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Cerebral blood flow predicts 
differential neurotransmitter 
activity
Juergen Dukart   1, Štefan Holiga1, Christopher Chatham1, Peter Hawkins2, Anna Forsyth3, 
Rebecca McMillan3, Jim Myers10, Anne R Lingford-Hughes10, David J Nutt7, Emilio Merlo-
Pich1, Celine Risterucci1, Lauren Boak1, Daniel Umbricht1, Scott Schobel1, Thomas Liu4,5, 
Mitul A Mehta2, Fernando O Zelaya2, Steve C Williams2, Gregory Brown6,7, Martin Paulus6,7, 
Garry D Honey1, Suresh Muthukumaraswamy3, Joerg Hipp1, Alessandro Bertolino1,8 &  
Fabio Sambataro1,9

Application of metabolic magnetic resonance imaging measures such as cerebral blood flow 
in translational medicine is limited by the unknown link of observed alterations to specific 
neurophysiological processes. In particular, the sensitivity of cerebral blood flow to activity changes in 
specific neurotransmitter systems remains unclear. We address this question by probing cerebral blood 
flow in healthy volunteers using seven established drugs with known dopaminergic, serotonergic, 
glutamatergic and GABAergic mechanisms of action. We use a novel framework aimed at disentangling 
the observed effects to contribution from underlying neurotransmitter systems. We find for all 
evaluated compounds a reliable spatial link of respective cerebral blood flow changes with underlying 
neurotransmitter receptor densities corresponding to their primary mechanisms of action. The strength 
of these associations with receptor density is mediated by respective drug affinities. These findings 
suggest that cerebral blood flow is a sensitive brain-wide in-vivo assay of metabolic demands across a 
variety of neurotransmitter systems in humans.

Metabolic task-based and resting state magnetic resonance imaging (MRI) of blood oxygen level dependence 
and cerebral blood flow (CBF) are now commonly applied for studying human brain function, disease pathology 
and for evaluation of pharmacodynamic (PD) effects associated with pharmacological interventions1–9. Both 
oxygen and glucose are delivered to brain structures by CBF to address their metabolic demands10. In particular, 
state of the art arterial spin labeling (ASL) sequences now allow for quantitative CBF evaluation and are used for 
evaluation of metabolism associated with neural activity11–15. Despite their wide-spread applications in healthy 
and diseased populations there is limited understanding of whether and how metabolic effects measured through 
these techniques reflect underlying activity in specific neurotransmitter systems1,2,4,7,16. A better understanding 
could unveil potential mechanisms of disease and crucial components of complex drug action that underpin 
functional modulation7,17. Major limitations discussed in that context are potential contributions of confounding 
physiological, e.g. cardiovascular effects, unclear association with specific neurotransmitter systems and agonist 
and antagonist effects and a narrow cross-species translational value restricting comparisons to a descriptive 
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anatomical level18–26. Addressing those limitations is therefore key to wide-spread application of metabolic MRI 
in translational medicine.

Receptor theory provides a possible way of addressing these limitations7,27. This theory posits that relation-
ships between drug kinetics and observed PD effects depend on both the drug (i.e. receptor affinity and mecha-
nism of action) and the biological system (i.e. receptor density and activity). Based on this concept drugs affecting 
specific receptor systems should lead to higher metabolic changes in regions with higher respective receptor 
densities. The strength of this relationship should be further dependent on the affinity of the compounds to the 
respective receptor systems. However, this assumption only partially holds for drugs with an indirect mechanism 
of action (i.e. allosteric modulators and reuptake inhibitors). These drugs do not directly induce activation but 
rather facilitate the effects of activation induced through other mechanisms. One would therefore expect their 
effects to co-localize with such underlying activity. In contrast, direct a(nta)gonists should additionally also acti-
vate yet inactive regions with high respective receptor densities.

Using this concept, we assess if ASL derived CBF changes (∆CBF) induced by seven established compounds 
with known direct or indirect dopaminergic, serotoninergic, glutamatergic and/or GABAergic mechanisms of 
action (escitalopram, methylphenidate, haloperidol, olanzapine, low and high dose of risperidone, ketamine and 
midazolam, Table 1) are associated with respective receptor densities, underlying activity and affinities to the 
respective receptor types (Fig. 1). Based on the above considerations, we hypothesize stronger ∆CBF in regions 
with higher respective receptor densities in particular for drugs with a direct mechanism of action and to a weaker 
extent for allosteric modulators and reuptake inhibitors. Furthermore, we expect stronger ∆CBF in regions with 
higher underlying activity for both compounds with direct (direct agonists and antagonists) and indirect mech-
anisms of action (allosteric modulators and reuptake inhibitors). Lastly, we hypothesize the association strength 
between ∆CBF and receptor densities to be dependent on the respective drug affinities. We test those hypotheses 
by first evaluating the link between drug-induced ∆CBF with ex vivo and in vivo estimates of different receptor 

