`k

hk

)
dyk

]
· · ·

×

[∏
s∈Gy\k

∫
K
(
ys−yjs

hs

)
K
(
ys−y`s

hs

)
dys

]
(n− 1)2h2k

∏
s∈Gx∪Gy

h2s

As before, let

yis =
ys − yis
hs

ỹijs =
yis − yjs
hs

xhis =
x∗s − xis
hs

xbis =
x∗s − xis

bs
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Then

ÎSE1(h, b) =

∏
s∈GX

b2s
nh2k

∏
s∈Gy

hs
∏

s∈Gx
h2s

n∑
i=1

(
n∑

j=1,6=i

∏
s∈Gx

K
(
x̃bijs
))−2

· · ·

×
∑
j 6=i

∑
` 6=i

∏
s∈Gx

K
(
x̃hijs
)
K
(
x̃hi`s
) [∫

K ′ (ỹj`k + yjs
)
K ′ (yjs) dyjs] · · ·

×

 ∏
s∈Gy\k

∫
K
(
ỹj`k + yjs

)
K
(
yjs
)
dyjs


As for ISE2(h, b)

ISE2(h, b) =

∫
· · ·
∫
∂f̂(y, x)

∂yk

∂f(y, x)

∂yk
m̂(x)−1dydx

= −
∫

· · ·
∫
∂2f̂(y, x)

∂y2k
f(y, x)m̂(x)−1dydx

= −E

[
∂2f̂(y, x)

∂y2k
m̂(x)−1

]

= − 1

n

n∑
i=1

 1
(n−1)h2

k

∏
s∈Gx∪Gy

hs

∑
j 6=iK

′′ (ỹijk)
[∏

s∈Gy\kK(ỹijk)
]∏

s∈Gx
K(x̃hijs)

1
(n−1)

∏
s∈Gx

bs

∑
j 6=i

∏
s∈Gx

K
(
x̃bijs
)


= −

∏
s∈Gx

bs

nh2k
∏

s∈Gx∪Gy
hs

n∑
i=1

∑j 6=iK
′′ (ỹijk)

[∏
s∈Gy\kK(ỹijk)

]∏
s∈Gx

K(x̃hijs)∑
j 6=i

∏
s∈Gx

K
(
x̃bijs
)


where I used integration by parts to go from line 1 to line 2. This is estimable as well, so

putting together ISE1(h, b, x
∗) and ISE2(h, b, x

∗), the criterion becomes

ISE(h, b) =∏
s∈GX

b2s
nh2k

∏
s∈Gy

hs
∏

s∈Gx
h2s

n∑
i=1

∑
j 6=i

∑
` 6=i

∏
s∈Gx

Rh
x,ij`sRy,ij`k

∏
s∈Gy\k Ry,ij`s(∑n

j=1,6=i

∏
s∈Gx

K
(
x̃bijs
))2

+ 2

∏
s∈Gx

bs

nh2k
∏

s∈Gx∪Gy
hs

n∑
i=1

∑j 6=iK
′′ (ỹijk)

[∏
s∈Gy\kK(ỹijk)

]∏
s∈Gx

K(x̃hijs)∑
j 6=i

∏
s∈Gx

K
(
x̃bijs
)


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where

Rh
x,ij`s = K (x̃ijs)K

(
x̃hi`s
)

Ry,ij`s =

∫
K
(
ỹj`s + yjs

)
K
(
yjs
)
dyjs

Ry,ij`k =

∫
K
(
ỹj`k + yjk

)
K ′ (yjk) dyjk
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B.2 Tables

Table B.1: Monte Carlo Simulation Results: Mean Square Error Comparisons for Derivative
of 1-Dimensional Density

N=100 N=500 N=1000 N=5000
SIMS=100 SIMS=100 SIMS=100 SIMS=100

2nd Order 0.914 0.0253 0.0186 0.0155
(9.05) (0.149) (0.116) (0.132)

4th Order 0.0102 0.0108 0.00253 0.000962
(0.0201) (0.0685) (0.00696) (0.00197)

6th Order 0.0114 0.00428 0.00186 0.000919
(0.024) (0.0097) (0.00407) (0.00234)

8th Order 0.0125 0.00454 0.0018 0.000923
(0.0268) (0.0104) (0.00439) (0.00267)

10th Order 0.015 0.00482 0.0019 0.000942
(0.0301) (0.0101) (0.0048) (0.00286)

Dirichlet 0.011 0.00448 0.00221 0.00114
(0.0347) (0.0106) (0.0115) (0.00427)

WISE 0.0525 0.092 0.0189 0.00444
(0.233) (0.473) (0.0765) (0.0204)

Standard Deviations of MSE Simulation Estimates in Parentheses

Table B.2: Monte Carlo Simulation Results: Mean Square Error Comparisons for Derivative
of 4-Dimensional Density

N=100 N=500 N=1000
SIMS=100 SIMS=100 SIMS=100

2nd Order 0.00257 0.000207 0.000113
(0.012) (0.000958) (0.000652)

4th Order 8.43e-05 2.64e-05 1.7e-05
(0.000147) (4.01e-05) (2.13e-05)

6th Order 6.05e-05 2.15e-05 1.37e-05
(9.25e-05) (2.8e-05) (1.9e-05)

8th Order 5.58e-05 1.82e-05 1.56e-05
(8.59e-05) (2.84e-05) (6.45e-05)

10th Order 3.23e-05 2.25e-05 2.04e-05
(8.62e-06) (4.41e-06) (3.13e-06)

Dirichlet 2.21e-05 8.12e-06 5.51e-06
(2.06e-05) (4.92e-06) (3.58e-06)

WISE 0.452 0.00493 0.0153
(3.48) (0.0233) (0.146)

Standard Deviations of MSE Simulation Estimates in Parentheses
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Table B.3: Monte Carlo Simulation Results: Mean Square Error Comparisons for Derivative
of 8-Dimensional Density

N=100 N=500 N=1000
SIMS=100 SIMS=100 SIMS=12

2nd Order 2.42e-05 3.38e-08 1.64e-08
(0.00013) (5.54e-08) (3.55e-09)

4th Order 3.56e-08 1.3e-08 1.04e-08
(6.13e-08) (3.37e-09) (1.78e-09)

6th Order 2.04e-08 1.14e-08 8.84e-09
(1.31e-08) (2.77e-09) (1.58e-09)

8th Order 1.68e-08 1.07e-08 8.22e-09
(6.8e-09) (2.26e-09) (1.53e-09)

10th Order 2.25e-08 2.34e-08 2.29e-08
(7.16e-09) (3.07e-09) (2.86e-09)

Dirichlet 1.71e-08 1.17e-08 8.65e-09
(5.64e-09) (1.87e-09) (1.42e-09)

WISE 122 39.1 0.397
(1.21e+03) (314) (1.36)

Standard Deviations of MSE Simulation Estimates in Parentheses

Table B.4: Monte Carlo Simulation Results: Mean Maximum Difference Comparisons for
Derivative of 1-Dimensional Density

N=100 N=500 N=1000 N=5000
SIMS=100 SIMS=100 SIMS=100 SIMS=100

2nd Order 0.439 0.184 0.146 0.113
(2.92) (0.385) (0.366) (0.357)

4th Order 0.139 0.114 0.0734 0.0479
(0.131) (0.248) (0.0895) (0.0498)

6th Order 0.141 0.0899 0.0631 0.0431
(0.142) (0.0907) (0.0684) (0.053)

8th Order 0.145 0.0915 0.0603 0.0408
(0.15) (0.0954) (0.0686) (0.0556)

10th Order 0.158 0.0951 0.061 0.0405
(0.164) (0.0963) (0.0718) (0.0564)

Dirichlet 0.117 0.0824 0.0533 0.0367
(0.145) (0.0873) (0.0874) (0.0611)

WISE 0.241 0.335 0.167 0.0985
(0.49) (0.89) (0.358) (0.171)

Standard Deviations of Maximum Deviation Simulation Estimates in Parentheses
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Table B.5: Monte Carlo Simulation Results: Mean Maximum Difference Comparisons for
Derivative of 4-Dimensional Density

N=100 N=500 N=1000
SIMS=100 SIMS=100 SIMS=100

2nd Order 0.0805 0.0332 0.0268
(0.221) (0.0524) (0.0457)

4th Order 0.0264 0.0179 0.015
(0.0196) (0.0099) (0.00805)

6th Order 0.0225 0.0161 0.0132
(0.0144) (0.00893) (0.00674)

8th Order 0.0213 0.0147 0.0122
(0.0132) (0.0086) (0.00866)

10th Order 0.017 0.0161 0.0157
(0.00269) (0.00174) (0.00118)

Dirichlet 0.0139 0.0101 0.00869
(0.00416) (0.00256) (0.0024)

WISE 1.01 0.164 0.139
(4.57) (0.424) (0.799)

Standard Deviations of Maximum Deviation Simulation Estimates in Parentheses

Table B.6: Monte Carlo Simulation Results: Mean Maximum Difference Comparisons for
Derivative of 8-Dimensional Density

N=100 N=500 N=1000
SIMS=100 SIMS=100 SIMS=12

2nd Order 0.00859 0.00102 0.000851
(0.0297) (0.000702) (0.000111)

4th Order 0.000715 0.000705 0.000729
(0.000418) (0.000117) (0.000111)

6th Order 0.00061 0.000679 0.000686
(0.000186) (0.000114) (9.81e-05)

8th Order 0.000584 0.00067 0.00067
(0.000159) (0.000111) (9.53e-05)

10th Order 0.000659 0.000894 0.000979
(0.000179) (0.000145) (9.82e-05)

Dirichlet 0.000603 0.000713 0.000705
(0.000169) (0.000125) (9.01e-05)

WISE 8.94 17.8 4.67
(78) (97.7) (13.9)

Standard Deviations of Maximum Deviation Simulation Estimates in Parentheses
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Table B.7: Monte Carlo Simulation Results: Mean Square Error Comparisons for Derivative
of 4-Dimensional Density Conditioned on 1 of the Variables

N=100 N=500 N=1000
SIMS=100 SIMS=100 SIMS=100

2nd Order 0.0387 0.000761 0.000747
(0.196) (0.00147) (0.00258)

4th Order 0.00472 0.000778 0.00332
(0.0219) (0.00244) (0.0195)

6th Order 0.00178 0.00116 0.0194
(0.00753) (0.00587) (0.141)

8th Order 0.00127 0.000582 0.00367
(0.0027) (0.000911) (0.0219)

10th Order 0.00213 0.0187 0.00209
(0.0146) (0.146) (0.00892)

Dirichlet 0.00264 0.00666 0.000906
(0.00957) (0.037) (0.0032)

