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ABSTRACT OF THE DISSERTATION

The AGN Origin of Cluster Magnetic Fields

by

Hao Xu
Doctor of Philosophy in Physics

University of California San Diego, 2009

Professor Michael L. Norman, Chair

Professor Patrick H. Diamond, Co-Chair

The origin of magnetic �elds in galaxy clusters is one of the most fascinating but
challenging problems in astrophysics. In this dissertation, the possibility of an Ac-
tive Galactic Nucleus (AGN) origin of cluster magnetic �elds is studied through state
of the art simulations of magnetic �eld evolution in large scale structure formation
using a newly developed cosmological Adaptive Mesh Re�nement (AMR) Magneto-
hydrodynamics (MHD) code � EnzoMHD. After presenting a complete but concise
description and veri�cation of the code, we discuss the creation of magnetic �elds
through the Biermann Battery e�ect during �rst star formation and galaxy cluster
formation. We �nd that magnetic �elds are produced as predicted by theory in both
cases. For the �rst star formation, we obtain a lower limit of (∼ 10−9 G) for mag-
netic �elds when the �rst generation stars form. On the other hand, we �nd that the
magnetic energy is ampli�ed 4 orders of magnitude within ∼ 10 Gyr during cluster
formation. We then study magnetic �eld injection from AGN into the Intra-Cluster
Medium (ICM) and their impact on the ICM. We reproduce the X-ray cavities as
well as weak shocks seen in observations in the simulation, and further con�rm the
idea that AGN outburst must contain lots of magnetic energy (up to 1061 ergs) and
the magnetic �elds play an important part in the formation of jet/lobe system. We
present high resolution simulations of cluster formation with magnetic �elds injected
from high redshift AGN. We �nd that these local magnetic �elds are spread quickly
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throughout the whole cluster by cluster mergers. The ICM is in a turbulent state
with a Kolmogorov-like power spectrum. Magnetic �elds are ampli�ed to and main-
tained at the observational level of a few µG by bulk �ows at large scale and the
ICM turbulence at small scale. The total magnetic energy increases about 25 times
to ∼ 1.2 × 1061 ergs at the present time. We conclude that magnetic �elds from
AGN at high redshift may provide su�cient initial magnetic �elds to magnetize the
whole cluster.
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Chapter 1

Introduction

Magnetic �elds are an important ingredient of our universe. They are present in
astronomical objects of almost all scales and plays important roles in many phenom-
ena. In our own planet, the earth has a dipolar magnetic �eld with a strength of 0.6
G at the poles and 0.3 G at the equator. These �elds protect human beings from the
high energy cosmic ray particles. The magnetic �elds in the Sun contribute to the
spectacular phenomena, such as sunspots, arches, and �ares. These solar activities
have big impacts on people's lives and have recently been linked to climate change.
For galactic systems, the Milky Way's Interstellar Medium (ISM) has a highly orga-
nized magnetic �eld with about 2 µG on kpc scale, with a disordered component on
smaller scales which is about two and a half times larger than the ordered component
(Binney & Merri�eld, 1998). Outside of the Milky Way, various observations also
con�rmed that magnetic �elds exist in galaxies of all types as well as galaxy clusters,
the largest virialized systems in the universe (Widrow, 2002). In the past, when
large-scale structure formations are studied numerically, magnetic �elds are usually
ignored, due to their limited contribution to the dynamics at large scales and, more
importantly, the numerical di�culties to handle them correctly.

In the early stage, numerical simulations of large-scale structure formation (such
as formation of galaxy clusters) have been primarily used to constrain cosmological
parameters and to reject ideas such as the concept of �hot dark matter�. Due to recent
observational, theoretical, and computational advances, cosmological parameters are
now known to approximately 10% accuracy. This new epoch of �precision cosmol-
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ogy� has encouraged a renaissance in computational astrophysics. With the rapid
advances in the constraint of the basic cosmological parameters and other advances
in observations, numerical simulations of large-scale structure formation can be used
in a predictive sense, to study the formation of distant and highly nonlinear objects
(like the �rst generation stars), which are too complicated to approach purely analyt-
ically. Now, new e�orts are underway to increase cosmological parameters' precision
to 1%. To achieve this precision in simulations, the nonthermal components, like
magnetic �elds and cosmic rays, can no longer be ignored.

This dissertation presents the newly developed cosmological AMR MHD code �
EnzoMHD with the testing and veri�cation of the code, and the results of numerical
simulations of large-scale structure formation with magnetic �elds. We compute
the e�ect of seed �elds generated by the Biermann Battery e�ect in Population III
star formation as well as in galaxy cluster formation. We discuss the evolution of
magnetic �elds from the AGN outburst and the formation of magnetically driven
X-ray cavities. Then we predict how the magnetic �elds from AGNs may magnetize
the whole cluster to the observed level. In this chapter, we will review the research
on the magnetic �elds in galaxy clusters, and discuss the cosmological simulations
with magnetic �elds.

1.1 Magnetic Fields in Galaxy Clusters

1.1.1 Observations of Cluster Magnetic Fields
The most direct way to detect cluster magnetic �elds is to observe the synchrotron

radiation from clusters. An extended radio source was �rst found in the Coma cluster
50 years ago by Large et al. (1959). A detailed study performed by Willson (1970)
found that this radio source was a smooth �radio halo� not associated with any galaxy.
He also concluded that the radio emission was likely from synchrotron radiation, and
if there is an equipartion between magnetic �eld energy and relativistic particle
kinetic energy, leads to a magnetic �eld strength of ∼2 µG. From then on, high
sensitivity radio observations have revealed that in about 50 clusters there are di�use
radio sources, not associated with active galaxies but with the Intracluster Medium
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(ICM) (Ferrari et al., 2008). These radio halos typically are extended (∼1Mpc) and
close to the cluster center de�ned by the X-ray emission. Radio observations also
�nd that magnetic �elds are present at the outskirts of galaxy clusters, where radio
sources, known as radio relics, are observed.

Magnetic �eld strength and con�guration is usually estimated by assuming a min-
imal energy con�guration for the total energy in relativistic particles and magnetic
�elds (Burbidge, 1959). Using this method, magnetic �eld strengths are found to be
0.1-1 µG permeating the cluster volume (Feretti, 1999). The accuracy of measuring
magnetic �eld strength is further limited by the poorly constrained parameters of rel-
ativistic particles. Magnetic �elds can also be derived without this minimum energy
assumption by comparing inverse Compton (IC) X-ray emission and synchrotron
radiation (Harris & Grindlay, 1979; Rephaeli et al., 1987). In typical astrophysical
circumstances, inverse Compton hard X-rays are produced from up-scattering of the
cosmic microwave background (CMB) photon �eld by the same relativistic parti-
cle population, which generates the synchrotron emission. By comparing IC X-ray
emission and synchrontron radiation and with the knowledge of the CMB photon
�eld, the magnetic �eld strength in clusters is estimated to be 0.2-1 µG (see review
by Carilli & Taylor, 2002). This method is also not very accurate, since it has a
major drawback that the IC hard X-ray is contaminated by the cluster hot plasma
emission.

Faraday rotation measure of distant polarized radio sources is another available
way that can be used to detect and probe cluster magnetic �elds. For a distant
polarized source, the rotation measure (RM), which is de�ned as ratio of change of
polarization angle to wavelength squared, in unit of rad m−2, is (Kronberg et al.,
2008):

RM(zs) =
δχ

λ2
= 8.1× 105

∫ zs

0

ne(z)B||(z)

(1 + z)2

dl

dz
dz (1.1)

where ne is free electron number density in cm−3, B|| is the line of sign component
of magnetic �elds in Gauss, and dl/dz is the comoving path increment per unit
redshift in parsec. Since ne is relatively easy to measure in galaxy cluster by �tting
the thermal X-ray emission, the RM can be use to estimate the magnetic �elds
in the cluster in front of the radio source. Since the integration is from source to
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observer, the component outside of the cluster should be deducted �rst and the
result also depends on the assumed topology of magnetic �elds. Also, more than one
polarization angel at di�erent wavelengths are needed to be measured to determine
RM to remove nπ degeneracy.

The RM distributions for radio sources (jet/lobes) at the centers of galaxy clusters
are used to estimate the magnetic �eld strength and con�gurations. These RMs are
found to be patchy, with alternating high and low RM bands, in cluster centers.
These indicate that magnetic �elds reverse their directions on the scales of the bands
∼ 10s kpc. In Hydra A, which is a cool core cluster, RMs in the north lobe are
positive, and in the south lobe are negative, both with band width ∼10 kpc. It
implies that there is a lager-scale B-�eld component reversed at scale ∼100 kpc in
addition to the reversal �elds at smaller scale. Taylor & Perley (1993) derived the
large-scale �eld strength to be ∼7 µG and small-scale �eld strength to be ∼40 µG.
For non-cool core clusters, the magnetic �eld strength is usually smaller, and the
�elds reverse direction at larger lengths.

In addition, RM may provide more information about cluster magnetic �elds
than their strength and directions. Vogt & Enÿlin (2005) derived a Kolmogorov-like
magnetic �eld power spectrum of the center of Hydra A using its RM map. RMs
from far away sources can also be used to study the magnetic �elds in the high
redshift systems located in the sightline of the sources (Kronberg et al., 2008). This
research suggests that magnetic �elds are already present at normal galaxies up to
z=3. Recently, with the detailed RM images from Very Large Array observations,
Govoni et al. (2006) obtained the radial pro�le of magnetic �elds of Abell 2255 and
found that the magnetic �eld strength decreases from the cluster center outward,
with an average �eld strength ∼ 1.2 µG over central 1 Mpc3. Guidetti et al. (2008)
also found a similar distribution of magnetic �elds in Abell 2382 with an average
�eld strength ∼ 1 µG over central 1 Mpc3.

Other observed phenomena also provide evidence for existence of µG level mag-
netic �elds in galaxy clusters. Sharp discontinuities in X-ray surface brightness are
observed in some recently merged clusters. These discontinuities, which are not
shocks since no pressure jump is observed, are called cold fronts. Magnetic �elds may
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play a big part in forming such structures by suppressing both the thermal conduc-
tion and the Kelvin-Helmholtz instability along the contact discontinuity. Vikhlinin
et al. (2001a) estimated that the magnetic �eld strength is between 7 and 16 µG
along cold front in Abell 3667, implying that the undisturbed cluster magnetic �elds
are between 1 and 10 µG (Vikhlinin et al., 2001b).

Cosmic rays with energies > 1020 ev, which lose energy due to photo-pion produc-
tion through interaction with the CMB (Greisen, 1966; Zatsepin & Kuz'min, 1966),
can't propagate more than 50 Mpc. This is called the GZK limit. GZK paradox
is the lack of observed correlation between the direction of high energy cosmic rays
and nearby AGNs, the most likely source of cosmic rays, at distances less than 50
Mpc (Elbert & Sommers, 1995). One explanation is that the high energy particles
are isotropized in the IGM by magnetic �elds. Farrar & Piran (2000) estimated that
magnetic �elds in the local cluster is larger than 0.3 µG by this method.

Direct and indirect observations com�rm the existence of magnetic �elds in galaxy
clusters. It is still hard to measure the �eld strength accurately given the limitation of
observational techniques, limited numbers of sources, and our incomplete knowledge
of the cluster environment. But all methods show that ICM contains µG level �elds,
with an order of magnitude scatter. Radio halos and relics indicate that magnetic
�elds are widespread throughout the cluster. Rotation measures tell us that magnetic
�elds have both hundred kpc and ten kpc scale structures. Power spectra obtained
from RM maps also suggest that cluster magnetic �elds are in a turbulent state.

1.1.2 Roles of Magnetic Fields in Galaxy Clusters
It is believed that magnetic �elds have not played an important role in the for-

mation of galaxies and clusters (Widrow, 2002), which is dominated by dark matter
dynamics. For µG �elds, the magnetic energy in a cluster is just a few percent of the
kinetic energy at large scale, so the magnetic �elds are not dynamically important,
and just follow the baryons passively. But at smaller scales, magnetic �elds can
still have some impacts on the evolution of clusters and may play a supporting role
by changing heat conduction, providing additional pressure support and helping to
produce high energy cosmic rays. And since strong magnetic �elds (tens µG) are
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observed in the early systems (Wolfe et al., 2008; Bernet et al., 2008), the e�ects of
magnetic �elds on cluster formation may be even bigger than previously expected.

But magnetic �elds may become very important in some interesting phenomena.
Understanding cluster magnetic �elds is important to understand the cool cores in
some clusters. In those clusters, the cooling time of radiative energy loss in the core
region is much smaller than the Hubble time, so a large amount of gas should drop out
of the hot plasmas. But observations (Tamura et al., 2001; Peterson et al., 2003) do
not �nd spectral signatures of cooling plasma at those cluster centers, so those cluster
cores must be heated in some ways. Supernova and AGN feedbacks are two possible
heating sources, but they are not estimated to contribute enough energy to stop
overcooling (Voit, 2005). Another way to heat cluster cores is thermal conduction
from outer regions of clusters. Magnetic �elds are crucial in such processes and make
the situation very complicated. If the heat conductivity of the ICM is at Spitzer's
value of non-magnetized plasma (Spitzer, 1962), thermal conduction will e�ciently
heat the core gas. But this solution has a di�culty, in that if magnetic �elds are
present, the thermal conduction will be severely suppressed perpendicular to the
magnetic �eld lines. On the other hand, further research (Narayan & Medvedev,
2001) also suggests that the thermal conduction may be large enough as long as the
magnetic �elds are tangled. Further study is needed to understand the impact of
cluster magnetic �elds on the ICM thermal conductivity.

Magnetic �elds may also help to answer the question of why only some clusters
have cool cores. In recent cluster formation simulations with most up to date cosmol-
ogy parameters (Spergel et al., 2007), all simulated clusters have a cool core, which
contradicts observations that cool cores are only found in some clusters. One expla-
nation is that current simulations don't implement supernova and AGN feedbacks
and thermal conduction properly. On the other hand, magnetic �elds may also con-
tribute to the resolution of this issue by providing additional pressure support. The
magnetic pressure, though small, in cluster centers can help to slow the accretion of
cold gas, lowering the gas density, and then, in turn, decreasing the radiative energy
loss signi�cantly, since the radiative loss is proportional to the density squared.

Magnetic �elds are associated with energetic events, like AGNs, in galaxy clusters.
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An AGN outburst may inject up to ∼1062 ergs of energy into the ICM. Large scale
radio jets from AGNs suggest that they carry signi�cant magnetic energy (Croston
et al., 2005; McNamara & Nulsen, 2007). Giant X-ray cavities observed by Chandra
high-resolution X-ray observations(Nulsen et al., 2005; McNamara et al., 2005) hint
that magnetic �elds may be dynamically important to the ambient regions of the
AGNs. By studying 64 X-ray cavities in 32 clusters, Diehl et al. (2008) show that a
balance between the magnetic pressure and the thermal pressure of ambient plasmas
decides the sizes of bubbles generated by AGNs. This com�rms that magnetic �elds
should be a major component of AGN ejections, and the properties of the magnetic
�elds change the cluster evolution near AGNs signi�cantly, at least for the lifetime
of the jet/lobe. The interaction of magnetic �elds and ICM plasmas may decide the
input energy distribution and evolution. Magnetic energy injected from AGN and
the formation of magnetic bubbles will be discussed in Chapter 4.

1.1.3 Origins of Cluster Magnetic Fields
The origin of galactic and extragalactic magnetic �elds is one of the most inter-

esting and di�cult problems in astrophysics. The large Spitzer conductivity of the
ICM, ∼3 × 1018 sec−1, makes the di�usion time scale of the magnetic �elds much
longer than the Hubble time. Once the magnetic �elds are established in the ICM at
any time during their formation, the �elds will remain to the present epoch unless an
anomalous resistive process, like reconnection, occurs (Carilli & Taylor, 2002). It is
still unclear what is the e�ect of turbulence in magnetized medium on the magnetic
di�usion.

The almost in�nite lifetime of magnetic �elds in ICMmakes many origins possible.
They may be separated into two groups: pre-recombination and post-recombination,
where recombination is the era in the Big Bang when the universe has cooled to a
temperature, so electrons and ions combined to form neutrals.

Assuming magnetic �elds are frozen into the plasma and no other ampli�cation
takes place except compression, it requires that magnetic �eld strengths of about 10−8

G at recombination to have the present strength observed in clusters. Observations
of the CMB provide a strong upper limit of B ≤ 3 × 10−8 G (scaled to the present
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epoch or ∼10−2 G at recombination) for large-scale (megaparsec) coherent magnetic
�elds at the time of recombination (Jedamzik et al., 2000). This limit can't rule out
the possibility that current magnetic �elds are from the early universe.

There are several mechanisms to generated magnetic �elds before recombination,
including hydrodynamical Biermann Battery e�ect (Biermann, 1950), battery e�ect
during the quark-hadron phase transition (Quashnock et al., 1989), dynamo during
the electro-weak phase transition (Baym et al., 1996), and in�ation �eld production
(Turner & Widrow, 1988). Whether these mechanisms can generate the current level
�elds is still controversial, and whether the magnetic �elds can survive during the
radiation era on relevant scales is also debated (Battaner & Lesch, 2000). Magnetic
�elds from early universe is out of the scope of my thesis research and will not be
further discussed. More about magnetic �elds in early universe can be found in the
review by Grasso & Rubinstein (2001).

Models for generation of ICM magnetic �elds post-recombination suggest mag-
netic �elds are injected from normal or active galaxies (De Young, 1992; Kronberg,
1996), and/or are generated by turbulent dynamo and/or shocks occurring during
structure formation (Zweibel, 1988; Kulsrud et al., 1997; Ryu et al., 2008).

Rephaeli (1988) and De Young (1992) show that magnetic �elds from galaxy
out�ow may not be solely responsible for µG cluster magnetic �elds without some
dynamo e�ects. Their argument is that the mean density ratio of the ICM to the ISM
is about 0.01, so �frozen-in� magnetic �elds without further ampli�cation in the ICM
are smaller than ISM �elds by 0.012/3 ∼ 0.05, corresponding to 0.2 to 0.5 µG cluster
�elds, which is too low by a factor of ten. Donnert et al. (2009) study the cluster
magnetic �elds from out�ow of galactic �elds using Smooth Particle Hydrodynamic
(SPH) MHD simulations with a simple galactic wind model. They �nd magnetic
�elds of a few µG at the cluster centers, but how much the magnetic �eld are then
ampli�ed by ICM motions is unclear.

