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ABSTRACT

The ability to characterize repetitive regions of the
human genome is limited by the read lengths of
short-read sequencing technologies. Although long-
read sequencing technologies such as Pacific Bio-
sciences (PacBio) and Oxford Nanopore Technolo-
gies can potentially overcome this limitation, long
segmental duplications with high sequence identity
pose challenges for long-read mapping. We describe
a probabilistic method, DuploMap, designed to im-
prove the accuracy of long-read mapping in segmen-
tal duplications. It analyzes reads mapped to seg-
mental duplications using existing long-read align-
ers and leverages paralogous sequence variants
(PSVs)––sequence differences between paralogous
sequences––to distinguish between multiple align-
ment locations. On simulated datasets, DuploMap
increased the percentage of correctly mapped reads
with high confidence for multiple long-read aligners
including Minimap2 (74.3–90.6%) and BLASR (82.9–
90.7%) while maintaining high precision. Across mul-
tiple whole-genome long-read datasets, DuploMap
aligned an additional 8–21% of the reads in seg-
mental duplications with high confidence relative
to Minimap2. Using DuploMap-aligned PacBio circu-
lar consensus sequencing reads, an additional 8.9
Mb of DNA sequence was mappable, variant calling
achieved a higher F1 score and 14 713 additional vari-
ants supported by linked-read data were identified.
Finally, we demonstrate that a significant fraction of
PSVs in segmental duplications overlaps with vari-
ants and adversely impacts short-read variant call-
ing.

INTRODUCTION

High-throughput short-read sequencing technologies have
transformed the study of genetic variation and the discovery
of disease-associated variants for human disorders. How-
ever, the short read lengths (typically a few hundred bases)
of short-read technologies such as Illumina limit the com-
prehensive detection of genetic variation (1). The human
genome is highly repetitive and contains several types of
repetitive sequences, including hundreds of long segmental
duplications (ranging in length from a few kilobases to hun-
dreds of kilobases) that have >98% sequence similarity to
other sequences (2,3). Some of these duplicated sequences
are perfectly identical to their paralogous sequences over
several kilobases. Duplications with length of at least 10 kb
and sequence identity of ≥98% cover 3.0–3.2% of the hu-
man genome and overlap >800 protein-coding genes. Vari-
ants in many of these genes are implicated in rare Mendelian
disorders as well as complex diseases (4). Some examples of
such duplicated genes are PMS2 in Lynch syndrome (5),
STRC in hearing loss (6) and NCF1 (7) in autoimmune dis-
eases. From the perspective of whole-genome sequencing,
many of these segmental duplications are partially or com-
pletely inaccessible to short reads since the vast majority of
reads originating from such regions cannot be unambigu-
ously aligned to the genome (4,8). This limits the discovery
of disease-associated mutations and our understanding of
the function of these genes.

In recent years, two single-molecule sequencing (SMS)
technologies that can generate reads that are tens to
hundreds of kilobases long have become widely avail-
able. The Pacific Biosciences (PacBio) single-molecule real-
time technology can generate reads that are, on av-
erage, 10–60 kb long (9). Another long-read sequenc-
ing technology––Oxford Nanopore Technologies (ONT)
MinION––can generate long reads with lengths that can
even exceed a megabase in length (10). The availability
of these technologies has dramatically altered the abil-
ity to assemble bacterial and mammalian genomes since
the long read lengths can resolve long repeats present in

*To whom correspondence should be addressed. Tel: +1 858 246 1810; Email: vibansal@ucsd.edu

C© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://orcid.org/0000-0002-6684-5335


e114 Nucleic Acids Research, 2020, Vol. 48, No. 19 PAGE 2 OF 14

genomes (11). The throughput and read lengths for these
third-generation sequencing technologies continue to im-
prove; as a result, these technologies are increasingly being
used to sequence human genomes (12,13). The long read
lengths of these technologies provide several advantages for
sequencing human genomes compared to short reads. These
include the ability to de novo assemble genomes with high
contiguity (10,14), reconstruct haplotypes directly from the
sequence reads (15,16) and increased sensitivity for the de-
tection of structural variants (12,17).

A key advantage of long SMS reads is their ability to map
unambiguously in repetitive regions of the genome that in-
clude long segmental duplications with high sequence iden-
tity. This can enable accurate variant calling in these re-
gions (16,18). However, variant calling using error-prone
SMS reads is challenging and short-read variant calling
tools do not work well for SMS reads (16,18). To address
the challenge of variant calling using SMS reads with high
error rates, several new methods (16,18–20) have been de-
veloped. Some of these methods use deep learning-based
models (19,20) to overcome the high error rate, while oth-
ers exploit the long-range haplotype information present
in SMS reads to enable haplotype-resolved variant call-
ing (16,18). Recent work has shown that these variant call-
ing methods achieve high precision and recall for single-
nucleotide variant (SNV) calling in unique regions of the
human genome that are comparable to those using Illumina
whole-genome sequencing (16). More recently, circular con-
sensus sequencing (CCS) can generate long reads with high
accuracy (99.8%) using multiple passes of the PacBio SMS
technology over a single template molecule (14). The high
accuracy of these HiFi reads enables the accurate detection
of both SNVs and short indels in human genomes (14) and
also improves the mappability of the genome (97.8% of non-
gapped bases) compared to short reads (94.8%).

Nevertheless, many segmental duplications are much
longer than the average read length of HiFi reads and re-
main difficult to map unambiguously (14). Using simulated
PacBio reads, Edge and Bansal (16) found that long-read
alignment tools such as Minimap2 (21) and NGMLR (22)
result in low recall for variant calling in segmental duplica-
tions. Long-read alignment tools typically calculate align-
ment or similarity scores for each of the possible mapping
locations for a read and assign it a high mapping quality if
the alignment score of the best location exceeds that of the
second best location using some threshold. Long repeated
sequences in the human genome result in multiple locations
with high scores and pose problems for long-read alignment
tools. Recent work has shown that the accuracy of long-
read mapping in extra-long tandem repeats in the human
genome––typically found in centromeres––can be improved
using specialized computational methods (23–25) that are
designed to exploit the sequence and structure of long re-
peats. For example, the Winnowmap algorithm (24) modi-
fies the sequence matching algorithm to avoid filtering out
repeated k-mers that are common in tandem repeats (24).

In long segmental duplications with high sequence iden-
tity, there is potential to improve alignment accuracy by
leveraging prior knowledge about the location and se-
quence of the duplications. Paralogous sequence variants
(PSVs)––differences in sequence between a segmental du-

plication and its homologous sequences––are the primary
source of information for assigning reads to their correct
location in such regions. PSVs have previously been used to
distinguish paralogous repeat copies and estimate paralog-
specific copy number using short reads (26). More recently,
Vollger et al. (27) have developed a computational method
for the de novo assembly of segmental duplications that uses
PSVs to separate paralog copies. The high error rates of
PacBio single-pass and ONT reads make the problem of
distinguishing paralogous repeat copies even more difficult.
In this paper, we describe a new probabilistic method for
accurate mapping of long reads in segmental duplications
that explicitly leverages PSVs to distinguish between repeat
copies and assign reads with high confidence. Our method,
DuploMap, builds on existing long-read alignment tools
and carefully analyzes reads that are mapped to known seg-
mental duplications in the genome. It performs local re-
alignment around PSVs to maximally utilize the informa-
tion present in noisy SMS reads.