Standard Deviations of MSE Simulation Estimates in Parentheses

Table B.8: Monte Carlo Simulation Results: Mean Square Error Comparisons for Derivative
of 4-Dimensional Density Conditioned on 2 of the Variables

N=100 N=500 N=1000
SIMS=100 SIMS=100 SIMS=100

2nd Order 0.489 0.00947 0.0051
(2.55) (0.0208) (0.00576)

4th Order 0.029 0.228 0.00652
(0.128) (2.07) (0.0141)

6th Order 0.0113 0.0159 11.1
(0.0325) (0.0465) (111)

8th Order 0.0217 0.657 0.0835
(0.114) (4.95) (0.619)

10th Order 0.292 0.327 0.0762
(2.88) (3.07) (0.688)

Dirichlet 0.0833 1.95 0.332
(0.281) (10.6) (2.34)

Standard Deviations of MSE Simulation Estimates in Parentheses
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Table B.9: Monte Carlo Simulation Results: Mean Square Error Comparisons for Derivative
of 4-Dimensional Density Conditioned on 3 of the Variables

N=100 N=500 N=1000
SIMS=100 SIMS=100 SIMS=100

2nd Order 4.41 0.138 0.13
(24.4) (0.447) (0.463)

4th Order 0.278 62.8 0.0397
(1.27) (627) (0.038)

6th Order 0.226 0.188 0.534
(1.35) (0.68) (3.14)

8th Order 0.219 7.04 4.01
(0.946) (39.3) (31.6)

10th Order 0.0321 0.11 7.67
(0.0168) (0.782) (51.8)

Dirichlet 4.77e+03 6.03 22.5
(4.75e+04) (30.6) (141)

Standard Deviations of MSE Simulation Estimates in Parentheses

Table B.10: Monte Carlo Simulation Results: Mean Maximum Difference Comparisons for
Derivative of 4-Dimensional Density Conditioned on 1 of the Variables

N=100 N=500 N=1000
SIMS=100 SIMS=100 SIMS=100

2nd Order 0.274 0.123 0.163
(0.785) (0.146) (0.291)

4th Order 0.182 0.202 0.495
(0.515) (0.384) (1.6)

6th Order 0.134 0.248 0.976
(0.282) (0.585) (4.27)

8th Order 0.148 0.205 0.586
(0.222) (0.299) (1.7)

10th Order 0.13 0.601 0.507
(0.397) (2.98) (1.21)

Dirichlet 0.226 0.568 0.334
(0.418) (1.7) (0.622)

Standard Deviations of Maximum Deviation Simulation Estimates in Parentheses
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Table B.11: Monte Carlo Simulation Results: Mean Maximum Difference Comparisons for
Derivative of 4-Dimensional Density Conditioned on 2 of the Variables

N=100 N=500 N=1000
SIMS=100 SIMS=100 SIMS=100

2nd Order 1.02 0.381 0.353
(3) (0.444) (0.327)

4th Order 0.41 2.15 0.812
(0.768) (10.4) (1.21)

6th Order 0.361 1.18 12.8
(0.448) (1.92) (105)

8th Order 0.507 3.88 3.06
(1.13) (17.7) (8.35)

10th Order 0.759 2.14 1.95
(5.35) (11.6) (8.11)

Dirichlet 1.42 10 7.05
(2.39) (29.6) (16.3)

Standard Deviations of Maximum Deviation Simulation Estimates in Parentheses

Table B.12: Monte Carlo Simulation Results: Mean Maximum Difference Comparisons for
Derivative of 4-Dimensional Density Conditioned on 3 of the Variables

N=100 N=500 N=1000
SIMS=100 SIMS=100 SIMS=100

2nd Order 2.82 1.27 1.38
(8.69) (1.62) (2.42)

4th Order 1.1 19.1 1.38
(2.26) (177) (1.55)

6th Order 1.2 3.62 9.22
(2.86) (7.61) (19.8)

8th Order 1.48 15.9 17.6
(3.68) (57.2) (59.7)

10th Order 0.519 1.69 18.3
(0.431) (6.4) (85.9)

Dirichlet 81.4 25.3 53.8
(689) (47.3) (139)

Standard Deviations of Maximum Deviation Simulation Estimates in Parentheses
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Table B.13: Derivative Density Size Comparisons

Dimension maxxi
|∂f(xi)/∂xk| 1

n

∑
i
∂f(xi)
∂xk

J
oi
n
t

1 0.2420 0.1628
2 0.1148 0.0520
4 0.0253 0.0062
8 0.0011 0.00009

C
on

d
it
io
n
al 2|1 0.2881 0.1898

4|1 0.0627 0.0174
4|2 0.1497 0.0582
4|3 0.3300 0.2073

Table B.14: Ratio of Best Average Maximum Deviation to Maximum True Derivative Density
Height

Dimension N = 100 N = 500 N = 1000 N = 5000

J
oi
n
t

1 0.4835 0.3405 0.2202 0.1517
2 0.4852 0.3598 0.3554 0.1542
4 0.5494 0.3992 0.2727 -
8 0.5309 0.6091 0.6091 -

C
on

d
it
io
n
al 2|1 2.5338 2.7907 4.7553 -

4|1 2.0734 1.9617 2.5997 -
4|2 2.4516 2.5451 2.3580 -
4|3 3.3333 3.8485 4.1818 -

Table B.15: Ratio of Best Average Maximum Deviation to Average True Derivative Density
Height

Dimension N = 100 N = 500 N = 1000 N = 5000

J
oi
n
t

1 0.7187 0.5061 0.3274 0.2254
2 1.0712 0.7942 0.7846 0.3404
4 2.2419 1.6290 1.1129 -
8 6.1855 7.0963 7.0963 -

C
on

d
it
io
n
al 2|1 3.8462 4.2360 7.2181 -

4|1 7.4713 7.0690 9.3678 -
4|2 6.3058 6.5464 6.0653 -
4|3 5.3063 6.1264 6.6570 -
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Table B.16: Monte Carlo Simulation Results: Mean Square Error Comparisons for Derivative
of 4-Dimensional Density Conditioned on 1 of the Variables

Sep, N=100 Joint, N=100 Sep, N=500 Joint, N=500
SIMS=50 SIMS=50 SIMS=30 SIMS=30

2nd Order 1.8895e+18 0.059669 2.4899e+10 0.00056034
(1.3361e+19) (0.38274) (1.3638e+11) (0.0009355)

4th Order 0.001849 0.0010108 0.00050669 0.0003913
(0.0049039) (0.002624) (0.00030772) (0.0003876)

Dirichlet 0.00099285 0.00036763 0.69302 0.00022667
(0.0021582) (0.00032739) (3.7877) (2.9678e-05)

Sep. separately estimates the bandwidths for the numerator density and denominator
density; Joint uses the joint criteria to estimate both bandwidths jointly

Standard Deviations of MSE Simulation Estimates in Parentheses

Table B.17: Monte Carlo Simulation Results: Mean Square Error Comparisons for Derivative
of 4-Dimensional Density Conditioned on 2 of the Variables

Sep, N=100 Joint, N=100 Sep, N=500 Joint, N=500
SIMS=50 SIMS=50 SIMS=22 SIMS=22

2nd Order 5.903e+44 4.1496e+06 6.5948e+05 0.036363
(4.1741e+45) (2.9339e+07) (3.0922e+06) (0.12374)

4th Order 71285 2.9459e+07 2.2161 0.0034022
(5.0405e+05) (2.0831e+08) (10.209) (0.00043934)

Dirichlet 1.2867 0.0041199 0.34795 0.0022534
(6.4603) (0.0058914) (0.83613) (0.00031385)

Sep. separately estimates the bandwidths for the numerator density and denominator
density; Joint uses the joint criteria to estimate both bandwidths jointly

Standard Deviations of MSE Simulation Estimates in Parentheses
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Table B.18: Monte Carlo Simulation Results: Mean Square Error Comparisons for Derivative
of 4-Dimensional Density Conditioned on 3 of the Variables

Sep, N=100 Joint, N=100 Sep, N=500 Joint, N=500
SIMS=50 SIMS=50 SIMS=11 SIMS=11

2nd Order 4.8371e+26 2.0834e+05 34549 1521.3
(3.4203e+27) (1.4214e+06) (1.1439e+05) (5035.3)

4th Order 118.65 0.62519 0.50565 0.036632
(712.52) (4.0691) (1.1355) (0.0053253)

Dirichlet 3.0883 0.055043 2.6181 0.020093
(7.9263) (0.088448) (4.0135) (0.001585)

Sep. separately estimates the bandwidths for the numerator density and denominator
density; Joint uses the joint criteria to estimate both bandwidths jointly

Standard Deviations of MSE Simulation Estimates in Parentheses

Table B.19: Monte Carlo Simulation Results: Mean Maximum Difference Comparisons for
Derivative of 4-Dimensional Density Conditioned on 1 of the Variables

Sep, N=100 Joint, N=100 Sep, N=500 Joint, N=500
SIMS=50 SIMS=50 SIMS=30 SIMS=30

2nd Order 1.944e+09 0.46551 6.4419e+05 0.11837
(1.3746e+10) (1.7377) (3.5284e+06) (0.18745)

4th Order 0.18139 0.10103 0.23989 0.10341
(0.29698) (0.1259) (0.18958) (0.13978)

Dirichlet 0.14478 0.057056 3.7853 0.059145
(0.20658) (0.019158) (18.534) (0.012627)

Sep. separately estimates the bandwidths for the numerator density and denominator
density; Joint uses the joint criteria to estimate both bandwidths jointly

Standard Deviations of MSE Simulation Estimates in Parentheses
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Table B.20: Monte Carlo Simulation Results: Mean Maximum Difference Comparisons for
Derivative of 4-Dimensional Density Conditioned on 2 of the Variables

Sep, N=100 Joint, N=100 Sep, N=500 Joint, N=500
SIMS=50 SIMS=50 SIMS=22 SIMS=22

2nd Order 3.436e+22 2163.7 3945.2 0.59563
(2.4296e+23) (14912) (18142) (0.99435)

4th Order 380.84 5980.5 9.3335 0.22981
(2669.4) (42275) (32.576) (0.064033)

Dirichlet 3.9604 0.17571 6.8833 0.17421
(10.697) (0.10851) (11.278) (0.025509)

Sep. separately estimates the bandwidths for the numerator density and denominator
density; Joint uses the joint criteria to estimate both bandwidths jointly

Standard Deviations of MSE Simulation Estimates in Parentheses

Table B.21: Monte Carlo Simulation Results: Mean Maximum Difference Comparisons for
Derivative of 4-Dimensional Density Conditioned on 3 of the Variables

Sep, N=100 Joint, N=100 Sep, N=500 Joint, N=500
SIMS=50 SIMS=50 SIMS=11 SIMS=11

2nd Order 3.1103e+13 734.06 1299.9 170.49
(2.1993e+14) (3829.1) (4088.6) (534.32)

4th Order 29.242 1.7745 7.1625 0.90023
(104.67) (7.4295) (11.018) (0.40122)

Dirichlet 8.9915 0.6608 25.668 0.58
(14.757) (0.39911) (24.811) (0.1121)

Sep. separately estimates the bandwidths for the numerator density and denominator
density; Joint uses the joint criteria to estimate both bandwidths jointly

Standard Deviations of MSE Simulation Estimates in Parentheses
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Chapter 3

Testing the Additive Separability of

the Teacher Value Added Effect

Semiparametrically

3.1 Introduction

Many school districts rely on subjective teacher assessments to evaluate teacher performance.

