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 

Abstract—The concept of magnetic nanoprobes (or magnetic 

nanoantennas) providing a magnetic near-field enhancement and 

vanishing electric field is presented and investigated, together 

with their excitation. It is established that a particular type of 

cylindrical vector beams called azimuthally electric polarized 

vector beams yield strong longitudinal magnetic field on the 

beam axis where the electric field is ideally null. These beams 

with an electric polarization vortex and cylindrical symmetry are 

important in generating high magnetic to electric field contrast, 

i.e., large local field admittance, and in allowing selective 

excitation of magnetic transitions in matter located on the beam 

axis.  We demonstrate that azimuthally polarized vector beam 

excitation of a photoinduced magnetic nanoprobe made of a 

magnetically polarizable nano cluster leads to enhanced 

magnetic near field with resolution beyond diffraction limit. We 

introduce two figures of merit as magnetic field enhancement 

and local field admittance normalized to that of a plane wave 

that are useful to classify magnetic nanoprobes and their 

excitation. The performance of magnetic nanoprobe and 

azimuthal polarized beams is quantified in comparison to other 

illumination options and with several defect scenarios. 

 
Index Terms—magnetic nanoantenna, magnetic nanoprobe, 

optical magnetism, artificial  magnetism, vector beam.  

 

I. INTRODUCTION 

ATURAL  magnetism at optical frequencies is rather weak 

when compared to electric response of matter [1]. Indeed 

optical spectroscopy and microscopy systems mainly work 

based on electric dipolar transitions in matter rather than their 

magnetic counterparts. On the other hand, even though natural 

optical magnetism vanishes, metamaterials with equivalent 

magnetic dipolar responses have been widely studied in the 

past decade. For example, arrays of magnetic meta atoms are 

employed in engineering bulk effective permeability [2]–[7]. 

Several studies have been devoted to generating artificial 

magnetism (i.e., effective relative permeability different from 

unity) for such structures leading to effective permeability 

engineering. However, artificial magnetism for magnetic near-

field enhancement is a rather newer subject of research and its 

application to boost the weak natural magnetism in matter at 

the short wavelength range of the electromagnetic spectrum 

for microscopy applications is rather unexplored yet.  
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The building blocks of metamaterials are scatterers that 

possess scattering modes modeled via multipolar expansion. 

The magnetic dipolar term in the scattering multipolar 

expansion of such scatterers is always present alongside the 

electric dipolar response. Magnetic resonances in such meta 

atoms have been used also to generate high-quality resonances 

owing to the reduced radiative losses. In particular, clusters of 

plasmonic nanoparticles such as the spherical constellations in 

[8]–[10] have been suggested to generate effective bulk 

permeability when arranged in array configuration. Also 

circular clusters of plasmonic particles, which are of interest 

in this paper, have been suggested with the purpose of 

engineering negative effective permeability [5], for achieving 

Fano resonances [11]–[15], and in the quest for detectable 

photoinduced magnetic forces via artificial magnetism [16]. 

The characterization of the near-field signature of magnetic 

nanoprobes may be functional in adding an extra dimension to 

optical spectroscopy using photoinduced force microscopy 

[17]. The extra dimension based on magnetic near-field 

signature could be provided in addition to the electric dipolar 

near-field signature. 

 

Fig. 1. Illustration of the exemplary setup in which generation of a 

large magnetic to electric field contrast could be beneficial in 

detection of (or interaction with) a weakly magnetic response of a 

matter sample placed at the center of the cluster. The nanoantenna 

studied here, called magnetic nanoprobe, is  made of a resonating 

circular cluster excited by an APB with longitudinal magnetic field 

and it generates a strong magnetic field at its center. 

The utilization of a magnetic nanoprobe for enhancing the 

magnetic transitions and suppressing the electric dipolar ones 

in matter requires: (i) excitation of the magnetic mode of the 

nanoprobe leading to enhanced magnetic near field, (ii) 

suppressing the electric near field where magnetic field is 

enhanced. To help in the latter magnetic to electric field 

contrast aspect, symmetry in the magnetic nanoprobe and in 
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its excitation plays an important role as we show in this paper. 

This entails the suppression of the electric dipolar mode and 

the rest of the higher order electric multipoles in the magnetic 

nanoprobe. In the quest of selective excitation of the magnetic 

dipolar mode of the nanoprobe, we turn our attention to vector 

beams with cylindrical symmetry, so-called cylindrical vector 

beams [18]–[21], which have been proved to be 

experimentally functional in the selective excitation of Mie 

resonances in dense dielectric particles [22]. Cylindrically 

symmetric vector beams with spatially-dependent electric 

field vectors, namely radially [18]–[21], [23]–[27] and 

azimuthally [18]–[21], [28]–[31] polarized vector beams, have 

been thoroughly investigated specially under tight focusing 

[23], [26]. A particular cylindrically symmetric vector beam 

category useful for selective excitation of the magnetic dipolar 

moment is the azimuthally electric polarized vector beams 

which hosts a strong longitudinal magnetic field along the 

beam axis where electric field vanishes [28]–[31]. In the 

following, we call such beams simply as azimuthally 

polarized beam (APB) referring to the local orientation of 

their vector electric field. An APB does not only have the 

capability to selectively excite the magnetic dipolar moment 

of a magnetic nanoprobe, but also to boost intensity and 

resolution of the magnetic near-field scattered by a 

nanoprobe. Owing to the rotational symmetry of the APB and 

nano probe setup (Fig. 1), one can obtain large magnetic to 

electric field ratio, denoted also as local field admittance, 

around the magnetic nanoprobe center when aligned with the 

beam axis. In [31], the authors quantify electric and magnetic 

fields of the tightly focused APB within a region with a very 

large local field admittance and report that scattering by a 

dense dielectric nanosphere placed in the focal plane of the 

focused APB leads to enhanced magnetic field with resolution 

below the diffraction limit.  