It was suggested that the large scale �elds in the IGM are ampli�ed and main-
tained by galactic dynamo (Kulsrud & Anderson, 1992; Kulsrud et al., 1997) from
small seed �elds generated by battery e�ect or from the early-universe (Widrow,
2002). But recent observations found that large magnetic �elds (∼ µG) are already
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present at high redshift (up to z=3) (Kronberg et al., 2008). Then, the time for
dynamo mechanism to build up magnetic �elds is cut short dramatically to only one
third(Bernet et al., 2008).

Outbursts of AGNs can inject large amounts of magnetic �ux into the ICM, as
mentioned at the previous subsection. The ultimate origin of these AGN �elds may
be the seed �elds rapidly ampli�ed by α-Ω dynamo in the accretion disk rotating
around the supermassive blackhole (Colgate et al., 2001). From the view of magnetic
energy, Kronberg et al. (2001) point out that about ten powerful AGN outbursts
may be enough to magnetize the cluster to µG level. A Numerical study on how the
magnetic �elds from AGN evolve in the ICM is presented in Chapter 5.

There are several plausible ways to generate cluster magnetic �elds, including
�eld ampli�cation by cluster mergers and/or turbulence and �eld injection by active
or normal galaxies at high redshift. It is possible that the observed micro Gauss mag-
netic �elds in the ICM come from a combination of all these methods. Improvements
in the observations of high-redshift galaxies and clusters, such as the completion of
the Expanded Very Large Array, as well as more sophisticated simulations will allow
us to better understand these mechanisms and their contributions to cluster magnetic
�elds.

1.2 Cosmological Simulations with Magnetic Fields

1.2.1 Introduction to Astrophysics Simulations
Computational astrophysics has a long history. After World War II, electronic

digital computers, which were introduced during the war to break encryption codes,
compute artillery range tables and develop nuclear weapons, were adopted to as-
trophysics. The earliest applications included computing the �rst stellar structure
models, and the development of numerical methods for �uid �ow and shock-capturing
in the 1950s (Stone, 2007).

With the increase of computational ability and the progress in numerical algo-
rithms, simulations played a more and more important role in astrophysics research.
Numerical methods contribute to and re�ne theoretical models, constrain cosmology
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parameters, and extract information from observations. In the 1980s, computa-
tional hydrodynamics made great progress in studying astrophysical jets (Norman
et al., 1988). N-body simulations were successfully used to determine the pro�les of
dark matter halos (Navarro et al., 1996) during 1990s. At the same time, Evrard
(1990) start to use hydrodynamic simulations to study the physics of X-ray cluster
formation. In this decade, adaptive mesh re�nement (AMR) and smooth particle
hydrodynamics (SPH) simulations played a major role in understanding the �rst
generation of stars(Abel et al., 2002; Yoshida et al., 2003).

Numerical simulation is very important to test models when there are limited
or even no observations available. The properties of Population III stars are very
interesting by themselves and also very important to the further evolution of the
universe. These objects and their direct evolution still can not be observed directly.
The range of physics involved in their formation, including dark matter dynamics,
gas �uid dynamics, chemical reaction, radiative cooling, the feedback of radiation
and metals, makes the pure analytically detailed study impossible. This leaves the
numerical simulation the only plausible way to conduct a detailed study of Popula-
tion III stars. In the last 10 years, signi�cant advancement has been made in the
simulations of formation of �rst generation of stars and has contributed a lot to
cosmology cosmology (Abel et al., 2002; O'Shea & Norman, 2007).

The complexity of magnetic �eld evolution makes numerical simulation a ma-
jor tool to study magnetic �elds in astrophysical problems. Some very successful
examples in this �eld include studying the magnetorotational instability (MRI) in
accretion disks (Hawley & Balbus, 1992, and many references thereafter), battery
e�ect during structure formation (Kulsrud et al., 1997), and magnetic �eld evolution
during cluster mergers (Roettiger et al., 1999).

1.2.2 AMR and Cosmological Structure Formation Simula-
tions

With the rapid development of computer hardware, especially distributed mem-
ory parallel supercomputers, and software, astrophysicists can perform larger and
larger simulations. But simulating cosmological structure formation is still impos-
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Figure 1.1: Left: Survey volume for capture statistic properties and the virial radius
of a massive cluster. Right: Simpli�ed structure of the ICM. Figure courtesy of
Michael Norman, initially appeared in Norman (2005).

sible using traditional numerical methods, because it covers a very large dynamic
range. Figure 1.1 illustrates the dynamic ranges involved in the simulation of forma-
tion of galaxy clusters. The physics of the galaxy cluster core region with a scale of
∼ 10 kpc will be greatly in�uenced by the tidal e�ects at (100 Mpc)3 during the clus-
ter formation. The required spatial dynamic range for this problem is about 10000,
which is much outside the computational capability of the most powerful supercom-
puter today and even in a near future if computed on a regular 3-Dimensional 100003

grid. Larger survey volumes (∼500 Mpc) needed to study statistical properties of
clusters makes the simulations even harder.

AMR codes have made the detailed simulations of large scale structure formation
with hydrodynamics become possible since the late 1990s. AMR increases the spatial
and temporal resolutions automatically only in the collapsing regions which occupy
only a fraction of the total volume, so a huge amount of computer time and memory
are saved while a large dynamic range is obtained. For example, an AMR simulation
of 1283 root grid with 8 level re�nements can study cluster formation in a survey
volume of about 350 Mpc on a side at a resolution of ∼10 kpc in the cluster core
region using just a few hundred CPU hours with tens of computing cores. A few
examples of applications of AMR simulations include formation of �rst generation
stars (Abel et al., 2002; O'Shea & Norman, 2007), formation of galaxies clusters
(Bryan & Norman, 1998), and turbulence in molecular cloud (Kritsuk et al., 2006).
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Great successes have been achieved in all these applications.

1.2.3 Cosmological MHD Simulations
The absence of the ability to include magnetic �elds in AMR simulations lim-

its studying the role of magnetic �elds in the large scale structure formation. The
previous Eulerian MHD simulations are usually performed on a unifrom grid with a
small dynamic range and for a short simulation time. Kulsrud et al. (1997) studied
the Biermann Battery e�ect in cosmological structure formation and obtained inter-
esting results. But the resolution in their simulations is as large as scale of interest,
neglecting larger scale tidal forces. The magnetic �eld evolution of galaxy cluster
formation was studied by Dolag et al. (1999, 2002) by SPH MHD codes with some
success, though SPH code is not very good for studying either MHD (Widrow, 2002)
or turbulence problems (Li & Liu, 2004).

Adding magnetic �elds to an AMR code is an important extension of this powerful
simulation tool, but it is also very complicated and challenging. MHD equations not
only add additional complexity to the PDE solver relative to purely hydrodynamical
solvers, but also require that the divergence of magnetic �elds must be kept to zero
during simulations. So interpolating and reconstructing magnetic �elds correctly on
the AMR hierarchy become very important. It is also very di�cult and complicated
in programming. This will be discussed in great detail in the next chapter. In this
dissertation, we present the newly developed MHD version of the AMR cosmology
code Enzo and the applications of this code to the evolution of magnetic �elds in
galaxy clusters.

1.3 Structure of the Dissertation
This dissertation is organized as follows. In the next chapter, we describe the code

used in this research, EnzoMHD. In chapter 3, we present the results of studying the
creation of magnetic �elds from the Biermann Battery e�ect. It includes two parts.
The �rst is Population III star formation, where we �nd that 10−9 G �elds are formed
at the core of the star forming halo. This is the minimum initial �eld in the �rst
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generation of stars. This �eld may be the seed �eld for the later dynamo processes.
The second is battery e�ect during galaxy cluster formation. In this study, the �nal
magnetic �elds in the cluster is about 10−18 G. This indicates that the battery e�ect
alone is too weak to be the origin of cluster magnetic �elds at large scale. Chapter
4 discusses how X-ray cavities in galaxy clusters could be produced by the magnetic
�elds injected from their central AGNs. It indicates that magnetic �elds from a
super massive black hole may be large and dynamically important. Chapter 5 further
studies the evolution of magnetic �eld from AGN at high redshift. It shows that the
local magnetic �elds from AGN, after numerous mergers and continuous stretching
and shocking, can become cluster wide, µG level �elds similar to the observations.



Chapter 2

Cosmology AMR MHD code �
EnzoMHD

2.1 Introduction
Enzo is an adaptive mesh re�nement (AMR), grid-based hybrid code (hydro +

N-Body) which is designed to do simulations of cosmological structure formation.
It uses the block-structured AMR algorithm of Berger & Colella (1989) to improve
spatial resolution where required, such as in gravitationally collapsing objects. The
method is attractive for cosmological applications because it: 1) is spatially- and
time-adaptive, 2) uses accurate and well-tested grid-based methods for solving the
hydrodynamics equations and 3) can be well optimized and parallelized. The central
idea behind AMR is to solve the evolution equations on a �xed resolution grid,
adding �ner grids in regions that require enhanced resolution. Mesh re�nement can
be continued to an arbitrary level, based on criteria involving any combination of
(dark-matter and/or baryon) over density, Jeans length, cooling time, etc, enabling
users to tailor the adaptivity to the problem of interest. Enzo solves the following
physics models: collisionless dark-matter and star particles, using the particle-mesh
N-body technique (Hockney & Eastwood, 1985); gravity, using FFTs on the root
grid and multigrid relaxation on the subgrids; cosmic expansion; gas dynamics, using
the piecewise parabolic method (PPM) (Colella & Woodward, 1984) as extended to
cosmology by Bryan et al. (1995); multi-species non-equilibrium ionization and H2

14
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chemistry, using backward Euler time di�erencing (Anninos et al., 1997); radiative
heating and cooling, using subcycled forward Euler time di�erencing (Anninos &
Norman, 1994); and a parameterized star formation/feedback recipe (Cen & Ostriker,
1993). Enzo has been successfully used in many cosmological applications, including
star formation (Abel et al., 2000, 2002; O'Shea et al., 2005; O'Shea & Norman,
2007), Lyman-alpha forest (Bryan et al., 1999; Jena et al., 2005), interstellar medium
(Kritsuk & Norman, 2002, 2004) and galaxy clusters (Bryan & Norman, 1998; Loken
et al., 2002; Motl et al., 2004; Hallman et al., 2006). More information about Enzo
is available at http://lca.ucsd.edu/projects/enzo

One important piece of physics that is missing from this list is a proper treatment
of magnetic �elds. Magnetic �elds have a broad range of impacts in a broad range
of physical situations, from galaxy clusters to protostellar core formation. Magnetic
forces can shape morphology of objects by forcing �ow along the �eld lines. They
can alter the energy balance by providing sources of pressure and energy. They
can alter cooling rates by trapping electrons. Alfven waves can redistribute angular
momentum throughout an object. They create X-ray cavities seen in some galaxy
clusters. They accelerate cosmic rays, which play a crucial role in the energy balance
of the galaxy and galaxy clusters. They also play a role in galactic star formation,
potentially removing angular momentum from collapsing objects and launching pro-
tostellar winds. Creating a functional cosmological MHD code takes more than a
single algorithm. The purpose of this chapter is to present the construction and
performance of the algorithms that will be used in MHD simulations with Enzo in
this thesis and in the future, as well as simulations that have already been done (Xu
et al., 2008a,b)

EnzoMHD is also a purpose code. In this chapter, we will discuss it as a cos-
mological code, but all the same machinery applies in non-cosmological mode. All
algorithms used here reduce to the non-cosmological limit by setting a → 1, ȧ → 0,

and ä → 0. This removes any frame dependent terms in the equations.
We will describe the numerical procedures in Section 2.2, present test problems in

Section 2.3, and present conclusions and future plans in Section 2.4. Some complex
numerical scheme and procedures are presented in the Appendix at the end of this
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dissertation. In Appendix A.3 We present a simpli�ed schematic to unify the pieces
of the solver, and in Appendix A.1 and A.2 we expand on some of the more complex
numerical procedures about AMR MHD Reconstruction and Flux Correction.

2.2 Numeric

2.2.1 Cosmological MHD Equations
EnzoMHD solves the MHD equations in a comoving coordinate frame.
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Here, ρ is the comoving density, p is the comoving gas pressure, v is the proper
peculiar velocity, B is the comoving magnetic �eld, E is the total peculiar energy per
unit comoving volume, p̄ is the total comoving pressure, γ is the ratio of the speci�c
heats, Φ is the modi�ed gravitational potential from both dark-matter and baryons,
a ≡ (1+zi)/(1+z) is the expansion factor, where zi and z are the initial and current
redshifts, respectively, and t is the time.

In this formulation, the comoving quantities that are evolved by the solver are
related to the proper observable quantities by the following equations:
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ρproper = ρcomoving ∗ a−3 (2.7)

pproper = pcomoving ∗ a−3 (2.8)

vproper = vpeculiar + ȧx (2.9)

Φproper = Φmodified − 1

2
aäx2 (2.10)

Bproper = Bcomoving ∗ a−
3
2 (2.11)

where x is the comoving position, which is de�ned as x ≡ r/a.
The de�nition of comoving magnetic �elds is to keep the equations as simple

as possible. Due to the additional expansion factor that we use in equation 2.4,
the proper magnetic �eld decreases proportional to a−2 as in all formulations of the
cosmological MHD equations.

For non-cosmological simulations, the same equations hold, but with with a =

1, ȧ = 0 and ä = 0. This e�ectively removed each appearance of a from the left hand
side, and eliminates the terms involving ȧ from the right. For ease of reference, these
are:

∂ρ

∂t
+∇ · (ρv) = 0 (2.12)

∂ρv

∂t
+∇ · (ρvv + p̄−BB) = −ρ∇Φ (2.13)

∂E

∂t
+∇ · [v(p̄ + E)−B(B · v)] = −v · ∇Φ (2.14)

∂B

∂t
−∇× (v ×B) = 0 (2.15)

with the same equation of state, equations 2.5 and 2.6. Here, ρ is the density, p
is the gas pressure, v is the velocity, B is the magnetic �eld, E is the total energy
per unit volume, p̄ is the total gas pressure, γ is the ratio of the speci�c heats, Φ

is the gravitational potential. The mechanism to switch between the two systems of
equations will be described in Section 2.2.6.

To solve these equations, we operator split eqns (2.1)-(2.4) into four parts: the
left hand side of equations (2.1)-(2.3), the left hand side of equation (2.4), the grav-
itational acceleration (the two terms involving ∇Φ), and the expansion terms (the
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two terms involving ȧ). These will be discussed in Sections 2.2.6 - 2.2.7. In Section
2.2.10, we will discuss the dual energy formulation in Enzo for hypersonic �ows, and
in Section 2.2.11 we will discuss the Adaptive Mesh Re�nement algorithm. We �rst
discuss the data structures used to carry all this data in Section 2.2.2

In the following, we will often have cause to separate the purely �uid dynamical
quantities ρ,~v, E from the magnetic �eld ~B. Unless otherwise noted, '�uid quantities'
will refer to the former only.

For ease of reference, we have supplied a schematic summary of the steps involved
in Appendix A.3.

2.2.2 Data Structure
In Enzo, both parallelism and AMR are done in block decomposed manner. Each

patch of space, called a grid, is treated as a unique computational problem with
Dirichlet boundary conditions which are stored in a number of Ghost Zones (see
section 2.2.5). The number of ghost zones depends on the method used. The pure-
hydro methods in Enzo, ZEUS and PPM, use 3 ghost zones. The method we describe
here uses 5 ghost zones.

Grids are arranged in a strictly nested hierarchy, with each grid having a cell
width half that of its parent (pure hydro Enzo can take any integer re�nement, but
the interpolation for MHD is restricted to factors of 2.). See Figure 2.1. Each
processor keeps a copy of the entire hierarchy, while only one of the processors actual
stores the data.

For all physics modules described in this chapter, an individual grid cares not
for where it sits in space or the hierarchy, and communicates with other grids only
through boundary condition �lls (Section 2.2.5) and the AMR cycle (Section 2.2.11).

EnzoMHD in its default mode tracks 14 �elds, stored at 3 di�erent points of
the cell. The 5 hydrodynamic quantities, ρ,v, Etotal are stored at the center of the
cell, denoted (i, j, k), and represent the volume average of the respective quantities.
These are the same quantities stored in non-MHD Enzo.

EnzoMHD tracks 2 copies of the magnetic �eld and the electric �eld. One copy
of the magnetic �eld is stored in the face of the cell perpendicular to that �eld
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Processor 1 Processor 2

ghost zone

Distributed hierarchy Grid zones

real grid
ghost grid

real zone

Figure 2.1: A schematic of a parallel AMR hierarchy on two processors (left) and
a grid patch with ghost zones (right). Image courtesy James Bordner, initially ap-
peared in (Norman et al., 2007).

component, and represents the area average of that �eld component over that face.
This is the primary representation of the magnetic �eld. So Bf,x is stored in the
center of the x face, denoted (i− 1

2
, j, k), Bf,y in the y face at (i, j − 1

2
, k), and Bf,z

in the z face at (i, j, k − 1
2
). It is this �eld that remains divergence free under the

cell centered divergence operator:

∇ ·Bf =
1

∆x
(Bf,x,i+ 1

2
,j,k −Bf,x,i− 1

2
,j,k)+

1

∆y
(Bf,y,i,j+ 1

2
,k −Bf,y,i,j− 1

2
,k)+ (2.16)

1

∆z
(Bf,z,i,j,k+ 1

2
−Bf,z,i,j,k− 1

2
)

The magnetic data structures are one element longer in each longitudinal direction,
so for an nx× ny × nz grid patch, the Bf,x structure is (nx + 1)× ny × nz.

The second representation of the magnetic �eld is centered with the �uid quan-
tities at the center of the cell. This �eld is used wherever a cell centered magnetic
quantity is needed, most notably in the hyperbolic solver in section 2.2.6. It's equal
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to the �rst order average of the face centered magnetic �eld:

Bn+1
c,x,i,j,k = 0.5 ∗ (Bf,x,i+ 1

2
,j,k + Bf,x,i− 1

2
,j,k)

Bn+1
c,y,i,j,k = 0.5 ∗ (Bf,y,i,j+ 1

2
,k + Bf,y,i,j− 1

2
,k) (2.17)

Bn+1
c,z,i,j,k = 0.5 ∗ (Bf,z,i,j,k+ 1

2
+ Bf,z,i,j,k− 1

2
)

The �nal data structure used in EnzoMHD is the Electric Field, which is stored
along the edges of the computational cell. This represents a linear average of the
electric �eld along that line element. Each component is centered along the edge
its parallel to, so Ex lies along the x edge of the cell at (i, j − 1

2
, k − 1

2
), etc. It

is longer than the �uid �elds by one in each transverse direction, so Ex would be
nx× (ny + 1)× (nz + 1).