However, there are reasons these measures may be inaccurate: assessments based on class-

room observations can occur less than once a year and are scheduled in advance, allowing

teachers to exert more effort on the announced day of the evaluation (Taylor and Tyler,

2012), and the highest rating can be given to nearly all teachers. For instance, in Los Ange-

les Unified School District, less than two percent of all teachers are rated as unsatisfactory

and over 90% of teachers receive no negative ratings on any of the 25 ratings categories in

the evaluation form (Buddin, 2011).

As an alternative, some school districts are also including in their teacher assessments

objective evaluations of the teachers based on an output of the education production function:

standardized test scores. Florida, Indiana, Rhode Island, Tennessee, and Colorado, as well
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as school districts in Houston, Denver, Dallas, Minneapolis and Washington, D.C., already

make use of test scores to estimate teachers’ value added (Corcoran, 2010). The New York

City Department of Education has estimated teacher effects on test scores for more than

10,000 teachers, and Los Angeles Unified School District has developed its own estimates as

well.

Implicitly, these statistical models are based on estimations of an education production

function. They are usually estimated by a linear regression of student test scores on previous

scores, covariates from administrative data, with an additively separable teacher fixed effects

variable. Additive separability of the teacher effect implies that the measured teacher value

added does not change by different student characteristics. Todd and Wolpin (2003) show

how the common, additively separable linear specification implies unobservable inputs and

endowments must decay at a common geometric rate, one example of the restrictions assumed

when using these models. Estimating the production function and the teacher value added

with a linear model and additively separable teacher effect has at least two direct potential

problems.

First, misspecification of the estimation model leads to biased estimation of the produc-

tion function, the marginal effects of teachers, and thus the teacher rankings (the typical

object of interest). The most common value-added specifications do not include flexible

interactions between student and teacher characteristics. This assumption of additive sep-

arability of the teacher effect means the marginal effects of a teacher’s value added is the

same for all types of students. However, there may actually be a relationship between a

teacher’s value added and the ability of his or her students, so that one teacher works better

with high performing students and another teacher performs better with low performing stu-

dents. Incorrect specification of the model leads to biased estimates of the average marginal

effect, and even more biased estimates of marginal effects or teacher rankings for low or high

performing students.

Second, additive separability causes the teacher effect to be reduced to a single constant,
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which misses the rich heterogeneity of the teacher effect, providing incomplete information

for specific policy questions that are interested in the performance of teachers among low or

high achieving students. Not only is there higher within-teacher variation of student’s char-

acteristics than between teacher variation, we estimate significantly higher within-teacher

variation of their own value added than between-teacher variation of the mean value added.

Teachers have more personal variation in their ability to help students than between other

teachers’ average ability. The standard deviations in value added across teachers is mea-

sured at .34 for English and .36 for math, while the standard deviations within teacher is .87

for English and .83 for math.1 While a teacher’s average value added across their students

might be high (low), it might be very low (high) for a subset of their students. From a theo-

retical perspective, this implies there are potential complementarities between teachers and

student characteristics. From a policy standpoint, initiatives that seek to move high-value

added teachers to low-performing schools, such as the Talent Transfer Initiative, may want

to take into account how a teacher’s value added varies by student performance. Also, alter-

native rankings of teachers can be generated from choosing different measurement criteria.

For instance, evaluators might be interested in the median value added effect or including

a measure of the variation in the teacher’s value added into the ranking. Any additively

separable teacher effect model loses information at these different points in the support of

student ability.

In this chapter, we estimate several semiparametric models, among them a baseline model

that uses linear regression on an additively separable teacher effect model included to repre-

sent the common estimation practices currently being used. Although we allow for slightly

more flexibility in how lagged test score enters the production function than is typically

employed (using a cubic expression), the baseline model is representative of the class of es-

timation models researchers are using. We also estimate various semiparametric additively

separable econometric specifications and additively non-separable specifications. Among the

1The measurement unit for the dependent variable and teacher value added is standard deviations from
the sample mean of the student’s test score
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non-separable specifications estimated is one estimated by linear regression that interacts

the teacher indicator variables with the cubic in lagged test scores. This method is fast and

easy to implement, but allows for student-teacher variation; the results from this chapter

suggest this specification should be used in practice.

We estimate all of the models on a subsample of high-tenure elementary school teachers,

and estimate the linear regression models–additively separable and additively non-separable–

on the full sample of elementary school teachers with sufficient student-year observations for

valid estimation of the teacher effect (over forty student-year observations). We find three

major results, all of which support the use of the simple to implement and estimate additively

non-separable linear regression model.

First, we find that the baseline regression results for the covariates are in line with other

value added models being estimated. In particular, the marginal effects are very similar

to those of Buddin (2011), who also uses data from Los Angeles Unified School District

elementary schools. The methods and data sample used in this chapter are representative

of the work currently being done, and the comparisons between the baseline model and the

alternative models are representative of the choices facing researchers using other data.

The other two main results show that there are larger differences across the margin of the

additivity assumption of the teacher effect than across the generalization of the estimation

of the production function through more flexible semiparametric models.

We find that the additively separable models (including the commonly used baseline

model) yield substantially different results than the additively non-separable models, evi-

dence against using the baseline model in practice. For even the average marginal effect,

where the models match the most, the most flexible additively non-separable model finds

in the subsample that 18% of teachers would be reclassified out of the lowest or highest

quintiles for Math test scores (18% and 27% for English) when using the baseline model,

with greater movement for middle-ranked teachers. For the full sample of teachers, our most

flexible model reclassifies 18% (27%) of the lowest-quintile of teachers and 18% (23%) of
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the highest quintile teachers for Math (English). There is even greater movement for value

added at 10th and 90th percentiles of student lagged performance.

Last, the additively non-separable linear regression model matches well with the more

flexible Ichimura (1993) single index model. It also still provides for heterogeneous teacher

effects, overcoming the two major drawbacks of the linear additively separable model. The

teacher value added methods’ relative matchings are evaluated by estimating the correlation

between the teacher value added between the various models at differing student lagged test

score values, and by comparing which quantile teachers are ranked in using various models

at differing student lagged test score values.

The additively non-separable linear regression model nests the baseline model. The

only difference is that the cubic in lagged test score is interacted with the teacher indicator

variables, so that teacher effects can differ with different lagged student test score. An F-test

on whether these interaction terms are jointly zero is strongly rejected in all our samples.

There are several caveats to our analysis that also pertain to value-added estimations

more generally. These estimates can be imprecise. Specific to our analysis, semiparametric

estimations can also exacerbate imprecision. We try to mitigate this problem by using a large

data set, from the second largest school district in the United States. There are also potential

biases from a number of other sources, including student-to-teacher assignments based on

unobservables (Rothstein 2010). In practice, value-added estimations assume these biases

are small. Similarly, we make the assumption that assignment is random conditional on some

function of observables in order to focus on the potential bias from model misspecification.

The additively non-separable linear regression model is easy to implement and estimate,

even using a large data set of teachers such as the Los Angeles Unified School District. The

small change of interacting the teacher effect with the lagged student test scores captures

most of the effects given in the most flexible model we estimate which doesn’t restrict the

interactions to be only between teacher effect and lagged student test score. The additively

non-separable linear regression model also yields more convincing estimates of the average
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marginal teacher effect by more flexibly estimating the underlying production function, and

allows for capturing heterogeneous teacher effects by lagged student test score.

This study focuses on elementary school teachers for two main reasons: first, teacher

assignment for different subjects’ tests is more straightforward, and second, as Heckman and

Masterov (2007) argue, the most important learning and separation of students happens

early, and early interventions are the most effective.

The rest of the chapter proceeds as follows. Section 3.2 presents the empirical strategy

and econometric models we will use. Section 3.3 explains the data from Los Angeles schools.

Section 3.4 shows the results and discusses the implications, and Section 3.5 concludes.

3.2 Empirical Strategies

Estimation of teacher value added requires assumptions on the education production func-

tion. Similar to the model proposed by Todd and Wolpin (2003), we consider the following

production function for student achievement

Tit = mj [Zit, µi0, ηijt]

Tit is student i’s test score in academic year t. mj is an unknown function of family and

school inputs, and j is the teacher assignment. The inputs can broadly be separated into Zit,

the history of family and school inputs, µi0, a student’s initial human capital endowment,

and ηijt, idiosyncratic shocks. Given family and school inputs, student ability, and random

shocks, the unknown production function mj for each teacher which translates all of these

inputs to the output, the test score.

A common assumption in the literature and current practice, that Todd and Wolpin

(2003) classify as the value added specification, is to use the lagged test score as a sufficient

statistic for unobserved family and school inputs and mental endowment. We also make this
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assumption.

For each of the models used in this chapter, we assume that the idiosyncratic shocks,

ηijt, are additively separable and orthogonal to all other covariates, as is also commonly

done in the literature. Let Xit be the observable family and school characteristics, and

Wit = [Tit−1, Xit]. We separate the econometric models we use into whether the teacher

value added effect is additively separable or not. The assumption of an additively separable

teacher effect simplifies the estimation process, but has dramatic effects on the results. This

chapter establishes that there is too much information lost in the assumption of additive

separability, and the results are biased. However, there is a simple additively non-separable

model that can be estimated, the linear regression model.

With these assumptions, the additively non-separable models of the production function,

which we call the AN models, are

Tit = mj (Wijt) + ηit (AN)

The more restrictive additively separable models, or AS, are

Tit = m(Wit) +
J∑

j=1

dijtψj + ηit (AS)

ηit =
∑J

j=1 dijtηijt is the idiosyncratic shocks, ψj is the additively separable contribution

of teacher j, and dijt is an indicator variable for whether student i was taught by teacher j

in year t. The assumption of additively separable teacher effects implies that the teacher’s

contribution towards a student’s test outcomes does not vary by student characteristics.