PSVs are defined using a reference genome and it has
been shown that a subset of PSVs corresponds to poly-
morphisms in the human population (28,29). Using such
unreliable or uninformative PSVs for differentiating repeat
copies can result in conflicting evidence in support of dif-
ferent alignment locations resulting in reduced sensitivity
and specificity of read mapping. To identify and discard un-
informative PSVs, DuploMap jointly performs read map-
ping and PSV genotyping using an iterative algorithm. Only
reliable PSVs are used to assign reads to homologous re-
peat copies. We use simulated data to evaluate the im-
provement in mappability using DuploMap on alignments
generated using existing long-read mapping tools. We also
demonstrate the impact of DuploMap on read mappability
and variant calling in segmental duplication in the human
genome using a number of real datasets generated using the
PacBio and ONT. DuploMap is open-source software avail-
able at https://gitlab.com/tprodanov/duplomap.

MATERIALS AND METHODS

Given SMS reads aligned to a reference genome (using a
long-read aligner such as Minimap2), our objective is to an-
alyze reads that overlap segmental duplications (and their
homologous sequences), determine the most likely align-
ment location for each read and assign a mapping qual-
ity to it (30). We assume that standard alignment tools can
correctly align reads in the unique regions of the genome.
Therefore, we do not examine reads that do not have a pri-
mary alignment overlapping segmental duplications. Du-
ploMap uses prior knowledge about segmental duplications
in the human genome to identify clusters of duplicated se-
quences and pairwise PSVs.

Clustering segmental duplications and identifying PSVs

To identify segmental duplications and PSVs, we used a pre-
viously computed database of segmental duplications for
the human genome (2,3). The database was downloaded
from the UCSC Table Browser (31). First, we filtered out
all pairs of homologous sequences for which the fraction of
matching bases was <97% or the length of the alignment

https://gitlab.com/tprodanov/duplomap
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was <5000 bases. Next, we constructed a graph on the seg-
mental duplications where each node was a genomic inter-
val with homology to at least one other interval. This graph
had two types of edges: (i) similarity edges between pairs
of homologous sequences from the segmental duplication
database and (ii) proximity edges between pairs of intervals
that are <500 bases from each other. The proximity edges
were added since reads that overlap intervals close to each
other but not homologous have to be analyzed jointly since
they affect the PSV genotypes of both components. For the
hg38 reference human genome, the segmental duplication
graph had 5818 nodes and 26 301 edges (3587 similarity and
22 714 proximity edges). We removed 88 of the 256 clusters
that did not contain any duplications of >10 kb and with
sequence similarity of at least 98%. Most of the remaining
clusters were small (<3 nodes), but the largest connected
component contained 3301 nodes and 17 752 edges.

To identify PSVs, we used Minimap2 (options -ax
asm20) to align each pair of homologous sequences. For
a pair of aligned sequences S1 and S2, we first searched for
anchors: k-mers shared between the homologous sequences
and represented by k consecutive matches in the pairwise
alignment. Each anchor sequence is required to be unique
in a window around it (by default, k = 6 and window length
= 20). This way we get a set of anchor starting positions
{a(1)

i } and {a(2)
i }. If the homologous sequences between two

consecutive anchors are different: S1[a(1)
i + k . . . a(1)

i+1 − 1] �=
S2[a(2)

i + k . . . a(2)
i+1 − 1], we define a pairwise PSV as a pair

of intervals (a(1)
i + k, a(1)

i+1 − 1) and (a(2)
i + k, a(2)

i+1 − 1). As a
result of this, adjacent PSVs can be merged into a single
PSV. The substrings S1[a(1)

i + k . . . a(1)
i+1 − 1] and S2[a(2)

i +
k . . . a(2)

i+1 − 1] define the two alleles for the PSV. To avoid
excessive number of PSVs in regions with low sequence
similarity, we did not consider regions within the pairwise
alignments that had sequence similarity of <95% and were
>300 bp. Finally, low-complexity PSVs (see the Supplemen-
tary Methods for details) were filtered out and only high-
complexity PSVs were retained for genotyping.

DuploMap algorithm

For each cluster in the segmental duplication graph, Du-
ploMap identifies reads that overlap segmental duplications
in the cluster and analyzes the reads to determine the align-
ment location and mapping quality of each read. Unlike ex-
isting mapping tools, which map each read independently
to the reference genome, DuploMap uses information from
all reads jointly to align reads overlapping segmental du-
plications. This is done by identifying uninformative PSVs
jointly with estimating the read alignment locations and
mapping qualities. For a cluster of duplications, DuploMap
first retrieves all reads for which the primary alignment in-
tersects the genomic intervals contained in the cluster. Next,
it performs the following steps on the set of reads:

1. For each read:
• Find the set of potential alignment locations.
• Use LCS (longest common subsequence)-based filter-

ing to discard some alignment locations.

• If the number of alignment locations after filtering is
1, assign read to that location with high confidence
(mapping quality = 254).

• Determine the actual alignment for the read and each
alignment location using Minimap2.

2. For each PSV, estimate genotype likelihoods using reads
aligned with high confidence (mapping quality greater
than a threshold), and identify reliable PSVs.

3. For each read with two or more potential alignment
locations, calculate location likelihoods using reliable
PSVs and estimate mapping quality for best alignment
location.

4. Repeat steps 2 and 3 until the read assignments do not
change.

After we assign mapping locations and qualities for
all reads for a given cluster of segmental duplications,
we perform additional post-processing to identify reads
that show high rate of discordance with the genotypes
of overlapping PSVs. Reads with high discordance can
be result of missing duplicated sequences in the reference
genome or due to other reasons such as structural vari-
ants. Reads that overlap at least five PSVs and show a
high rate of discordance are assigned a low mapping qual-
ity (see the Supplementary Methods for details). Next,
we describe the individual steps (1, 2 and 3) of the algo-
rithm in detail. The procedure for identifying the set of
potential alignment locations using the segmental duplica-
tion database (step 1) is described in the Supplementary
Methods.

Filtering alignment locations using longest common subse-
quences

For reads overlapping segmental duplications with high se-
quence identity, comparing the alignment scores for differ-
ent candidate locations is not very informative of the cor-
rect location, particularly for reads with high error rates. We
developed an LCS-based strategy that uses k-mers that are
unique to a particular alignment location to filter out un-
likely locations. The motivation underlying this approach
is that the correct alignment location should share unique
k-mers with the read, i.e. k-mers that are not present in
other locations, and the number of such shared unique k-
mers should be significantly greater than other locations.
This approach allows us to quickly map reads that have
some part located outside segmental duplications as well
as reads that intersect divergent region(s) within segmental
duplications.