Each grid also stores one copy of each of the above mentioned �elds for use in
assigning ghost zones to subgrids. This is described further in Section 2.2.5. A
temporary �eld for �uxes is also stored, which exists only while the hyperbolic terms
are being updated. This data structure is also stored on the faces of the zone. There
are three �uxes for all 7 MHD quantities.

For other con�gurations of EnzoMHD, more or fewer �elds may be used. In
purely isothermal mode (which is at present an option only in EnzoMHD, not in
Enzo) the total energy �eld is not tracked, and the isothermal sound speed is taken
as a global scalar quantity. This reduces the number of �elds tracked everywhere
the total energy shows up. With dual energy formalism on (see Section 2.2.10) an
additional �eld corresponding to either gas energy or entropy is stored, giving an
additional �eld where needed. Future work will include multi-species chemistry and
more complex cooling, which will include additional �elds for each species.

2.2.3 Consistency
In several places throughout the �ow of Enzo, there may be more than one data

structure using and writing to a given variable at a given point in space. Ghost
zones and face centered �elds (�uxes and magnetic �elds) are examples of this. In
EnzoMHD, it is imperative that all data at a given point is identical, regardless of the
data structure describing it. This may seem like an unnecessary comment, but it isn't;
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in pure hydro simulations, numerical viscosity will damp out small perturbations
caused by slight inconsistencies in data description. Thus in practice, especially in
large, stochastic simulations, errors can go unnoticed. Often these discrepancies are
negligible, other times not, especially when one is concerned with the conservation
of a particular variable, like ∇ · B. By construction EnzoMHD preserves ∇ · B to
machine precision, but it never forces ∇ ·B = 0; so if it's not zero at the beginning
of a time step, it's not going to be at the end, either. It is also worth mentioning
that inconsistencies in any quantity will cause inconsistencies in the �ow, which will
in turn cause ∇ · B issues. Thus any improper handling of any �uid quantity will
cause errors in ∇ ·B that will persist and usually grow to catastrophic proportions
in a relatively short period of time.

There is a prominent redundancy in the magnetic �eld, namely the �eld on the
surface of the active zones of grids. See Figure 2.2. Care is taken to include enough
ghost zones, and frequent enough ghost zone exchange between grids, that after a
time step, two neighboring grids have reached exactly the same answer on the surface
between the two grids completely independently.

2.2.4 Time Stepping
Enzo uses hierarchical time stepping to determine it's time step. The minimum

of 4 di�erent criteria is taken for each level, which will be described below in detail.
Timesteps are taken in order of coarsest to �nest, in a 'W' cycle. See Figure 2.3.
Given 3 levels, level 0 takes the �rst step of ∆t. Then level 1 takes a single step of
∆t/2. Then level 2 takes one step of ∆t/4. Then, given that there are only three
levels, it takes another timestep so it is temporally in line with the level above. The
last three steps repeat: level 1 then takes its second and �nal step of ∆t/2 so it is
now at the same time as level 0, followed by two steps on level 2.

In principle, if a given level has a cell size ∆x and the next level of re�nement
has cell size ∆x

r
, where r is the re�nement factor, the more re�ned grid will have,

in principle, time step size ∆t
r
. In Enzo, the step size is chosen for each level and

each subgrid time step. In practice, owing to more �nely resolved structures having
slightly higher fast shock speeds, �ne grids may in fact take more than r time steps
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Grid1

Grid2

Figure 2.2: Data redundancy of the face centered magnetic �elds: the face centered
�eld denoted by the stars are updated by both grid 1 and grid 2. Enough ghost zones
are exchanged to ensure that the entire stencil for the update of these �elds is the
same in both data structures.
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for each parent grid step. In some rare cases, such as cosmological expansion limiting,
a �ner grid may take less than r steps.

MHD

For the MHD part, the harmonic mean of the 3 Courant conditions is used. This
was demonstrated to be the most robust time stepping criterion possible for multi
dimensional �ows by Godunov et al. (1961).

∆thydro =
1

1/tx + 1/ty + 1/tz

tx =min(
∆x

cf,x

) (2.18)

ty =min(
∆y

cf,y

)

tz =min(
∆z

cf,z

)

where the min is taken over the zones on a level, and cf,x, cf,y and cf,z are the fast
MHD shock speeds along each axis:

c2
f,x =

1

2

(
cs

2 +
B ·B

ρ
+

√
(cs

2 +
B ·B

ρ
)2 − 4cs

2B2
x/ρ

)
(2.19)

and similar de�nition for the other two. Here cs is sound speed.

Gravitational acceleration

The time step is also restricted to be less than the time it takes for the gravita-
tional acceleration g alone to move a parcel of �uid half of one zone.

∆taccel = min(
1

2

√
∆x

gi

) (2.20)

where i = x, y, z and the min is taken of the zones on a level.

Cosmological expansion

An additional restriction comes from the cosmological expansion, requiring the
timestep to be less than the cosmological expansion timescale,

∆texpansion = η
a

ȧ
(2.21)
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Figure 2.3: A depiction of the timestep strategy in Enzo.

where η is typically 0.01.

Particle motion

The fourth timestep criterion is based on restricting particle displacement in a
single timestep to be smaller than a single zone:

∆tparticles = min(
a∆x

vi,p

) (2.22)

where min is over velocity component i and particle p.

2.2.5 Boundary Conditions and Ghost Zones
Ghost Zones are �lled in one of three means.

1. Copying. The dominant mechanism for �lling ghost zones copying from ac-
tive zones that occupy the same physical space. This also takes into account
periodic boundary conditions. For EnzoMHD, face centered �elds are copied
from the faces of all cells, including those that border on active cells. This is
somewhat redundant for reasons described in 2.2.3.

2. External Root grids that lie along the domain wall �lled with the external
boundary routine. If the external boundary condition is not periodic, the grids
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zones are �lled by a predetermined algorithm; for instance, out�ow boundary
conditions set ghost zones to be equal to the outermost active zone, akin to
a Neumann condition of zero slope. These involve out�ow, re�ecting, and a
completely general 'in�ow'. Note that this is called only on the root grid,
and not on subgrids that happen to lie on the edge. This can cause spurious
waves at re�ecting or out�ow boundaries with AMR. Also note for EnzoMHD,
the only external boundary conditions that have been tested are periodic and
out�ow.

3. Interpolation The third mechanism is used on re�ned grids whose ghost zones
do not occupy the active space of another grid; these grids have their ghost
zones �lled by interpolation from the parent grid. Since Enzo uses hierarchical
time stepping, subgrid steps that begin in the middle of a parent grid step �ll
their ghost zones from a linear interpolation of the parent grid time steps at tn

and tn+1.

2.2.6 Left hand side: hyperbolic terms
With the exception of the 1/a term that appears in front of each ∇· operator,

the left hand side of equations (2.1)-(2.4) are the familiar Ideal MHD equations. A
form of equations (2.1) - (2.4) more relevant for this treatment is the following:

∂V

∂t
+

∂F

∂x
= 0 (2.23)

where

V =




ρ

ρvx

ρvy

ρvz

By

Bz

E




(2.24)
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F =




ρvx

ρv2
x + p + B2/2−B2

x

ρvxvy −BxBy

ρvxvz −BxBz

Byvx −Bxvy = −Ez

Bzvx −Bxvz = Ey

(E + p + B2/2)vx −Bx(B · v)




(2.25)

p = (E − 1

2
ρv2 +

1

2
B2(γ − 1)) (2.26)

These form a hyperbolic system of equations, which have been studied extensively in
the literature. To take advantage of the work already done on this type of system of
equations for our cosmological algorithm, we �rst multiply the cell width dx by the
expansion factor a. This allows us to use any non-cosmological solver for cosmological
applications. Upon completion of the solver, dx is divided by a to restore dx to the
original comoving value.

Equation 2.23 is solved by �rst re-writing it in conservation form, that is taking
suitable integrals in time and space. The resulting update is, in one dimension,

V̂ n+1
i,j,k = V̂ n

i,j,k −
∆t

∆x
(F̂

n+ 1
2

x,i+ 1
2
,j,k
− F̂

n+ 1
2

x,i− 1
2
,j,k

) (2.27)

where V̂ represents the spatial average of the conserved quantities, and F̂ represents
an space and time average of the �ux, centered in time at t = t + ∆t/2. V̂ is the
quantity we store in the cells, and F̂ comes from the hyperbolic solver.

The solver we use to solve the hyperbolic equations is that of Li et al. (2008),
which is comes in three parts: spatial reconstruction, time centering, and the solution
of the Riemann problem. Spatial reconstruction is done using piecewise linear mono-
tonized slopes on the primitive variables (ρ,v, p,B). Time centering of the interface
states by ∆t/2 is performed using either the MUSCL-Hancock (Li et al., 2008) or
Piecewise Linear Method (Colella & Glaz, 1985) integration. The Riemann problem
is then solved using either the HLLC Riemann solver of Li (2005), HLLD solver of
Miyoshi & Kusano (2005), or the isothermal HLLD solver of Mignone (2007) (The
isohermal mode will not be further discussed in my thesis). These �uxes are com-
puted for the conserved, cell centered variables (ρ, ρv, E,Bc). These �uxes are then
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di�erentiated to obtain the update values of the �uid quantities only. The �uxes
for the magnetic �eld are stored for use in the Constrained Transport algorithm,
discussed in section 2.2.7. This is done in one dimension on successive sweeps along
the x, y, and z directions. To reduce operator splitting error, the order of the sweeps
is permuted. For more details, see Li et al. (2008).

2.2.7 Constrained Transport and the Divergence of B
One of the biggest challenges for an MHD code is to maintain the divergence

free constraint on the magnetic �eld (∇ ·B = 0). Brackbill & Barnes (1980) found
that non-zero divergence can grow exponentially during the computation and cause
the Lorentz force to be non-orthogonal to the magnetic �eld. There are three major
ways to assure the divergence remains zero. The �rst is a divergence-cleaning (or
Hodge Projection) approach by Brackbill & Barnes (1980), which solves an extra
Poisson's equation to recover ∇ · B = 0 at each time step. But Balsara & Kim
(2004) found that non-locality of the Poisson solver introduces substantial spurious
small scale structures in the solution. Additionally, solving Poisson's equation on an
AMR mesh is computationally expensive. The second method involves extending the
MHD equations to include a divergence wave, as done by Powell et al. (1999), Dedner
et al. (2002), which then advects the divergence out of the domain. As most of our
solutions are done on periodic domains, this is also an undesirable solution. The
third method, and the one we have employed in Enzo, is the constrained transport
(CT) method of Evans & Hawley (1988). This method centers the magnetic �eld
on the faces of the computational cells and the electric �eld on the edges. Once
the electric �eld is computed (more on this later) it's curl is taken to update the
magnetic �eld. This ensures ∇ ·B = 0 for all time, provided it's true initially.

B̂n+1
f,x,i− 1

2
,j,k

= B̂n
x,i− 1

2
,j,k
−∆t(

1

∆y
(Êz,i− 1

2
,j+ 1

2
,k − Êz,i− 1

2
,j− 1

2
,k)+ (2.28)

1

∆z
(Êy,i− 1

2
,j,k+ 1

2
− Êy,i− 1

2
,j,k− 1

2
))

Plugging equation A.24 into the divergence operator 2.16 to �nd ∇ · Bn+1
f , one

�nds all terms are eliminated except the initial divergence ∇ ·Bn
f .
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The CT algorithm of Evans & Hawley (1988) was extended to work with �nite
volume methods by Balsara & Spicer (1999). This method uses the fact that the
MHD Flux has the electromotive force as two of its components (see the 5th and 6th

components of eqn. 2.25), so using these components then incorporates all the higher
order and shock capturing properties of the Godunov solver into the evolution of the
electric �eld. These components, which are centered at the face the computational
cell, are then averaged to obtain an electric �eld at the edges of the cell. This was the
�rst CT method applied to Enzo, so unless otherwise noted, the simulations presented
here were done with this method. The reader is encouraged to read Balsara & Spicer
(1999) for the full details.

Gardiner & Stone (2005) extended this idea to include higher order spatial aver-
aging, which eliminates a number of numerical artifacts present in Balsara & Spicer
(1999) and increases the accuracy of the method. This method uses the �uxes from
the Riemann solver, plus additional information from the data in the cell to construct
a linear interpolation from the cell face to the cell edge. The reader is encouraged to
see that paper for the details.

After the curl is taken and the face centered �eld Bf is updated, it is then averaged
to obtain Bc, via equation 2.17.

2.2.8 Right Hand Side: Gravitational Acceleration
In cosmological simulations, Enzo tracks the proper peculiar gravitational poten-

tial.
∇2Φ =

4πG

a
(ρb + ρd − ρ0) (2.29)

where ρb and ρd are baryonic and dark matter comoving density respectively, and
ρ0 is the comoving background density. For non-cosmological simulations, the dark
matter and background density are ignored.

The gravitational potential Φ is solved in Enzo using a combination of methods.
First, the root grid potential (which covers the entire computational domain) is
solved for using a fast Fourier transform. Then the subgrids (which hopefully do not
cover the computational domain) are solved using a multigrid relaxation technique.
This resulting potential Φ is then di�erentiated to obtain the acceleration g = ∇Φ.
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Speci�cally,
gi =

1

2

(Φi+1 − Φi−1)

dx
(2.30)

As mentioned before, the �uxes are computed at the half time point t + 1/2∆t.
In order to keep the velocity and consistent with this time centering, they are �rst
advanced by a half time step:

v′ = v +
∆t

2
g (2.31)

After the �uxes are di�erentiated to obtain the new state vn+1
x , these states are

then updated with the accelerations. For the velocity update, a density �eld centered
in time is used. We follow the same formulation used by Colella & Woodward (1984)

vx
n+1 = v′n+1

x + ∆t
1
2
(ρn+1 + ρn)gx

ρn+1
(2.32)

En+1 = E ′n+1 − 1

2
ρn+1(vx

′n+1)2 +
1

2
ρn+1(vx

n+1)2 (2.33)

2.2.9 Right Hand Side: Expansion Source Terms
The cosmological expansion source terms are treated in much the same way as

the gravitational source terms. First, a half time step is added to the values before
the �ux is computed.

v′n =vn − 1

2
∆t

ȧ

a
ρn (2.34)

p′n =pn − 1

2
∆t

ȧ

a
3(γ − 1)pn (2.35)

B′n
c =Bn

c −
1

2
∆t

ȧ

2a
Bn

c (2.36)

The quantities v′n, p′n and B′n are then used in the rest of the solver described
in Section 2.2.6. After the �uxes are di�erentiated, the source terms are then added
to the �uid quantities in full. This is done in a semi-implicit manner, by averaging
the quantities to be updated in time. For instance, the expansion contribution to
the magnetic �eld is

∂B

∂t
= − ȧ

2a
B (2.37)
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which is discretized

Bn+1
exp

−Bn+1 = −dt
ȧ

2a
(
Bn+1

exp
+ Bn+1)

2
) (2.38)

and solving for Bn+1
exp

we have

x =
ȧ

4a
(2.39)

Bn+1
exp

=
(1− x)

(1 + x)
Bn+1 (2.40)

Pressure and velocity are updated in a similar manner. See appendix A.3 for the full
update.

2.2.10 Dual Energy Formalism
Hypersonic �ows are quite common in cosmological simulations. Due to the

extremely large gravitational forces, the ratio of kinetic energy Ekinetic to gas internal
energy Einternal can be as high as 108. This leads to problems when computing the
internal energy in this type of �ow, as the universe does math with in�nite accuracy,
but computers do not. Higher order Godunov code typically track only the total
energy (equation 2.5). Thus �nding the internal energy from the total energy tracked
by the software,

Einternal = Etotal − Ekinetic − Emagnetic

involves the small di�erence of two (or three) large numbers, which causes problems
when the small number (Einternal) is near the roundo� noise of the original numbers
(Etotal and Ekinetic + Emagnetic).

To overcome this, we have implemented two algorithms that solve an additional
equation to track the small numbers; the modi�ed entropy equation given in Ryu
et al. (1993) and the internal energy equation given in Bryan et al. (1995). These
two equations are:

∂S

∂t
+

1

a
∇ · (Sv) = −3(γ − 1)ȧ

a
S (2.41)

∂ρe

∂t
+

1

a
∇ · (ρev) = −3(γ − 1)ȧ

a
ρe +

p

a
∇ · v (2.42)
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where S ≡ p/ργ−1 is the comoving modi�ed entropy and e is the internal energy.
The modi�ed entropy equation is valid only outside the shocks where the entropy
is conserved. Use of either (not both) of these equations is at the discretion of the
simulator.

Through the course of the simulation, the ratio of internal energy to total energy
is monitored. When this ratio is less than some preset value η, one of the modi�ed
equations is used. As in Li et al. (2008), we use η = 0.008. They note that reducing
this parameter will cause a decrease in the volume �lled by low temperature gas, as
most of the gas a�ected by the switch is cold, high velocity gas. The optimal choice
for this parameter is still an open question for the general situation. Li et al. (2008)
compared this two approaches and found almost identical results.

2.2.11 Adaptive Mesh Re�nement
Structured AMR, initially devised by Berger & Colella (1989), is a technique

for increasing resolution of a simulation in parts of a simulation that require higher
resolution for increased accuracy or suppression of numerical artifacts, while con-
serving memory and CPU cycles in areas that don't. Re�nement criteria will not
be described here, as they vary from simulation to simulation. AMR has four basic
necessary parts:

1. Patch Solver This is the algorithm that actually solves the �nite volume
PDEs in question, as described by Sections 2.2.6 - 2.2.10. The approximations
used for the patch solver are conservative in a �nite volume sense, and the rest
of the choices are made to preserve that conservation.

2. Re�nement Operator This is the routine that creates �ne resolution elements
from coarse ones. In Enzo, we use conservative, volume weighted interpolation
for the �uid quantities ρ,E,~v. For the magnetic �elds, we use the method
described by Balsara (2001), with some slight modi�cations in implementa-
tion. This method constructs a quadratic divergence free polynomial, and
area-weighted averages are used for the �ne grid quantities. This is described
in more detail in appendix A.1.
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3. Projection Operator This is the routine that projects the �ne grid data back
to the parent coarse grid. For Enzo, the parent grid is simply replaced by a
volume-weighted average of the �ne cells. For the face centered magnetic �eld,
this is an area weighted average, though in practice we don't explicitly average
the magnetic �eld, as discussed in below and in appendix A.1.1

4. Correction Operator Once the projection operator replaces the solution on
the coarse grids, the evolution on the coarse grids is no longer consistent with
the underlying equations in the manner they were discretized. That is to say,
the total change of any conserved quantity inside the region is no longer equal
to the �ux across its surface. For the Enzo hydro �elds, this is corrected with
the �ux correction mechanism. More details on this and the modi�cations in
EnzoMHD see appendix A.2

EnzoMHD does all of these steps for the �uid quantities, but for the magnetic �eld
it slightly alters this procedure. In order to overcome a shortcoming in the original
data structures used in Enzo, we combined the projection and correction operations
for the magnetic �elds in one step. The net e�ect of the correction operator is to
ensure that all zones are updated by �nest resolution �uxes available, even if they
were updated by coarse data initially. For the magnetic �eld update, we don't project
the actual magnetic �eld that is of interest, but rather the electric �eld (e�ectively
the '�ux' for Bf ), then take the curl of the newly projected electric �eld. Thus the
coarse magnetic data co-located with the �ne grids get updated with the �ne data,
and the bounding zones don't need correction at all.