Teachers are restricted to have the same effect on high performing and low performing

students, on male and female, on students enrolled in the free lunch program and those not,

and any other factor. The advantage of additive separability is its easy estimation.
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We estimate three additively separable models: linear regression, Single-Index Ichimura

Model, and Artificial Neural Networks (ANN). We label these models respectively AS1,

AS2, and AS3. AS1, the linear regression additively separable teacher effect model, is the

baseline model and is representative of the models currently in use. AS2 and AS3 allow for

more flexible estimation of the production function m(·) while retaining the simplicity of the

additivity assumption. AS2 and AS3 are included as comparisons, to see if the problems

inherent in the baseline model are because of poor approximation of the m(·) production

function (given the additivity assumption) or result from the additivity of the teacher effect

assumption.

We also test two additively non-separable teacher effect models: a linear regression model

where the teacher effect is interacted with the student lagged test score variables, and an

Ichimura single-index model. We label these models AN1 and AN2, respectively. AN2, the

Ichimura model, is the most flexible, allowing for heterogeneous teacher effects to differ by all

of the inputs, including lagged student test score. However, we show that AN1 and AN2 have

close results, suggesting that the simpler and quicker linear regression model that interacts

student lagged test score with the teacher indicator variables is a suitable econometric model

choice in application.

We explain each estimation method in detail in the Appendix in Section C.1, including

the specification of the estimator of the teacher value added effect for each method. An

overall review is presented here.

3.2.1 AS Models: Additively Separable Teacher Effects

The additively separable teacher effect models assume that the production function is the

same for every teacher (with only inputs differing), and the teacher effect is the same for any

student the teacher instructs. The model is written as
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Tit = m(Wit) +
J∑

j=1

dijtψj + ηit

Where ηit =
∑J

j=1 dijtηijt is the idiosyncratic shock, ψj is the teacher value added for

teacher j, and dijt is an indicator variable for whether student i was taught by teacher j

in year t. The three different models we estimate, AS1-AS3, change how m(·) is estimated

econometrically.

AS1: Additively Separable Linear Regression

AS1, the linear regression additively separable teacher effects model is the econometric es-

timation method commonly in use by researchers. For this reason, AS1 will serve as the

baseline model. To allow for non-linearity of student ability and heterogeneity captured in

the lagged test score, we use a cubic in lagged student achievement. The other controls are

assumed to enter linearly.

The intuition behind this model is that the controls on average have linear effects at

the margin, and that the teacher effect can be reduced to a summary statistic (the average

marginal effect), which will be captured by restricting teachers to have the same effect (ψj)

on all students that they teach. The absolute teacher effect is not identified, because no

students are observed without any teacher. Instead, we identify teacher effects relative to

other teachers (the normalization used for all methods in this chapter). The comparison

group is the average of all the teachers in the sample by subject, so that teachers in different

schools can be compared. The interpretation of the teacher effect is how many standard

deviations on average a given teacher contributes. Any normalization (to the mean, to

a given baseline teacher, or any other) will create different absolute values, but the same

rankings of teachers.
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AS2: Additively Separable Single Index Ichimura Model

The linear regression model requires some degree of assumptions about the functional form

of m(·). Other semiparametric additively separable teacher effect models are estimated to

distinguish if the linear model fails specifically because of the additively separable assumption

or because of an insufficiently flexible specification of interactions and higher order terms in

the production function. We estimate an additively-separable teacher effects model using a

single index Ichimura model, AS2. The model is based on the work of Ichimura (1993). AS2

allows for a much more flexible estimation of the production function by using kernel density

estimation of the conditional expectation of test score on the weighted sum of the controls

(the index).

AS3: Additively Separable Artificial Neural Networks

We use a model of Artificial Neural Networks (ANN), using the Ridgelet sieve, as presented

in Chen, Racine, and Swanson (2001). Chen (2007) presents a review of these estimators

and demonstrates that ANN performs particularly well among the class of semiparametric

index model estimators as the number of indexing variables increases. The model is more

flexible than the Ichimura model by allowing the weights to differ by layer, which, in essence,

allows for a very flexible estimation of the production function m(·) where any controls can

have arbitrary dependencies with other control variables for marginal effects.

3.2.2 AN Models: Additively Non-Separable Teacher Effects

The next models relax the additivity of the teacher value added effect assumption. Teacher

effects are allowed to vary by different student characteristics, a more reasonable approxima-

tion of the production function that should give more consistent estimates, and retain the

teacher effect heterogeneity. The econometric model is given by
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Tit = mj(Wit) + ηij

We test two different additively non-separable models, linear regression and Ichimura

index model (AN1 and AN2, respectively).

AN1: Additively Non-Separable Linear Regression

AN1, the additively non-separable teacher effect linear regression model includes interactions

of the three coefficients on lagged test score (up to the cubic effect) with the teacher indicator

variables, dijt.

This allows a teacher’s effect to differ depending on the lagged test score, a summary

statistic for the ability of the student, while retaining the fast estimation of OLS. There might

be some teachers that are effective in teaching high performing students, while others might

contribute more to struggling students. The goal of this model is to determine whether, if

the additively separable models seem to not capture the effect well, this version of a linear

regression model (AN1) is close to the Ichimura model (AN2) which allows the teacher effect

to differ by other controls as well. If so, it offers a suitable, tractable model for large-sample

estimation and routine use.

AN2: Additively Non-Separable Single Index Ichimura Model

The intuitive difference between AS2 and AN2 is the m(·) function is allowed to differ by

teacher. The conditional expectation of the test score on the weighted sum of the controls

is done for each teacher separately (although we require the control weights to be the same

across teachers). This allows for a much more flexible estimation of the production function

by teacher, but requires sufficient data and takes a lot longer to run. For this reason, we

only estimate AN2 for the subsamples, when we have at least 200 student-year observations
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for each teacher on which to base the estimate.

3.3 LAUSD Data

The data comes from Los Angeles Unified School District (LAUSD), spanning from academic

years 2002-2003 to 2009-2010. The data set includes students and teachers from all primary

and secondary schools in the district. We limit our attention to teachers in grades three

to five, where the teacher assignment is simpler and student learning has greater long-run

effects (see Heckman and Masterov 2007). Earlier grades are not included because exams

first occur in the second grade so there are no lagged test scores for use as the summary

statistic before third grade.

The analysis is performed on two separate groups. First, extensive testing uses all of the

estimation methods on a subsample of teachers with a substantial amount of student-year

observations (over 200 student-year observations across the sample), for Math and English

standardized tests. These sample restrictions help the analysis in at least three ways. First,

it yields a higher number of student-year observations per teacher on which the estimates

of value added are based, which is especially important for the precision of semiparametric

estimation techniques. Second, it requires less parameters to be estimated for each model, as

there are less teachers whose effects need to be estimated.2 Third, the smaller sample, and

in particular the smaller amount of teachers, means a much faster estimation time. Given

some of the methods are slow to estimate, even programmed using multiple parallel-processor

methods, we leave the full battery of tests for this subsample of high tenure teachers.

The second group we perform our analysis on is for all 3-5 grade teachers with at least

40 student-year observations, what we call the full sample. The full sample expands the

number of teachers we are analyzing from just under 60 teachers (slightly different depending

on whether it is Math or English scores) to over 7000 teachers. We limit the number of

2The Ichimura models and ANN all take their parameter values as the result of a simplex search; a smaller
parameter space to search on decreases the likelihood of getting caught at local minima.

128



student-year observations to be 40 to insure a minimum threshold of accuracy estimating

the teacher effect for each teacher. Given the much larger size of these data and computation

constraints, we only perform two estimation techniques for the full sample, the two linear

regression models AS1 and AN1. Even with these faster methods, the large sample size

requires making further divisions in the sample: the analysis is performed by grade and

subject, centering each grade-by-subject’s teacher value added effects.

The data contain many of the standard variables in district-level teacher value added

analysis. The most important variables are the student standardized test scores, in the

current period and the lagged value. We measure this in terms of standard deviations from

the mean (z scores), by year and grade. To match the teacher data to the student data, we

look at which teacher gave the students their Math (Reading) marks in a given year, and

assign them to be the teacher responsible for their Math (Reading) standardized test scores.

We generate three other continuous variables: the fraction of students in their class that

are receiving free/reduced price lunch, the number of students in their class, and the standard

deviation of the lagged test z scores in the classroom. The last provides a measure of how

different abilities are in the classroom.

We also include a set of indicator variables of student characteristics: a set of race

indicator variables (Black, Hispanic, Asian, and other, with White as the baseline group),

an indicator variable for male, for being in the gifted program, for being in the free lunch

program, and for whether one of their parents has 12 or more years of education. We also

include a control indicator variable for students who either declined to report their parents’

education or for whom it was missing.

Tables C.1-C.4 contain the summary statistics for the two test subjects and the subsample

and full sample.

Teachers in the subsample work with students that are substantially different than the

students in the full sample. Teachers are not randomly kept in the system. On average,

teachers in the subsample teach higher achieving students, with lower proportions in free
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lunch program and a much higher proportion in the gifted program. They teach a smaller

fraction of black students, teach larger classes, and work with students almost three times

as likely to have a parent that finished high school. These differences likely will bias an

estimation of the population parameters, as seen in comparing the coefficients from the full

sample and subsamples. However, the subsample does not bias results for the population

of similar teachers in similar classrooms, and our goal is to investigate how well different

estimation techniques perform within a given sample. To the extent that our subsample

does not have systematic differences across the econometric models in the different samples,

estimation on the entire population or on the subsample results are informative for the effects

of using the different econometric specifications.

The within teacher estimates in Tables C.1-C.4 are the average standard deviations of

each teachers’ students characteristics, while the between teacher estimates are the standard

deviation of the means of the students characteristics by teacher. In almost every case, the

between teacher variance is larger than the within teacher variance.3 This is helpful for our

analysis, implying comparability of teachers on shared supports. Also, estimators that allow

for different teacher effects for different students (non-separable models) could have higher

within teacher variance than between if teacher effects vary by student characteristics. This

emphasizes the potential importance of using non-separable methods to evaluate teacher

value added more robustly.

3The one exception to higher within teacher variation is the fraction of the class on the free lunch program.
However, the within teacher estimate will be the same for each given class, implying zero variance for any
teacher teaching one class only.
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3.4 Results

3.4.1 Baseline Regression Results and Covariate Marginal Effects

Tables C.5 and C.6 present the results of the baseline linear regression estimations from model

AS1 for Math and English. The first column shows the results for the high-tenure sample4,

and the remaining columns have the results for the full samples in grades three to five. The

last row shows the Average Marginal Effect (AME) for lagged test scores.5 The coefficients

are similar across samples with the exception of the fraction of the class receiving free lunch

and the individual-level free-lunch recipient indicator variable. The latter is positive and

significant for the high tenure sample, as opposed to near zero in the full samples, while the

coefficient on the free lunch indicator is more negative for the high-tenured sample compared

to the full sample coefficients.