We use the LCSk++ algorithm (32) to find the longest
common subsequence LCSk(a, b) of k-mers shared between
a pair of sequences a and b. Function N(·) counts the num-
ber of non-overlapping k-mers in a set (see details in the
Supplementary Data). Suppose a read r has n candidate lo-
cations {li }n

i=1. For a pair of locations i and j, we find three
LCS sets: LCS(r, li), LCS(r, lj) and LCS(li, lj). Let Aij =
N(LCS(r, li)\LCS(r, lj)) be the k-mers that are present in
the LCS between the read and the ith location, but not in
the LCS between the read and the jth location. Additionally,
let Bij = N(k-mers(li)\LCS(li, lj)) be the k-mers from the ith
location that are not in LCS(li, lj). We use the Fisher’s exact
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test to calculate the P-value of the contingency table[
Bi j − Ai j Ai j
Bji − Aji Aji .

]

Without loss of generality, suppose that the read is more
similar to the location i than to location j. In this case,
a low P-value of the test would confirm that the ratio of
shared read-location k-mers (Aij) to the number of unique
k-mers for location i (Bij) is significantly higher than the cor-
responding ratio for location j: Aji/Bji. We considered values
for k from 9 to 15, which showed similar results on simulated
data (data not shown), and used k = 11. Since a single-base
difference can result in potentially k unique k-mers, counts
of non-overlapping k-mers in the LCS are used for comput-
ing the Fisher’s exact test.

For a read with two or more alignment locations, we cal-
culate the LCS-based P-value for each pair of locations. We
say that location i dominates location j if Aij/Bij > Aji/Bji
and the Fisher’s exact test P-value is less than a threshold
(default = 0.0001). Then, we select the smallest non-empty
subset of locations that dominate all other locations using
a directed graph (see the Supplementary Methods).

Read assignment using PSVs

For reads that have more than one possible alignment lo-
cation after the LCS-based filtering, we use a PSV-based
approach to determine the most likely alignment location
(Figure 1B). For a long read r and n candidate alignment
locations, we consider each pair of alignment locations
in turn. For a pair of locations i and j, we use all high-
complexity PSVs shared between these locations. For a PSV
v, we calculate read–PSV alignment probabilities for the
two alleles of v. To account for the uncertainty in base-to-
base alignment of long error-prone reads, we use a small
window around the PSV and average over all alignments
using a pair hidden Markov model (16). We denote align-
ment probabilities s(i )

v = P(rv |S(i )
v ) and s( j )

v = P(rv |S( j )
v ),

where rv is read subsequence in a window around the PSV,
and S(i )

v and S( j )
v are the reference genome subsequences in

the same window around the PSV at locations i and j. We
cap alignment probabilities s(i )

v ← max{ŝ, s(i )
v } and s( j )

v ←
max{ŝ, s( j )

v } to reduce impact of a single PSV on read map-
ping, or a single read on a set of reliable PSVs (ŝ = 10−3 by
default). Using these probabilities, we calculate a likelihood
for the true location of the read being i (relative to j):

Pi j (r ) =
∏
v∈V

[
P(v is reliable) · s(i )

v + (1 − P(v is reliable))
]
.

Note that P(v is reliable) is essentially the posterior prob-
ability of the reference genotype at both locations defined
by a pairwise PSV. When the PSV is unreliable or uninfor-
mative, we assume that the PSV should not be used to differ-
entiate between the two locations and hence use a constant
term (1) in the above equation. Initially, P(v is reliable) is as-
signed using a constant prior probability and in subsequent
iterations it is estimated from the genotype likelihoods using
reads assigned with high mapping quality to each location.

For reads with more than two candidate alignment loca-
tions, we use the pairwise likelihood to identify the ‘best’

location b such that Pbi(r) ≥ Pib(r) for all other align-
ment locations i. We select the second best location s =
arg mini [Pbi (r )/(Pbi (r ) + Pib(r ))] and assign the mapping
quality as min{254,−10 log10[Pbs(r )/(Pbs(r ) + Psb(r ))]}. If
no such location exists, we keep the original alignment of
the read and assign it a mapping quality of 0.

Identifying reliable PSVs using assigned reads

PSVs are defined using the reference genome sequence;
however, since segmental duplications are difficult to assem-
ble, some PSVs may be assembly artifacts. It is also possi-
ble that the analyzed genome has different alleles on ho-
mologous chromosomes for some of the PSVs; i.e. the PSV
sites overlap with variants. For a PSV v, defined between
two locations i and j, we select all reads Ri and Rj that
cover the PSV and are assigned to location i and j, respec-
tively, with high confidence (mapping quality greater than
or equal to a threshold). We use these reads to calculate
the joint likelihoods of the genotype pair (Gi

v, G j
v) for the

two locations. For each location, we consider three possi-
ble diploid genotypes defined by the two alleles of the PSV.
For location i (j), the ‘0’ allele corresponds to the reference
sequence of the PSV at location i (j) and the ‘1’ allele cor-
responds to the reference sequence of the PSV at location
j (i). Hence, the three possible genotypes for each location
can be represented as {0/0, 0/1, 1/1} and we can estimate
the posterior probability of each genotype pair (gi, gj) as
follows:

P
(

G(i )
v = gi , G( j )

v = g j |Ri , Rj

)

=
∏

r∈Ri
P(r | gi ) · ∏

r∈Rj
P(r | g j ) · p(gi )p(g j )∑

g′
i , g′

j

∏
r∈Ri

P(r | g′
i ) · ∏

r∈Rj
P(r | g′

j ) · p(g′
i )p(g′

j )
,

where p(g) is the prior probability of the genotype g. For
most PSV sites, we expect the reference genotype (0/0) to be
the correct one. Therefore, we assign a high value for p(0/0)
and low probability for non-reference genotypes. For exam-
ple, p(0/0) = 0.95, p(0/1) = p(0/0)·(1 − p(0/0)) = 0.0475
and p(1/1) = 1 − p(0/0) − p(1/1) = 0.0025. Experiments
on simulated data using values for p(0/0) ranging from 0.9
to 0.99 gave similar results (data not shown). Therefore, we
use the prior value equal to 0.95 as default. P(r | g) is a prob-
ability of the read subsequence conditional on the genotype
g, which is calculated using alignment probabilities:

P(r | 0/0) = s(i )
v , P(r | 0/1) = 1

2 ·
(

s(i )
v + s( j )

v

)
, P(r | 1/1) = s( j )

v .

We define the probability P(v is reliable) as the poste-
rior probability of the genotype being equal to the refer-
ence sequence at both locations, i.e. P(G(i )

v = 0/0, G( j )
v =

0/0|Ri , Rj ).