In this paper, we elaborate on the excitation of a magnetic 

nanoprobe consisting of a cluster of plasmonic nanospheres 

which provides significant accessible area with enhanced 

magnetic field for placing matter samples (i.e., molecules, 

quantum dots, etc.). The near field of such a plasmonic nano 

clusters is characterized in terms of newly introduced figures 

of merit quantifying the magnetic and electric field 

enhancements and the magnetic to electric field contrast, i.e., 

the local field admittance. The magnetic nano cluster 

therefore significantly boosts the total magnetic field and 

increases spatial magnetic resolution. Such nano clusters 

when excited with an APB could be useful in boosting the 

magnetic dipolar transitions of materials located at the 

cluster’s center which are in general weak and overshadowed 

by stronger electric dipolar transitions. The setup proposed in 

this paper is depicted in Fig. 1 where a magnetic-dominant 

region with a strong magnetic field and a vanishing electric 

field is generated.  

II. LARGE LOCAL FIELD ADMITTANCE AND ENHANCED 

MAGNETIC FIELD  

In the selective excitation of the magnetic dipolar 

transitions with magnetic-based spectroscopic applications in 

mind, the main goal is to investigate the physics of magnetic 

field enhancement within a region where electric field 

vanishes, so-called magnetic-dominant region. To this 

purpose we investigate a circular cluster of plasmonic 

nanospheres that supports a “magnetic” resonance, excited by 

an APB, whose electric field vanishes on the beam axis 

aligned with the cluster center. These kinds of nanoantennas 

are here called magnetic nanoprobes because they are used to 

enhance the magnetic near field. Several concepts developed 

in this paper for a circular cluster of plasmonic nanospheres 

are also applicable to other kinds of magnetic nanoantennas. 

We introduce some figures of merit to characterize the 

quality of magnetic nanoprobes and their excitation. The goal 

is to quantify the magnetic field enhancement and the 

magnetic to electric field ratio, i.e., the absolute value of local 

field admittance normalized by that of a plan wave 

1/ /   , defined as 

 
 

 

 

 

tot tot

ext tot
, ,H YF F


 

H r H r

H r E r
 (1) 

where the superscripts “tot” and “ext” refer to the total field 

and external excitation field, respectively. For completeness 

we define also the electric field enhancement as  

 
 

 

tot

extEF 
E r

E r
, (2)  

although in this paper the goal is to boost only the figures of 

merit in (1). The subscripts of figures of merit H, E, and Y 

stand for magnetic field, electric field and local field 

admittance, respectively. In this paper bold fonts denote 

phasor vector quantities with time-harmonic convention 

 exp i t  where   and t  refer to real angular frequency 

and time, respectively. A hat “^” is used to denote unit 

vectors. 

To have large values of figures of merit, we propose to use 

an APB to illuminate the magnetic nanoprobe as in Fig. 1.  

The external electric field of the APB is given by the 

expression  

 
 APB LG LG

1 1

APB LG
1

ˆ ˆ ˆ ˆ
( ) ( )

2 2 2

ˆ ˆ

l l

i
l

i i i
E E

E E e 


 



   
   

 

 

x y x y
E r r r

φ φ

 , (3) 

where 
LG
lE  is the field expression of a Laguerre-Gaussian 

beam with orbital angular momentum (OAM) order of l, and  

radial mode number p = 0 that propagates in the +z direction. 

Note that the choice of + or - sign in (3) is irrelevant. The 

APB ideally does not possess longitudinal electric field 

anywhere, while possessing a longitudinal magnetic field that 

reaches its maximum on the beam axis. On the beam axis, for 

symmetry reasons, there are no transverse electric and 

transverse magnetic fields [29]. Note that Laguerre-Gaussian 
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beams are solutions to the wave equation under paraxial 

approximation [32]. The expression of the Laguerre-Gaussian 

mode with OAM order 1l     and radial order 0p   is [29] 

 

 

2
12 tan

LG
1 2

2

0

2

1 , 1

R

z
i

z il ikzw
l

R R

E V e e e e
w

z z
w w i

z z










           
 

   
      

   

r

 , (4) 

where  
2 2x y    and   are the cylindrical coordinates,   

2 /k    and   are the wavenumber and wavelength in the 

host medium, 0w  is the beam parameter and represents the 

spatial extent of the beam at 0z   that is the beam’s 

minimum-waist plane, and the Rayleigh range is defined as 

2
0 /Rz w  . Note that at any given z, the azimuthal electric 

field is maximum at the radius M   where / 2M w   

[31], and its maximum value is equal to  

 