We can compare several coefficients to the model estimated by Buddin (2011). Looking

at the Math results, the coefficients on class size are similar: Buddin’s range from -.005 to

-.002 compared to -.005 to -.003 in our results. Our results on gender switch signs for the

third grade versus grades four and five, but the coefficients are both small. The coefficients

on parents’ education in Buddin’s paper are similar to our results.

Broadly speaking, the baseline linear regression results suggest that the relative differ-

ences across the full sample and high-tenure samples are small, and the model and data

reasonably approximates Buddin’s results.

For the other econometric models, we generate the distributions of marginal effects by

taking each student in the sample and estimating the marginal effect for the variable of

interest with numerical derivatives for continuous variables and the discrete difference in

predicted values for binary variables. The distributions of marginal effects are presented in

Figures C.4-C.16. The distributions are consistent with estimates of the same variables in

4The sample that only includes teachers who have at least 200 student-year observations
5The AME differs from the marginal effect because of the included higher-order lagged score terms. The

AME for a continuous variable is calculated as 1∑
i,t 1

∑
i,t

∂E[Tit|Xijt]
∂Tit−1

.
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the previous literature, supporting the external validity of our sample and overall methodol-

ogy and demonstrating the different levels of flexibility don’t generally affect the estimated

marginal effects much for these control variables.

3.4.2 Correlations Across Models

We estimate four values of the teacher value added effect for each teacher: the average

marginal effect and the value added at the 10th, 50th, and 90th percentiles of the lagged

student test score. For the percentile estimated teacher effects, the other control variables

are evaluated at the modes of the binary variables and means of the other variables. Figure

C.1 shows the distributions across teachers for these four measures by estimation method.

The teacher effects are normalized at each different percentile, which is why they are centered

at zero. Generally speaking, the distributions of effects are similar across models.

However, the rankings of teachers within the distribution vary by model. Tables C.7 and

C.8 report the correlation between the estimated teacher effects for the various econometric

models. The average marginal effect comparisons give insight into how well the econometric

models match for the typical measurement of teacher value added. The correlations of the

model at different percentiles of the lagged test score emphasize the shortcomings of using

an additively separable teacher value added effect econometric model. For the AS models,

the teacher effects will not vary by lagged student test score, and will be the same for the

AME and the marginal effect at the 10th, 50th, and 90th percentile of lagged student test

score.

Table C.7 shows very high correlations across all percentiles for the AS models, usually

around .99. For comparison, Johnson, Lipscomb and Gill (2012) find correlations from .92

to .99 (an average of .973) across models that vary the number of covariates. Under the

assumption of additively separable teacher effects, various estimation methods of the edu-

cation production function do not affect the value added estimates very much. Researchers

should not be concerned over using more flexible semiparametric models; if the additively
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separable assumption is applied, the results will not vary by much.

However, the results may not be accurate, as suggested by how much they vary from

the additively non-separable models, between which the correlations are much lower. For

the median lagged math test score, correlations range from .92 to .97. However at the 10th

and 90th percentiles, correlations are particularly low: from .52 to .77 and .72 to .75 for

the 10th and 90th percentiles respectively. Correlations of effects across models for English

scores range higher at the 10th and 90th percentiles. Overall, they range from .76 to .89.

The correlations in AME across models are similar to the results at the median.

The correlation coefficients are higher within the additive separability assumptions than

across it. For example, AN1 and AN2 have higher correlation coefficients with each other

than with AS models. This is the case across all percentiles and subjects, with the exception

of the 10th percentile for math scores, which has a correlation of .39 (interestingly, the

correlation at the 10th percentile of English scores is .93). It is unclear to us why this

correlation is so low in the high tenure sample where there should be sufficient density

around the 10th percentile of scores to rely on higher-order lagged score terms. However,

the overall results for Math and English suggest that using AN1, which is fast and easily

implemented, will be more accurate than the additively separable models and preserves the

teacher effect heterogeneity.

The Ichimura and Neural Network models show how more flexible models affect teacher

effect evaluation. However, these models are often intractable and too slow for larger samples,

and certainly would be difficult to apply to a data set of teachers as large as LAUSD. AN1,

on the other hand, is estimable even on a larger data set of over 2500 teachers for each

estimation. Given that AN1 approximates AN2 relatively well, we test the correlation of

the teacher effects for the two linear regression models, AS1 and AN1, for the full sample.

Doing so gives additional insight into whether the subsample results are informative for

the full sample by contrasting the relative differences between AS1 and AN1 across both

samples. With many more teachers involved, it also gives a wider view at the benefits of
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allowing for different teacher effects by lagged test scores in using the non-separable model

AN1. Table C.9 shows that the correlations between the non-separable OLS model and the

baseline model are overall low, suggesting the importance of interacting teacher effect with

the lagged test score. At the 10th percentile of Math and English scores, the correlations are

.48 and .52, respectively. The correlation at the median fares better, .94 for math and .90 for

English, but suffers again at 90th percentile (.57 for math and .31 for English). The AME

also suggests that the separable OLS model misses important within-teacher heterogeneity

in value added, with correlations of .81 and .65 for Math and English.

The correlations are so low between the separable and non-separable models away from

the median of lagged student test score because of their failure to allow for effects to differ

by student ability. We estimate the within teacher distribution of teacher effects in the

subsample by evaluating the teacher effect for each teacher and each given student in the

sample. Figure C.2 presents four examples from the English value added estimated teacher

distributions for a single teacher. These plots are typical of the remaining distribution

estimates. Mechanically for the separable models, the distribution collapses to a vertical line

because there can be no within-teacher heterogeneity by construction. The non-separable

models document significant variation of the teacher effect. These plots demonstrate three

important lessons. First, teachers with above (below) average value added according to the

baseline OLS model can be below (above) average for a significant fraction of students, and

the reduction to the single point loses quite a bit of information. Second, the distributions

of the two non-separable methods AN1 and AN2 tend to be remarkably close to each other,

reinforcing the justification for using the easy to implement AN1. The four teachers presented

are typical of the results for all teachers. Third, sometimes even the average marginal effect

estimates from the additively separable model can be substantially off base.

Overall, the semiparametric non-separable models show that teacher effects can differ

substantially by student characteristics. As a summary measure, Table C.15 documents

that the within teacher variation in value added is significantly greater than the across-
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teacher variation in value added. This heterogeneity is not permitted in typical value-added

models. The correlation results show the differences are larger between the groups AS and

AN than within them.

3.4.3 Teacher Reclassification by Model

One of the primary goals of evaluating teacher value added effects is to provide a ranking of

the teachers. However, the biases that come from using an additively separable model–even

at the AME, and even more so for groups of students with outlying lagged test scores–cause

the teachers to be incorrectly ranked. This section demonstrates the extent to which the

teacher sorting can be wrong.

We look at the distribution in changes in the percentile rankings of teachers between the

baseline AS1 model and the more flexible AN1 model. Figure C.3 shows these distributions

according to various percentiles of lagged test scores as well as for the AME. Overall ranking

changes appear normally distributed around zero. Changes are greatest at the 10th and 90th

percentiles for Math, reaching changes of around 40 percentile points in the tails. Changes

at the median and AME tail off at around 20 percentile points. For English scores, there

is significantly more variation in the size of the ranking changes, tailing off at around 60

percentile points at the 10th and 90th percentile of lagged scores and around 40 percentile

points for the median and AME. The baseline AS1 model can widely misclassify teachers

relative to the more flexible AN1 model that nests the baseline model within it.

The correlation tables previously examined show that all of the additively separable

methods yield very similar results in the teacher effects, so we limit the attention of the

additively separable models to the baseline linear regression model. We compare how well

AS1 and AN1 match with the most flexible AN2 for the subsample. Similar to Johnson,

Limpscomb and Gill (2012), we examine the policy relevance of our results by separating

the distribution of teacher effects into quintiles, and comparing how closely two estimation

methods’ quintiles match. The results for the subsample are in Tables C.10 and C.11. The
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elements of the tables are proportions in each row conditioned on the column; for example,

in the Math subsample in Table C.10, 45.5 percent of those ranked in the 2nd quantile of

teacher effects on students in the 10th percentile lagged test score by AN2 are also ranked

in the second quantile by AN1.

Generally, a greater fraction of teachers are ranked differently from the preferred method

by the baseline AS1 than by AN1. For English scores, across the AME, 10th, and 90th

percentiles of lagged scores, AN1 generally places teachers in the same quintiles as the

Ichimura model. For Math scores, at various points in the lagged-score distribution, AN1

performs better, for instance at the 90th percentile; however this is not the case at the

10th percentile. Also, there is a much larger drop-off in the matching for the 10th and

90th percentiles as opposed to the AME for the baseline model than for the additively non-

separable linear regression model, showing the heightened limitations of additively separable

models away from average lagged test score.

In Tables C.12 and C.13, we use the full sample to compare the agreement of AS1 and

AN1. Similar to the subsamples, agreement between the models for Math in the highest

and lowest quintiles is 82% for the AME, with greater movement in the middle quintiles.

However in the full sample there is greater reclassification to quintiles different than the

immediately adjacent quintile. 2% (4%) of teachers placed in the lowest (highest) quintiles

by the baseline OLS models are placed in non-adjacent quintiles by the the non-separable

model, as opposed to zero percent in the subsample. For English scores, the agreement is

less and the magnitude of the reclassification is greater: 73% to 77% of teachers at the upper

and lower quintiles agree for the AME, while lower at extreme quantiles. At the 10th and

90th percentile of lagged test score range from 32%-63%, which is very low.

The separable model AS1 is a special case of the non-separable model AN1 in the OLS case

where the interaction terms between the teacher effect and the lagged test score variables have

coefficients are equal to zero. We conduct two sets of hypothesis tests for the full samples with

null hypotheses of no difference between the additively separable model and the additively
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non-separable model for each grade and subject. The results are reported in Table C.14.

The first performs separate hypothesis tests by teacher on the teacher’s interacted terms.

The fraction of teachers for whom the null hypothesis is rejected is reported. Between 2

to 64 percent of the teachers have different effects by different student ability than the

average, according to this hypothesis test. The proportions are indicative of the proportion

of teachers for which there is statistical evidence that their production functions (but not

necessarily their value added) are differently shaped than the average production function.

The second tests all of the interacted terms together. The p-values from these tests show

the null hypotheses are strongly rejected in each instance (p-value<0.0000). This is strong

evidence that the higher-order interaction terms are an important inclusion to the model.

3.5 Conclusion

Value added models are common in empirical investigations into teacher quality. Almost

universally, the literature uses a linear OLS model with additively separable teacher value

added effects to estimate the teacher value added. In this chapter, we test the additive sep-

arability assumption by using various semiparametric methods. Our results show through

correlations of the estimated teacher effects at different percentiles and AME, through rank-

ings at different quantiles, and through hypothesis testing between the two OLS models that

there is a high degree of within-teacher heterogeneity in the teacher effect, and that not

accounting for this through an additively non-separable model, such as one interacting the

lagged student test score with teacher assignment, will bias the results.