Measuring alignment accuracy

To assess the accuracy of read mapping in segmental du-
plications using simulated data, we used two metrics: (i) re-
call: the fraction of correctly mapped reads out of all sim-
ulated reads with true location overlapping Long-SegDups;
and (ii) precision: the fraction of correctly mapped reads out
of all reads mapped to Long-SegDups. Long-SegDups re-
fer to the subset of segmental duplications in the genome
with length > 5 kb and with sequence similarity at least
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Figure 1. Overview of the DuploMap method. (A) Filtering alignment locations using LCS of k-mers. A read partially overlaps a segmental duplication
and has two possible alignment locations (copy 1 and copy 2). The read and its possible locations are divided into k-mers that are shown with different
colors. Arrows depict k-mers in the LCS between the read and the two copies. In the duplicated region, the read shares four k-mers with ‘copy 1’ that are
also shared with ‘copy 2’. Outside the duplicated region, the read shares three k-mers (shown in green) with the k-mers of ‘copy 1’, but not with the k-mers
of ‘copy 2’. (B) Calculation of read-location probabilities using PSVs. The read intersects two reliable PSVs that distinguish the two alignment locations.
The probability of each location being correct (relative to the other location) is calculated using the local realignment probabilities between the read and
the PSVs. (C) Identifying reliable PSVs using assigned reads. Five reads are mapped to ‘copy 1’ and five reads are mapped to ‘copy 2’ with high mapping
quality. The genotype likelihoods for each PSV are calculated using these reads. Only two of the four PSVs have the reference genotype as the most likely
genotype for both locations of each PSV and are considered reliable.

97%. A read is considered to be mapped to Long-SegDups
if its primary alignment overlaps Long-SegDups with map-
ping quality greater than or equal to a certain threshold. We
say that a read is mapped correctly if it is mapped to Long-
SegDups; its primary alignment covers the true location by
at least 25% (this allows partial alignments; nevertheless,
the vast majority of the reads overlap the true location by
>95% or <5%; see Supplementary Figure S6). Addition-
ally, the alignment should not go out of the true location
by >100 bp in each direction to remove reads aligned to an
incorrect copy in a tandem repeat. Precision and recall val-
ues for each mapping quality threshold were calculated by
considering only reads with mapping quality greater than
or equal to the threshold.

Simulations

We used SimLoRD (33) (1.0.4, options -mp 1) to gen-
erate PacBio SMS reads (median lengths of 8.5, 20 and
50 kb) from the reference human genome (hs37d5) us-
ing the default error rates of 0.11 for insertion, 0.04
for deletion and 0.01 for substitution (33). Reads were
forced to only have a single sequencing pass to resem-
ble PacBio contiguous long reads (CLRs) as opposed to
CCS or HiFi reads. We aligned the SMS reads to the
human reference (hs37d5) using the long-read alignment
tools BLASR (5.3.3, options --hitPolicy allbest
--nproc 8), Minimap2 (2.17-r941, options -t 8 -
ax map-pb) and NGMLR (0.2.7, options -t 8 -x
pacbio). To assess variant calling accuracy, we simulated
a diploid genome using the reference human genome se-

quence with heterozygous SNVs (rate = 0.001) and ho-
mozygous SNVs (rate = 0.0005) (16).

We used NanoSim (34) (2.6.0) to generate ONT SMS
reads (mean length of 8.4 kb) using a pretrained model
human NA12878 DNA FAB49712 guppy. We aligned the
simulated ONT reads to the hs37d5 human reference
genome using Minimap2 with options -t 8 -ax map-
ont.

Whole-genome SMS datasets

We used whole-genome SMS datasets for five human in-
dividuals generated using different sequencing technolo-
gies (PacBio CCS, PacBio CLR and ONT) by the Genome
in a Bottle (GIAB) consortium (35). These datasets were
downloaded from the GIAB ftp server (ftp://ftp-trace.ncbi.
nlm.nih.gov/giab/ftp/data/) and were aligned to the hg38
reference genome using the tool Minimap2. In addition,
ONT reads for HG001 (NA12878) were obtained from the
Nanopore WGS Consortium (10) and aligned to hg38 using
Minimap2. We also used 10X Genomics datasets (aligned
reads and variant calls) for HG001 and HG002 obtained
from the GIAB ftp server. We also downloaded a PacBio
CLR dataset (SRX8173259) from the SRA and aligned the
reads to the mouse reference genome (mm10). Detailed in-
formation about the individual datasets is provided in the
Supplementary Data.

Variant calling

Variants were called on the HG002 whole-genome PacBio
CCS data using the tool Longshot (16) (v0.4.1). Variant

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
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calling was done using four different thresholds for the
mapping quality (0, 10, 20 and 30). For each threshold,
only reads with mapping quality greater than or equal to
the threshold were used (-q parameter). Only variants with
PASS filter and quality value of at least 30 were used for
analysis. High-confidence variant call sets generated by the
GIAB consortium were used for assessing accuracy of vari-
ant calling (35,36). For the HG002 genome, SNVs were
compared against the GRCh38 version of the GIAB high-
confidence call set (release v3.3.2 and v.4.1). The compari-
son of variant calls was limited to high-confidence regions
(provided in a bed file). Precision and recall were calcu-
lated using RTGtools vcfeval (v3.11). Comparison of dif-
ferent sets of variant calls was also done using RTGtools
vcfeval.

RESULTS

Overview of method

DuploMap is a probabilistic method specifically designed
to improve the sensitivity and specificity of long-read align-
ments in segmental duplications in the genome. It starts
from an existing set of aligned reads (generated using a
long-read alignment tool such as Minimap2) and updates
the alignments and mapping qualities of reads that are
mapped to segmental duplications. It utilizes a precom-
puted database of segmental duplications and PSVs for this
purpose. In the first step, DuploMap identifies the candi-
date alignment locations for each read whose initial align-
ment overlaps segmental duplications and uses an efficient
filtering approach based on calculating the LCS to identify
the most likely alignment location. This LCS-based filter-
ing approach can identify the correct alignment location
for reads that overlap a non-repetitive sequence (Figure 1A)
and for reads from segmental duplications with moderate
sequence identity. For reads that overlap segmental dupli-
cations with very high sequence identity, DuploMap aligns
read sequences to possible alignment locations using Min-
imap2 and performs local realignment in the neighborhood
of PSVs that overlap a read. The local realignments are used
to calculate read-location likelihoods and estimate the most
likely location for each read (Figure 1B). Since some PSVs
may not correspond to fixed differences between homolo-
gous sequences, DuploMap uses the reads assigned to each
repeat copy (Figure 1C) to identify reliable PSVs––PSVs
for which the genotype at the homologous positions is con-
sistent with the reference genome. The read-location likeli-
hoods are estimated using only reliable PSVs. Since reliable
PSVs are not known in advance, the read assignments and
the set of reliable PSVs are inferred using an iterative algo-
rithm (see the ‘Materials and Methods’ section).

Segmental duplications are defined as sequences with
length of at least 1 kb and sequence similarity of ≥90% (3).
However, not all such segmental duplications are challeng-
ing for long-read alignment. We used simulations to as-
sess the mappability of SMS reads in duplicated sequences
as a function of length and sequence similarity (data not
shown). Based on these simulations, we constructed a sub-
set of segmental duplications in the human genome with
length of >5 kb and sequence similarity of at least 97%.