Compound

Risperidone Olanzapine Haloperidol Methyl-phenidate (Ritalin)
Escitalopram 
(Lexapro) Ketamine Midazolam

Test- 
retest

N subjects 21 21 21 18 18 26 26 29

Study ID 1 2 2 3 3 4 4 5

Demo-graphics (n 
male, age ± SD) 21, 28 ± 7 21, 28 ± 6 21, 28 ± 6 9, 25 ± 8 9, 25 ± 8 26, 26 ± 5 26, 26 ± 5 7, 

25 ± 6

ASL acquisitions
per session (N) 2 2 2 1 1 1 1 1

Location KCL KCL KCL UCSD UCSD UA UA UG

Dose (in mg) 0.5 and 2 7.5 3 30 20 0.25 mg/kg (bolus), 
0.25 mg/kg/hr (infusion)

0.03 mg/kg 
(bolus,
0.03 mg/
kg/hr 
(infusion)

—

Scanning 
time (post 
adminstration)

2 h 5 h 5 h 4 h 4 h 0 h* 0 h* —

T-max 1.3 h 4 h 6 h 4.7 h 5 h — — —

Primary drug 
indication SZ, Bipolar SZ, Bipolar

SZ, Bipolar,
Tourette 
syndrome, 
Mania

ADHD
Depression,
anxiety 
disorders

Anesthesia,
chronic pain Anesthesia —

Mechanism of 
action

Direct receptor 
binding

Direct receptor
binding

Direct receptor
binding Reuptake inhibitor Reuptake

inhibitor
Direct receptor binding 
and reuptake inhibitor

Positive 
allosteric 
modulator

—

Agonist effects — — — Dopamine, catecholamines,(serotonin) Serotonin
Dopamine, 
norepinephrine, 
serotonin

GABA —

Antagonist effects
Dopamine, 
serotonin, 
catecholamines

Dopamine, 
serotonin, 
catecholamines

Dopamine, 
serotonin,
catecholamines

— — Glutamate, acetylcholine — —

Receptors D1-4, 5-HT 1a 
and 2a, α1, α2

D1,D2,D4, 
5-HT 1, 2a and 
3, D1, α1, α2, 
muscarinic, H1

D1-3, 5-HT 2a, 
α1, σ1 DAT, NET, SERT SERT

NMDA, D2, 5-HT 2, 
AMPA, MAT, nicotinic 
a4b2, muscarinic

BZD —

Highest affinity to D2, 5-HT 2a, 
D3, α2 5-HT 2a, D2 D2, D3 — — NMDA BZD —

Table 1.  Study data and medication details. ADHD – Attention Deficit Hyperactivity Disorder, AMPA -, 
ASL – Arterial Spin Labeling, BZD – Benzodiazepine, DAT – dopamine transporter, GABA - Gamma-Amino 
butyric acid, KCL – King’s College London, MAT – monoamine transporter, NET – norepinephrine transporter, 
NMDA - N-methyl-D-aspartate receptor, SERT – serotonin transporter, SZ – Schizophrenia, UCSD – 
University of California San Diego, UA – University of Auckland, UG – University of Groningen, * intravenous 
infusion.
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densities and expected underlying activity. In a second step we then test if the association strength of these rela-
tionships is dependent on the respective drug affinities.

Results
Cerebral blood flow changes correlate with receptor densities.  Receptor density maps extracted 
from a review publication by Palomero-Galagher et al.28 showed a low average co-localization; in addition, com-
pounds with different mechanisms of action also showed low similarity of drug-induced CBF patterns (Fig. 2b, 
Supplementary results, Figures S2 and S3).

We then tested for direct relationships between drug-induced ∆CBF and underlying receptor density maps 
using correlational analysis. For all compounds beside the GABAergic positive allosteric modulator midazolam 
we find drug-induced ∆CBF to be consistently correlated with receptor densities corresponding to the known 
mechanisms of action of the respective drugs (Fig. 2a, Table 1). For example, the serotonin agonist escitalopram 
showed the strongest correlation with serotonergic 5-HT 2 receptor. Consistently, dopamine antagonists risp-
eridone and haloperidol showed significant correlations with D1 and/or D2 receptor densities. Similarly, also 
olanzapine, methylphenidate and ketamine showed significant correlations (though not all survived Bonferroni 
correction) with receptor densities corresponding to their known dopaminergic, serotonergic and glutamater-
gic mechanisms of action. The results of non-parametric analyses using Spearman correlation coefficients were 
largely similar to the parametric analysis outcomes (Figure S5).