Our research suggests that estimators that don’t allow for the within-teacher value added

heterogeneity will provide a very limited view into the contributions the various teachers

make, and incorrectly rank the teachers even using the metric of average marginal effect.

AN1, the OLS non-separable model, provides a model that is easily estimable, but still cap-

tures most of the non-linearities in the Ichimura non-separable model, and retains the teacher
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effect heterogeneity that is strongly displayed in the estimation and needed to evaluate for

policy involved with teacher placement or rankings for low or high performing students.

Within-teacher variation is much higher than between teacher variation, so a metric that

reduces the distribution to one point, such as AME, even if it could be done accurately, will

not provide a full view on the teachers’ rankings. Misrankings of the teachers have effects

in many school districts using value added methods to assess teacher performance. In Ten-

nessee, measures of the teacher value added account for 35% of the teachers’ evaluations, for

example (Butrymowicz and Garland 2012). New policy in New York will allow school dis-

tricts to base up to 40 percent of their teacher evaluation on standardized test performance,

of which half must be based off a very simple value added model (Santos and Hu 2012).

The full sample estimations demonstrate that our conclusions are not unique to high

observation teachers. In the full sample, we perform the analysis for over 7000 teachers,

much larger than most school districts in the United States. Researchers and administrators

can easily apply our model to other school districts. We also suggest looking at a combination

of measures of the teacher’s value-added distribution in their overall ranking. Doing so will

yield better evaluations of teachers’ varied contributions to student achievement. It will

also provide for better estimations of the teacher’s contribution for low or high performing

students, as is of interest in many practical applications.
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C Appendix

C.1 Econometric Specifications

AS1: Additively Separable Linear Regression

The specification is given by

Tit = β0 +
3∑

`=1

λ`T
`
it−1 +Xitβ +

J∑
j=1

dijtψj + ηit

The normalized teacher effect is then given by

V̂ AM
AS1

ijt = ψ̂j −
∑

q,r,s ψ̂r∑
q,r,s dqrs

AS2: Additively Separable Single Index Ichimura Model

The estimation of Ichimura’s (1993) model from the assumption E[η̃it|Tit−1, Xit] = 0, the

same assumption made for all of the models. This implies that

E [Tit|Wit] = E [m (Witβ) |Wit] +
J∑

j=1

dijtψj

The left hand side is observed, and estimated using kernel density estimation:

E [Tit|Wit] =

∑
q 6=i∩s 6=t TqsK

(
Wqsβ−Witβ

h

)
∑

q 6=i∩s6=tK
(

Wqsβ−Witβ)

h

)
As suggested by Li and Racine (2007), we jointly estimate the bandwidths and the index
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coefficients by minimizing the sum of squared residuals (SSR). The SSR come from the

demeaned data, which serves to eliminate all ψj from the estimation equation.

η̂it = Tit −

∑
q 6=i∩s6=t TqsK

(
Wqsβ−Witβ

h

)
∑

q 6=i∩s 6=tK
(

Wqsβ−Witβ)

h

) −
J∑

j=1

dijtψj

η̃ijt = η̂it −
∑

i,t dijtη̂it∑
i,t dijt

SSR =
∑
i,j,t

η̃2ijt

We estimate the teacher effects after we have gotten estimates for β and h by backing

out the averaged difference between the student’s exam outcomes and the predictions from

m̂(·):

V̂ AM
AS2

ijt =

∑
i,t dijt(Tit − m̂(Witβ̂))∑

i,t dijt
−

∑
q,r,s

∑
i,t dirt(Tit−m̂(Witβ̂))∑

i,t dirt∑
q,r,s dqrs

AS3: Additively Separable Artificial Neural Networks

The model depends on how many hidden neuron layers, or number of sieve terms, are

included. Let rN be the number of hidden neuron layers. The basic form is given by

m̂(Wit) = α0 +

rN∑
r=1

αr√
ar
φ

(
Witβr − br

ar

)

where the ridge function φ(·) is given by

φ(µ) = −0.8311297508e−2(−105 + 105µ2 − 21µ4 + µ6)e−.5µ2

Conditional on the number of hidden layers, the parameters are estimated using nonlinear
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least squares on the demeaned data:

T̃ijt = Tit −
∑

i,t dijtTit∑
i,t dijt

and similarly for m(·) and η. The number of hidden neuron layers is chosen by which

number of hidden layer gives nonlinear least squares estimators with the smallest Bayesian

Information Criterion, given by

BIC(r) = ln(SSRr) + (r ∗ (k + 3)) ln(n)/n

where r ∗ (k + 3) is the number of parameters estimated, and n is the sample size.

Although very technical, this method is in the end just a highly flexible estimator eval-

uated using nonlinear least squares. We use it because of its good characteristics for multi-

dimensional covariate spaces (Chen 2007). Once the model is estimated, estimations of the

teacher value added parameters can be backed out through estimating

V̂ AM
AS3

ijt =

∑
i,t dijt(Tit − m̂(Wit))∑

i,t dijt
−

∑
q,r,s

[∑
i,t dirt(Tit−m̂(Wit))∑

i,t dirt

]
∑

q,r,s dqrs

AN1: Additively Non-Separable Linear Regression

AN1, the additively non-separable teacher effect linear regression model includes interactions

of the three coefficients on lagged test score (up to the cubic effect) with the teacher effects

dijt:
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Tit = β0 +
3∑

`=1

λ`T
`
it−1 +

J∑
j=1

3∑
`=0

γ`jT
`
it−1dijt +Xitβ + ηit

The value added is given by

V̂ AM
AN1

ijt =
3∑

`=0

γ`jT
`
it−1 −

∑
q,r,s

∑3
`=0 γ`rT

`
qs−1∑

q,r,s dqrs

AN2: Additively Non-Separable Single Index Ichimura Model

Ichimura’s (1993) index model comes from the assumption E[ηit|Wit] = 0. This implies that

E[Tit|Wit) = E[mj(Witβ)|Wit]

We solve jointly for β and the bandwidths (now one for each teacher) by minimizing the

SSR, given by

η̂ijt = Tit−

∑
6̀=i∩s 6=t d`jsT`sK

(
W`sβ−Witβ

hj

)
∑

` 6=i∩s6=t d`jsK
(

W`sβ−Witβ
hj

)
SSR =

∑
i,j,t

η̂2ijt

Again, the average teacher value added effects are normalized to average to zero. The

teacher value added effect is given by

V̂ AM
AN2

ijt = m̂j(Witβ̂)−
∑

q,r,s m̂r(Wqsβ̂)∑
q,r,s dqrs
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C.2 Tables

Table C.1: Summary Statistics, Math High Tenure Subsample; Number of Students=11,484,
Number of Teachers=56

Mean Std. Dev. Between Std. Within Std. Min Max
Tt 0.969 1.007 0.504 0.872 -2.049 3.514
Tt−1 0.976 0.982 0.464 0.867 -2.182 3.607
Frac Free Lunch 0.450 0.333 0.320 0.088 0 1
Class Size 31.121 3.229 1.414 2.234 16 60
Std(Tt−1) 63.516 12.112 6.475 9.813 33.319 105.392
Hispanic 0.061 0.240 0.066 0.213 0 1
Asian 0.157 0.363 0.135 0.313 0 1
Black 0.381 0.486 0.282 0.386 0 1
Other Race 0.043 0.204 0.029 0.186 0 1
Gifted Prog. 0.609 0.488 0.217 0.433 0 1
Male 0.501 0.500 0.032 0.500 0 1
Free Lunch Prog. 0.450 0.497 0.321 0.366 0 1
Parents College 0.426 0.494 0.239 0.426 0 1
Missing Parents Ed. 0.150 0.357 0.135 0.312 0 1

Table C.2: Summary Statistics, Math Full Sample; Number of Students=657,406, Number
of Teachers=7,072

Mean Std. Dev. Between Std. Within Std. Min Max
Tt 0.090 0.997 0.554 0.809 -4.527 3.514
Tt−1 0.096 0.989 0.491 0.843 -4.655 3.607
Frac Free Lunch 0.784 0.264 0.219 0.103 0 1
Class Size 24.167 5.150 4.484 2.251 1 61
Std(Tt−1) 61.000 14.419 9.290 10.086 0.000 163.342
Hispanic 0.089 0.284 0.166 0.183 0 1
Asian 0.046 0.209 0.097 0.113 0 1
Black 0.748 0.434 0.272 0.290 0 1
Other Race 0.029 0.167 0.053 0.100 0 1
Gifted Prog. 0.158 0.365 0.173 0.255 0 1
Male 0.490 0.500 0.052 0.500 0 1
Free Lunch Prog. 0.785 0.411 0.220 0.311 0 1
Parents College 0.141 0.348 0.164 0.264 0 1
Missing Parents Ed. 0.281 0.449 0.218 0.382 0 1
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Table C.3: Summary Statistics, English High Tenure Subsample; Number of Stu-
dents=11,685, Number of Teachers=57

Mean Std. Dev. Between Std. Within Std. Min Max
Tt 1.136 0.921 0.488 0.785 -2.205 5.384
Tt−1 1.073 0.970 0.505 0.829 -2.753 5.408
Frac Free Lunch 0.459 0.337 0.325 0.087 0 1
Class Size 31.059 3.155 1.375 2.233 17 58
Std(Tt−1) 42.862 9.050 4.968 7.264 24.639 77.633
Hispanic 0.061 0.239 0.066 0.211 0 1
Asian 0.154 0.361 0.135 0.310 0 1
Black 0.389 0.488 0.287 0.385 0 1
Other Race 0.044 0.204 0.029 0.187 0 1
Gifted Prog. 0.605 0.489 0.219 0.433 0 1
Male 0.502 0.500 0.031 0.500 0 1
Free Lunch Prog. 0.458 0.498 0.326 0.362 0 1
Parents College 0.420 0.494 0.241 0.423 0 1
Missing Parents Ed. 0.150 0.357 0.134 0.313 0 1

Table C.4: Summary Statistics, English Full Sample; Number of Students=658,561, Number
of Teachers=7,081