More detail on this process can be found in Appendices A.1 and A.2

2.3 Numerical Experiments
EnzoMHD has many con�gurations available. Here, we test some of the possible

con�gurations, to indicate the quality of solution possible with EnzoMHD.
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2.3.1 MHD Tests without AMR
We �rst test our code in unigrid (�xed resolution) mode, in order to ensure

consistency of the patch solver with the algorithm described in Li et al. (2008). We
do two one dimensional cosmology tests (Caustics and Zel'dovich Pancake), one one-
dimensional non-cosmological tests (Brio and Wu), one 2D non-cosmological test
(Orszag Tang) and one 3D cosmological test.

Brio and Wu Shock Tube

The shock tube de�ned by Brio & Wu (1988) is a standard test of any MHD
solver, as it displays a number of the important MHD waves, including a compound
wave. Compound waves are not a property of pure hydrodynamics, because the
system is convex. However, due do the more complex nature of the MHD equations,
certain initial conditions can cause �ows in which at one point the shock speed in a
given family is higher than the wave speed for that family, causing a shock, but lower
in the post shock region, causing a rarefaction immediately following the shock.

This can be seen in Figure 2.4. The problem was run with 800 zones to a time
t = 0.2, using the HLLD solver in Enzo. This shock tube shows, from left to right, a
fast rarefaction, slow compound (shock+rarefaction), contact, slow shock, and fast
rarefaction. It can be seen that this solver captures this shock tube problem quite
well.

One-dimension MHD Caustics

This test is taken from Li et al. (2008), which initially derived from a pure hydro
version from Ryu et al. (1993). This problem is used to test the ability of the code to
capture shocks and to deal with hypersonic �ows. Initially, vx = −π

2
sin(2πx), ρ = 1

and p = 10−10. Caustics are formed because of the compression by the velocity �eld.
The Mach number of the initial peak velocity is 1.2 × 104. The pressure can easily
become negative for such high Mach number �ow.

We performed the test with same magnetic �eld settings as in Li et al. (2008).
The magnetic �eld in the x and z directions are always zero while By = 0, 0.001, 0.02

and 0.05. The calculation was done with 1024 cells and the results at t = 3 are shown
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Figure 2.4: The shock tube of Brio & Wu (1988), showing from left to right a
fast rarefaction, slow compound (shock+rarefaction), contact, slow shock, and fast
rarefaction. T=0.08, and 800 zones were used.
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Figure 2.5: 1-D MHD caustics at t = 3. Density, gas pressure, total pressure and By

are plotted. For the small �eld runs, almost no change can be seen, while larger �eld
runs decrease the peak of the density considerably due to the increased pressure.

in Figure 2.5. Our results match the results from CosmoMHD (Li et al., 2008) quite
well, as expected.

The Zel'Dovich Pancake

The Zel'Dovich pancake is a popular test problem for codes that include gravity
in comoving coordinates. The problem setups are taken from Li et al. (2008). This
takes place in a purely baryonic universe with Ω = 1 and h = 1

2
. The initial scale

factor ai = 1 corresponds to zi = 20. The initial velocity �eld is sinusoidal with the
peak value 0.65/(1 + zi), and v = 0 at the center of the box. The initial comoving
box size is 64 h−1 Mpc. The shocks forms at z = 1. The initial baryonic density
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Figure 2.6: The Zel'Dovich Pancake problem with various values of the magnetic
�eld, at t = 0. Increasing the magnetic �eld strength increases the central magnetic
pressure, reducing the density and changing the overall solution structure. Results
match those of Li et al. (2008).

and pressure are uniform with ρ = 1 and p = 6.2 × 10−8. The tests were run with
1024 cells, both with and without magnetic �elds. Our results are almost identical
to the results from CosmoMHD (Li et al., 2008), as expected. Results can be seen
in Figure 2.6.

Orszag-Tang

The Orszag-Tang Vortex was originally developed by Orszag & Tang (1979) to
demonstrate that small scale structure can be generated by the nonlinearities in the
MHD equations. It initially starts with a single large scale rotating velocity structure
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and two circular magnetic structures. From these simple large scale initial conditions,
substantial small scale structure is formed. It now serves as a standard test problem
to demonstrate the accuracy and di�usivity of MHD codes.

The initial conditions are on a 2 dimensional periodic box, 256 zones on a side.
v = v0(−sin(2πy)x̂ + sin(2πx)ŷ,B = B0(−sin(2πy)x̂ + sin(4πx)ŷ), v0 = 1, B0 =

1/
√

4π, ρ0 = 25/(36π), p0 = 5/(12π), and γ = 5/3 which gives a peak Mach number
of 1 and peak β = p0/(B

2
0/2) = 10/3. Figure 2.7 shows the density at t = 0.48, from

which one can see that the solution agrees with other solutions to the problem in the
literature.

3D Adiabatic Universe with MHD

We have also performed the 3D adiabatic CDM Universe test described by Li
et al. (2008) both with and without magnetic �elds. We also compared the non-
magnetized results with the results run using the PPM solver (Colella & Woodward,
1984). Adiabatic evolution of a purely baryonic Universe was computed with an
initial CDM power spectrum with the following parameters: Ω = Ωb = 1, h = 0.5,
n = 1 and σ8 = 1 in a computational volume with side length L = 64 h−1 Mpc.
The transfer function from Bardeen et al. (1986) was used to calculate the power
spectrum of the initial density �uctuations. Evolution was done from z = 30 to
z = 0. We used 2563 cells for each simulation. The comparisons are made at the
�nal epoch, z = 0. Though this test is identical to that of Li et al. (2008), our results
can't compared with theirs directly since di�erent random seeds were used for the
realization of the initial density and velocity.

Figure 2.8 shows a comparison of the mass-weighted temperature distribution,
Figure 2.9 is a comparison of the volume-weighted density distribution. The discrep-
ancies between PPM and MHD solvers are small, indicating the two codes perform
roughly the same. The nature of the di�erences is expected, since PPM solver has
third order accuracy while the MHD solver has second order accuracy and larger
numerical di�usion. This allows PPM to capture shocks in fewer zones, which causes
the dense shocked gas to not only have a smaller volume fraction, but also be hotter
and slightly less dense than in the MHD solver.
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Figure 2.7: Density from the Orszag-Tang vortex, at t=0.48. Initial conditions are
uniform density, with a single rotating velocity structure and two circular magnetic
structures. This generates signi�cant small scale structure, which has been used to
compare e�ective resolution of di�erent MHD schemes.
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We have also done a similar run with the same initial conditions to the above,
but with an initial magnetic �eld, Bx = Bz = 0, By = 2.5 × 10−9 Gauss, which is
4.32 × 10−7 in code units. Figure 2.10 shows the scaled divergence of the magnetic
�elds, averaged over the entire box, as a function of redshift. The scaled divergence
is < |h∇ · B/|B|| >, where h = 1/256 is the spatial scale, and |B| is the local
maximum magnetic �eld strength, is the most relevant measure of the potential
numerical e�ects of divergence. The divergence of the magnetic �elds is close to the
round-o� error.

2.3.2 MHD Tests with AMR
To test the Adaptive Mesh Re�nement, we ran a sample of the tests from the

previous section with AMR, to ensure no spurious artifacts are introduced by the
AMR. These are the one dimensional caustic and pancake tests. In addition, the
tests of Adiabatic Expansion and a complete galaxy cluster formation are also run.

Three-Dimension MHD Adiabatic Expansion

This test is taken from Bryan et al. (1995). This test uses a completely homo-
geneous universe with initial Ti = 200 K and vi = 100 km s−1 in the x-direction at
an initial redshift of zi = 20. In the code units, the initial density is 1.0 and initial
velocity is 2.78× 10−3 and the initial pressure is 1.24× 10−9. Additionally we have a
uniform magnetic �eld Bx = By = Bz = 1× 10−4 in code units, which is 2.66× 10−7

G in cgs units. The simulation used a 163 root grids with 2 levels of re�nement in
the center region and ran to z = 0.

The expansion terms in eqns (2.1) - (2.4) operate like drag terms, so that in
the absence of a source, the velocity decreases as v = via

−1, the temperature as
T = Tia

−2 and the magnetic �eld should decrease as a−1/2.
The temperature at z = 0 is 0.453406 K, 0.024% below the analytic result of

0.453515 K. The velocity at z = 0 is 4.76176 km s−1, compared to the analytic
result 4.7619 km s−1, a 0.0029% discrepancy. The �nal magnetic �eld strength is
6.03 × 10−10 G (2.18 × 10−5 in the code unit), a di�erence of 0.0006% with respect
to the analytic solution. Figure 2.11 shows the By as a function of redshift, the solid
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line shows the theoretical value.

One-Dimensional MHD Caustics with AMR

We also ran the the 1d MHD caustic test with AMR, using 256 root grid zones
with 2 levels of re�nement, again by a factor of 2, giving an e�ective resolution is
1024 cells. Figure 2.12 shows comparisons of density and gas pressure of non-AMR
and AMR runs with di�erent initial magnetic �eld strengths, as described before.
Figure 2.13 shows the comparisons of By for runs with di�erent initial values of By.
In both plots, the AMR result is sampled to the �nest resolution. The AMR runs
give almost identical results to the unigrid runs, while the CPU time and memory
were greatly saved in the AMR runs.

Zel'Dovich Pancake with AMR

We also ran the pancake problem with AMR. The problem was set up with the
same initial conditions as the unigrid run, but with a root grid of 256 root cells and
2 levels of re�nement by 2. We compared these results having e�ectively 1024 cells
to the results of our previous high resolution which actually had 1024 cells. Figure
2.14 shows comparisons of density and gas pressure between the non-AMR and AMR
runs, with di�erent initial values for By. Figure 2.15 shows the comparisons of By

with di�erent initial values. Again, the AMR computation got very similar results,
while saving CPU and memory resources.

MHD Galaxy Cluster Formations

Cluster formation (without MHD) has been studied intensively by researchers us-
ing Enzo (Norman, 2005; Bryan & Norman, 1998; Loken et al., 2002; Motl et al., 2004;
Hallman et al., 2006). It is one of the most important applications of Enzo's high dy-
namic range. Many cluster simulations have been run with Enzo with a wide variety
of physics (i.e. radiative cooling, star formation, etc) and we can compare these re-
sults to similar simulations run with MHD. More information about Enzo simulated
cluster can be found in Simulated Cluster Archive at http://lca.ucsd.edu/data/sca/.
Here, we present just one simulation to demonstrate the MHD code.
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Figure 2.12: Comparisons of density and pressure in the MHD caustic tests, non-
AMR vs AMR. The left column shows density and the right column shows gas
pressure. Initial magnetic �eld of each row from top to bottom is 0, 0.001, 0.02 and
0.05.
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Figure 2.14: Comparisons of density and pressure in non-AMR and AMR runs of
the pancake test. The left column shows density and the right column shows gas
pressure. Initial magnetic �eld of each row from top to bottom is 0, 1.3e-6, 2e-5 and
1e-4 G.
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Figure 2.15: Comparisons of magnetic y component in non-AMR and AMR runs of
the pancake test. Initial magnetic �eld of each panel from top to bottom is 1.3e-6,
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This simulation uses a Lambda CDM cosmology model with parameters h = 0.7,
Ωm = 0.3, Ωb = 0.026, ΩΛ = 0.7, σ8 = 0.928. The survey volume is 256 h−1 Mpc on a
side. The simulations were computed from a 1283 root grid with 2 level nested static
grids in the center where the cluster form. This gives an e�ective resolution of 5123

cells (0.5 h−1 Mpc per cell) and dark matter particle mass resolution of 1.49× 1010

M¯ initially in the central region. Adaptive mesh re�nement is allowed only in the
region where the galaxy cluster forms, with a total of 8 levels of re�nement beyond
the root grid, for a maximum spatial resolution of 7.8125 h−1 kpc. While the baryons
are resolved at higher and higher spatial and mass resolution at higher levels, the
dark matter particles maintain constant mass so as not to add any additional noise.
The simulations are evolved from z = 30 to z = 0, and all results are shown at the
redshift z = 0. We concentrate our study on a cluster of M = 1.2× 1015 M¯.

In order to isolate the e�ects of the numerical approximation from the e�ects of
MHD, we �rst run the simulations adiabatically without additional physics and the
magnetic �eld set to zero, and compare to a PPM run with identical parameters. In
Table 2.1, we list the basic parameters for the clusters formed in each solver. The
viral radius, Rvir is calculated for an over density δρ

ρ
of 200. Mvir, Mdm and Mgas

are the total mass, mass of the dark matter and mass of the baryon inside the virial
radius, respectively. Tvir is the average of the temperature of the ICM inside the
virial radius. Evidently, there is very little di�erence between the results from the
two solvers.

Figures 2.16-2.18 show the images of the logarithmic projections of the dark
matter density, gas density, and X-ray weighted temperature, respectively, at z = 0.
Both PPM and MHD solvers show very similar images in all three quantities, di�ering
only slightly in the small scale details.

Figure 2.19-2.21 show the radial pro�les of dark matter density, gas density, and
x-ray weighted temperature. The pro�les match quite well in all three quantities,
with only minor di�erences. There is a slight deviation in the radial pro�les of dark
matter density near the center of the cluster, but this is near the resolution limit
of the simulation, so not a trustworthy data point. In the density pro�le, it can be
seen that the MHD solver gives a slightly higher average density. The temperature
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Table 2.1: Comparison of properties of clusters from Hydrodynamics and MHD
simulations.

Parameter Hydro PPM MHD
Rvir(Mpc) 2.229 2.227
Mvir(M¯) 1.265e+15 1.260e+15
Mdm(M¯) 1.097e+15 1.097e+15
Mgas(M¯) 1.672e+14 1.632e+14
Tvir(K) 8.684e+07 8.663e+07

Figure 2.16: Logarithmic projected dark matter density at z = 0. The images cover
the inner 4 h−1 Mpc of cluster centers. The left panel shows the result from the PPM
solver and the right panel shows the result from the MHD solver. The color bar is
in M¯ Mpc−2.

agreement is good enough to not worry about.
We have also run the simulations with non-zero initial magnetic �eld. A uniform

initial magnetic �eld of 9.72753×10−10 G (1×10−7 in the code unit) in the y direction
was added to the system at the start of simulation at z = 30. Since Dolag et al. (1999)
has shown that the initial magnetic �elds structures are not important to the �nal
magnetic �elds structures in their MHD SPH simulations, no other initial magnetic
�elds con�guration will be used in this chapter. Figure 2.22 shows 4 projections of
the cluster center: gas density, temperature, magnetic energy, and synthetic Faraday
rotation measurement RM = e3

2πm2c4

∫ d

0
neBds. We can see that the gas density and

temperature images are almost identical to the MHD run with zero magnetic �elds.
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Figure 2.17: Logarithmic projected gas density at z = 0. The images cover the inner
4 h−1 Mpc of cluster centers. The left panel shows result from PPM solver and the
right panel shows result from MHD solver. The color bar is in M¯ Mpc−2.

Figure 2.18: Logarithmic projected X-ray weighted temperature at z = 0. The
images cover the inner 4 h−1 Mpc of cluster centers. The left panel shows result from
PPM solver and the right panel shows result from MHD solver. The unit is Kelvin.
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Figure 2.19: Spherically averaged dark matter density radial pro�le at z = 0 from
MHD solver and PPM solver.
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Figure 2.20: Spherically averaged gas density radial pro�les at z = 0 from MHD
solver and PPM solver.
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Figure 2.22: Images of gas density (M¯ Mpc−2), temperature (K), magnetic energy
density (erg cm−2) and rotation measure (rad m−2) of the galaxy cluster simulation
with an initial magnetic �eld By = 9.72753× 10−10 G. Projections are of the inner 4
Mpc/h of cluster center at z = 0.

As expected, the magnetic energy is concentrated in the cluster core. The maximum
magnetic �elds is 1.0630270× 10−8 G. The RM is about 2-3 rad m−2 at the cluster
core. Figure 2.23 shows comparison of the radial pro�les of the simulations with
and without initial magnetic �elds, while Figure 2.24 depicts the volume weighted
averaged radial pro�les of the magnetic �eld strength and plasma β. Since β is quite
large, these small magnetic �elds acts as a passive tracer of the plasma and has little
e�ects on dark matter and gas dynamics.

To further test our code, we also ran a simulation with a relatively large initial
magnetic �elds. We also included radiative cooling, star formation, and stellar feed-
back. The radiative cooling models X-ray line and bremsstrahlung emission in a 0.3
solar metallicity plasma. The star formation model turns cold gas into collisionless
star particles at a rate ˙ρSF = ηSF

ρb

max(τcool,τdyn)
, where ηSF is the star formation ef-
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Figure 2.23: Specially averaged radial pro�les of dark matter density, baryon density
and temperature of MHD simulations with zero and By = 9.72753× 10−10 G initial
magnetic �elds.
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�ciency factor 0.1, and τcool and τdyn are the local cooling time and free fall time,
respectively. Stellar feedback returns a fraction of stars' rest energy as thermal energy
at a rate ΓSF = ηSN ρ̇SF c2 to the gas. We did two runs, one without initial magnetic
�elds and the other is with a large initial magnetic �elds of By = 1.0 × 10−4 in the
code unit (9.72753×10−7 Gauss). Figure 2.25 shows the radial pro�les of gas density
and temperature of both runs and the magnetic �eld strength and the plasma β of
the run with magnetic �elds.

The magnetic �elds reach 20 µG in the core region, a few times larger than the
observations (Carilli & Taylor, 2002). In the center where β reaches a minimum,
the kinetic energy is a few percent of the thermal energy, as expected from Iapichino
& Niemeyer (2008). The magnetic �eld has become dynamically important in the
cluster center. The e�ect is not signi�cant in the density, as seen in the upper right
plot in Figure 2.25, but de�nitely noticeable in the temperature �eld, as some of the
thermal pressure that was balancing the collapse is replaced by magnetic pressure.
In this way, magnetic �elds may help to cool cluster cores, giving a better match to
observations. Detailed analysis of the magnetic �eld structure and their in�uence on
the cluster will be presented in forthcoming paper.