2

APB

2

2 1 2
( , )

M

w
ME z V e V

w ew





 






 
 
 



  .  (5) 

 The magnetic field of the APB is then calculated via 

 / iH E  with the electric field of the APB given in 

Eq. (3). The z component of the magnetic field is 

 

2
12 tan 2

APB

2 23

2
1R

z
i

z ikzw
z

V i
H e e e

w w


 


 

       
   

 
   

 

, (6) 

which is not only nonzero on the beam axis ( 0  ) but also 

reaches its maximum magnitude  

  APB

23

2
0z

V
H

w




 
  . (7) 

Here note that the maximum electric field magnitude is 

inversely proportional to w whereas the maximum 

longitudinal magnetic field is inversely proportional to 2w . 

Therefore when keeping the power in the APB constant, one 

can boost maximum magnetic field relatively more than the 

maximum electric field by focusing the beam to tighter spots. 

Note that APB excitation ideally provides a YF   on the 

beam axis, hence it is ideal for obtaining regions with large 

local field admittance. The radial magnetic field is 

accordingly found as  

 
2 2

APB APB 0

2

21 1
1

R

w
H E

kz w
 





 
   

  

. (8) 

It is observed that when 1Rkz   the radially polarized 

magnetic field component follows mainly the same intensity 

profile as the azimuthally polarized electric field. For very 

tight beams, however, the second term inside the brackets in 

(8) becomes non negligible, and a slight difference between 

the intensity profiles of 
APBH  and 

APBE  starts to appear. 

The formula of the power of the APB, P, as a function of V 

and 0 /w   is given in Appendix.  

Next we emphasize the relative increase of the longitudinal 

magnetic field of an APB and its resolution as 0w  decreases. 

In Fig. 2 all the field components of APBs with 0w   and 

0 0.5w   are reported, keeping the power carried in the 

beams constant and equal to 1 mW. We observe that the 

longitudinal magnetic field is boosted relatively more than the 

transverse magnetic and electric field components when the 

beam is tighter, i.e., when 0w  decreases. Therefore just using 

an APB with a tighter spot is on its own an intriguing way to 

boost the magnetic field, the magnetic field resolution and the 

figure of merit YF . Moreover in the following we will 

analytically prove that a magnetically polarizable cluster 

further enhances the magnetic field at its center, almost 

independently of the beam parameter of the incident APB. 

 

Fig. 2. Field profiles of an APB in vacuum with two different beam 

parameters, 0w   and 0 0.5w   at 632 nm   keeping the 

power in the beam constant and equal to 1 mW (i.e., with 

0.972 VV   for 0w   and 0.891 VV   for 0 0.5w  ). 

Longitudinal magnetic field APB
zH  is boosted in tight beams (i.e., 

with small beam parameter 0w ).  

We define a figure of longitudinal magnetic field at the 

minimum waist (i.e,, at 0z  ), which is equal to the 

longitudinal magnetic field of an APB normalized by the 

magnetic field of a plane wave whose power intensity is equal 

to the power of the APB divided by an area 
2  

 
2

2
/z z

P
h H


 . (9) 

where P is the power in the APB which possesses the 

longitudinal magnetic field zH . The figure zh , evaluated at 

the minimum waist is only a function of 0 /w   and its 

explicit formula is provided in Appendix. In Fig. 3, we report 

such figure of magnetic field and it clearly shows that the 

magnetic field of an APB is significantly boosted as the beam 

parameter decreases, especially when 0w  . 
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Fig. 3. The nondimensional figure of longitudinal magnetic field 

defined in (9). 

In the following, we introduce the analytical equations used 

in the single dipole approximation (SDA) calculations for 

quantifying the two main figures of merit in (1), the magnetic 

field enhancement and the normalized absolute local field 

admittance, and then explain the physics behind the capability 

of the cluster for boosting these two figures of merit. Note that 

in our characterization of the cluster under APB illumination, 

we put special emphasis on the magnetic field enhancement, 

i.e., on HF ,  achieved in the presence of the ring cluster as a 

way of boosting natural magnetism, rather than the cluster’s 

magnetic polarizability as done in several previous 

publications [15]. 

III. CLUSTER ANALYTICAL MODEL 

We briefly summarize the analytical model utilized in 

solving a scattering problem where a cluster made of 

electrically polarizable plasmonic nanospheres in 

homogeneous free space, vacuum, is excited by an external 

field. For comparison we also consider external field such as a 

single plane wave and a superposition of two plane waves. 