As the above correlational analyses are based on coarse ex vivo receptor density estimates28, we aimed to 
evaluate if more fine-grained in vivo density estimates as obtained using molecular receptor imaging of DAT and 
GABAa are more sensitive for identifying such associations. These correlational analyses revealed very strong 
and highly significant positive correlations with DAT for the dopamine antagonists haloperidol, olanzapine, and 
both low and high dose of risperidone but not for the reuptake inhibitor methylphenidate (Fig. 3a). Correlation of 
∆CBF obtained for the positive allosteric modulator midazolam with flumazenil-based GABAa receptor density 
estimates revealed a weak but significant association between both (Fig. 3c). This correlation remained signifi-
cant using Spearman correlation coefficient on all data (rho = −0.43; p = 0.005) and after removing the outlier 
(rho = −0.39; p = 0.013).

Distinct contribution of different receptor systems to cerebral blood flow changes.  Whilst 
the above correlational analyses provide an estimate of the direct association strength between two measures 

Figure 1.  Schematic overview of the proposed mapping of cerebral blood flow (CBF) changes to underlying 
receptor densities, activity and affinities.
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they do not account for correlations between receptor densities and/or may miss potential weaker associations 
in presence of a strong effect. Multiple linear regression analyses address these limitations although this is at 
the cost of a potentially lower sensitivity when regressors are strongly correlated and/or explain similar vari-
ance in the dependent variable. To evaluate the distinct contributions of each receptor map to the drug induced 
∆CBF and to test for additional associations not discovered through correlational analyses, we therefore com-
puted multiple linear regressions including all receptor densities as regressors in the same model. Significant 
model fits were observed for all evaluated drugs beside midazolam and the negative control dataset (escitalo-
pram: F(13,27) = 2.7; p = 0.015, haloperidol: F(13,27) = 3.2; p = 0.005, risperidone (low dose): F(13,27) = 3.6; 

Figure 2.  Results of Pearson correlation, multiple linear regression and effect size analyses. (a) Results of 
Pearson correlation (left) and multiple linear regression analyses between receptor densities and CBF changes 
are displayed as bar plots. For drugs with only one evaluated dose the drug profiles are colored as “high dose”. 
Red line for Pearson correlation plots indicates significance at an uncorrected two-sided p < 0.05 and yellow star 
indicates significant Bonferroni corrected findings, For multiple linear regressions a plus indicates a marginally 
significant (p < 0.1) and red star a significant (p < 0.05) effect of the corresponding regressor. (b) Voxel-wise 
effect size maps (Cohen’s d) are displayed for drug treatments matching the order of drugs displayed in (a). For 
risperidone the outcomes for the high dose are displayed.
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p = 0.002, risperidone (high dose): F(13,27) = 5.0; p < 0.001, olanzapine: F(13,27) = 2.8; p = 0.011, methylpheni-
date: F(13,27) = 3.7; p = 0.002, ketamine: F(13,27) = 2.4; p = 0.027, midazolam: F(13,27) = 1.4; p = 0.219, negative 
control: F(13,27) = 1.5; p = 0.175).

To identify which neurotransmitter maps contributed most to these model fits, we then evaluated the signif-
icance of each receptor density regressor (Fig. 2). These analyses largely replicate the correlational findings and 
provide evidence of a distinct contribution of the different receptor density maps to the drug-induced ∆CBF. 
Additionally, they reveal further significant noradrenergic and/or serotonergic contributions for methylphenidate 
and olanzapine, consistent with their known mechanisms of action. Despite the non-significant overall model fit 
for midazolam, GABAa was the only significant single receptor density regressor for this compound, in line with 
midazolam’s mechanism of action.

To assess the robustness of the obtained correlational and multiple regression profiles linking ∆CBF to recep-
tor densities, we evaluated the test-retest reliabilities for compounds where more than one CBF acquisition 
was available for each subject (risperidone, olanzapine and haloperidol). The association strengths of ∆CBF to 

Figure 3.  Results of correlational analyses with molecular imaging based receptor density estimates and 
affinities. (a) Correlational plots between regional cerebral blood flow (CBF) changes and respective dopamine 
transporter (DAT) density profiles are displayed for each drug with dopaminergic mechanism of action. (b) 
DAT density estimates obtained from a healthy volunteer cohort provided by the Parkinson’s Progression 
Marker Initiative. (c) Correlational plot between midazolam induced CBF changes and GABAa density 
estimates obtained from flumazenil positron emission tomography. (d) Correlations of cerebral blood flow 
(CBF) changes to receptor density profiles with drug affinities. Colors indicate different receptors. Shapes 
indicate different drugs. Solid line in all plots indicates the linear regression fit.
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receptor density showed excellent test-retest reliability both within and between sessions (intra class correlation 
coefficients between 0.83 and 0.99; Supplementary results).