2.4 Conclusions
In this chapter, we have introduce EnzoMHD, the MHD version of the AMR

cosmology code Enzo before presenting my research done by this code. . EnzoMHD
is capable of multi-resolution cosmological and non-cosmological astrophysical simu-
lations using ideal MHD. Enzo uses block structured AMR, which solves they hydro-
dynamic (and now magnetohydrodynamic) PDEs on �xed resolution patches, and
communicates the �nest resolution information between coarse and �ne patches in
way that is conservative in the volume-averaged quantities. This entails 4 basic com-
ponents: the PDE patch solver, creation of �ne grids (interpolation), communication
of �ne data back to coarse data (projection) and correction of the interface between
coarse and �ne grids (�ux correction). MHD has the additional constraint that the
divergence of the magnetic �eld, ∇ · B, must be zero at all times, which requires
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Figure 2.25: Radial pro�les of MHD simulations with zero and By = 9.72753× 10−7
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additional machinery to advance the PDEs (Constrained Transport) and some mod-
i�cations to the projection and �ux correction steps. In addition to multi-resolution
hydrodynamics, EnzoMHD includes the e�ects of gravitational acceleration and cos-
mological expansion, and a modi�cation to the base PDE solver to account for �ows
with large disparity between kinetic and thermal energies (dual energy formalism).
In EnzoMHD, we use the PDE solver of Li et al. (2008) to solve the ideal MHD equa-
tions (Section 2.2.6) for the patch solver, which is second order accurate in both time
and space. We use a slightly modi�ed version of the AMR algorithm procedure of
Balsara (2001) to create interpolate �ne grids and project the more accurate �ne grid
data to the cheaper coarse grid data (Section 2.2.11 and Appendix A.1). We have
used the CT methods of Balsara & Spicer (1999) and Gardiner & Stone (2005) to
advance the induction equation while maintaining the constraint ∇ ·B = 0(Section
2.2.7). We have operator split the gravitational (Section 2.2.8) and cosmological
expansion (Section 2.2.9) terms; and included the entropy-energy technique of Ryu
et al. (1993) and the dual energy technique of Bryan et al. (1995).

In Section 2.3, we present the results of a broad array of tests to demonstrate the
accuracy of the chosen methods. These include the shock tube of Brio and Wu, on
dimensional MHD Caustics, the famous Zel'Dovich Pancake, the Vortex problem of
Orzag-Tang, an adiabatic expanding universe. Some of these were additionally run
with AMR, and the results compared to the unigrid case. The results of these overall
agree with both what's been present in the literature before and comparisons with
our existing PPM solver. As an example of the capability and application area of
this code, we present some preliminary results from a calculation of galaxy cluster
formation with magnetic �elds.

In this chapter, we already show the e�ciency and accuracy of our AMR MHD
cosmology code. In Chapter 3-5, we will discuss simulations performed by EnzoMHD
to study the origin and evolution of cluster magnetic �elds.

Acknowledgments: This chapter, in part, has been submitted for publication of
the material as it may appear in the Astrophysical Journal Supplement Series, 2009.
Collins, David C.; Xu, Hao; Norman, Michael L.; Li, Hui; Li, Shengtai, �Cosmological
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Chapter 3

The Biermann Battery E�ect in
Large Scale Structure Formation

3.1 The Biermann Battery E�ect
The problem of generating magnetic �elds from zero �eld is intertesting. The

induction equation in the idea MHD approximation is,

∂B

∂t
= ∇× (v ×B) (3.1)

so no magnetic �elds can be created if the initial �elds are zero. But this MHD
approximation breaks down once considering the charge separation e�ect due to the
di�erence in mobility between electrons and ions. In this section, we will �rst discuss
magnetic �eld creation by so-called Biermann Battery e�ect based on the charge
separation.

The induction equation is derived from Ohm's law, keeping the electron pressure
term in the general form of Ohm's law (Kulsrud, 2005):

E +
v ×B

c
= −∇pe

nee
(3.2)

pe is electron pressure and ne is electron number density. Take the curl of this
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equation and get the modi�ed induction equation:

∂B

∂t
= ∇× (v ×B) +∇× (

c∇pe

nee
)

= ∇× (v ×B)− c
∇ne ×∇pe

n2
ee

(3.3)

The second term on the right hand side is called the Biermann Battery term. Once
this term is not equal to zero, magnetic �elds will be created.

To rewrite this equation in terms of total pressure p and density ρ, we set ne =

ni = χ(ne + nn), where ni and nn are the ion number density and neutral number
density, respectively. χ is ionization fraction and is assumed to be constant in space.
In the case temperature of the ions and electrons is the same as the temperature of
the neutrals,

pe =
ne

ne + ni + nn

p =
χ

(1 + χ)
p (3.4)

ne = χ(ni + nn) =
χρ

M
(3.5)

where M is the average mass per neutral and also assumed unchanged in space.
Substituting into Equation 3.3, we get,

∂B

∂t
= ∇× (v ×B) +

cM

e(1 + χ)
∇× (

∇p

ρ
)

= ∇× (v ×B)− cM

e(1 + χ)

∇ρ×∇p

ρ2 (3.6)

This is the modi�ed induction equation we will use in the simulations. This
equation maintains the divergence free constraint of magnetic �elds since the source
term is a curl of a function.

It is interesting to compare this equation with the �uid vorticity (ω = ∇ × v)
equation (Kulsrud et al., 1997):

∂ω

∂t
= ∇× (v × ω) +

∇ρ×∇p

ρ2 (3.7)

here the viscous term is neglected. The source terms of magnetic �elds and vorticities
are identical except for a factor, so the magnetic �elds are generated at the same
places where vorticity is generated.
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For a barotropic �ow, the Biermann Battery term is always zero. That is because
the pressure is only dependent on the density, then the gradients of density and
pressure are parallel to each other and their cross product is zero. But it is generally
nonzero in regions where shocks are present, so magnetic �elds will be created within
shocks during large-scale structure formation.

Kulsrud et al. (1997) performed cosmology simulations to study magnetic �eld
generations from Biermann Battery e�ect. They evolved magnetic �elds passively in
their hydrodynamics code (Ryu et al., 1993) with an additional induction equation
(Equation 3.6). They simulated a standard CDM model of a box of (32 h−1 Mpc)3,
using 1283 cells and 643 particles for dark matter, from z=20 to z=0. Magnetic �elds
of strength of order 10−21 G were found in their simulations at z∼2-3. However, their
spatial resolution was too large for the scale of interest.

We present two simulations in this chapter both with Biermann Battery e�ect.
One is the Population III star formation and the other is the galaxy cluster formation.
Higher resolutions in our simulations may help to better understand the magnetic
�eld generations from the battery e�ect and their subsequent evolution.

3.2 The Biermann Battery E�ect in the Population
III Star Formation

3.2.1 Introduction
In this section, we study the magnetic �elds created by Biermann Battery e�ect

in the �rst generation of stars. The magnetic �elds originating from Biermann Bat-
tery e�ect are the minimum possible �elds in existence during Population III star
formation, and may be the seed �elds for stellar dynamo or for the magnetorotational
instability in accretion disks around the �rst stars.

The nature of the �rst generation of stars, as well as their in�uence on later struc-
ture formation, is a fundamental problem in cosmology. A great deal of theoretical
progress has been made (see recent reviews by Bromm & Larson, 2004; Glover, 2005;
Ciardi & Ferrara, 2005). In the past decade, cosmological hydrodynamic simulations



65

of Population III star formation have achieved great success, and signi�cantly di�er-
ent numerical methods have produced results that agree quite well (Abel et al., 2002;
Bromm et al., 2002; Yoshida et al., 2003; O'Shea & Norman, 2007). These calcula-
tions have given a reasonably clear picture of the formation process of Population III
stars, and have provided some constraints on many of their important properties.

These calculations, while useful, largely ignore an important issue: the relevance
of magnetic �elds in Population III star formation. Magnetic �elds are widely ob-
served in our galaxy, in other galaxies, and in galaxy clusters, and the origin of
these �elds is one of the most fundamental and challenging problems in astrophysics
(Carilli & Taylor, 2002; Widrow, 2002). One possibility is that magnetic �elds are
created and ampli�ed in the �rst generation of stars and are spread throughout the
IGM when these stars explode, providing seed �elds for later generations of stars
and for further ampli�cation by dynamo e�ects. If some seed magnetic �elds exist
before Population III stars form, they may help to remove angular momentum from
the star-forming clouds, signi�cantly changing the ultimate mass range of these stars
(Pudritz & Silk, 1989; Davies & Widrow, 2000).

Several groups have examined the importance of magnetic �elds on the evolution
of Population III protostellar disks using analytic or semi-analytic models. These in-
clude Silk & Langer (2006), Tan & McKee (2004) and Tan & Blackman (2004), who
model (among other aspects of primordial star formation and evolution) dynamos
in primordial accretion disks. Other authors, including Flower & Pineau des Forêts
(2003) and Maki & Susa (2007), use one-dimensional calculations to examine the
collapse of the primordial star-forming cloud and the assumptions of �ux-freezing.
More recent work (Machida et al., 2006, 2008) follows the 3-D evolution of an ide-
alized primordial cloud core. Although useful, none of these models self-consistently
include the e�ects of both magnetic �elds and cosmological structure formation.

Here, We present the results of the �rst self-consistent three-dimensional adaptive
mesh re�nement magnetohydrodynamic simulations of Population III star formation
including the Biermann Battery e�ect within the context of cosmological structure
formation.
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3.2.2 Methodology
The simulation setup is similar to that described in O'Shea & Norman (2007).

We use a N-body plus hydrodynamics simulation with a comoving box size of 0.3
h−1 Mpc, initialized at z = 99 with an Eisenstein & Hu power spectrum (Eisenstein
& Hu, 1999), and with cosmological parameters Ωb = 0.04, Ωm = 0.3, ΩΛ = 0.7,
h = 0.7, σ8 = 0.9, and ns = 1.0. The simulation was �rst run with a 1283 root
grid and three levels of AMR to z = 15, where the most massive halo in the volume
was found. The simulation was then re-centered on this halo, using a 1283 root grid
and three levels of static nested grids, giving a dark matter and baryon resolution of
1.81 h−1 M¯ and 0.28 h−1 M¯, respectively, and an initial comoving spatial resolution
of 293 h−1 pc. The simulation was started at z = 99, initialized with zero magnetic
�elds throughout, and allowed to run with a maximum of 22 levels of adaptive mesh
re�nement until the collapse of the most massive halo, at z ' 17.55, using the nine-
species molecular chemistry of Abel et al. (1997) and Anninos et al. (1997), but
modi�ed for high densities as described in Abel et al. (2002). Further details of the
simulation setup and physics can be found in O'Shea & Norman (2007).

The electron fraction is always small during PopIII star formation. But as pointed
out by Kulsrud et al. (1997) (See Equation 3.6), the ionization fraction enters into the
induction equation through 1 + χ, so even a very small ionization fraction is enough
to generate magnetic �elds. In our simulation, we took m = 1.2 mH , where mH is
the mass of a neutral hydrogen atom. The electron fraction is¿ 1 at all times in this
star formation scenario, so we set χ = 0 rather than calculating the electron fraction
in every cell. Given the approximation above, this introduces negligible error. The
battery term is added to the simulation through the EMF term in the constrained
transport algorithm, ensuring that no divergence of magnetic �elds is introduced to
the system.

Since the electron fraction declines rapidly at the halo core, ambipolar di�usion
may be important in star formation simulation (Abel et al., 2002). To address this
issue, we compared the ambipolar di�usion timescale with the dynamic timescale in
our simulation, as in O'Shea & Norman (2007). The ratio is always larger than 10
over the density range of interest, suggesting that ambipolar di�usion does not play
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a signi�cant role up to the densities that we study.

3.2.3 Results
Over the course of the simulation, magnetic �elds are produced at various physical

scales by the Biermann Battery process. We �rst plot the distributions of gas density
and magnetic �elds in z direction in a slice through the halo core at z=20 and z=17.55
(the last output) to show the magnetic �eld distribution at the star forming-halo in
Figure 3.1. At z=20, the core of radius about 10 pc contains several hundred M¯

baryon with number density of about 10 cm−3. The magnetic �elds inside the core
at the level of 10−15G with scale length about ten pc. At z=17.55, the core density
increases to 1010cm−3 in the central 0.01pc region through rapid collapse. Then the
magnetic �elds "frozen-in" the gas increase to 10−10 G level.

Figure 3.2 shows the evolution of spherically-averaged radial pro�les of the baryon
number density and magnetic �eld strength of the primordial star-forming halo at
several times during the halo evolution. Since the magnetic �elds are very small
(β ≡ Pthermal/Pmagnetic is greater than 1015 at all times), the gas collapse at the halo
core is almost the same as the hydrodynamic (B = 0) case described by O'Shea &
Norman (2007). The pro�les start at z = 40, where the magnetic �elds generated
by the Biermann Battery are of order 10−18 G, which is consistent with theoretical
predictions (Pudritz & Silk, 1989; Davies & Widrow, 2000). In plasmas with a large
beta (À 1) and large mass-to-�ux ratio, magnetic �elds follow the gas falling into
the core passively, so after being generated at low densities, the magnetic �elds are
primarily ampli�ed by being carried along with collapsing baryons. This is shown
more clearly in Figure 3.3, and will be discussed in more detail later. At low density
(up to nb ' 2 cm−3, corresponding to the evolution of the gas up to z ∼ 20), the
Biermann Battery is e�ective at creating magnetic �elds. The central magnetic �eld
scales with density as |B| ∝ ρ, suggesting that the magnetic �eld is enhanced by
both the Biermann Battery e�ect and by gas collapse. At higher densities (after
z ' 20), the magnetic �eld at the center of the halo is ampli�ed as |B| ∝ ρ2/3, as
expected in spherical collapse. At later times, when the gas in the center of the halo
collapses, the magnetic �eld in the center of the halo rises to ∼ 10−9 G as the central
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Figure 3.1: Images of gas density (left) and magnetic �elds in z-direction (right) at a
slice cutting the halo core at z = 20 (top) and z = 17.55 (bottom). The view is 40 pc
for z=20 and 0.044 pc for z=17.55. For z=20, The density is from 1.1 to 12.7 cm−3.
The range of Bz is −1.3× 10−15 to 2.1× 10−15 G. For z=17.55, the density is from
4.7× 106 to 1.2× 1010 cm−3. The range of Bz is −2.4× 10−10 to 5.6× 10−11 G. In
all panels red represents high and blue represents low, with the color table relative
in each plot.
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number density grows to nb ' 1010 cm−3.
It is useful to examine the history of magnetic �eld ampli�cation inside the halo in

more detail. This is shown in Figure 3.3, which shows the mass- and volume-weighted
magnetic �elds inside the halo virial radius as a function of redshift (top panel), and
also shows the mass-weighted mean magnetic �eld strength in the inner 100 M¯ of
gas as a function of the mass-weighted baryon number density of gas in the same
Lagrangian region (bottom panel). From these two plots, the two stages of magnetic
�eld ampli�cation can be observed. From z = 40 to z = 20, the magnetic �elds
slowly increase to 10−15 G. At this stage, the mass-weighted and volume-weighted
�elds are quite similar, because the magnetic �elds are created and ampli�ed by the
Biermann Battery at large spatial scales, and the �elds are distributed uniformly by
mergers and shear �ows (see Roettiger et al. (1999)). During the second stage of
evolution, after z = 20, the volume-weighted and mass-weighted �elds evolve in very
di�erent ways, with the mass-weighted magnetic �eld growing rapidly along with the
increasing baryon density in the halo cores.

The bottom panel of Figure 3.3 shows that at late times (high densities), the
magnetic �eld in the core of the halo increases as |B| ∝ ρ2/3, or solely from �eld
ampli�cation due to magnetic �elds frozen into spherically-contracting gas. The
collapse timescale at the center of the halo is proportional to the cooling time, which
is quite short at high densities, making any signi�cant magnetic �eld creation by
the Biermann Battery mechanism di�cult in the halo center. The baryon density
in the halo core grows about 9 orders of magnitude (from 1 to 1010 cm−3 between
z = 20 and z = 17.55, when the simulation is terminated), and the magnetic �elds
in the core increase by about 5 orders of magnitude (from 10−15 to 10−9 G). Though
the core region contains less than one percent of the halo gas, the mass-weighted
magnetic �eld in the halo increases by approximately four orders of magnitude, from
∼ 10−15 to 10−11 G, between z=20 and z=17.55.

To show where magnetic �eld generation via the Biermann Battery takes place,
and to provide a more quantitative understanding of its e�ect in di�erent stages
of halo evolution, we show in Figure 3.4 the two-dimensional distribution of the
instantaneous magnetic �eld generation rate via the Biermann Battery versus baryon
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Figure 3.2: Evolution of spherically-averaged radial pro�les of baryon number
density (top) and magnetic �eld strength (bottom) of the Population III star-
forming halo. Lines correspond to (from bottom to top in each panel) z =
40, 30, 25, 20, 19, 18, 17.61, 17.55.
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Figure 3.3: Top panel: mass-weighted (dashed line) and volume-weighted (solid line)
mean magnetic �eld strength inside the virial radius of the collapsing halo as a
function of redshift. Bottom panel: mass-weighted mean magnetic �eld strength as
a function of baryon number density inside the core of the primordial star forming
halo at the �nal simulation output (solid line; Menc ' 100 M¯). The dashed line
shows |B| ∝ ρ2/3 (as expected by �ux freezing and spherical collapse).
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overdensity at four simulation outputs from z = 40 to z = 17.55. At early times,
very little gas is at high overdensities, and the magnetic �eld generation rate is
below 10−35 G/s. The total time taken during the simulation, from z = 99 to
z = 17.55, is approximately 6.2×1015 seconds. If the magnetic �elds are only created
by the Biermann Battery without any ampli�cation from shear �ows or collapse, the
magnetic �elds would be at most 10−19 G at z ∼ 18. By z = 40 (∼ 1.5×1015 seconds,
or 5 × 107 years, after the beginning of the calculation), �elds reach a strength of
10−18 G, suggesting that some ampli�cation is taking place through gas collapse.
While the rate of magnetic �eld generation via the Biermann Battery can actually
be much higher at high overdensity (as seen in the bottom right panel, at z = 17.55),
the rate never exceeds 10−25 G/s (∼ 3× 10−18 G/yr). Given that the collapse of the
core, from a peak baryon density of nb ∼ 1 cm−3 to 1010 cm−3, takes approximately
1014 seconds (' 3× 106 years), magnetic �elds larger than 10−12 G cannot be made
with the Biermann Battery alone during this time, strongly suggesting that the
battery e�ect makes little contribution to magnetic �eld ampli�cation during the
�nal collapse.