The nano cluster is made of N plasmonic particles at 

positions nr , displaced in the x-y plane (Fig. 1).  For 

simplicity we assume that each particle is a nanosphere 

modeled by a scalar (isotropic) electrical polarizability n  

where {1,..., }n N . The local electric field exciting the nth 

particle is evaluated as 

 loc ext

1

( ) ( ) ( , )
N

n n n m mEp
m
m n



  E r E r G r r p , (10) 

where the superscript ‘ext’ denotes the external excitation 

(i.e., the illuminating APB) and ( , )n mEpG r r   is the dyadic 

Green’s function that gives the electric field at nr  generated 

by the electric dipole mp  at mr , and here we use the fully 

dynamic and exact expression in Chapter 8 of [33].   Each 

nanosphere’s electric dipole moment is evaluated via the Mie 

polarizability of the nanosphere and the local field at the 

nanosphere’s center  as 
loc ( )n n np E r , where the local field 

is the sum of the external field and the field scattered by all 

the other nanospheres. Thus (10) is rewritten in terms of the 

unknown electric dipole moments as 

 ext

1

( , ) ( )
N

n n n m m n nEp
m
m n

 



  p G r r p E r  . (11) 

By writing (11) for n = 1, …, N, we construct a linear system 

of N equations as 

  

ext
1 1 1

ext

( )

( )N N N

A





  
  

   
     

p E r

p E r

, (12) 

where  A  is a 3 3N N  matrix made of 3 3  sub-blocks 

nmA  with , {1,..., }n m N   that are given by 

 
when

( , ) otherwisenm
n n mEp

m n




 



I
A

G r r
 , (13) 

where I  is the 3 3  identity matrix. The system of linear 

equations in (12) is solved for the electric dipole moments 

under external excitation. Subsequently the electric and 

magnetic fields scattered by the cluster are evaluated using the 

fully dynamic and exact dyadic Green’s functions HpG  

(Section 2.3 in [34]) and EpG  which provide the magnetic 

and electric fields due to an electric dipole, respectively. The 

total electric and magnetic fields at an observation point r  are 

evaluated as  

 

tot ext

1

tot ext

1

( ) ( ) ( , ) ,

( ) ( ) ( , ) .

N

n nEp
n

N

n nHp
n





  

  





E r E r G r r p

H r H r G r r p

  (14) 

For simplicity, in the following section we assume that all 

nanospheres are identical and we drop the subscript n in the 

polarizability symbol. 

IV. PHYSICS OF CLUSTER AZIMUTHAL EXCITATION, 

RESONANCE AND FIELD ENHANCEMENT 

A cluster made of plasmonic nanospheres offers a large 

degree of flexibility in tuning the magnetic resonance 

wavelength. In general, we define the real magnetic resonance 

wavelength as the wavelength at which the magnitude of the 

magnetic dipole moment of the cluster under a time harmonic 

field peaks. The magnetic dipole moment of the cluster as in 

Fig. 1 is defined as 

 

12

N

n n

n

i



 m r p  . (15) 

The cluster has the significant cross-sectional area only on the 

plane normal to the z axis, i.e. the main magnetic moment of 

the cluster will be aligned along z under various types of 

excitations. The magnetic moment of the cluster is 

proportional to the local magnetic field (assumed not varying 

significantly over the cluster area). Therefore we define the 
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magnetic polarizability of the cluster as a way of modeling its 

magnetic response. The magnetic polarizability is in general 

represented as a tensor, however here we are interested in the 

z-directed magnetic moment induced by the z-component of 

the external magnetic field (i.e., an APB with strong 

longitudinal magnetic field along its propagation axis z). 

Accordingly the magnetic polarizability of the cluster 

centered at the origin is 

 
ext ( )

mm z
zz

z

m

H
 

r 0
 . (16) 

Due to symmetry, the magnetic dipole moment is generated 

by circulating electric dipolar moments (Fig. 1), which are 

excited by an APB. The cluster in Fig. 1 is made of 

nanospheres equally spaced on a perfect circle with the cluster 

radius    2 / 2sin /a r g N      where r is the nanosphere 

radius and g is the inter-nanosphere gap distance. The cluster 

is excited by an ideal APB whose electric field 
APBE  is 

purely azimuthal, i.e., transverse to z and along the  

direction. Under rotational symmetry, all the induced electric 

dipole moments are polarized azimuthally and equal in 

magnitude given by 

 
 

 

APB

1 0

2

ˆ ˆ1 ,
N

n nEp
n

E a
p




 







   φ G r r φ

, (17) 

where    ˆ ˆ ˆsin 1 cos 1n n n           φ x y  with 

2 / N  . In the following the denominator in (17) is called  

  1 1

2

ˆ ˆ1 ,
N

n nEp
n

D 


   φ G r r φ , (18) 

and it reaches its minimum absolute value at the “magnetic” 

resonance.  

  Since the electric dipole moments and the position vectors 

( andn np r ) lie on the same plane (orthogonal to z) the 

magnetic dipole moment of the cluster would be purely in the 

z direction based on (15). This leads to an equivalent cluster 

magnetic dipole moment and the magnetic cluster 

polarizability as 

 
 APB

,
2 2

mm
z zz

z

pi i
m N ap N a

H




 
 

0
.  (19) 

By substituting (17) in (19), the cluster magnetic 

polarizability (16)  is found as 

 
 

 

APB

APB

, 0

2

mm
zz

z

E a zi
N a

D H

  


 


0
 , (20) 

The 
APB APB/ zE H field ratio is found by looking at (3) and 

(6):  

 

 

 

 

 

2

2

0

APB

APB

APB

APB

, 2
,

20,

, 0 2
,

2

w

z

a

w

z

E z
e

H z

E a z a
e

H








  




 




 
 
 

 
 
 




 


0

 (21) 

and reaches maximum when 0 / 2Ma w  .  