Mean Std. Dev. Between Std. Within Std. Min Max
Tt 0.090 0.959 0.557 0.767 -6.261 5.384
Tt−1 0.103 0.988 0.556 0.799 -6.132 5.408
Frac Free Lunch 0.784 0.264 0.219 0.103 0 1
Class Size 24.122 5.147 4.475 2.258 1 62
Std(Tt−1) 41.276 10.080 6.623 6.899 0.000 140.007
Hispanic 0.089 0.285 0.166 0.183 0 1
Asian 0.046 0.209 0.097 0.113 0 1
Black 0.747 0.434 0.272 0.290 0 1
Other Race 0.029 0.167 0.053 0.100 0 1
Gifted Prog. 0.158 0.365 0.173 0.254 0 1
Male 0.490 0.500 0.052 0.500 0 1
Free Lunch Prog. 0.785 0.411 0.220 0.310 0 1
Parents College 0.141 0.348 0.164 0.264 0 1
Missing Parents Ed. 0.281 0.449 0.218 0.382 0 1
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Table C.5: Math OLS Regression Results, Additively Separable Teacher Effect Model (Base-
line)

High Tenure Subsample Full, Grade 3 Full, Grade 4 Full, Grade 5
Tt−1 0.742*** 0.718*** 0.636*** 0.838***

(0.0133) (0.00237) (0.00195) (0.00223)
T 2
t−1 -0.0380*** -0.0275*** -0.0249*** 0.0113***

(0.0110) (0.00134) (0.00116) (0.00144)
T 3
t−1 -0.0162*** -0.0241*** -0.0165*** -0.0362***

(0.00328) (0.000623) (0.000533) (0.000641)
Frac Free Lunch 0.201*** -0.0323*** -0.00555 -0.0577***

(0.0606) (0.0101) (0.00906) (0.0101)
Class Size -0.0105*** -0.00343*** -0.00445*** -0.00397***

(0.00204) (0.000707) (0.000411) (0.000419)
Std(Tt−1) -0.00298*** -0.00115*** 0.000116 -0.00120***

(0.000584) (0.000110) (0.000101) (0.000115)
Black -0.148*** -0.173*** -0.129*** -0.115***

(0.0276) (0.00806) (0.00634) (0.00661)
Asian 0.128*** 0.172*** 0.138*** 0.176***

(0.0194) (0.00858) (0.00689) (0.00718)
Hispanic -0.0336* -0.0669*** -0.0527*** -0.0475***

(0.0180) (0.00645) (0.00510) (0.00533)
Other Race -0.0186 0.0411*** 0.0445*** 0.0746***

(0.0308) (0.0101) (0.00793) (0.00837)
In Gifted Program 0.314*** 0.411*** 0.263*** 0.381***

(0.0157) (0.00535) (0.00389) (0.00389)
Male 0.0471*** 0.0462*** -0.0320*** -0.0101***

(0.0119) (0.00272) (0.00218) (0.00228)
Free Lunch Prog. -0.0829*** -0.0442*** -0.0271*** -0.0258***

(0.0168) (0.00441) (0.00349) (0.00367)
Parents College 0.0641*** 0.0641*** 0.0429*** 0.0534***

(0.0151) (0.00477) (0.00377) (0.00393)
Missing Parent’s Educ. 0.0199 -0.00117 -0.00347 -0.000249

(0.0190) (0.00348) (0.00281) (0.00292)
AME(Tt−1) 0.5741*** 0.6353*** 0.5760*** 0.7470***

(0.0080) (0.0017) (0.0014) (0.0017)
Observations 11,484 199,557 221,118 236,731
R-squared 0.604 0.508 0.546 0.594
Number of Teachers 56 2,623 2,681 2,621
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Table C.6: English OLS Regression Results, Additively Separable Teacher Effect Model
(Baseline)

High Tenure Subsample Full, Grade 3 Full, Grade 4 Full, Grade 5
Tt−1 0.694*** 0.705*** 0.716*** 0.773***

(0.0111) (0.00188) (0.00189) (0.00168)
T 2
t−1 -0.00113 0.0136*** -0.0152*** 0.0246***

(0.00719) (0.00127) (0.000956) (0.00125)
T 3
t−1 -0.0130*** -0.0161*** -0.0158*** -0.0212***

(0.00167) (0.000393) (0.000370) (0.000457)
Frac Free Lunch 0.0648 0.0945*** -0.115*** 0.0695***

(0.0522) (0.00918) (0.00875) (0.00829)
Class Size 0.00122 -0.00684*** -0.00289*** 0.00170***

(0.00178) (0.000645) (0.000397) (0.000343)
Std(Tt−1) -0.00207*** 7.60e-05 0.000448*** -0.00166***

(0.000677) (0.000137) (0.000148) (0.000139)
Black -0.0989*** -0.117*** -0.119*** -0.0853***

(0.0236) (0.00732) (0.00614) (0.00542)
Asian 0.0352** 0.00361 0.0663*** 0.0494***

(0.0165) (0.00781) (0.00667) (0.00589)
Hispanic -0.0575*** -0.0862*** -0.0515*** -0.0516***

(0.0154) (0.00587) (0.00494) (0.00438)
Other Race -0.0165 -0.0493*** 0.0125 -0.00184

(0.0262) (0.00922) (0.00768) (0.00688)
In Gifted Program 0.210*** 0.263*** 0.279*** 0.178***

(0.0135) (0.00499) (0.00375) (0.00323)
Male -0.0340*** -0.0496*** -0.0578*** -0.0361***

(0.0102) (0.00247) (0.00211) (0.00188)
Free Lunch Prog. -0.0578*** -0.0567*** -0.0469*** -0.0313***

(0.0144) (0.00402) (0.00339) (0.00302)
Parents College 0.0623*** 0.0602*** 0.0554*** 0.0385***

(0.0129) (0.00435) (0.00365) (0.00324)
Missing Parent’s Educ. 0.0227 0.0107*** -0.00182 -0.00270

(0.0161) (0.00317) (0.00272) (0.00240)
AME(Tt−1) 0.6101*** 0.6566*** 0.6727*** 0.7275***

(0.0073) (0.0016) (0.0014) (0.0014)
Observations 11,685 200,586 221,535 236,440
R-squared 0.653 0.544 0.597 0.627
Number of Teachers 57 2,635 2,683 2,614
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Table C.7: Math Subsample: Correlation of Teacher Effects Between Models, at 10th, 50th,
and 90th Percentiles of Lagged Test Score and Average Marginal Effect

O
L
S
S
ep
.

O
L
S
N
on

.
S
ep
.

Ic
h
.
S
ep
.

Ic
h
.
N
on

.
S
ep
.

A
N
N

S
ep
.

10
th

P
er
c.

OLS Sep. 1.0000 0.5203 0.9913 0.7660 0.9970
OLS Non. Sep. 0.5203 1.0000 0.5529 0.3940 0.5222
Ich. Sep. 0.9913 0.5529 1.0000 0.7769 0.9850
Ich. Non. Sep. 0.7660 0.3940 0.7769 1.0000 0.7530
ANN Sep. 0.9970 0.5222 0.9850 0.7530 1.0000

50
th

P
er
c.

OLS Sep. 1.0000 0.9684 0.9913 0.9163 0.9970
OLS Non. Sep. 0.9684 1.0000 0.9568 0.9232 0.9587
Ich. Sep. 0.9913 0.9568 1.0000 0.9150 0.9850
Ich. Non. Sep. 0.9163 0.9232 0.9150 1.0000 0.9049
ANN Sep. 0.9970 0.9587 0.9850 0.9049 1.0000

90
th

P
er
c.

OLS Sep. 1.0000 0.7536 0.9913 0.7171 0.9970
OLS Non. Sep. 0.7536 1.0000 0.7359 0.8749 0.7511
Ich. Sep. 0.9913 0.7359 1.0000 0.7118 0.9850
Ich. Non. Sep. 0.7171 0.8749 0.7118 1.0000 0.7163
ANN Sep. 0.9970 0.7511 0.9850 0.7163 1.0000

A
M
E

OLS Sep. 1.0000 0.9350 0.9913 0.9619 0.9970
OLS Non. Sep. 0.9350 1.0000 0.9380 0.8754 0.9305
Ich. Sep. 0.9913 0.9380 1.0000 0.9596 0.9850
Ich. Non. Sep. 0.9619 0.8754 0.9596 1.0000 0.9550
ANN Sep. 0.9970 0.9305 0.9850 0.9550 1.0000
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Table C.8: English Subsample: Correlation of Teacher Effects Between Models, at 10th,
50th, and 90th Percentiles of Lagged Test Score and Average Marginal Effect

O
L
S
S
ep
.

O
L
S
N
on

.
S
ep
.

Ic
h
.
S
ep
.

Ic
h
.
N
on

.
S
ep
.

A
N
N

S
ep
.

10
th

P
er
c.

OLS Sep. 1.0000 0.8719 0.5468 0.8936 0.9754
OLS Non. Sep. 0.8719 1.0000 0.4823 0.9300 0.8620
Ich. Sep. 0.5468 0.4823 1.0000 0.5864 0.4354
Ich. Non. Sep. 0.8936 0.9300 0.5864 1.0000 0.8484
ANN Sep. 0.9754 0.8620 0.4354 0.8484 1.0000

50
th

P
er
c.

OLS Sep. 1.0000 0.9814 0.5468 0.9452 0.9754
OLS Non. Sep. 0.9814 1.0000 0.5109 0.9528 0.9662
Ich. Sep. 0.5468 0.5109 1.0000 0.5794 0.4354
Ich. Non. Sep. 0.9452 0.9528 0.5794 1.0000 0.9063
ANN Sep. 0.9754 0.9662 0.4354 0.9063 1.0000

90
th

P
er
c.

OLS Sep. 1.0000 0.8651 0.5468 0.7568 0.9754
OLS Non. Sep. 0.8651 1.0000 0.5640 0.8900 0.8185
Ich. Sep. 0.5468 0.5640 1.0000 0.5432 0.4354
Ich. Non. Sep. 0.7568 0.8900 0.5432 1.0000 0.6778
ANN Sep. 0.9754 0.8185 0.4354 0.6778 1.0000

A
M
E

OLS Sep. 1.0000 0.9760 0.5468 0.9568 0.9754
OLS Non. Sep. 0.9760 1.0000 0.5532 0.9677 0.9526
Ich. Sep. 0.5468 0.5532 1.0000 0.6675 0.4354
Ich. Non. Sep. 0.9568 0.9677 0.6675 1.0000 0.8976
ANN Sep. 0.9754 0.9526 0.4354 0.8976 1.0000

Table C.9: Full Sample: Correlation of Teacher Effects Between OLS Additively Separable
and Non-Separable Models

Math English
10th Perc. 0.4815 0.5167
50th Perc. 0.9426 0.8967
90th Perc. 0.5718 0.3090
AME 0.8112 0.6476
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Table C.10: Math Subsample: Proportion of Teacher Effects Ranked in Quantiles by Differ-
ent Percentiles of Lagged Test Score, OLS Separable and Ichimura Non-Separable vs. OLS
Non-Separable

Ich Non-Sep.
1st 2nd 3rd 4th 5th

A
M
E

O
L
S
S
ep
. 1st 0.818 0.091 0.083 0.000 0.000

2nd 0.182 0.636 0.167 0.000 0.000
3rd 0.000 0.273 0.750 0.000 0.000
4th 0.000 0.000 0.000 0.636 0.364
5th 0.000 0.000 0.000 0.364 0.636

O
L
S
N
on

S
ep
.