These regions cover 86 and 101 Mb of the hg19 and hg38
reference human genomes, respectively. DuploMap only an-
alyzes reads that overlap such segmental duplications (re-
ferred to as Long-SegDups in this paper).

Evaluation of mapping accuracy using simulated reads

We simulated single-pass PacBio SMS reads using the
SimLORD tool (33) with mean length equal to 8.5 kb
and aligned them to the reference human genome using
the long-read alignment tool, Minimap2 (21). Alignment
tools report a mapping quality for each read that rep-
resents the probability that the reported alignment for a
read is correct (30): a mapping quality of 10 (20) cor-
responds to a probability of 0.9 (0.99). Analysis of the
aligned reads showed that 74.9%, 69.0% and 63.1% of the
reads that overlap Long-SegDups had mapping quality ≥10,
≥20 and ≥30, respectively. Furthermore, for reads com-
pletely within segmental duplications with ≥99.5% simi-
larity, only 40.7% of reads had mapping quality greater
than or equal to 10. Although reads that overlap re-
gions that are completely identical between the dupli-
cated sequences cannot be mapped unambiguously, a sig-
nificant fraction of the reads with low mapping quality
overlapped multiple PSVs (illustrated for the STRC gene
in Supplementary Figure S1). Specifically, 70.6% of the
reads that had a mapping quality <10 overlapped five or
more PSVs. Next, we mapped the simulated reads using
BLASR (37), a long-read alignment tool developed specif-
ically for PacBio reads. BLASR aligned a greater frac-
tion of reads (80.8%) with mapping quality ≥20 compared
to Minimap2 (68.4%) but was 28 times slower (Supple-
mentary Table S1). This increased mappability came at
the cost of accuracy: 3.2% of reads with mapping qual-
ity ≥20 were mapped to the incorrect location. The accu-
racy of another long-read alignment tool, NGMLR (22),
was significantly worse compared to Minimap2 and
BLASR at all mapping quality thresholds (Supplementary
Figure S3).

Next, we used DuploMap to post-process the alignments
generated using each of the long-read alignment tools sepa-
rately. For a given mapping quality threshold, we used preci-
sion (fraction of correctly aligned reads out of reads mapped
to Long-SegDups) and recall (fraction of correctly aligned
reads out of all simulated reads in Long-SegDups) to assess
the accuracy of read mapping. DuploMap improved both
the precision and recall of read mapping in segmental dupli-
cations for all long-read mapping tools (Figure 2). For Min-
imap2, DuploMap improved the recall from 0.743 to 0.906,
at a mapping quality threshold of 10, while maintaining
high precision (0.9954; Figure 2 and Supplementary Fig-
ure S2A). The improvement in recall was greater for higher
mapping quality thresholds. Even if we consider all aligned
reads (mapping quality threshold of 0), realignment using
DuploMap increased both the precision and recall by 1.2
percentage points. DuploMap also improved both precision
and recall for BLASR (Figure 2) and NGMLR (Supple-
mentary Figure S3). In particular, the precision increased
considerably from 0.965 (0.967) to 0.994 (0.995) while recall
improved from 0.829 (0.806) to 0.907 (0.875) at a mapping
quality threshold of 10 (20) for BLASR.
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Figure 2. Accuracy of read mapping in segmental duplications using simulated long-read data. Each curve shows the precision and recall of different align-
ment methods as a function of mapping quality thresholds. Dashed lines correspond to the original alignments, while the solid lines show the alignments
resulting from realignment using DuploMap. (A) Comparison of Minimap2 (MM2), BLASR, Minimap2 + DuploMap and BLASR + DuploMap on
simulated reads with a mean length of 8.5 kb. (B) Accuracy of Minimap2 (MM2) and Minimap2 + DuploMap on simulated reads with mean lengths of
20 and 50 kb.

Minimap2 uses a minimizer-based approach for find-
ing matches between reads and the reference genome (21).
To improve speed, minimizers with a high frequency (top
0.02%) are discarded by default. We evaluated whether dis-
carding a lower fraction (different values of the parameter f)
could improve accuracy of read mapping in segmental du-
plications. Using f = 0 (use all minimizers) improved the
recall slightly (0.743–0.763) but increased the memory us-
age 5-fold (Supplementary Figure S2B). Nevertheless, post-
processing using DuploMap achieved a higher recall (0.906)
while maintaining a high precision (0.9954). We also evalu-
ated Winnowmap (24), a long-read alignment tool that uses
a weighted sampling-based method for selecting minimizers
to improve long-read mapping using Minimap2 in long tan-
dem repeats. However, Winnowmap’s recall and precision in
Long-SegDups regions were lower than those for Minimap2
(Supplementary Figure S3).

Next, we evaluated the accuracy of mapping SMS reads
in segmental duplications as a function of read length.
For this, we simulated PacBio single-pass reads with mean
lengths of 20 and 50 kb and aligned them to the reference
genome using Minimap2. Not surprisingly, the recall for
reads (at a fixed mapping quality threshold) increased as
the read length increased (Figure 2B). Nevertheless, even
for 50 kb reads, recall was only 0.890 at a mapping quality
threshold of 10. Realignment using DuploMap increased

the recall to 0.949 for 50 kb reads, while keeping the pre-
cision high (0.985).

We also examined the impact of error rate and sequenc-
ing technology on read mapping in segmental duplications.
We simulated PacBio single-pass reads with a mean length
of 8.2 kb and high error rates (15%, 9% and 4% for inser-
tion, deletion and substitution, respectively). At a mapping
quality threshold of 10 (20), Minimap2 mappings in Long-
SegDups had a low recall of 0.691 (0.645) with high pre-
cision of 0.997 (0.998). DuploMap improved the recall to
0.891 (0.853) while maintaining a high precision of 0.995
(0.997). We used the NanoSim tool (34) to simulate ONT
reads and aligned them to the reference genome using Min-
imap2 (see the ‘Materials and Methods’ section). At a map-
ping quality threshold of 10 (20), post-processing using Du-
ploMap improved the recall from 0.755 (0.661) to 0.882
(0.837) and kept the precision high at 0.994 (0.996).

PSVs or paralogous sequence differences are defined us-
ing the reference genome sequence; however, some PSVs
overlap with polymorphisms and should not be used to
differentiate between the paralogous sequences. To assess
whether DuploMap can map reads accurately in the pres-
ence of uninformative PSVs, we simulated PacBio reads
from two-copy segmental duplications with 0%, 15% and
30% of the PSV genotypes assigned to be non-reference on
one of the copies. DuploMap successfully identified unin-
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Figure 3. Comparison of mapping qualities and alignment locations for reads aligned with Minimap2 (MM2) and Minimap2 + DuploMap on the HG002
CCS dataset. Five bar plots corresponding to five bins of mapping quality using Minimap2 are shown. Each bar plot shows the percentage of reads––color
coded by mapping quality after realignment using DuploMap––that had the same or different alignment location using Minimap2 and Minimap2 +
DuploMap. One of the bars (30–254 bin) that corresponds to 52.4% of reads is clipped for visual clarity.