From (1) the longitudinal magnetic field enhancement at 

the cluster center is 

  
   

 

 

 

ext scat scat

ext ext
1

z z z
H

z z

H H H
F

H H


  

0 0 0
0

0 0
, (22) 

where ext APB
z zH H . The scattered magnetic field 

enhancement is  

 

 

   

 

 

scat

APB APB

APB

APB

1
4

, 0
1

4

ika
z

z z

ika

z

pH k e i
N

a kaH H

E a zk e i
N

a ka D H









 



 
  

 

  
  

 

0

0 0

0

,(23) 

which is the most significant term in the magnetic field 

enhancement reported in (22) when maximized. In the 

expressions in (20) and (23) we see the common term 

 APB APB
zE H 0  given in (21).  

 

Fig. 4. (a) Cluster magnetic polarizability and (b) magnetic field 

enhancement HF  at the cluster’s center (purely z-polarized owing to 

the symmetry of the cluster geometry and APB excitation), at the 

respective wavelengths where each peaks, versus nanosphere radius r 

and gap g between neighboring nanospheres when N = 6. (c) HF at 

the wavelength where it peaks, versus N and r when gap is fixed at g 

= 5 nm. The superimposed iso-wavelength contours annotated with 

the wavelengths in nm denote the wavelength at which the reported 

quantity peaks. (d) HF  versus wavelength for various r and the effect 
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of losses on the maximum magnetic field enhancement at the 

wavelengths where it peaks using two different silver permittivity 

functions, Drude’s model and experimental Palik data. 

The optimum cluster design that maximizes either one of 

the magnetic polarizability and the magnetic field 

enhancement does not necessarily maximize the other one. In 

this paper the main quantity of interest is not in the magnetic 

moment or the magnetic polarizability of the cluster but rather 

the magnetic field enhancement in the central area of the 

cluster. The magnetic field enhancement at the cluster center 

is purely due to enhancement of the longitudinal (z-directed) 

magnetic field and we will use the figure of merit ( HF ) to 

quantify it. 

We plot in Fig. 4(a, b) the peak of the cluster magnetic 

polarizability mm
zz  and the peak of the magnetic field 

enhancement HF  of a cluster made of 6 silver nanospheres 

excited by an APB with beam parameter 0w  , versus 

nanosphere radius r and inter-sphere gap g using SDA model. 

The cluster is placed at the APB minimum waist plane (i.e, at 

0z z ) and nanospheres’ silver is described by the “Palik” 

permittivity function taken from [35]. The iso-wavelength 

contours, annotating the wavelength in nm at which these 

peaks occur is shown in Fig. 4(a-c). The colormaps are 

generated by calculating the peak values (that are wavelength 

dependent) for each pair of g, r or N, r parameters. Note that 

as the nanospheres radius increases the peak magnetic 

polarizability increases monotonically in the reported range, 

whereas the field enhancement peaks at a certain nanosphere 

radius, for each gap distance. Moreover the magnetic 

polarizability and magnetic field enhancement peaks occur 

almost at the same wavelength. As the gap g increases and r is 

kept constant, the peak magnetic polarizability and the peak 

magnetic field enhancement decreases. Therefore small gaps 

are important for achieving strong resonances. 

 In Fig. 4(c) the magnetic field enhancement peak is plotted 

versus N, the number of nanospheres, and nanospheres radius 

r where the inter-sphere gap is fixed at 5nmg  . Similarly 

there appears to be an optimum nanosphere radius for each N. 

Also it is observed that N = 3 or 4 lead to largest field 

enhancement values, however it may be preferable to use N = 

6 which leads to a larger accessible area of magnetic field 

enhancement inside the cluster.  

It is observed in Fig. 4(a,b) that for a specified N and when 

keeping r constant, the resonance wavelength decreases very 

slightly as g increases. On the other hand, when N and g are 

kept constant, the resonance wavelength of the cluster 

increases significantly as r increases. In Fig. 4(c) where g is 

fixed to 5 nm, the resonance wavelength increases notably, 

either with increasing r and keeping N constant or with 

increasing N and keeping r constant. Recalling that the cluster 

radius is    2 / 2sin /a r g N     , as either r or N gets 

larger the cluster radius increases. Furthermore when r g , 

a becomes proportional to r as  / sin /a r N .  Therefore 

the main trend in Fig. 4(a-c) is that the resonance wavelength 

increases when the cluster radius a increases due to an 

increase of r or N.  

 Finally in Fig. 4(d) the magnetic field enhancement 

versus wavelength is plotted for various nanosphere radii 

using the Palik permittivity function [35] (as in the other map 

plots in Fig. 4) and Drude’s model [36] which underestimate 

losses in silver at smaller wavelength range and leads to larger 

magnetic field enhancement values. 

 The optimum magnetic field enhancement occurs at certain 

nanosphere radius and number of nanospheres N whereas the 

magnetic polarizability is monotonically increasing with 

nanosphere radius in the reported range. Therefore it is 

apparent that different design considerations apply to 

maximize either magnetic field enhancement or magnetic 

polarizability. The cluster is equivalent to a circulating 

electric current as an effective magnetic dipole. Therefore the 

radius a of the cluster is a crucial parameter because a larger 

cross-sectional area of the cluster leads to a larger magnetic 

polarizability but not necessarily to a larger magnetic field 

enhancement. Next we interpret the observations based on the 

analytical formulas. 