3.2.4 Discussion and Conclusions
In this section, we have shown results from the �rst cosmological magnetohy-

drodynamical simulation of Population III star formation including the Biermann
Battery e�ect. This e�ect is one of the most robust methods of generating magnetic
�elds in the Universe (Biermann, 1950), and thus provides useful constraints on the
minimum magnetic �eld expected in situations where Population III star formation
will take place.

We �nd from our simulation that small magnetic �elds are primarily generated
via the Biermann Battery at relatively low overdensities, and are then ampli�ed
to values of nearly 10−9 G at the center of the cosmological halo via gravitational
collapse. While signi�cant, this magnetic �eld is still quite small � the plasma β is
never smaller than 1015 at any point during the simulation. This suggests strongly
that the magnetic �elds do not play a signi�cant dynamical role up to densities
of nB ∼ 1010 cm−3, when the simulation is terminated. As a result, up to that
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Figure 3.4: Mass-weighted two-dimensional distributions of the instantaneous rate
of magnetic �eld generation via the Biermann Battery vs. baryon overdensity, at
z = 40 (top left), z = 30 (top right), z = 20 (bottom left) and z = 17.55 (bottom
right). Each panel includes all gas in the simulation volume at a given redshift.
Contour lines are logarithmic, and show relative values between the highest and
lowest non-zero values in each panel.
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point the evolution of the primordial gas within the cosmological halo is very close
to the hydrodynamic results obtained by O'Shea & Norman (2007). This result
lends credibility to assumptions regarding the dynamical insigni�cance of magnetic
�elds made in previous cosmological calculations of Population III star formation.
At higher densities than are explored in these types of calculations, however, the
magnetic �elds may be ampli�ed to dynamically relevant values via a process such as
the magnetorotational instability or a dynamo (Silk & Langer, 2006; Tan & McKee,
2004; Tan & Blackman, 2004).

Comparison to previous work is somewhat di�cult, since we start out with no
magnetic �eld and terminate our calculation at nB ∼ 1010 cm−3. The work done by
Silk & Langer (2006), Tan & McKee (2004) and Tan & Blackman (2004) focus on
disk physics at much higher densities than are explored in this simulation. Maki &
Susa (2007) and Flower & Pineau des Forêts (2003) focus on ambipolar di�usion �
physics not present in our calculations, which assume the equations of ideal MHD.
Additionally, while their initial conditions start within the density regime probed by
our calculations, both sets of models assume the presence of much stronger magnetic
�elds than are generated by our calculations. We can, however, directly compare our
work to that of Machida et al. (2006, 2008), who study fragmentation and jets in
magnetized, rotating primordial clouds. They �nd that protostellar jets are formed
when their clouds have a magnetic �eld of B0 > 10−9 (nH/103 cm−3)2/3 G and with
rotational energy that is greater than the magnetic energy. These conditions are not
both satis�ed in the halo modeled in our calculation, suggesting that in the absence
of a pre-existing magnetic �eld or a mechanism for generating larger �elds at higher
densities, strong protostellar jets may not exist in this halo. This does not preclude
such jets being formed in halos of a signi�cantly di�erent mass or evolutionary history.

The simulation of the evolution of an evolving protostellar core within an accre-
tion disk is currently beyond the capability of our numerical tools. However, there
are multiple avenues that we can follow to more thoroughly explore the relevance of
magnetic �elds in Population III star formation. We can begin our calculation with
seed �elds having strengths based on limits from observation and theory (Widrow,
2002). We can also examine the e�ects of magnetic �elds at higher densities by im-
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plementing more chemical and cooling processes (as discussed by Turk et al., 2008).
Both of these projects are underway, and we will report on the results in an upcoming
paper.

To summarize, we have performed the �rst calculations that incorporate the
Biermann Battery in cosmological magnetohydrodynamic simulations of Population
III star formation. Our key results are as follows:

1. From an initial state with no magnetic �elds, a combination of the Biermann
Battery and compressional ampli�cation can result in �elds with strengths of |B| '
10−9 G at nB ' 1010 cm−3 at the center of a cosmological halo where a Population
III star will form.

2. The Biermann Battery creates �elds predominantly at low density (nB ≤
10 cm−3) and large spatial scales in Population III star-forming halos.

3. The magnetic �elds created by the Biermann Battery are dynamically unim-
portant at all densities below nB ' 1010 cm−3 � β ≡ Pth/PB ≥ 1015 at all times
during the evolution of the halo.

3.3 The Biermann Battery E�ect in the Formation
of Galaxy Cluster

3.3.1 Introduction
In this section, we present simulation of magnetic �eld creations and ampli�ca-

tions in galaxy cluster formation with Biermann Battery e�ect. The nature of the
simulation is similar to the pioneering study by (Kulsrud et al., 1997), but now we
have much better spatial resolution with AMR. It isn't expected that the tiny mag-
netic �elds from battery e�ect will be ampli�ed to the level of being important in
any physical processes. But it is interesting to study how magnetic �elds are gener-
ated, and more importantly, are ampli�ed in sub-cluster scale. This simulation is a
supplement to the study in the Chapter 5. Here, the magnetic �elds are so weak that
they will never be dynamically important and never be saturated in sense of energy
equipartition between magnetic energy and kinetic energy in any regions. We will
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describe the simulation and major results in this chapter with a concise discussion,
most of discussions about magnetic �eld evolution in galaxy cluster will be left to
the Chapter 5.

3.3.2 Methodology
The simulation uses a ΛCDM model with parameters h = 0.73, Ωm = 0.27,

Ωb = 0.044, ΩΛ = 0.73, and σ8 = 0.77, the values are from WMAP III results
(Spergel et al., 2007). For simplicity, the simulation is adiabatic without the addi-
tional physics such as radiative cooling, star formation and supernova feedback, while
these processes are not essential for the purpose of this study. The survey volume is
256 h−1 Mpc on a side. The simulation is computed from cosmological initial condi-
tions sampled onto a 1283 root grid and 2 level nested static grids in the Lagrangian
region where the cluster forms which gives an e�ective root grid resolution of 5123

cells (0.5 Mpc) and dark matter particles of mass 1.07× 1010M¯. AMR is used only
in the region (about (50 Mpc)3) where the galaxy cluster forms, with a total of 8
levels of re�nement beyond the root grid allowed, for a maximum spatial resolution
of 7.8125 h−1 kpc. While the baryons are resolved at higher and higher spatial and
mass resolution at higher levels, the dark matter particles remain constant in mass
so as not to add any additional noise. The simulation is evolved from redshift z = 30

to z = 0 with the Biermann Battery term is always turn on. In this run, M is 1.0
mH , and χ equals 1. This latter assumption is justi�ed because the intergalactic
medium out of which the cluster forms is highly ionized.

The Biermann Battery term is added to the simulation the same way as the run
of Population III star formation. But a new re�nement criteria was used in this
simulation. To maintain a high resolution in a relative large region in the cluster,
all the regions with density 200 times larger than critical density are re�ned to the
highest level. So for z<1, while the cluster is well formed, roughly, a sphere with
radius of 1.5 Mpc comoving, or 150 cells in highest resolution, is re�ned to the highest
level.
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3.3.3 Results
During the simulation, the magnetic �elds are �rst created by the Biermann

Battery e�ect at a large range of scales. Figure 3.5 shows the slice cuts perpendicular
to y axis across the center of cluster at z=3 of gas density, temperature, magnetic
energy density and strength of the Biermann Battery term. Each plot covers an area
of 40 × 40 Mpc comoving (or 10 × 10 Mpc proper). This frame is at ∼ 900 Myr
after simulation start. At this time, a proto-cluster of radius of about 0.20 Mpc is
already formed, while the gas is heated to 107 K by the shocks. The magnetic �elds
are about 10−20 G within the proto-cluster and about 2 order of magnitude smaller in
the �laments. It is a clear trend that the magnetic �elds from the Biermann Battery
mechanism is larger in hotter regions, which usually have larger vorticity generated
by accretion shocks (Ryu et al., 2008). The magnetic �eld generation rate is ∼ 10−36

G s−1 at most. So the magnetic �elds from battery e�ect shouldn't be larger than
10−22 G without any ampli�cations. The proper density of baryon in the cluster
center increases about 1000 from simulation start, so the magnetic �elds there may
increase another 100 times to 10−20 G by collapse since |B| ∝ ρ2/3. The magnetic
�elds in the core region are bigger than that, so it means that some process (likely
to be stretching by shear �ows) other than collase also ampli�es the magnetic �elds.
Figure 3.6 are the images of gas density and battery source term of cuts through
cluster centers at z=2, 1, and 0. There is no obvious evolution in the generation rate
of magnetic �elds by the Biermann Battery e�ect. The created �elds are distributed
at large spatial scales and even at low density regions out of cluster. The source
term of magnetic �elds is hardly larger than 10−35 G s−1. For the Hubble time 13
billion years (4 × 1017 s), the magnetic �elds from battery e�ect only should be at
most 10−18 G.

Figure 3.7 shows the evolution of magnetic �elds by plotting the projections
of gas density and magnetic energy density along y axis at di�erent redshifts. The
magnetic �elds are frozen in the plasmas and concentrate at the cluster region during
the hierarchy structure formation of cluster.

Figure 3.8 shows the total magnetic energy and the magnetic energy per unit mass
inside half of the virial radius as function of time from z=3, while �gure 3.9 plots the



78

Figure 3.5: Images of gas density, temperature, magnetic energy density and strength
of the Biermann Battery term at z=3. Size of each image is 40 × 40 Mpc comoving.
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Figure 3.6: Images of gas density and strength of the Biermann Battery term at z=2,
1, 0. Each image covers 40 × 40 Mpc comoving.
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Figure 3.7: Snapshots of projected gas density and magnetic energy density at dif-
ferent redshifts. Each plot is 4 h−1 Mpc comoving on the size. Projection is alone
the y-axis for 4 h−1 Mpc comoving. The ranges of projected gas density are, from
high redshift to low redshift, 1.11 × 10−4 - 4.14 × 10−2 , 3.49 × 10−5 - 2.96 × 10−2,
5.54 × 10−5 - 3.96 × 10−2, 4.15 × 10−5 - 2.15 × 10−2, 4.73 × 10−5 - 2.01 × 10−2,
and 5.43 × 10−5 - 2.22 × 10−2 g cm−2, respectively. The ranges of magnetic energy
density (averaged over projected distance) are 2.89 × 10−46 - 4.20 × 10−35, 1.32 ×
10−44 - 4.07 × 10−35, 4.02 × 10−41 - 1.13 × 10−33, 2.07 × 10−39 - 1.88 × 10−33, 7.94
× 10−40 - 2.20 × 10−33, and 1.13 × 10−39 - 3.88 × 10−33 ergs cm−3, respectively.
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evolution of baryon mass inside the same volumes. For the �rst 1 Gyr after z=3, the
central proto-cluster is relatively relaxed until the merger happens around z=2, so
all these quantities have little changes. During this period, some plasmas as well as
magnetic �elds �ow into the proto-cluster but the magnetic �elds inside the cluster
aren't ampli�ed much. From z=2 to 1, the cluster undergoes numerous mergers
and continuous mass accretion (see Figures 3.7 and 3.9), so the cluster becomes
much more active. Then both the magnetic energy and the magnetic energy density
experience exponential growth with constant rates from t=1 Gyr (z ∼ 2) to t=6 Gyr
(z ∼ 0.5), then continue to grow at slower rates until simulation end. It seems that
the cluster motions are still vigorous enough to amplify magnetic �elds after z=1
when the mass accretion process already slows down dramatically. Further research
is needed to understand the relation of the magnetic �eld ampli�cations and the
ICM motions. The magnetic energy and the magnetic energy per unit mass jump
∼ 40000 and ∼ 500 times from z=3 to 0, respectively, while the gas mass inside the
sphere increases only ∼ 80 times.

The spherically averaged radial pro�les of gas density and magnetic �eld strength
at di�erent redshifts are showed at Figure 3.10. The magnetic �elds don't drop as
fast as the gas density with increasing radius. Instead, the strength of magnetic �elds
declines very slowly outward till about half of the virial radius. It is unclear whether
this sudden drop is caused by the properties of the ICM motions or by the change of
the simulation resolutions. The strength of magnetic �elds increases about 10 times
with the decrease of gas density from z=3 to z=0. It seems that magnetic �elds are
ampli�ed and substained by the shear �ows of the ICM turbulence. ICM turbulence
and magnetic �eld ampli�cations will be discussed in Chapter 5 in detail.

3.3.4 Conclusions
In this section, we present a simulation of cluster formation with Biermann Bat-

tery e�ect to show the generations of magnetic �elds in cluster scale by battery
e�ect and the further evolution and ampli�cations of these initial magnetic �elds by
collapse and shear �ows.

Biermann Battery mechanism generates magnetic �elds in the collapsing gas at
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a very slow rate (generally not greater than 10−35 G s−1). These magnetic �elds are
�rst ampli�ed by the gravitational collapse. The magnetic �elds are brought to the
cluster while they are frozen-in the collapsing gas. The shear �ows of turbulence in
the cluster will further amplify and sustain the magnetic �elds. The magnetic �eld
strength pro�les are �at extending to about half of the cluster, indicating that �elds
are ampli�ed mainly by shear �ows in the ICM instead of collapse.

The magnetic �elds generated through this mechanism are much weaker than
observed magnetic �elds. So either another mechanism is required to further amplify
magnetic �elds in smaller scales (Kulsrud et al., 1997) or another source of magnetic
�elds is required to obtain the micro-Gauss �elds in clusters. More discussions of
origin and ampli�cation of magnetic �elds in cluster formation will be left to the
Chapter 5.

Acknowledgments: This chapter, in part, is the material as it appears in the
Astrophysical Journal, 688, L57-L60, 2008, Xu, Hao; O'Shea Brian W.; Collins,
David C.; Norman, Michael L.; Li, Hui; Li, Shengtai, �The Biermann Battery in
Cosmological MHD Simulations of Population III Star Formation�, the University
of Chicago Press, 2008. The dissertation author was the primary investigator and
author of this paper.



Chapter 4

Formation of X-Ray Cavities by the
Magnetically Dominated Jet-Lobe
System in a Galaxy Cluster

4.1 Introduction
Active Galactic Nuclei (AGNs) are the most energetic eruptions in the universe.

They may release as much as 1062 ergs of energy into ICM (McNamara et al., 2005).
Recently observational and theoretical study of AGNs in galaxy clusters, especially
about the giant X-ray cavities observed by high resolution X-ray observations of
Chandra, suggests that large amounts of magnetic �elds may be dominated compo-
nents of AGN feedbacks (Diehl et al., 2008). In this chapter, I will discuss a model
of magnetic �elds injected from an AGN outburst into the ICM and the formation of
X-ray cavities and weak shocks. This research also relates to the long time mystery
of the source of non-gravitational heating the hot plasmas in the galaxy clusters.

The roles of AGNs in galaxy clusters have been seriously studied for the problem
of heating hot atmosphere of galaxy clusters recently (see review by McNamara &
Nulsen, 2007). The absence of spectral signatures of cooling plasmas at the galaxy
cluster centers (Tamura et al., 2001; Peterson et al., 2003) has led to the suggestion
that ICM in cluster centers must be heated. Powerful radio jet-lobes emanating
from SMBHs in AGNs of clusters are considered to be the promising heating sources

86
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(Binney & Tabor, 1995; Tucker & David, 1997). High resolution X-ray images of
galaxy clusters by Chandra have revealed giant cavities and weak shock fronts in the
hot gas (Fabian et al., 2000; McNamara et al., 2000, 2005), which are commonly
associated with energetic radio lobes Blanton et al. (2001); Nulsen et al. (2002) and
suggest that magnetic �elds play an important role.

Large uncertainties concerning the nature of these cavities, their formation, evo-
lution, and survivability in the ICM still remain. Numerical simulations of hot,
underdense bubbles in galaxy clusters have been performed by a number of authors
(e.g., Churazov et al., 2001; Reynolds et al., 2001; Brüggen & Kaiser, 2002; Omma
et al., 2004). It is generally possible to inject a large amount of energy into the
ICM via AGNs but it is not exactly clear how the AGN energy can be e�ciently
utilized (Vernaleo & Reynolds (2006), though see Heinz et al. (2006)). One of the
most interesting characteristics of the radio bubbles is that they are intact, whereas
most hydrodynamic simulations (Quilis et al., 2001; Brüggen & Kaiser, 2002; Dalla
Vecchia et al., 2004) have shown that purely hydrodynamic bubbles will disintegrate
in timescales much less than 108 yrs, markedly di�erent from observations. (we will
use X-ray cavities, bubbles, and radio bubbles interchangeably in this chapter). The
stabilizing role of magnetic �elds has been suggested and studied by a few authors
(e.g., Jones & De Young, 2005).

A rather di�erent class of models has been proposed and studied, in which the
AGN energy output is modeled in the magnetically dominated limit (Li et al. (2006);
Nakamura et al. (2006); see also the previous work of Blandford (1976); Lovelace
(1976); Lynden-Bell (1996); Li et al. (2001)). The key feature of this model is to
inject simultaneously both the poloidal and the (more dominant) toroidal magnetic
�elds in a small volume. This is to mimic the possible outcome of an accretion disk
dynamo around an SMBH that shears and twists up the poloidal magnetic �elds
and generates large amounts of toroidal �elds with an axial current (as high as 1019

amperes) �owing along the central axis of this magnetic structure. The injection
of magnetic �elds and their associated currents lasts a �nite time (mimicking the
lifetime of an AGN), after which the magnetic �elds and their currents will no longer
be injected but will continue to evolve and gradually dissipate away. This global
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current is essential to maintaining the magnetic structure throughout the lifetime of a
magnetic �eld and its associated current. The system is not force-free initially, and so
the �elds will self-collimate and expand predominately axially, producing a collimated
structure reminiscent of a �magnetic tower�. Extensive 3-D magnetohydrodynamic
(MHD) simulations based on this model in a static cluster-like background, have
demonstrated that such magnetically dominated structures can reproduce some of
the global features of the jet-lobe systems, especially in maintaining the integrity of
the bubbles.

In this chapter, we present cosmological MHD simulations of a cluster formation
with the feedback of an AGN, with the aim of understanding the X-ray cavity for-
mation using the magnetically dominated models proposed by Li et al. (2006). This
di�ers from all previous studies (Brüggen & Kaiser, 2002; Heinz et al., 2006) in that
the formation of the X-ray cavity is studied in a realistic and self-consistent cosmo-
logical setting where the dark matter, baryon dynamics and magnetic �elds are all
evolved self-consistently. In Section 4.2, we describe our approach and the parame-
ters of the simulations. In Section 5.3, we present the key results. Conclusions and
discussions are given in Section 4.4.