Table 1. Improvement in mappability of reads using DuploMap on multiple SMS whole-genome sequence datasets

Genome Sequencing Median Reads Read MM2 (%) �MM2 + DuploMap (%)

technology coverage analyzed length (N50) MQ ≥ 10 MQ ≥ 20 MQ ≥ 10 MQ ≥ 20

HG002 PacBio CLR 45 878k 11 318 59.4 52.9 +8.4 +10.7
HG003 PacBio CLR 20 416k 10 999 59.9 53.5 +9.8 +11.3
HG004 PacBio CLR 19 362k 10 946 65.1 58.3 +8.7 +10.5
HG002 PacBio CCS 29 300k 13 480 65.7 58.9 +14.9 +19.5
HG005 PacBio CCS 32 454k 10 436 64.2 56.6 +15.8 +20.7
HG001 PacBio CCS 29 381k 10 004 71.6 63.7 +15.0 +21.2
HG001 ONT 36 535k 13 788 63.5 55.7 +3.9 +7.8
HG002 ONT 58 464k 54 352 64.5 58.0 −1.5 +1.7

The last four columns show the percentage of reads with high mapping quality (≥10 and ≥20) that overlap Long-SegDups regions in the Minimap2
alignments and the difference between Minimap2 + DuploMap alignments and Minimap2 alignments. MM2 = Minimap2.

formative PSVs and achieved high recall and precision for
read mapping even with a high fraction of uninformative
PSVs (Supplementary Table S3).

Improvement in read mapping for diverse SMS technologies

To assess the impact of DuploMap on read mapping in
segmental duplications using real SMS data, we analyzed
PacBio CCS whole-genome data for an individual, HG002
(NA24385), from the GIAB project (35). The HiFi reads
were initially aligned using Minimap2 to the hg38 refer-
ence genome. Post-processing the reads using DuploMap
increased the percentage of reads with mapping quality
≥10 in segmental duplications from 65.7% to 80.6%, an in-
crease of 15 percentage points (Figure 3). DuploMap can
change both the alignment location and the mapping qual-
ity of reads overlapping segmental duplications. Compar-
ison of the original Minimap2 and the DuploMap align-
ments showed that 4.8% of reads that had initially very low
mapping quality (<5) were aligned to a different location
with mapping quality ≥30 (Figure 3). Similarly, DuploMap
reduced the mapping quality of 1.9% of the reads––that ini-
tially had mapping quality ≥30––to <10. We observed sim-
ilar improvements in mappability for several human PacBio
HiFi and CLR datasets (Table 1 and Supplementary Figure

S4). The increase in the percentage of reads aligned with a
mapping quality greater than a threshold was consistently
greater for HiFi reads compared to CLRs. This was due to
the improved ability to correctly allelotype PSVs using the
HiFi reads: 1.7% local read–PSV alignments were ambigu-
ous for CCS reads compared to 15.6% for CLRs from the
HG002 genome.

Wenger et al. (14) demonstrated that relative to Illumina
reads, PacBio HiFi reads increased the fraction of the
genome that is mappable, i.e. covered by at least a certain
number of reads with high mapping quality. Nevertheless,
several disease-relevant genes such as SMN1 were still
only partially mappable using HiFi reads. We assessed the
impact of realignment using DuploMap on the mappable
fraction of the human genome. To enable comparison
between datasets with different sequencing coverages, we
defined a genomic position as mappable if the number
of reads covering it––with mapping quality greater than
a threshold––is at least 50% of the median coverage for
the dataset. Relative to Minimap2, realignment using
DuploMap increased the fraction of the genome––limited
to segmental duplications––that is mappable at all map-
ping quality thresholds (Figure 4). For HiFi reads, at a
mapping quality threshold of 10 (20), 80.32% (79.47%)
of the Long-SegDups regions were mappable relative to
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Figure 4. Improvement in mappability of Long-SegDups regions using DuploMap and three long-read datasets for the HG002 genome. Each subplot shows
the percentage of the Long-SegDups regions (78.7 Mb on chromosomes 1–22) that is mappable at different mapping quality thresholds using Minimap2
and Minimap2 + DuploMap alignments. A position is considered mappable if the number of reads covering it is at least 50% of the median coverage for
the dataset.

69.01% (62.26%) using Minimap2. This also increased
the mappability of 11 (16) of the 193 disease-associated
duplicated genes using HiFi reads (Supplementary
Table S5).

Next, we analyzed a whole-genome human dataset gener-
ated using the ONT (10,36). Similar to PacBio datasets, re-
alignment using DuploMap increased the fraction of reads
with mapping quality >10 (20) by 3.9 (7.8) percentage
points (Table 1). For the ONT dataset with ultra-long reads
(mean read length of 54.4 kb), only a minor improvement
in the number of reads with high mapping quality was ob-
served (Table 1). Nevertheless, at a mapping quality thresh-
old of 10, an additional 1.9 Mb of DNA sequence is map-
pable using DuploMap-aligned reads compared to reads
aligned using Minimap2 (Figure 4).

DuploMap can post-process long reads for any genome
with a reference sequence and a database of segmental du-
plications. We downloaded a mouse PacBio CLR dataset
(median coverage 25) and aligned it to the mm10 reference
genome using Minimap2. For running DuploMap, we cre-
ated a PSV database for the mouse genome using a previ-
ously computed database of segmental duplications (38). Of
the 147k reads aligned to long segmental duplications with
high sequence identity (mouse Long-SegDups regions, total
length = 154 Mb), 77.1% (70.3%) were aligned with a map-
ping quality of 10 (20) or greater. Read remapping using
DuploMap increased the percentage of reads with mapping
quality of 10 (20) or greater to 89.5% (89.1%).

DuploMap is multithreaded and can use multiple cores
to process clusters of segmental duplications in parallel. It
required 2–5 h (using eight CPU cores) to process simulated
and real whole-genome PacBio datasets with 30× coverage
(Supplementary Tables S1 and S2). This additional run time
was only 25–30% of the run time of Minimap2 for gener-
ating the initial set of alignments. Since DuploMap infers
reliable PSVs jointly using reads mapped to a cluster of seg-
mental duplications, it needs to store all read alignments for

a cluster in memory and hence the memory usage increases
with increasing coverage (see Supplementary Table S2).

Variant calling in segmental duplications using DuploMap
alignments

DuploMap increases the fraction of the genome––limited to
segmental duplications––that is mappable using SMS reads.
This is expected to improve the sensitivity of variant calling
in such regions. To assess this, we used the variant calling
tool Longshot (16) on simulated PacBio reads (30× cov-
erage). SNVs were called using Longshot for four different
mapping quality thresholds (0, 10, 20 and 30); i.e. reads with
mapping quality below the threshold were not used for vari-
ant calling. We found that the recall for variants called in
Long-SegDups using reads realigned with DuploMap was
greater than that obtained using Minimap2-aligned reads at
all mapping quality thresholds (Supplementary Figure S5).
At a mapping quality threshold of 10, the recall increased
from 0.833 to 0.945, while the precision was virtually un-
changed (≥0.999 for both sets of alignments). The recall
for Minimap2 was highest (0.898) when using all aligned
reads (ignoring mapping quality) but resulted in a signif-
icantly lower precision of 0.904. For both Minimap2 and
DuploMap, the best precision–recall trade-off was observed
at a mapping quality threshold of 10. For segmental du-
plications with ≥99.9% identity, variants called using Min-
imap2 + DuploMap alignments (mapping quality threshold
of 10) had a recall of 0.716 and precision equal to 0.998,
compared to 0.253 and 0.994, respectively, for variants ob-
tained using Minimap2 alignments.