Cerebral blood flow changes correlate with underlying activity.  Having established the link 
between ∆CBF and receptor densities for the respective compounds we then aimed to understand if underlying 
activity estimates derived from independent non-interventional data are also a predictor of PD effects on CBF. 
For this we computed correlation coefficient between expected underlying activity and observed ∆CBF for each 
compound. We observed significant associations between both for midazolam (r = −0.48; p = 002), methylpheni-
date (r = −0.56; p < 0.001), haloperidol (r = −0.52; p < 0.001), olanzapine (r = −0.62; p < 0.001), low (r = −0.34; 
p = 0.028) and high (r = −0.57; p < 0.001) dose of risperidone, a marginally significant effect for escitalopram 
(r = −0.30; p = 0.055) and no significant effect for ketamine (r = 0.02; p = 0.913). When adjusting for the variance 
explained by receptor densities showing a significant association with respective compounds the effect of under-
lying activity remained significant for all compounds except escitalopram and ketamine (midazolam: p = 0.003; 
methylphenidate: p = 0.033; haloperidol: p < 0.001; olanzapine: p < 0.001; risperidone low dose: p = 0.050; risp-
eridone high dose: p < 0.001; escitalopram: p = 0.471; ketamine: p = 0.585).

Strength of CBF to receptor density associations is linked to respective receptor affinities.  
Whereas the above correlational and multiple linear regression analyses provide evidence of distinct and reliable 
associations between drug-induced ∆CBF and underlying receptor densities, they remain descriptive with respect 
to consistency of the observed associations with the respective mechanisms of action of the evaluated compounds. 
We formally tested this hypothesis by evaluating if the observed association strength profiles between ∆CBF and 
receptor densities can be explained by drug affinities to the corresponding receptor systems. In a pooled analysis 
across the three drugs for which the affinity was established using the same methodology we find a highly signifi-
cant correlation (p < 0.001) between the obtained profiles and the respective receptor affinities (Fig. 3d). Separate 
tests for each compound confirmed these significant associations for haloperidol and risperidone.

Discussion
Here we evaluated for seven established compounds acting on dopamine, serotonin, catecholamine, glutamate 
and GABA the relationship between respective ∆CBF and receptor densities of the underlying neurotransmit-
ter systems. For all compounds, with six out of seven being significant, we find direct and distinct spatial rela-
tionships between drug-induced ∆CBF and underlying receptor densities and activity. Moreover, in line with 
assumptions derived from receptor theory we show that the association strength of these relationships is depend-
ent on the affinity of the drugs to the underlying receptor systems27. Importantly, whilst we test by means of mul-
tiple linear regressions for direct linear relationships between ∆CBF and receptor densities, we do not evaluate 
potential interactions between receptor systems. Due to the often low selectivity the evaluated compounds show 
high affinity to various receptor systems interactions between neurotransmitter systems are not unlikely. Such 
interactions may also have resulted in differential CBF responses across regions with different combinations of 
the targeted receptors and lowered the sensitivity to detect associations between ∆CBF and specific receptor den-
sities. Evaluation of such interactions would yet require larger datasets and more refined receptor density maps.

More specifically, for all evaluated serotonin antagonists we find positive associations between serotonergic 
system as represented by 5-HT 1a and 2 receptors and drug-induced ∆CBF. These findings suggest that inhibi-
tion of this system may be associated with a net increased metabolic demand in the corresponding regions. A 
more complex picture was observed for serotonin agonists. Whilst ∆CBF induced by both reuptake inhibitors 
showed a significant negative association with 5-HT 2 receptor density, ketamine showed a significant positive 
association with this receptor in line with its direct agonist effect on serotonin29,30. This finding suggests inter-
actions between observed ∆CBF and underlying receptor systems, e.g. due to differential effects of orthosteric 
and allosteric agonists or due to the commonly reported interdependence of dopaminergic, serotonergic and 
glutamatergic systems31–34.