4.2 Simulations
The galaxy cluster presented here is taken from the Simulated Cluster Archive

of Laboratory of Computational Astrophysics at University of California, San Diego
(http://lca.ucsd.edu/data/sca/). It uses a ΛCDM model with parameters h = 0.7,
Ωm = 0.3, Ωb = 0.026, ΩΛ = 0.7, and σ8 = 0.928. While these are not precisely the
values determined by the latest observations (Spergel et al., 2007), the di�erences
are unimportant for the conclusions of this study. For simplicity, the simulation is
adiabatic without the additional physics such as radiative cooling and star formation
feedback. (These e�ects are not essential for the purpose of this study but are
required for the further research on the problem of heating ICM atmosphere.) The
survey volume is 256 h−1 Mpc on a side. (For simplicity, all spatial scales in the
rest of this chapter are normalized by the factor h−1 and are in comoving unit.)
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The simulations were computed from cosmological initial conditions sampled onto
a 1283 root grid and 2 level nested static grids in the Lagrangian region where the
cluster forms which gives an e�ective root grid resolution of 5123 cells (0.5 Mpc) and
dark matter particles of mass 1.49 × 1010M¯. Adaptive mesh re�nement (AMR) is
used only in the region where the galaxy cluster forms, with a total of 8 levels of
re�nement beyond the root grid, for a maximum spatial resolution of 7.8125 kpc.
At the center of the cluster when the AGN is �turned on� (see below), we further
increased the resolution at the injection region to be ∼ 1.95 kpc. While the baryons
are resolved at higher and higher spatial and mass resolution at higher levels, the
dark matter particles maintain constant in mass so as not to add any additional
noise. The simulations were evolved from redshift z = 30 to z = 0.

The energy output from an SMBH is simulated by injecting magnetic energy in
a small volume centered on a chosen massive galaxy that is at or near the center
of the cluster. It is currently not possible to resolve both the galaxy cluster and
the black hole environment simultaneously, so we have adopted an approach that
mimics the possible magnetic energy injection by an SMBH (Li et al., 2006). The
injected magnetic �elds are determined by three key quantities: the length scale of
the injection region r0, the amount of poloidal �ux Ψp, and the poloidal current Iz.
In cylindrical coordinates, the injected poloidal �ux Ψp (where Ψp = rAφ and Aφ is
the φ component of vector potential) is speci�ed as:

Ψp(r, z) = r2 exp(−r2 − z2)B0 (4.1)

where r is normalized by r0.
Then the injected poloidal �elds are

Binj,r = −1

r

∂Ψp

∂z
= 2zr exp(−r2 − z2)B0, (4.2)

Binj,z =
1

r

∂Ψp

∂r
= z(1− r2) exp(−r2 − z2)B0. (4.3)

And the toroidal component is simply chosen as:

Binj,φ =
αΨp

r
= αr exp(−r2 − z2)B0 (4.4)

here, the parameter α roughly speci�es the �ux ratio between toroidal and poloidal
components. The magnetic �elds are continuously injected into the system for a
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duration tinj. So in the simulation, the injected magnetic �elds are decided by r0,
B0, α, and tinj.

These initial magnetic �elds are local since each component drops exponentially
as a function of distance from the center. It is important that these �elds are not
in force equilibrium (Li et al., 2006). The radial force density alone the midplane
(z=0), is:

Fr(z = 0) = 2r(1− r2)(10− α2 − 4r2)exp(−2r2) (4.5)

and the vertical force density is,

fz = 2zr2(α2 − 10 + 4z2 + 4r2)exp(−2r2 − 2z2) (4.6)

Figure 4.1 depicts the magnetic force with di�erent α in some speci�c planes. For the
case of α2 > 10, the magnetic force always drives the �elds away from the midplane
in the z direction.

We start the magnetic energy injection at redshift z = 0.05, at which the cluster
has a virial radius rv ≈ 1.5 Mpc, a virial mass mv ≈ 1015M¯, baryon to dark matter
ratio 8.16%. In the cluster center where the chosen AGN is located, the gas density
is 7.27×10−27 g cm−3, pressure 1.49×10−10 dyn cm−2, and temperature 1.45×108K.
The density pro�le of the ICM can be �tted as: ρ = ρ0[1 + ( r

rc
)2]−3k/2 with rc = 100

kpc and k = 0.485. Magnetic �elds are injected for 36 Myr with r0 = 20kpc,
B0 = 80µG, and α = 15. After injection, a peak strength of magnetic energy is
∼ 200µG. There are about 109 M¯ mass enclosed in the injection region. The
evolution from z = 0.05 to z = 0 lasts about 670 Myr. So the cluster is still evolving
while the magnetic �elds from an AGN are injected and are piercing through the ICM.
Many di�erent simulations were performed with a range of injection parameters, but
we present the results mostly using one simulation, while the conclusions drawn are
general.

Note that after the �rst 36 Myr, magnetic �elds and their associated currents
are no longer injected. This, however, does not mean that the magnetic �elds (and
their currents) will disappear immediately. Instead, they will continue to evolve,
gradually losing energy (especially in the early stages) by, say, doing work against
the background ICM. Since the typical dynamic time is ∼ 108 yrs and our simulation
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Figure 4.1: Magnetic force distribution of the magnetic injection model. Left panel:
The radial component of the magnetic force as a function of radius r in the midplane
with α = 1, 3, and 5 for solid, dot-dashed, and dashed lines, respectively. Right
panel: The vertical component of the magnetic force as function of radius r at the
z=0.5 plane with α = 1, 3, and 5 for solid, dot-dashed, and dashed lines, respectively.
Image courtesy Hui Li, initially appeared in Li et al. (2006).
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lasts 7 × 108 yrs, we do not expect the numerical dissipation of magnetic energy to
play a major role. We have used high resolution on all the regions with magnetic
�elds (via AMR), so the numerical dissipation timescale should be much longer than
the dynamic timescale.

4.3 Results

4.3.1 Stages of X-ray Cavity Formation
Images of the cluster at di�erent epochs are given in Figure 4.2. The ranges of

density are, from top to bottom, 3.70×10−28−8.77×10−27, 9.41×10−29−6.24×10−27,
and 1.16 × 10−28 − 5.67 × 10−27 g cm−3, respectively. A cuto� of 2 × 108 K is used
in all temperature images. The minimum temperatures are 4.65 × 107, 6.78 × 107

and 6.9 × 107 K from top to bottom. The maximum magnetic energy density of
each image is 4.16 × 10−11, 1.67 × 10−11, and 6.05 × 10−12 erg cm−3. The ranges of
path-integrated X-ray emission are 6.67×10−7−5.26×10−5, 6.16×10−7−4.49×10−5

and 4.25× 10−7 − 4.41× 10−5 erg cm−2 s−1, from top to bottom, respectively. The
integrated X-ray intensity is taken from the 0.5− 7.5 keV band with 0.3 solar metal
abundance assumed. These projected results are obtained by integrating 336 kpc
centered at the clsuter center along the line of sight.

A pair of cavities can be seen in the images at late times, which are created
by the expansion of magnetic �elds as they move out of the cluster core region.
Note the relative motion between the cluster core and the injection location. The
evolution of the total magnetic energy (integrated over the whole cluster) is given
in Figure 4.3. We can see that the system �rst goes through an injection phase
from t = 0 − 36 Myr, during which ∼ 6 × 1060 ergs of magnetic energy is injected.
This gives an average input power of 5.3 × 1045 ergs s−1, which is comparable to
the typical luminosity of a powerful AGN. At the end of the injection, only about
3.1×1060 ergs still remain in the magnetic form while the rest of the injected magnetic
energy has all been transferred to the surrounding ICM. At t = 48 Myr, the poloidal
current is ∼ 1.9× 1019 amperes along the central axis, whose corresponding toroidal
magnetic �elds self-collimate the out�ow, which undergoes a supersonic expansion in
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Figure 4.2: Snapshots of the jet-lobe evolution driven by the magnetic energy output
of an AGN. Each image is 672 kpc on the side. Columns from left to right are slices of
density, temperature, the averaged magnetic energy density and the integrated X-ray
luminosity, respectively. The top row shows the cluster with the jet-lobe at the end
of magnetic energy injection. The middle and bottom rows show the well-developed
bubbles moving out of the cluster center. The bubbles are driven by magnetic forces
at all stages, and might become buoyant only after t > 500 Myr. (Each image uses
its own color map as described in text.)
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Figure 4.3: Evolution of the total magnetic �eld energy in the cluster from redshift
z = 0.05 to z = 0. The initial increase comes from the injection (which ends at
36 Myr), followed by a continual decline as the jet-lobe system converts magnetic
energy to thermal, kinetic and gravitational energies of the background ICM.

the cluster core region (Li et al., 2006; Nakamura et al., 2006) and forms a �tower-like�
structure.

Once the injection ceases, the magnetic energy in the cluster starts to decrease,
�rst at a fast rate (∼ 1052 ergs yr−1) from t ∼ 40 − 200 Myr, followed by a much
slower rate (∼ 1051 ergs yr−1) from t ∼ 200 − 670 Myr. This transition coincides
with the time when the magnetic lobes leave the cluster core region (∼ 100 kpc,
the middle row of Figure 4.2). The plasma density and pressure of the ICM drop
rapidly beyond the core, hence the slower rate of magnetic energy dissipation. The
poloidal current is ∼ 5 × 1018 ampere at t = 348 Myr. Once the magnetic lobes
leave the cluster core, they experience additional expansion, forming the round or
�attened shapes, depending on the surrounding cluster environment (the bottom
row of Figure 4.2, more details in the next subsection). The �nal total magnetic
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energy in the cluster is about 7.5 × 1059 ergs, roughly ∼ 10% of the total injected
magnetic energy. This implies that ∼ 90% of the injected magnetic energy has been
transferred to the ICM: their thermal energy (heating via compression and shocks),
their kinetic energy (driving the bulk �ows), and their potential energy (being lifted
in the cluster potential well).

4.3.2 Shock Fronts and Cavity Properties
Chandra observations have revealed that shocks around the radio lobes are weak

(Fabian et al., 2003; Nulsen et al., 2005; McNamara et al., 2005). In our simulations,
a global shock front enclosing the whole magnetic structure is generated early by
the injection of magnetic �elds. At t = 48 Myr, the shock's Mach number is about
1.55 at a distance roughly 92 kpc away from the central galaxy. This shock, which is
hydrodynamic in nature, gradually weakens as it moves ahead of and away from the
magnetic structure. By t = 168 Myr, the shock is about 261 kpc away and barely
visible (the middle row of Figure 4.2), with a Mach number just above 1. After this
time, the shock is dissipated into the background ICM.

The Lorentz forces from the magnetic �elds expand the magnetic structure and
push the ICM away. In the nearly ideal MHD limit, the plasma is �frozen in� with
the magnetic �elds, and the mixing between the magnetized jet-lobe system and the
background ICM is inhibited. So the plasma density associated with the magnetic
structure decreases as the jet expands, creating the density cavities. The magnetic
�elds undergo signi�cant lateral expansion as they leave the central core region (the
middle and bottom rows of Figure 4.2). The formation of such large, relatively
�round� lobes is jointly determined by the ambient ICM pressure and an axial electric
current which �ows along the �spine� of the magnetic structure and returns around
the outer boundary of the lobes and jets. The central poloidal current generates
toroidal magnetic �elds whose strength behaves as 1/r where r is the cylindrical
distance from the jet axis. Such a decreasing magnetic pressure (∝ 1/r2) is eventually
balanced by the background ICM pressure, thus determining the size of the X-ray
cavity. More detailed comparisons with a large set of bubble observations show
that such a magnetically dominated model agrees quite well with bubbles' size and
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distance distributions (Diehl et al., 2008).
To illustrate the internal property of the lobes, we take a horizontal �cut� through

the southern lobe at t = 168 and 348 Myr (Figure 4.2) and plot its properties along
the line in Figure 4.4. At t = 168 Myr, the cavity is clearly dominated by magnetic
energy. The peak magnetic �eld strength is probably higher than the inferred typical
�eld value from observations. At t = 368 Myr, it has a comparable amount of total
magnetic energy (∼ 2.4×1059 ergs) and thermal energy (∼ 2.2×1059 ergs). The total
kinetic energy is much smaller, ∼ 3.6× 1058 ergs. The implied enthalpy upper limit
of this lobe is 4pV ≈ 8.8× 1059 ergs. Assuming that the northern lobe has a similar
energetics as the southern lobe, the total enthalpy in the lobes is ∼ 1.8× 1060 ergs,
which is much smaller than the amount of magnetic energy that has been transferred,
∼ 5.2× 1060 ergs. So the enthalpy could be a serious under-estimate of the injected
magnetic energy.

To demonstrate the in�uence of background motions on the bubbles, we plot the
slices of gas density overlaid with the velocity �elds at 48 and 348 Myr after injection
start in Figure 4.5. It clearly shows how the shapes and positions of the bubbles are
a�ected by the background �ows around the cluster center. On the upper part, the
�ows are downward near the center and rightward further away. So the upper bubble
is �attened by the compression between the downward �ows and the upward motion
of the bubble driven by the magnetic pressure and the buoyant force, and it moves
a lot to the right with the motion of cluster center. The background �ows below the
cluster center is majorly downward. So the lower bubble moves basically straight
downward and is much farther away from the cluster center thnn the upper bubble.
Without compression, it keeps round shape pretty well.

Figure 4.6 shows the bubbles at z = 0 (t = 672Myr) when the simulation ends.
The north and south bubbles are already out of the core region and at about 270
kpc and 300 kpc, respectively, away from the cluster center. The semimajor and
semiminor axes of the north bubble are 65 kpc and 35 kpc, respectively. The radius of
the south bubble is about 60 kpc. The two bubbles are still intact and interconnected
by magnetic �elds.

It has often been suggested that the evolution of the X-ray bubbles is driven by
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Figure 4.4: Spatial distribution of magnetic pressure, thermal pressure, density, and
temperature along a horizontal line through the southern lobe at t = 168 Myr (top)
and t = 348 Myr (bottom). The lobe is dominated by the magnetic pressure.
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Figure 4.5: Slices of gas density overlaid with velocity �elds. Each plot covers an
area of 672 kpc × 672 kpc. The left panel is at t = 48 Myr and the right panel is at
t=348 Myr.

Figure 4.6: Projected gas density (left panel) and magnetic energy density (right
panel) at z = 0 (t = 672 Myr). Each plot is 1 Mpc on a side. Two intact bubbles
are still interconnected by magnetic �elds.
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buoyancy. Using lobe's size, distance from the galaxy and cluster gravity, we have
computed the implied buoyancy time by pretending they were buoyant. We found
that the calculated buoyancy times are ∼ 236 and 437 Myr, whereas the actual
evolution times are 168 and 348 Myr, respectively. The di�erence does get smaller
at late times (> 500 Myr).

4.4 Conclusions and Discussions
With our cosmological AMR MHD simulations, we �nd that, in the realistic

cluster environment where the ICM plasma interacts dynamically with the magnetic
jet-lobe, X-ray cavities can naturally form using the magnetically dominated model
proposed by Li et al. (2006). The magnetic �elds inside the bubbles stabilize the
interface instabilities so that bubbles can remain intact. The lifetime of these bubbles
can be quite long and these bubbles only become truly buoyant probably after ∼ 500

Myr.
We have performed additional cosmological MHD simulations with radiative cool-

ing and star formation feedback and found that our conclusions for the X-ray cavity
formation mechanism do not change. While we have demonstrated the formation of
X-ray cavities, much more studies are needed in order to address comprehensively
the cooling �ow problem at the cluster cores. The present simulation, with just one
AGN, already has important implications for understanding the ICM heating prob-
lem. Up to 80%− 90% of the injected energy has been dissipated in the surrounding
ICM. Further studies are underway with AGNs at di�erent redshifts that have di�er-
ent cluster environments so that we can gain a comprehensive understanding of the
overall heating of the ICM by AGNs. The morphology of the jet-lobe is dependent
on the background density radial pro�le, which is di�erent for massive clusters (such
as the one presented here) and groups or poor clusters. Future work will address this
issue.

The research presented in this chapter further supports the idea that large amounts
of magnetic energy are injected into the ICM by AGNs in galaxy clusters. This makes
AGN feedback a promising origin of magnetic �elds in galaxy clusters. Observations
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have already found quasars at high redshifts up to ∼ 6 (Fan et al., 2001). Magnetic
�elds from them may be important sources of large sclae cluster magnetic �elds. We
will discuss long term evolution of magnetic �elds from high redshift AGN in galaxy
cluster in the next chapter.

Acknowledgments: This chapter, in part, is the material as it appears in the
Astrophysical Journal, 681, L61-L64, 2008, Xu, Hao; Li, Hui; Collins, David C.; Li,
Shengtai; Norman, Michael L., �Formation of X-Ray Cavities by the Magnetically
Dominated Jet-Lobe System in a Galaxy Cluster�, the University of Chicago Press,
2008. The dissertation author was the primary investigator and author of this paper.



Chapter 5

Magnetizing the ICM by Magnetic
Field Injection from High Redshift
AGN

5.1 Introduction
There is growing evidence that the ICM is permeated with magnetic �elds, as

indicated by the detection of large-scale, di�used radio emission called radio halos
and relics (see recent reviews by Ferrari et al., 2008; Carilli & Taylor, 2002). The radio
emissions are extended over ≥ 1 Mpc, covering the whole cluster. By assuming that
the total energy in relativistic electrons is comparable to the magnetic energy, one
often deduces that the magnetic �elds in the cluster halos can reach 0.1−1.0 µG and
the total magnetic energy can be as high as 1061 ergs (Feretti, 1999). The Faraday
rotation measurement (FRM), combined with the ICM density measurements, often
yields cluster magnetic �elds of a few to ten µG level (mostly in the cluster core
region). More interestingly, it reveals that magnetic �elds can have a Kolmogorov-
like turbulent spectrum in the cores of clusters (Vogt & Enÿlin, 2003) with a peak
at several kpc. Other studies have suggested that the coherence scales of magnetic
�elds can range from a few kpc to a few hundred kpc (Eilek & Owen, 2002; Taylor
& Perley, 1993; Colgate et al., 2001), implying large amounts of magnetic energy
and �uxes. Understanding the origin and e�ects of magnetic �elds in clusters is

101
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important because they play a crucial role in determining the structure of clusters
through processes such as heat transport, which consequently a�ect the applicability
of clusters as sensitive probes for cosmological parameters (Voit, 2005).