Next, we assessed the impact of the improved read
mapping on variant calling using whole-genome PacBio
HiFi data for HG002 (29× coverage). A recently devel-
oped variant calling tool, DeepVariant, has been shown
to achieve very high precision and recall for PacBio HiFi
reads (14). Since a subset of the HG002 HiFi dataset was
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Figure 5. Comparison of variant calling accuracy for HG002 CCS reads using Minimap2 and Minimap2 + DuploMap. SNVs were called using Longshot
for different mapping quality thresholds. Precision, recall and F1 values were calculated by comparison to the GIAB v4.1 benchmark calls in the Long-
SegDups regions that overlapped with the GIAB high-confidence regions.

used for training the DeepVariant model (14), we used
Longshot (16) for variant calling. Longshot has been shown
to achieve high accuracy (F1 score of 0.9985) for SNV call-
ing on CCS reads (39). Across chromosomes 1–22, Long-
shot called 3 727 419 SNVs using the reads realigned with
DuploMap (mapping quality threshold of 10), 18 291 more
than using the Minimap2-aligned reads. We used the high-
confidence benchmark variant calls from the GIAB con-
sortium (v3.3.2) that cover ∼2.35 Gb of the GRCh38 ver-
sion of the reference genome (excluding the X and Y chro-
mosomes) to assess the accuracy of the SNV calls. The
precision and recall of SNV calling using the Minimap2-
aligned reads and the DuploMap-aligned reads were iden-
tical: 0.9963 and 0.990, respectively (see Supplementary
Table S4). This was not surprising since the GIAB high-
confidence benchmark variant calls (v3.3) were primarily
generated using short-read datasets and exclude the vast
majority of repetitive regions in the genome.

The GIAB consortium recently released high-confidence
benchmark variant calls (v4.1) for the HG002 genome that
cover an additional 6% of the genome compared to the
v3.3.2 calls. These benchmark variant calls incorporate in-
formation from 10X Genomics linked-read and PacBio
HiFi read datasets and include variant calls in some seg-
mental duplications. The precision and recall in the v4.1 re-
gions for DuploMap and Minimap2 alignments were simi-
lar, although SNV calls from DuploMap-aligned reads had
a higher F1 score (0.9905) compared to Minimap2 (Sup-
plementary Table S4). In the subset of the v4.1 regions
that overlap Long-SegDups regions, DuploMap-based calls
had a higher recall compared to Minimap2 but lower pre-
cision at all mapping quality thresholds (Figure 5). Man-
ual inspection of some of the false positives called using
DuploMap-aligned reads suggested that these may corre-
spond to missing true positives in the GIAB v4.1 call set
(see Supplementary Figure S9). Hence, the true precision
may be higher. Nevertheless, the F1 score of the DuploMap-
based calls was consistently higher that the F1 score of the
calls using Minimap2 alignments. In addition, the improve-
ment in the F1 score was not dependent on the variant qual-
ity threshold used for Longshot (Supplementary Table S4).

Visual inspection of the SNV calls that were called only us-
ing the DuploMap alignments and matched the v4.1 bench-
mark calls showed that the vast majority of these SNVs were
not called using Minimap2 alignments due to low map-
ping quality of the reads (see Supplementary Figure S7 for
an example). We also identified a number of false-positive
variants called using the Minimap2 alignments that were
corrected by variant calls using DuploMap alignments (see
Supplementary Figure S8 for an example).

Next, we directly compared the SNV calls made on the
HG002 CCS dataset using Minimap2-aligned reads and
reads realigned using DuploMap. We utilized 10X Ge-
nomics linked-read variant calls for the same individual as
an independent source for comparison. In Long-SegDups
regions on chromosomes 1–22, 83 648 DuploMap-derived
SNVs were shared with 10X calls compared to 72 830
for Minimap2. Fourteen thousand seven hundred thirteen
SNVs called exclusively using the DuploMap alignments
were supported by 10X calls. The vast majority of these
SNVs were located outside GIAB 4.1 high-confidence re-
gions and had low mappability using Minimap2 alignments
[see Supplementary Figure S10 for an example of such a re-
gion that overlaps the medically relevant gene GTF2I (40)].
We also identified 211 calls in GIAB high-confidence re-
gions that were shared between the DuploMap calls and
10X calls but were absent in the GIAB v4.1 benchmark calls.
Visual inspection of these calls suggested that for many of
them, the GIAB benchmark call set either is missing a vari-
ant or has the incorrect genotype (see Supplementary Fig-
ure S9 for an example). Further, 36 021 SNVs were located
outside the GIAB v4.1 high-confidence regions and were
shared between all three call sets (10X, Minimap2 and Du-
ploMap). These variants are likely to be true positives that
are located outside GIAB v4.1 high-confidence regions.

Uninformative PSVs and variant calling using short reads

In addition to aligning reads that overlap segmental du-
plications, DuploMap also estimates genotypes for PSVs
to identify unreliable or uninformative PSVs. Uninforma-
tive PSVs are likely to be the result of true variants in seg-
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Figure 6. Illustration of how unreliable PSVs adversely impact short-read variant calling in segmental duplications. An Integrated Genomics Viewer
view of a duplicated region on chromosome 7 that overlaps the PMS2 gene is shown. A PSV is located at chr7:5972749 (allele = with the homologous
position at chr7:6752042). Variant calling on PacBio CCS reads (aligned with DuploMap) identifies two variants, a homozygous variant at the PSV site
(chr7:5972749:CA:TG) and a heterozygous SNV located nearby (chr7:5972674:C:G). Both of these variants are supported by 10X Genomics variant
calls but are absent from short-read variant calls for the same individual (PG VCF track). In addition, short-read variant calling results in a false SNV
(chr7:6752118:G:C) at the position homologous to chr7:5972674––a result of short-read mismapping due to the unreliable PSV.

mental duplications and therefore should also be called as
variants using long-read variant calling. Analysis of Long-
shot variant calls for the HG002 CCS dataset showed that
42.5% of the SNVs called using the DuploMap alignments
in Long-SegDups regions intersected PSV sites such that
the variant allele matched the PSV allele at the homol-
ogous site. Such non-reference PSVs were not specific to
DuploMap alignments; 43.4% of the SNVs called using
Minimap2 alignments also intersected PSVs. In both cases,
∼76% of the variants overlapping PSVs are present in the
dbSNP database (build 151) (41).