In contrast, all dopamine agonists as well as antagonists evaluated here showed a significant positive associa-
tion with the underlying D1 and/or D2 receptor densities suggesting a U-shaped association of dopamine levels 
and metabolic demand. These findings are consistent with previous research reporting increased striatal CBF 
after administration of both dopamine agonists and antagonists35–38. These findings imply that the hypothesized 
U-shaped curve relating dopamine to cognitive performance may be paralleled by a U-shaped curve relating 
dopamine to metabolic demand; for example, cognitive function might improve if dopamine levels are titrated to 
minimize resting metabolic demands in substrates most strongly associated with those functions39,40. Supportive 
for these findings with respect to dopamine are also the strikingly strong correlations observed for all three direct 
dopamine antagonists with in vivo DAT receptor density estimates being a close surrogate of ex vivo counts 
of dopaminergic neurons41. The strength of these associations with DAT estimates was substantially increased 
for the high as compared to low dose of risperidone suggesting dose dependency of the observed associations. 
Supportive for the idea that the established associations between receptor densities and ∆CBF indeed reflect the 
primary mechanisms of action of the respective compounds are the observed significant correlations of these pro-
files with respective receptor affinities in the pooled analysis, and also separately for haloperidol and risperidone.

Similarly, the ketamine induced ∆CBF profile was significantly correlated with NMDA (though not surviving 
Bonferroni correction in the parametric analysis), 5-HT and several other receptor systems including AMPA, for 
which a ketamine related mechanism of action has only recently been discovered30,42. Though for the GABAergic 
positive allosteric modulator midazolam the overall model was not significant the finding of GABAa receptor 
density being the only significant regressor in the multiple linear regression analysis is consistent with its expected 
mechanism of action. In line with this, in vivo estimates of GABAa obtained through flumazenil PET also showed 
a significant association. Nevertheless, despite reaching significance the association strength with GABAa for 
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midazolam remains weak. This observation is in line with its positive allosteric mechanism of action that would 
predict its effects to be primarily co-localized with the underlying activity of the system43. Indeed, we find for 
midazolam and all other compounds with an indirect mechanism of action significant associations between 
∆CBF and underlying activity estimates. The strong correlation observed for methylphenidate in that context also 
explains its weak correlation with DAT to which it directly binds. With a similar argumentation as for midazolam 
methylphenidate requires activity to take place to exhibit its pharmacological effect. Moreover, in line with our 
hypothesis we find underlying activity to be also a significant contributor to PD profiles for all compounds with 
a direct mechanism of action except ketamine. Potential reasons for the lack of such an association for ketamine 
might be in its wide-spread anesthetic effects that could interfere or alter underlying resting state activity patterns 
making the applied activity estimates imprecise44.

That said several unexpected findings emerged from our analyses that may relate to limitations of the pro-
posed approach. For example, we do not observe significant associations of escitalopram induced ∆CBF with 
5-HT 1a receptor density or between methylphenidate ∆CBF and D1 or DAT receptor density. These negative 
findings may be false negatives, but may alternatively relate to an important commonality between these com-
pounds: their indirect mechanism of action. Both drugs act as reuptake inhibitors. They therefore require some 
underlying activity to facilitate its effects. These negative findings may therefore also indicate a relatively low 
activity of the associated receptor systems at rest. In line with this potential explanation are also the observed 
significant associations observed for both compounds with the underlying activity estimates. Similarly, despite 
a high affinity of olanzapine to the M1 receptor we do not observe a significant association between both. This 
negative finding could suggest a reduced sensitivity of ∆CBF to activity changes related to muscarinic system. 
However, contrary to this assumption we observe a significant association between M1 and ketamine induced 
∆CBF that is also known to have a high affinity to the respective receptor. Among other such discrepant findings 
may also arise from differences in demographic characteristics between cohorts (i.e. sex ratio) or different scanner 
types and ASL sequences used for evaluation of different compounds leading to differential sensitivity to detect 
respective associations.

Differences in observed associations may also arise from the applied drug dosing, frequency, but also weight 
of the participants. For example, higher dosing may be expected to result in a higher proportion of primary and 
secondary targets occupied by the drug. This aspect is not unlikely considering that in healthy volunteers dosing 
was for safety reasons mostly lower as compared to doses applied in clinical routine. Higher variability in weight 
may increase variability in PK and associated CBF responses. Similarly, some PD effects may evolve on a slower 
temporal scale. We also observe some significant associations between drug-induced ∆CBF and receptor systems 
with known low affinity of the respective compounds. In example, a significant association is observed between 
methylphenidate induced ∆CBF and serotonergic system despite its low affinity to serotonergic receptors45. Such 
effects are likely to be indirect in nature and may be due to a co-dependence of different networks systems, i.e. 
through recurrent/long-range interactions with other areas modulated by the compounds46,47. As the applied cor-
relational approach does not differentiate between direct and indirect effects the observed associations may well 
reflect some previously reported indirect effects of dopaminergic stimulation on the serotonin system48,49. Due to 
this limitation to correlational relationships with receptor densities, it is also likely that further indirect effects are 
not detected by the proposed methodology. Lastly, some previous research reported evidence of differential vas-
cular expression of specific dopamine receptors across brain vessels and regions20. This study suggested that such 
a differential expression may contribute to neurovascular coupling but its translatability to other receptor systems 
remains unknown. Modulation of such differentially expressed vascular receptors may also have contributed 
to the relationships between CBF and receptor densities observed in our study. Importantly in that context, the 
interpretation of our findings with respect to receptor density is limited to a group level setting of drug induced 
CBF patterns being associated with spatial receptor density profiles associated with the respective compounds. 
Without further validation the results do not imply any within region relationship across subjects.