 The term D at the denominator in (18) determines the 

resonance of the cluster, and it appears in both the magnetic 

polarizability (20) and the scattered magnetic field 

enhancement (23). These quantities are proportional to the 

electric polarizability   of each nanosphere which grows as 

3r  . Keep in mind that as r increases, the cluster radius 

   2 / 2sin /a r g N      also increases. Next, the term 

   APB APB
zE a H 0  in (21) is common for both the magnetic 

polarizability in (20) and the scattered magnetic field 

enhancement in (23). Here we emphasize that, when 

neglecting the signature of D, both mm
zz   and the scattered 

field enhancement in (20) and (23) tend to grow with the 

cluster radius a (i.e., with increasing r or N), assuming that 
2 2

0a w . When this assumption is not verified, the 

exponential function 2
0exp ( / )a w 

 
 in the common term (21) 

limits the growth of 
APB APB/ zE H . We now focus on the 

cluster radius that maximizes either mm
zz   or the scattered 

field enhancement    scat APB/z zH H0 0 . To do so we utilize 

the dimensionless ratio 

 
   

   

scat APB
2

2 23

4 1
1

/

z z

mm
zz

H H

ka ka



 
 

0 0
  (24) 

in order to assess the relative dependence of mm
zz   and the 

scattered field enhancement on the cluster radius a. The ratio 

in (24) does not depend on the term D in (18) and it grows 

when a decreases. It is clear that among different resonant 

designs, the cluster with smaller cluster radius tends to have 

relatively large field enhancement compared to the absolute 
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magnetic polarizability normalized by 3 . As a increases, the 

magnetic cluster polarizability grows faster than the magnetic 

field enhancement with an extra 3a  factor dependence when 

 
2

1ka  . On the other hand as a increases further, the term 

 2 2
0exp /a w  causes both quantities in (20) and (23) to reach 

a peak and then decrease. However mm
zz   in (20) and the 

scattered field enhancement in (23) reach maximum at 

different cluster radii. We observe in Fig. 4(a,b) that when 

keeping g and N constant, the magnetic field enhancement 

HF  reaches peak value for certain r values in the reported 

range whereas the magnetic polarizability mm
zz  grows 

monotonically in the reported r range and it is expected to 

reach peak value at a large r  out of the reported range. Thus, 
mm
zz  peaks at a larger cluster radii than the one where HF  

peaks, when g and N are kept constant. 

The cluster here is seen as a current loop and this analogy 

helps us conceive the physics behind maximizing the 

magnetic field enhancement rather than the magnetic 

polarizability. The magnetic polarizability of a current loop is 

proportional to the loop area squared, thus proportional to 4a . 

Moreover the current induced on a loop is proportional to the 

area and the incident magnetic field. Accordingly the 

magnetic field at the center of a current loop is proportional to 

the loop current but inversely proportional to a, thus the 

magnetic field enhancement is proportional to the loop radius 

a. Eventually we observe a factor difference of 3a  in the 

dependences of the magnetic polarizability and the magnetic 

field enhancement on a which is in agreement with the 

formula in (24) for a cluster when  
2

1ka  . 

 Having discussed the characterization of the cluster 

magnetic resonance and the magnetic field enhancement, in 

the following we stress the advantages of exciting the nano 

cluster with an APB compared to other possible excitation 

schemes. In Fig. 5, we compare the two figures of merit, the 

magnetic field enhancement HF  and the normalized absolute

 

 

Fig. 5. Local magnetic field 

enhancement HF  (First column of 

plots) and   normalized local field 

admittance YF  (second column of 

plots), both evaluated on the transverse 

symmetry plane of the cluster for three 

different excitations: (i) single plane-

wave incidence, (ii) two antisymmetric 

plane-wave incidence, (iii) normally 

incident APB.  

local field admittance YF , both evaluated at the cluster plane 

using three different excitation schemes: (i) TE (with respect 

to z) plane wave propagating in the x direction, (ii) two 

antisymmetric plane waves propagating in +/˗ x directions, 

(iii) APB with 0w   whose beam axis coincides with the 

cluster axis (the z axis). The case with two plane waves have 

vanishing electric field at the cluster center. All the excitation 

schemes excite the magnetic resonance significantly and lead 

to a magnetic field enhancement around 4.2. Furthermore, the 

single plane wave case does not lead to an increased local 

admittance, the two plane-waves provide high local field 

admittance, and the APB excitation leads to the largest value 

and widest area of enhanced local admittance, representing a 

wide magnetic-dominant region. Note that even though the 

two antisymmetric plane-wave scheme also results in a large 

local field admittance in the cluster’s center, it is difficult to 

phase synchronize these plane waves in practical cases such 

that their electric fields cancel out exactly at the cluster’s 

center, whereas vanishing electric field at the cluster center is 

a natural property of the APB. 
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V. FIELD CHARACTERISTICS VERSUS APB  EXCITATION 

At this point we have only plotted the characteristic field 

maps of the nano cluster excited by an APB with 0w  . In 

this section, we first characterize the cluster magnetic 

response versus the beam parameter 0w  of the APB and then 

report the figures of merit at several planes, when illuminated 

by an APB propagating in +z direction as in Fig. 6. 