1st 0.909 0.091 0.000 0.000 0.000
2nd 0.091 0.818 0.083 0.000 0.000
3rd 0.000 0.091 0.833 0.091 0.000
4th 0.000 0.000 0.083 0.727 0.182
5th 0.000 0.000 0.000 0.182 0.818

10
th

P
er
ce
n
ti
le

O
L
S
S
ep
. 1st 0.727 0.273 0.000 0.000 0.000

2nd 0.091 0.455 0.417 0.000 0.000
3rd 0.182 0.091 0.333 0.364 0.091
4th 0.000 0.000 0.250 0.364 0.364
5th 0.000 0.182 0.000 0.273 0.545

O
L
S
N
on

S
ep
.

1st 0.545 0.273 0.000 0.091 0.091
2nd 0.364 0.273 0.167 0.091 0.091
3rd 0.091 0.273 0.500 0.091 0.091
4th 0.000 0.182 0.333 0.364 0.091
5th 0.000 0.000 0.000 0.364 0.636

90
th

P
er
ce
n
ti
le

O
L
S
S
ep
. 1st 0.455 0.273 0.250 0.000 0.000

2nd 0.364 0.364 0.083 0.182 0.000
3rd 0.182 0.273 0.250 0.273 0.091
4th 0.000 0.091 0.333 0.273 0.273
5th 0.000 0.000 0.083 0.273 0.636

O
L
S
N
on

S
ep
.

1st 0.727 0.273 0.000 0.000 0.000
2nd 0.182 0.727 0.083 0.000 0.000
3rd 0.000 0.000 0.833 0.182 0.000
4th 0.091 0.000 0.083 0.636 0.182
5th 0.000 0.000 0.000 0.182 0.818
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Table C.11: English Subsample: Proportion of Teacher Effects Ranked in Quantiles by
Different Percentiles of Lagged Test Score, OLS Separable and Ichimura Non-Separable vs.
OLS Non-Separable

Ich Non-Sep.
1st 2nd 3rd 4th 5th

A
M
E

O
L
S
S
ep
. 1st 0.818 0.167 0.000 0.000 0.000

2nd 0.182 0.667 0.182 0.000 0.000
3rd 0.000 0.167 0.727 0.083 0.000
4th 0.000 0.000 0.091 0.667 0.273
5th 0.000 0.000 0.000 0.250 0.727

O
L
S
N
on

S
ep
.

1st 0.727 0.250 0.000 0.000 0.000
2nd 0.273 0.500 0.273 0.000 0.000
3rd 0.000 0.250 0.545 0.167 0.000
4th 0.000 0.000 0.182 0.667 0.182
5th 0.000 0.000 0.000 0.167 0.818

10
th

P
er
ce
n
ti
le

O
L
S
S
ep
. 1st 0.727 0.167 0.091 0.000 0.000

2nd 0.182 0.667 0.182 0.000 0.000
3rd 0.091 0.167 0.455 0.250 0.000
4th 0.000 0.000 0.273 0.417 0.364
5th 0.000 0.000 0.000 0.333 0.636

O
L
S
N
on

S
ep
.

1st 0.909 0.000 0.000 0.083 0.000
2nd 0.091 0.750 0.182 0.000 0.000
3rd 0.000 0.250 0.727 0.000 0.000
4th 0.000 0.000 0.091 0.750 0.182
5th 0.000 0.000 0.000 0.167 0.818

90
th

P
er
ce
n
ti
le

O
L
S
S
ep
. 1st 0.636 0.167 0.091 0.000 0.091

2nd 0.273 0.500 0.273 0.000 0.000
3rd 0.091 0.333 0.364 0.167 0.000
4th 0.000 0.000 0.091 0.667 0.273
5th 0.000 0.000 0.182 0.167 0.636

O
L
S
N
on

S
ep
.

1st 0.818 0.167 0.000 0.000 0.000
2nd 0.182 0.583 0.273 0.000 0.000
3rd 0.000 0.250 0.545 0.083 0.091
4th 0.000 0.000 0.182 0.667 0.182
5th 0.000 0.000 0.000 0.250 0.727
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Table C.12: Math Full Sample: Proportion of Teacher Effects Ranked in Quantiles by Dif-
ferent Percentiles of Lagged Test Score, OLS Separable vs. OLS Non-Separable

OLS Non-Sep.
1st 2nd 3rd 4th 5th

A
M
E

O
L
S
S
ep
. 1st 0.820 0.130 0.024 0.015 0.011

2nd 0.140 0.679 0.156 0.018 0.006
3rd 0.017 0.151 0.652 0.162 0.017
4th 0.008 0.026 0.138 0.679 0.149
5th 0.015 0.013 0.030 0.126 0.817

10
th

P
er
c.

O
L
S
S
ep
. 1st 0.654 0.200 0.066 0.042 0.038

2nd 0.250 0.442 0.220 0.073 0.016
3rd 0.064 0.247 0.404 0.232 0.054
4th 0.021 0.086 0.241 0.435 0.216
5th 0.010 0.026 0.069 0.219 0.676

90
th

P
er
c.

O
L
S
S
ep
. 1st 0.648 0.210 0.088 0.036 0.018

2nd 0.248 0.445 0.208 0.080 0.020
3rd 0.048 0.216 0.396 0.275 0.066
4th 0.020 0.076 0.215 0.420 0.269
5th 0.036 0.054 0.095 0.189 0.627

Table C.13: English Full Sample: Proportion of Teacher Effects Ranked in Quantiles by
Different Percentiles of Lagged Test Score, OLS Separable vs. OLS Non-Separable

OLS Non-Sep.
1st 2nd 3rd 4th 5th

A
M
E

O
L
S
S
ep
. 1st 0.733 0.180 0.044 0.026 0.017

2nd 0.190 0.567 0.194 0.038 0.011
3rd 0.041 0.181 0.566 0.189 0.022
4th 0.015 0.049 0.153 0.601 0.183
5th 0.021 0.023 0.043 0.146 0.767

10
th

P
er
c.

O
L
S
S
ep
. 1st 0.620 0.189 0.073 0.065 0.052
2nd 0.257 0.416 0.218 0.077 0.033
3rd 0.080 0.262 0.373 0.229 0.055
4th 0.030 0.092 0.238 0.406 0.234
5th 0.012 0.041 0.098 0.222 0.626

90
th

P
er
c.

O
L
S
S
ep
. 1st 0.542 0.256 0.112 0.056 0.033

2nd 0.253 0.353 0.262 0.101 0.031
3rd 0.077 0.198 0.327 0.322 0.075
4th 0.047 0.101 0.198 0.350 0.305
5th 0.081 0.091 0.100 0.171 0.556
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Table C.14: Hypothesis Testing Interaction Terms Between Lagged Student Test Score Cubic
and Teacher Effect

Full F-Test p-value Proportion Rejecting Null
for by-Teacher Joint Tests

Grade 3 Grade 4 Grade 5 Grade 3 Grade 4 Grade 5
Math 0.0000 0.0000 0.0000 0.0835 0.1146 0.6748
English 0.0000 0.0000 0.0000 0.2289 0.1249 0.0241

Table C.15: Teacher Value Added, Within vs. Between Standard Deviations

Subsample Full Sample
Between Within Between Within

Math 0.2642 0.7618 0.3609 0.8257
English 0.2455 0.6758 0.3366 0.8725
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C.3 Figures

Figure C.1: Subsample: Kernel Estimates of Density of Teacher Effects by Different Lagged
Student Score Percentiles

(a) Math: 10th Percentile
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(b) English: 10th Percentile
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(c) Math: 50th Percentile
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(d) English: 50th Percentile
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(e) Math: 90th Percentile
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(f) English: 90th Percentile

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Value Added

D
e
n
s
it
y

 

 

OLS Same

OLS Diff

Ich Same

Ich Diff

ANN Same

153



Figure C.2: Kernel Estimates of the Density of Within Teacher Effects for 4 Teachers, English
Subsample

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Teacher Value Added

D
e
n
s
it
y

 

 

OLS Same

OLS Diff

Ich Same

Ich Diff

ANN Same

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Teacher Value Added

D
e
n
s
it
y

 

 

OLS Same

OLS Diff

Ich Same

Ich Diff

ANN Same

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

Teacher Value Added

D
e
n
s
it
y

 

 

OLS Same

OLS Diff

Ich Same

Ich Diff

ANN Same

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Teacher Value Added

D
e
n
s
it
y

 

 

OLS Same

OLS Diff

Ich Same

Ich Diff

ANN Same

154



Figure C.3: Difference in Rankings by Econometric Models

(a) Math Subsample
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(b) English Subsample
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(c) Math Full Sample
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(d) English Full Sample
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Figure C.4: Distribution of Estimated Marginal Effects: Lagged Test Score

(a) Math Subsample
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(b) English Subsample
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Figure C.5: Distribution of Estimated Marginal Effects: Fraction Free Lunch

(a) Math Subsample
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(b) English Subsample
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Figure C.6: Distribution of Estimated Marginal Effects: Class Size

(a) Math Subsample
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(b) English Subsample
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Figure C.7: Distribution of Estimated Marginal Effects: Standard Deviation of Class Lagged
Test Score

(a) Math Subsample
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(b) English Subsample
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Figure C.8: Distribution of Estimated Marginal Effects: Hispanic

(a) Math Subsample
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(b) English Subsample
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Figure C.9: Distribution of Estimated Marginal Effects: Asian

(a) Math Subsample

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

Marginal Effect

 

 

OLS Same

OLS Diff

Ich Same

Ich Diff

ANN Same

(b) English Subsample
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Figure C.10: Distribution of Estimated Marginal Effects: Black

(a) Math Subsample
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(b) English Subsample
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Figure C.11: Distribution of Estimated Marginal Effects: Other Race

(a) Math Subsample
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(b) English Subsample
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Figure C.12: Distribution of Estimated Marginal Effects: Male

(a) Math Subsample
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(b) English Subsample
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Figure C.13: Distribution of Estimated Marginal Effects: Participation in the Gifted Pro-
gram
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(b) English Subsample
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Figure C.14: Distribution of Estimated Marginal Effects: On Free Lunch Program

(a) Math Subsample
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(b) English Subsample
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Figure C.15: Distribution of Estimated Marginal Effects: Parents Finished High School

(a) Math Subsample
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(b) English Subsample
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Figure C.16: Distribution of Estimated Marginal Effects: Missing Data on Parents’ Educa-
tion

(a) Math Subsample
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(b) English Subsample
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