In summary, our results provide strong evidence that CBF reflects specific metabolic demands from diverse 
underlying neurotransmitter systems. We further demonstrate that the proposed approach allows for disentan-
gling of PD effects on CBF to underlying receptor densities and activity, in most cases closely reflecting the mech-
anisms of action of the respective compounds. These findings support the notion that distinct pharmacological 
compounds provide unique spatial patterns of CBF changes associated to receptor availability, affinity and func-
tion1–3,5,24. With the additionally demonstrated excellent test-retest reliability of obtained CBF to receptor density 
profiles, these findings further strengthen the value of CBF as a promising tool for drug development and disease 
evaluation. Our findings and other recent research demonstrate that a combination of pharmacological modula-
tions with neurophysiological read-outs can provide novel insight into specific mechanisms of brain function50,51. 
Overall, this research shows that the combination of both techniques may provide a unique cross-species trans-
lational approach for studying local and remote neurophysiological and neurometabolic effects associated with 
modulation of specific neurotransmitter systems. In particular in drug development, the proposed approach may 
be used to generate data-driven hypothesis about the pharmacodynamic mechanisms of action of novel but also 
established compounds. Though subject to evaluation the proposed receptor density mapping approach may 
provide an easy implementable framework for application to other functional neuroimaging measures7,16,17,52 and 
allows a direct integration of in vivo receptor density estimates as provided by molecular imaging53–55.

Materials and Methods
Subject and study details.  Data from 5 studies, all in young healthy volunteers, were included. An 
overview of all studies including medication and dosing details is provided in Table 1. All studies were part 
of a coordinated effort by F.Hoffmann-La Roche to collect CBF data from drugs with different mechanisms of 
action following similar fully counter-balanced, placebo controlled, cross-over designs. Adaptations of study 
designs were performed for each study to account for different administration modes, wash-out times and 
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pharmacokinetic/pharmacodynamic profiles of the evaluated compounds. Study 1 and 2 were conducted using a 
double-blind, randomized, three-period (each one week apart) cross-over design. Study 1 included three imaging 
sessions following single dose administration of either low or high dose of risperidone or placebo. Similarly, study 
2 included three imaging sessions following single dose administration of olanzapine, haloperidol or placebo. 
Study 3 was executed in a double-blind, single dose, randomized, four period (each two weeks apart) cross-over 
design. Evaluated drugs were methylphenidate, escitalopram, a Roche investigational compound (a glutamater-
gic subtype modulator whose development was terminated, data not reported here) and placebo. Study 4 was a 
single-blind, randomized, three period cross-over study with imaging performed following intravenous adminis-
tration of ketamine, midazolam or placebo. Study 5 was a non-treatment test-retest study comprising three MRI 
visits each including ASL. This study was used as a negative control dataset and to derive activity estimates for 
the drug studies. Dose selection for all drugs was performed based on the expected receptor occupancy, expected 
behavioral effects and safety and tolerability considerations. A detailed description of the mechanisms of action 
for all compounds is provided in Table 1 and Supplement 1. All studies were conducted in accordance with GCP 
guidelines. Written informed consent was obtained from all study participants. Study 1 and 2 were approved by 
the London (Brent) Human Research Ethics committee (REC reference: 13/LO/1183). Study 3 was approved by 
the Institutional Review Board at the University of California, San Diego (OMB No. 0910-0014). Study 4 was 
approved by the Health and Disability Ethics Committees of the Ministry of Health, Wellington (Ethics ref.: 15/
CEN/254). Study 5 was approved by the local Ethics Committee in Assen, Netherlands (Stichting Beoordeling 
Ethiek Biomedisch Onderzoek).