Next, to assess the impact of uninformative PSVs on
short-read variant calling, we analyzed PacBio CCS read
data for the HG001 (NA12878) genome for which pedigree-
derived variant calls have been generated by the Platinum
Genomes (PG) Project using whole-genome Illumina se-
quence data (42). We focused our analysis of PSVs on
two-copy segmental duplications. Of the 14 800 PSVs
in two-copy duplications––with high-confidence genotypes
(QUAL ≥60) estimated by DuploMap––16.5% had a geno-
type of (0/0, 0/1) and 6.0% had a genotype of (0/0, 1/1). A
genotype of (0/0, 1/1) for a PSV implies that the genomic
sequence at both homologous positions (on both alleles) is
identical and hence the PSV cannot differentiate between
reads from the two homologous sequences. Such PSVs are
expected to cause incorrect read mapping and lead to in-
correct variant calls since short-read mapping tools rely on
PSVs to place reads with high confidence in segmental du-
plications. For example, if a true variant is present in the
region flanking the PSV position with a non-reference geno-
type, short reads covering the variant and the PSV can be
mismapped to the homologous location resulting in a false
variant call (see Supplementary Figure S11 for an illustra-
tion).

To search for false variants resulting from uninformative
PSVs, we identified variants in the PG variant calls (42)
for HG001 that were located near PSVs. Of the 2769 vari-
ants that were located near uninformative PSVs in the
PG calls, we identified 76 variants such that the variant
was missing in the CCS variant calls but another vari-
ant was present at the homologous position with the same
alternate allele. One such example of a false variant due
to an uninformative PSV was located at the PMS2 lo-
cus (Figure 6). The short-read PG calls report an SNV
at chr7:6752118 (hg38 reference genome, rs1060836) that
was also reported in gnomAD database of human vari-
ants (43) with an average allele frequency of 0.16 but with
7-fold lower homozygotes than expected––indicative of a
false variant. This SNV was absent from long-read variant
calls but an SNV located at chr7:5972674––the position ho-
mologous to chr7:6752118––was present in the DuploMap-
based calls and also in the 10X Genomics variant calls. This
SNV was located <75 bases from an uninformative PSV
chr7:5972749 that was actually called as a variant with the
variant allele being the same as the allele at the homologous
site (Figure 6).

DISCUSSION

In this paper, we presented DuploMap, a method designed
specifically for realigning SMS reads that are mapped to
segmental duplications by existing long-read alignment
tools in order to improve accuracy. A unique feature of Du-
ploMap is that it jointly analyzes reads overlapping segmen-
tal duplications and explicitly leverages PSVs for mapping.
Using whole-genome human data generated using multiple
SMS technologies, we demonstrate that DuploMap signifi-
cantly improves the mappability of reads overlapping long
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segmental duplications in the human genome. DuploMap
is not a stand-alone long-read alignment tool but comple-
ments existing tools such as Minimap2 that tend to be con-
servative in aligning reads in segmental duplications.

The development of DuploMap is motivated by the goal
of using long-read sequencing technologies for variant call-
ing in long segmental duplications that are problematic for
short-read sequencing. The GIAB consortium has devel-
oped high-confidence small variant call sets for reference
human genomes (35,36,44). Their first call sets were based
on short-read sequencing and hence exclude almost all seg-
mental duplications. The GIAB consortium is expanding
the small variant calls to repeats including segmental dupli-
cations using the PacBio CCS and 10X Genomics linked-
read data types. Accurate and sensitive read mapping of
long reads is a prerequisite for accurate and sensitive vari-
ant calling in long repeats in the human genome. Vari-
ant calling using the DuploMap-aligned reads identified
14 713 variants in segmental duplications that were shared
with 10X Genomics variant calls but were not called us-
ing Minimap2-aligned reads. This indicates that DuploMap
can prove useful for variant calling in segmental duplica-
tions using PacBio CCS reads.

DuploMap is a robust method that works for multiple
long-read sequencing technologies (PacBio and ONT), can
handle reads with high and low error rates, and can post-
process reads aligned with different long-read alignment
tools. DuploMap’s approach of jointly modeling PSV geno-
types and read alignments can potentially be used to im-
prove the mapping of linked reads in segmental duplica-
tions (45–47). Although we have focused on variant call-
ing, the ability to map long reads to segmental duplica-
tions with high sensitivity can benefit other uses of long-
read sequencing. ONT sequencing enables the detection of
DNA methylation directly from the raw base signal (48,49).
Miga et al. (25) have used a unique k-mer-based map-
ping strategy to improve read mapping to generate base-
level DNA methylation maps for the centromere of the X
chromosome. DuploMap-based alignment can enable the
analysis of the methylation levels of duplicated genes that
cannot be measured using short-read-based methylation
assays.

Analysis of PacBio CCS reads for a human genome
showed that a significant number of PSVs overlap with vari-
ants and hence are uninformative for read mapping in seg-
mental duplications. PSVs are defined based on the refer-
ence human genome sequence and a common variant in the
human population can be incorrectly considered as a PSV if
the variant allele is represented in the reference. In addition,
gene conversion is well known to result in overlap between
PSVs and variants (50,51). We also demonstrated that unin-
formative PSVs can cause incorrect mapping of short reads
to homologous sequences resulting in both false-positive
and false-negative variant calls. This problem can be allevi-
ated by using information about reliable PSVs derived from
analysis of long-read datasets to inform short-read mapping
and variant calling in segmental duplications.

DuploMap has several limitations. First, the memory us-
age for DuploMap scales linearly with increasing number of
reads since it stores information about all reads that overlap
a single cluster of duplications. This can be reduced by writ-
ing some of the mapping information to disk or limiting the

realignment to segmental duplications with low copy num-
ber. Second, DuploMap is not a stand-alone aligner and
starts from alignments provided by existing long-read align-
ment tools. If a read is not aligned or aligned to a location
that is not homologous to its correct location, DuploMap
cannot find the correct alignment. Third, DuploMap does
not currently account for missing sequences or copy num-
ber changes. Segmental duplications are well known to be
hotspots of copy number variation and large structural vari-
ants in the human genome (26,52). Copy number infor-
mation about duplicated sequences can be estimated using
tools such as Quick-mer2 (53) and used to potentially im-
prove long-read mapping in segmental duplications.

Finally, DuploMap is a reference-based method that re-
lies on segmental duplications identified from a reference
genome. Segmental duplications are problematic not only
for read mapping but also for de novo assembly using
long reads. The problem of distinguishing reads originat-
ing from different paralogs without a reference genome is
even more challenging but can allow for assembling seg-
mental duplications that may be collapsed or incorrectly
represented in the reference genome. Several novel meth-
ods have been designed to specifically assemble segmental
duplications that leverage long reads, particularly accurate
HiFi reads (27,54). The SDip method has been shown to
assemble diploid contigs for many duplicated genes such as
SMN1 (54). As these methods develop further and more
complete benchmarks for reference human genomes be-
come available, it would be useful to compare the perfor-
mance of reference-based and haplotype-aware assembly-
based methods for segmental duplications.
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