 

Fig. 6. Illustration of the cluster located at the minimum waist plane 

of an APB propagating  in the +z direction. The radial distance M  

where the electric field is maximum is denoted by a dashed line. 

In general, the figures of merit investigated quantitatively 

in Sec. IV depend on the beam parameter 0w  of the 

illuminating APB that determines also the radial location 

0 / 2M w   of the maximum of the electric field.  Note that 

the cluster considered in this section with parameters 

50 nm,r   5 nm,g   6N   resonates at a wavelength of 

632 nm  , and its radius is / 6a  . In order to ensure 

that the APB electric field maximum coincides with the 

cluster radius, so M a  , the beam parameter of the APB 

should  be 0 0.24w  . However the field features of such an 

APB is beyond the diffraction limit, and cannot constitute a 

propagating beam as investigated in [31]. However, it is still 

important to assess the impact of the beam parameter 0w , i.e. 

the spatial extent and amplitude distribution of the excitation 

field, on the magnetic field enhancement of the cluster-APB 

system. Therefore we report in Fig. 7 the magnetic cluster 

polarizability mm
zz  and the magnetic field enhancement HF  

at the cluster center versus beam parameter. In both plots we 

observe the signature of  APB APB
zE H 0  term [appearing as 

a function of 0w   in (20) and (23)] as a slight decrease with 

0w  since the exponential term in (24) becomes significant. It 

is shown that for 0w   both quantities plotted in Fig. 7 

saturate, and around 0w   the reported quantities take 

values close to the saturated ones. Note here that even though 

the APB’s maximum electric field location, as illustrated in 

Fig. 6, moves farther from the cluster radius, when 0w  is 

increased; the magnetic field enhancement does not change 

significantly.  Smaller 0w  indicates tighter field features that 

start to be comparable to the cluster size, thus the magnetic 

polarizability and the magnetic field enhancement decrease 

slightly as 0w  decreases. However the slight decrease in the 

magnetic field enhancement HF  with decreasing 0w  does not 

mean that the APBs with tighter features should be avoided. 

In fact, we recall that HF  is defined in (1) as the ratio of the 

total field over the incident (external) field, and despite the 

slight decrease of HF  with decreasing 0w , the incident 

(external) magnetic field of a tighter beam is  much stronger, 

assuming  that the power of the beam is kept constant. This is 

easily understood by looking at the magnetic field of the 

incident APB in Fig. 2 for a tightly focused APB ( 0 / 2w  ) 

and a weakly focused APB ( 0w  ). It is clear from Fig. 2 

that the incident magnetic field with 0 / 2w   is almost 3 

times the one with 0w  , whereas in Fig. 7 we observe only 

a 10% drop in enhancement from 0w   to 0 / 2w  . 

Eventually, we still stress that tighter beams lead to larger 

total magnetic fields. In Fig. 7, the sweep of 0w  is started at 

0 / 2w   because as the beam parameter 0w  decreases to 

values smaller than / 2  the plane wave spectrum of its field 

starts to extend over to the evanescent spectrum and these 

beams are no more composed of a spectrum of propagating 

waves and the paraxial approximation in (1) loses accuracy 

[31]. The field features throughout this paper are calculated 

using an APB with 0w   which represents a self-standing 

beam whose field spectrum is only confined to the 

propagating plane-wave spectrum.  

 

 

Fig. 7. mm
zz  and HF  at the origin, i.e., center of the cluster, versus 

the beam parameter of APB.  

In Fig. 8(a-c), we report HF , EF , and YF  and then along the 

x and y axes at several z-planes, from 0.5z    to 0.5z   

where we assume the cluster is centered at the minimum waist 

plane 0z   and the APB is incident from below as in Fig. 6. 

It is observed that the field enhancement features are mainly 

confined to the cluster plane, and the normalized absolute 

local field admittance YF  is maximum around the z axis and 

in contrast to the other figures of merit, it maintains its large 

value at different z values. It is important to note here that YF  

ideally tends to infinity on the z axis, and is there truncated 

(for graphic representation) at a maximum of 103 (or 60 dB) 

in the plots. Lastly we report the magnetic field enhancement 

HF  along the z axis, whose maximum value occurs at 0z  . 

Importantly, we see the destructive interference signature of 
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the incident magnetic field and the scattered one as a 

minimum at 0.25z   .  

 
Fig. 8. (a) Magnetic and (b) electric field enhancement ( HF  and 

EF ). (c) Normalized absolute local field admittance YF  versus x and 

y at various z planes. (d) The magnetic field enhancement on z axis 

showing destructive interference at 0.25z    and a maximum at 

/ 0z   . 

VI. EFFECT OF CLUSTER DEFECTS AND  BEAM ALIGNMENT 

ON FIGURES OF MERIT  

In the previous section, we have shown that the normalized 

absolute local field admittance YF  around the center of the 

nano cluster excited by the APB is ideally very large 

alongside a magnetic field enhancement HF  around 4.2. In 

addition to an increase of HF  due to the nano cluster, stronger 

incident magnetic field is also achieved with tighter APBs. 