ASL data.  Image acquisition onset for each study was based on the expected PK maximum for the corre-
sponding compounds (2 hours post dose for Study 1, 5 hours post dose for Study 2, 4 hours post dose for Study 3). 
ASL data with varying sequences) were acquired for all studies and all visits among other study specific imaging 
modalities. For Study 1 and 2 two runs of ASL were acquired at each session. For these studies, run 2 data of each 
session were used for primary analyses to reduce potential arousal effects at the beginning of the acquisition. 
Details on ASL acquisition and preprocessing of resulting cerebral blood flow data are provided in Supplement 1 
(Supplementary methods, Table S1 and Figure S6). In brief, CBF computation for studies 1, 2, 4 and 5 was based a 
pseudo-continuous ASL acquisition whilst a FAIR QUIPSS II ASL sequence was used for study 3. For all studies, 
CBF was computed in standard physiological units (ml blood/100 mg tissue/min) based on sequence specific 
recommendations11,56. All pseudo-continuous sequences included acquisition of a proton density image to enable 
appropriate CBF quantification. Due to lack of identical ASL sequences for different manufacturers and scanner 
types, the best available scanner-specific ASL protocol at the time of study conduct was used for each study.

Receptor density maps.  Receptor density maps for 41 regions (Brodmann areas and subcortical nuclei) 
were extracted for the following 13 receptor types from the publication by Palomero-Gallagher et al.28: for glu-
tamate (AMPA, NMDA and Kainate), for GABA (GABAa), for acetylcholine and muscarine (M1 and M2), for 
nicotine (nicotinic α4/β2), for catecholamines (α1 and α2), for serotonin (5-HT 1 A and 5-HT 2), for dopamine 
(D1 and D2) (Table S2). A 3 point coarse scale provided by the authors was applied for all receptor systems, e.g. 
1 = low, 2 = intermediate, 3 = high, For some regions intermediate levels of receptor densities between those 3 
levels were reported. Those were coded as 1.5 or 2.5. Brodmann regions have been shown to provide distinct 
functional information as measured through resting state MRI if at all rather under-parcellating such data57. 
Additionally, as for each receptor map for about 5% of regions the density was reported as unknown we aimed 
to reduce data loss for the multiple linear regression analyses requiring a full data matrix. For this an interpo-
lated version of the receptor density table was created replacing the missing values by the mode of other den-
sities for the corresponding receptor. A detailed description of receptor density map extraction is provided in 
Supplement 1.

As these coarse receptor density maps were obtained from a review publication of ex vivo studies, we aimed to 
additionally evaluate if more fine grained in vivo density estimates provided by molecular receptor imaging fur-
ther improve the observed associations. For this we extracted dopamine transporter (DAT) and GABAa density 
estimates as measured through DAT-SPECT and flumazenil PET for the 41 regions reported above. DAT-SPECT 
data were obtained from a publicly available control cohort of healthy volunteers (Parkinson’s Progression Marker 
Initiative) (Fig. 3b). GABAa density estimates were obtained using flumazenil PET data of 6 healthy volunteers 
acquired at the Imperial College London. Details on these cohorts, pre-processing and DAT and GABAa density 
estimation are provided in Supplement 1.

Pharmacodynamic CBF profiles.  A Brodmann area map as included in the MRIcron tool58 was nor-
malized into the Montreal Neurological Institute space using the Statistical Parametric Mapping (SPM12) nor-
malize function59. For putamen, caudate and fusiform gyrus regions the corresponding automated anatomical 
labeling atlas regions were used. Mean CBF values were extracted for each subject for drug and placebo images 
from the 41 regions corresponding to Brodmann and subcortical areas covered by the receptor density maps 
described above. A delta drug minus placebo (change versus placebo) was then computed for each subject and 
region. A ∆CBF profile for each drug was calculated as an effect size per region for the whole group by com-
puting the average regional drug-induced change across all subjects divided by the standard deviation of the 
change in the respective region across all subject (Fig. 2b and Supplementary Figure 4). Major differences in 
receptor densities and pharmacological effects across individuals have been reported in earlier animal studies 
that are also likely to apply to human experiments60,61. Effect size normalizes the mean signal in each region 
by the variability of the signal. Therewith, it takes this variability into account whilst providing an index of the 
drug effect. It was therefore chosen to minimize the potential impact of such between subject and region varia-
bility in signal to noise but also due to site, scanner and sequence differences across different studies. For Study 
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5, test retest data of each subject for visit 1 and 2 were randomly assigned to either drug or placebo condition. 
All group-level ∆CBF imaging data alongside with receptor density maps and activity estimates are provided 
in Supplementary material.

Mapping ∆CBF to receptor densities.  For interpretation of subsequent correlations between receptor 
density and ∆CBF maps we first aimed to understand if and how the obtained receptor maps provide similar or 
differential information regarding spatial receptor density distribution. Pearson correlations and coefficients of 
determination were computed between each pair of receptor density maps to estimate their association strength. 
Validity of the parametric statistics described below (parametric and normality assumptions for Pearson correla-
tions and multiple linear regression models) was established using permutation statistics and Shapiro-Wilk tests 
for normality (s. Supplementary methods and results for description and outcomes of those analyses, Figure S1). 
Additionally, to further ensure that the choice of parametric tests did not bias the results we repeated all analyses 
using Spearman correlation coefficients (Figure S5).