However it is supposable that the perfect alignment of the 

beam axis with the cluster axis and also the ideal symmetry of 

the circular cluster may not be easily achieved in practical 

applications. In this section, we provide a short assessment of 

the sensitivity of advantages of the APB illumination obtained 

with the proposed setup in Fig. 1 with respect to some defect 

scenarios.  

 

Fig. 9. HF  and YF  at the origin, i.e., center of the cluster, versus 

two defect scenarios, either (i) only the radius of 1st sphere in the 

cluster, or (ii) only the position of the 1st sphere in the cluster is 

scaled by a factor κ with respect to the ideally symmetric cluster. The 

reference nanosphere radius is set to 50 nm and the reference 

distance of the nanospheres from the origin is equal to 105 nm. 

We investigate two possible defect scenarios of nano 

clusters where the nanosphere on the +x axis (1st sphere) (i) 

has a different radius than the rest of the nanospheres, and (ii) 

is displaced along the x axis. To examine the effect of these 

defects in the nano cluster on its figures of merits, the radius 

and position of the 1st nanosphere in the regular symmetric 

cluster are, respectively, scaled by a coefficient  , namely 

equal to 1 (50nm)r   and 1 (105 nm)x  , respectively. It is 

observed in Fig. 9 that by scaling the 1st nanosphere’s radius 

with 0.9   to 1.25  , one still has a magnetic field 

enhancement HF  at the cluster center larger than 90% of its 

nominal value with 1  . In addition, the magnetic field 

enhancement HF  increases as the nanosphere is placed closer 

the cluster center. In contrast to the magnetic field 

enhancement, the magnetic to electric field ratio YF  at the 

cluster center shows a very strong dependence on the physical 

defects in the cluster. We recall that in an ideal symmetric 

setting YF    when 1  . However even 10% variation in 

the radius or the position of the 1st sphere can lead to a 

decreaseto 15YF   due to the loss of the radial symmetry in 

the cluster-APB setup. For variations within  0.83 1.13   

one still has YF   10.   

 
Fig. 10. Effect of beam axis displacement from the center of the 

cluster 
APBx  on the magnetic field enhancement HF  (left) and the 

normalized absolute local field admittance YF  (right) at the cluster 

center. It is shown that independently of the beam parameter 0w  the 

field enhancement is resilient to the beam alignment whereas the 

normalized absolute local field admittance is highly sensitive, and 

remains larger than 10 at the cluster center for 
APB0 0.08x    . 

Next, we plot in Fig. 10, the magnetic field enhancement 

HF  and normalized magnetic to electric field ratio YF  at the 

cluster center versus the displacement APBx  of the APB 

beam axis along the +x direction from the center of the 

circular nano cluster. While the magnetic field enhancement 

HF  is not strongly affected by the offset of the beam axis, the 

normalized local admittance YF  drops significantly. However 

for small displacements within ABP0 / 0.08x     one still 

has YF   10 at the cluster center, since ideally one has 

YF    there. Recalling that the spatial extent of the APB 
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depends on the beam parameter 0w , in Fig. 10 we report the 

figures of merit for two different values 0w . We stress that 

different choices of the beam parameter do not create a 

significant difference on the figures of merit when it comes to 

the effects of beam’s misalignment APBx . 

VII. CONCLUSION 

 A circular cluster of nanoparticles excited by an 

azimuthally polarized beam (APB) is utilized as a magnetic 

nanoprobe for enhancing the magnetic near-field and the 

spatial resolution of the enhanced magnetic field in a 

magnetic-dominant region. In the same region a huge local 

field admittance is achieved, much larger than that of a plane 

wave, meaning that the magnetic to electric field ratio is very 

high. We demonstrate that large magnetic field enhancement 

is robust to small physical defects in the nano cluster and to 

small misalignments of the APB with respect to the cluster’s 

center, though the latter decreases the local field admittance. 

In this paper circular clusters of nanospheres as magnetic 

nanoprobes excited by APBs have been studied as an 

example, but similar conclusions are expected to hold for 

other magnetic nanoprobes with symmetry properties. 

Moreover any required improvement of the model regarding 

specific fabrication methods and experimental setups (for 

example the presence of a substrate) should be accounted for 

in future studies. We remind that different types of magnetic 

nanoprobes such as silicon spheres or clusters made of 

different geometries of nanoparticles may provide advantages 

in experimental setups, tuning wavelength of operation and 

controlling the magnetic field enhancement level and the area 

of the magnetic-dominant region. The enhanced magnetic 

fields in magnetic-dominant regions with resolutions beyond 

the diffraction limit obtained using magnetic nanoprobes may 

prove useful in optical spectroscopy and microscopy 

applications based on detection of magnetic field interacting 

with matter.  

APPENDIX 

The power P carried by the beam in the + z direction,  in 

the figure of longitudinal magnetic field defined in (9) is 

given by  
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whose derivation is shown in [31]. Therefore zh  in (9), 

evaluated at z = 0 is 
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and it is a function of only 0 /w  . 
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