We next aimed to understand if and how receptor density maps are linked to observed drug-induced ∆CBF 
profiles (1) separately for each receptor type and (2) whilst controlling for the variance explained by other 
receptor density maps. For these we performed two types of analyses: (1) simple pair-wise Pearson correlations 
between each receptor density map and each ∆CBF map and (2) multiple linear regression models using each 
∆CBF map as a dependent variable and including all 13 receptor maps as regressors in a single model. To ensure 
that the outcomes of analysis (1) are not biased by coarse receptor density scale, outliers or distribution assump-
tions we recomputed all correlations using Spearman correlation coefficients (Figure S5). All analyses were imple-
mented using default parameters in IBM SPSS Statistics (Version 23.0, IBM Corp., Armonk, NY). For analysis (1) 
we report if correlations survive strict Bonferroni correction (accounting for the number of tests performed per 
compound) and additionally as exploratory findings all correlations surviving an uncorrected p < 0.05. For anal-
ysis (2) to reduce data loss due to missing values the interpolated receptor density maps described in Supplement 
1 were used. To ensure that the interpolation did not bias the results, this analysis was repeated using the initial 
receptor density maps excluding regions with missing values (s. Supplementary results). In analysis (2) we test for 
significance of each overall model and each single receptor density regressor to predict ∆CBF profiles (p < 0.05) 
whilst controlling for the effects of all other regressors included in the model.

We then tested if continuous in vivo receptor density estimates further improve the associations between 
receptor densities and ∆CBF. For this we computed for all compounds with known dopaminergic mechanism 
correlation coefficients with DAT density estimates obtained through DAT-SPECT. Similarly, we computed for 
midazolam being the only GABAergic compound its correlation with flumazenil-based GABAa receptor density 
estimates. To ensure that the putative outlier region showing a very low GABAa expression (Fig. 3c) did not bias 
the results we further repeated the correlation analysis with GABAa using non-parametric Spearman correlation 
coefficient with all data and after the removing the outlier.

Lastly, as several ASL acquisitions were available for some of the compounds, we used those data to estimate 
the reliability of the obtained ∆CBF to receptor density and affinity mappings: (1) within session data of ASL run 
1 and 2 for haloperidol, olanzapine and risperidone and (2) between session data for low and high dose data of 
risperidone. For both, within session and between session data we then used intra-class correlation coefficients 
(ICC(C,k)) to assess reliability of established receptor density to ∆CBF profiles (s. Supplement 1 for detailed 
outcomes of those analyses).

Testing for associations with underlying activity.  To evaluate if drug-induced ∆CBF is also linked to 
underlying activity we used the non-drug study 5 data from all visits to compute a quantitative average CBF map 
(Fig. 1). Mean CBF values across all subjects extracted from this map for the 41 regions introduced above were 
used as independent expected activity estimates for the respective regions for all drug data. Similarly to the above 
associations with receptor density we followed a two-step procedure to test if drug-induced ∆CBF is associated 
with expected activity profile. In a first analysis, we tested for associations between activity profile and ∆CBF 
using Pearson correlations. We then tested using multiple linear regressions if these relationships still hold when 
controlling for the contributions of significant receptor density regressors identified above.

Testing for associations with receptor affinity.  To further understand if the observed relationships 
between receptor densities and ∆CBF are also associated with the respective receptor affinities (Ki) we first 
extracted the affinities for compounds with direct receptor binding mechanism of action established using the 
same methodology (risperidone, olanzapine and haloperidol) from Bymaster et al. (Table S3)62. For receptors 
with no detectable drug binding (Ki > 10000 nM) the value 10000 was used. If affinities to several receptor 
subtypes were reported the average affinity of these subtypes was used. For further analyses receptor bind-
ing affinities for all drugs were converted to log values (e.g. log(10000) = 4)63. Further, we hypothesized that 
if ∆CBF are indeed related to the underlying receptor systems, stronger (positive or negative) correlations 
should be observed between both for receptors with higher drug affinities. To test this assumption we used the 
absolute Fisher’s z transformed Pearson correlation coefficients obtained in analysis (1) for each of the 3 drugs 
and each receptor density map (13 values). These association strength profiles between receptor densities and 
∆CBF were then correlated with the respective receptor affinities for each drug (pooled and separately for each 
compound).

Data availability statement.  All group level drug and receptor density maps used in the study are pro-
vided as supplementary material.
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