Although the existence of cluster-wide magnetic �elds is clear, their origin is
still poorly understood. Two scenarios have received most attention: a) magnetic
�elds are initially from the out�ows of normal or active galaxies (Donnert et al.,
2009; Furlanetto & Loeb, 2001; Kronberg et al., 2001), and such �elds can be further
ampli�ed by cluster merger (Roettiger et al., 1999) and turbulence (Dolag et al., 2002;
Dubois & Teyssier, 2008); and b) very small proto-galactic seed �elds are ampli�ed
by dynamo processes in clusters (Kulsrud et al., 1997; Ryu et al., 2008), though the
exact mechanism for dynamo is still being debated (Bernet et al., 2008).

Large scale radio jets from AGNs serve as one of the most intriguing candidates in
the �rst scenario because they could carry large amount of magnetic energy and �ux
(Burbidge, 1959; Kronberg et al., 2001; Croston et al., 2005; McNamara & Nulsen,
2007). The idea that AGN is the origin of cluster magnetic �elds has a long history
(Hoyle, 1969; Rees, 1987; Daly & Loeb, 1990). The central supermassive black hole
releases gravitational energy during mass accretion to power the AGN. The magnetic
�elds, either existed with collapsing gas or generated by Biermann battery e�ect, will
be ampli�ed rapidly by an α−Ω dynamo in the rotating disk (Colgate et al., 2001).
The magnetization of the ICM and the wider inter-galactic medium (IGM) by AGNs
has also been suggested on the energetic grounds (Colgate et al., 2001; Furlanetto
& Loeb, 2001; Kronberg et al., 2001), though the exact physical processes of how
magnetic �elds will be transported and ampli�ed remain sketchy. Some of the key
physics questions in these models include: what is the volume �lling process of AGN
magnetic �elds in the ICM/IGM? Is the ICM turbulent and what are its properties?
Is there a dynamo in the ICM that can amplify �elds?

In the previous chapter, we already discussed that the jets generated by AGNs
are likely to be magnetic-dominated and the jets/lobe systems and then the mag-
netic bubbles bring magnetic �elds into the intracluster medium. In this chapter, we
present self-consistent cosmological MHD simulations of further evolution of mag-
netic �elds injected into the ICM by the AGN at high redshift showing how the ICM
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are magnetized by these local injected magnetic �elds and the motions of the plasmas
of the galaxy cluster.

5.2 Basic Model and Simulations
We used the same cluster formation simulation as in the previous chapter. The

simulations were evolved from redshift z = 30 to z = 0 adiabatically. Initially,
the cluster has no magnetic �eld. We �turn on� the AGN magnetic injection at
redshift z = 3, centered at a massive galaxy in a proto-cluster which has a virial
radius rv ≈ 0.15 Mpc, a baryon virial mass mb ≈ 3.2 × 1011 M¯, and a virial
total mass mv ≈ 7.6 × 1012 M¯. The cluster eventually grows to rv ≈ 2.15 Mpc,
mb ≈ 9.0× 1013 M¯, and mv ≈ 1.1× 1015 M¯ by z = 0. The total injected magnetic
energy by AGN is about 2×1060 ergs, with an average input power of 1.75×1045 ergs
s−1 for a duration of 36 Myr. The magnetic energy is injected inside 0.2 rv. Because it
is currently not possible to resolve both the galaxy cluster and the AGN environment
simultaneously, we use the approach described in the previous chapter that mimics
the possible magnetic energy injection by an AGN (Li et al., 2006). The size of the
injection region and the associated �eld strength are not realistic when compared
to the real AGN jets, but on global scales, the previous studies by Nakamura et al.
(2006) and Xu et al. (2008a) (or Chapter 4) showed that this approach can reproduce
the observed X-ray bubbles and shock fronts (McNamara et al., 2005).

AMR is allowed only in a region of (50 Mpc)3 where the galaxy cluster forms.
During the cluster formation, the re�nement is controlled by baryon and dark matter
overdensity. In addition, all the region where magnetic �eld strength is higher than
10−7 G will be re�ned to the highest level. There are a total of 8 levels of re�nement
beyond the root grid, for a maximum spatial resolution of 11.2 kpc. Consequently,
our simulations are equivalent to ∼ 6003 uniform grid MHD runs in the cluster region
with full cosmology. Figure 5.1 shows cumulative magnetic energy distribution at
di�erent redshift. More than 99% magnetic energy is inside the regions re�ned to
the highest resolution at any redshifts. The simulation was performed on the linux
cluster Coyote at LANL with about 300,000 CPU hours consumed.
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5.3 Results

5.3.1 Global Morphology
To illustrate the formation and evolution of the cluster along with the evolution

of magnetic �elds from the AGN, we present images of the projected gas density and
magnetic energy density at di�erent stages of cluster formation in Figure 5.2. At
z = 3 (t = 0), an AGN is �turned on� in a sub-cluster (which eventually merges with
another sub-cluster about 400 Myr after the AGN injection has �nished). The AGN
is �turned o�� at t = 36 Myr (z = 2.95). At t = 180 Myr, we see the density cavities
produced by the AGN magnetic �elds, reminiscent of the jet-lobe structure of radio
galaxies (Xu et al., 2008a). At a later time t = 468 Myr, the jet-lobe structure
is destroyed by the cluster mergers. When two sub-clusters just �nish merging at
t = 1.1 Gyr (z=2.0), a large part of magnetic �elds is carried out of the cluster center
region by the ejected �ow from mergers. As the evolution progresses, magnetic �elds,
which follow the plasma motion, are being sheared, twisted, and spread throughout
the whole cluster. Judging by the images from t = 1.1 to t = 6.28 Gyr, this volume-
�lling process is quite e�cient. By z = 0.5 (t = 6.28 Gyr), magnetic �elds are
well mixed with the ICM and are distributed quasi-uniformly throughout the whole
cluster, except some high magnetic �elds regions obviously from compression by
shocks. At z = 0.0, while the cluster is relaxed, the magnetic �elds are quite uniform
disturbed.

5.3.2 Energy Evolution and Magnetic Field Radial Pro�le
The evolution of the total thermal, kinetic, and magnetic energy inside the clus-

ter's virial volume is shown in the top panel of Figure 5.3. The kinetic energy is
calculated as the turbulent component by subtracting the bulk �ow motion. By the
AGN injection, ∼ 2 × 1060 ergs of magnetic energy is input into a sub-cluster. A
signi�cant fraction (∼ 80%) of this energy is deposited into the ICM due to expan-
sion and heating (Xu et al., 2008a). When the two big sub-clusters merge at t = 400

Myr, the total thermal and kinetic energies of the cluster increase by ten-fold by
t ∼ 600 Myr. During this major merger, the magnetic �elds are still very local,
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Figure 5.2: Snap shots of the projected baryon density (upper rows) and magnetic
energy density (lower rows) for di�erent epochs of cluster formation and evolution.
Each image covers a region of 5.71 Mpc × 5.71 Mpc (comoving). The projection
results are obtained by integrating along 5.71 Mpc comoving centered at the cluster
along lines perpendicular to the observed plane. The eight columns are marked with
the time t since the AGN injection and the respective redshift z. The top panel uses
di�rent color scale for each plot to have the best visual e�ect. The color ranges of
bottom panel are from 4.2× 1019 to 1.3× 1022 cm−3 for the baryon particle number
density and from 0 to 5 × 1011 ergs cm−2 for the integrated magnetic energy density.
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largely in magnetic bubbles. So the merger event itself did not signi�cantly change
the magnetic �eld energy. The thermal and kinetic energies of the cluster continue
to increase as the cluster grows in mass via accretion and mergers as indicated by
the variations in the energy evolution curves. At t ∼ 2 Gyr, the magnetic �elds
from the AGN have been spread throughout a signi�cant volume of the cluster (see
Figure 5.2). Starting from this time, the magnetic energy experiences an exponential
increase by a factor of 20 until t ∼ 6 Gyr, at which time the growth has slowed. After
t ∼ 6 Gyr, the cluster grows slowly in its total energy and becomes relaxed, and the
magnetic energy increases slowly with the growth of the cluster. By z = 0, the total
magnetic energy has reached ∼ 1061 ergs inside the cluster.

In the bottom panel of Figure 5.3, we present the spherically averaged magnetic
�eld strength radial pro�les. At z = 0.0, the magnetic �eld strength is ∼ 1.5 µG
at the core, decreasing slowly to ∼ 0.7 µG at ∼ Mpc radius. These radial pro�les
are di�erent from what is shown by other simulations which often exhibit faster
radial decline (Dolag et al., 2002; Dubois & Teyssier, 2008; Donnert et al., 2009). It
is presently unclear whether this di�erence is caused by the di�erent origin of the
�seed� magnetic �elds or by the e�ects of numerical resolution. These radial pro�les
are consistent with observations of Govoni et al. (2006); Guidetti et al. (2008), of
which the average magnetic �eld strength calculated over 1 Mpc3 is about 1 µG.

5.3.3 Small-scale Dynamo and MHD Turbulence
The physical origin for the exponential ampli�cation of the magnetic energy is

due to a cluster-wide turbulent dynamo process. In Fig. 5.4 we present the power
spectra of the ICM plasma's kinetic energy density and magnetic energy density in a
comoving cube with 5.71 Mpc on the side. The scales are shown in the comoving units
so that they are not a�ected by the universe expansion and the power changes are
from the dynamics of cluster evolution alone. Here, k = 0.003 kpc−1 corresponds to
the maximum radius of the central region 2.86 Mpc where a high spatial re�nement
is adopted. Since the cluster's total thermal energy is a factor of ∼ 3 − 5 larger
than its kinetic energy, the ICM can be thought as nearly incompressible plasmas
overall, though shocks generated by mergers are very frequent and important. In
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fact, the �ows and shocks from mergers tend to be global and propagate through
the whole cluster (see also the earlier work by Roettiger et al., 1999). We can divide
the full kinetic spectrum approximately into three regions: the �injection� region for
k ∼ 0.003−0.01 kpc−1 where the large scale �ows and shocks from the mergers �stir�
the whole cluster; the �cascade� region for k ∼ 0.01− 0.1 where the spectrum shows
a smooth power law similar to a Kolmogorov-like incompressible turbulence; the
�dissipation� region for k > 0.1 where the spectrum steepens gradually. We attribute
this steepening to both the dissipation by shocks (which has a physical origin) and
the limited spatial resolution (which has a numerical origin). These features in the
kinetic energy density spectrum lead us to conclude that the ICM is turbulent and
our simulations have captured the essence of this turbulence. This ICM turbulence
is in a driven-dissipative state where frequent mergers will drive the turbulence over
relatively short time scales (a few Myr) but the turbulence is decaying in-between
mergers on timescales of ∼ Gyr (which is approximately the dynamic timescale for
the whole cluster).

The magnetic energy density spectrum also has three regions in the k−space
corresponding to the kinetic energy spectrum. From t = 2 to t = 10 Gyr (z =

1.5 to z = 0.1), the magnetic spectrum for k ∼ 0.01 − 0.6 retains an �invariable�
shape but the energy density undergoes exponential ampli�cation then goes into
saturation. This is a strong signature for the so-called small-scale turbulent dynamo
(Brandenburg & Subramanian, 2005). Furthermore, the magnetic energy density
peaks at k ∼ 0.2 with ∼ 3 × 10−16 ergs cm−3. The corresponding kinetic energy
density is ∼ 8× 10−16 ergs cm−3. So, the magnetic energy for k > 0.1 has saturated
at a sub-equipartition level (by a factor of ∼ 3). The drop-o� at high k should be
due to the numerical dissipation. For k < 0.01, neither kinetic or magnetic energy
seems to have saturated. It is interesting to note that the dynamo process starts
vigorously only at t ∼ 2 Gyr (z = 1.5), when the magnetic �elds have been spread
through a signi�cant fraction of the whole cluster (see Fig. 5.2). Putting Figs. 5.2 -
5.4 together, we see that the ICM turbulence both ampli�es the magnetic energy and
di�uses the �elds throughout the cluster. The magnetic energy density saturation
occurred at t ∼ 6 Gyr but magnetic �elds continue to �grow� in their spatial extent
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through turbulent di�usion. Furthermore, the un-signed magnetic �ux through the
mid-plane of the cluster has exponentially grown from 7.6×1041 to 1.23×1043 G cm2

from z = 2 to z = 0.5, which is another clear indication of the turbulent dynamo that
is responsible for both amplifying the �eld energy and di�using the �eld through the
cluster.

5.3.4 Distribution of Plasma β

Thermal and kinetic energies dominate the magnetic energy in the cluster level.
To show the relative importance of magnetic �elds locally, we plot the volume his-
tograms of plasma β (ratios of thermal and kinetic energy densities to magnetic
energy density) inside a sphere of 1 Mpc proper centered at the cluster center at
di�erent redshifts in Figure 5.5. At early time, the magnetic �elds only occupy a
very small volume. Then the magnetic �elds �ll a larger and larger volume with
the spreading of magnetic �elds in the ICM and the expansion of the universe. At
z=0.25, The thermal β peaks at about 300 and the kinetic β peaks at about 25.
The thermal energy density is always larger than the mangetic energy density in
the whole region, and the magnetic energy density is only greater than or similar to
kinetic energy density in a small fraction of the volume, where magnetic �elds are
dynamically important. Further research is needed to understand why the magnetic
energy density in most regions keeps much smaller than the kinetic energy density.

5.3.5 Faraday Rotation Measurement
We have also computed the synthetic FRM by integrating to the mid-plane of the

cluster. Fig. 5.6 shows the spatial distribution of FRM at z = 0.1. The typical value
of FRM is ±200 rad m−2, with high values concentrated in the cluster core region.
Interestingly, the FRM map not only shows the small scale variations reminiscent of
the ICM MHD turbulence, but also displays long, narrow �laments with dimensions
of 300 kpc× 90 kpc. The FRMmagnitudes and spatial distributions from simulations
are quite consistent with observations of radio galaxies in clusters (Taylor & Perley,
1993; Eilek & Owen, 2002; Guidetti et al., 2008).
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Figure 5.6: Faraday rotation measurement of the ICM by integrating to the mid-
plane of the cluster. It covers a region of 2.86 Mpc × 2.86 Mpc (comoving) at z=0.
The color range shown is from −200 (blue) to 200 (red) rad m−2. The peak value
of rotation measurement is about ±400 rad m−2. Filamentary structures are quite
common.
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Table 5.1: Comparison of properties of clusters from simulations with and without
magnetic �eld injection at z=0.

Parameter No AGN with AGN
Rvir(Mpc) 2.147 2.155
Mvir(M¯) 1.129e+15 1.143e+15
Mdm(M¯) 1.038e+15 1.051e+15
Mgas(M¯) 9.125e+13 9.166e+14
Tvir(K) 8.053e+07 8.116e+07

5.3.6 Impact of Magnetic Fields on Cluster Formation
At last, we would like to see how the cluster formation is a�ected in whole by the

magnetic �eld injection. Table 5.1 compares the basic properties of simulated clusters
with and without magnetic �eld injection. The cluster is almost unchanged by the
additional magnetic �elds as expected, since the magnetic energy is always very small
comparing to the kinetic and thermal energy in the whole cluster (see Figure 5.5).
Although the injected magnetic �elds have big impact on the ambient of the AGN by
forming bubbles and shocks in the early stage, the magnetic �elds have little in�uence
on the evolution of the whole cluster in the long term, which is dominated by dark
matter dynamics. The magnetic �elds should be more important in the cluster core
regions, especially for the cool core clusters. We will not discuss this here because
we don't include some necessary physical processes, such as radiative cooling, in our
simulation.

5.4 Discussion
In this chapter, we present cluster formation simulation with magnetic energy

injected in a local region to mimic magnetic feedback from AGN. We �nd that
the injected magnetic �elds are spread throughout the whole cluster by the cluster
mergers. The magnetic �elds are then ampli�ed and maintained at small scale by the
turbulence generated by the mergers and accretion shocks and at large scale by the
bulk motions of mergers. The magnetic energy increases about 25 times. The �nal
magnetic �eld strength is about 1-2 µG at the cluster core and drops slowly outward
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to just below 1 µG at half virial radius. These magnetic �elds well resemble magnetic
�elds observed from RM. Since AGNs are commonly observed in galaxy clusters, one
important implication of our studies is that the magnetic �elds from AGNs alone
are perhaps enough to �seed� the cluster and the ICM turbulence generated and
maintained by mergers will amply and spread the AGN �elds via a dynamo process.
This is consistent with observations that clusters with large scale radio emissions are
often correlated with cluster mergers (Feretti, 2005).

The magnetic energy is almost �at after∼ 6 Gyr. This could be because either the
cluster become too relaxed to further amplify the magnetic �elds or the magnetic
�elds are already strong enough to saturate with the turbulent motions. In the
case with Biermann Battery e�ect in Chapter 3, the �tiny� magnetic energy keeps
increasing till the end of the simulation. It implies that the cluster motions can still
ampli�ed small magnetic �elds. Though these two simulations are from di�erent
initial conditions, the two clusters are relaxed similarly in the later time. We have
another simulation also shows that the mangetic energy grows very slowly in the
cluster studied in Chapter 3 for the �nal 5 Gyr when the magnetic �elds are already
at µG level. So, it is more likely that, in this simulation, the magnetic �elds is already
saturated with the ICM motions, and the saturated magnetic energy is about one
twentieth of the kinetic energy.

Note that even though we have solved the ideal MHD equations, there is clearly
numerical di�usion that has allowed the magnetic �elds to di�use in the ICM. The
rate of di�usion is often related to the numerical Reynolds number and magnetic
Reynolds number. We estimated that these numbers in our simulations are on the
order of a few hundred (this is especially true in the cluster core region where most of
the magnetic �eld energy resides). The small scale dynamo theory and simulations
(Boldyrev & Cattaneo, 2004) have shown that the dynamo will grow under such
conditions, which is consistent with our �ndings. The real ICM could have Reynolds
number as low as ten (Reynolds et al., 2005), but its magnetic Reynolds number is
less well determined, especially in a magnetized turbulent medium.

The results presented in this chapter need to be taken as an initial step in better
understanding the evolution of AGN magnetic �elds over the lifetime of a cluster.
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The fact that the AGN magnetic �elds are injected very early in the history of the
cluster formation (i.e., z=3), before the major merger events, could be important.
For AGN �elds injected relatively late in the cluster formation as the case in the
previous chapter. the magnetic �elds may not experience extensive stretching and
transport so that they could survive in a bubble morphology without undergoing
signi�cant mixing with the background ICM.

It is worth to perform the same cluster formation simulations with di�erent in-
jected magnetic energy to see whether the smaller initial magnetic �elds will be am-
pli�ed to the saturated level. Studying the impacts of di�erent structures of injected
magnetic �elds and injections at di�erent redshifts on the magnetic �eld evolution
is also interesting. And it is very like that more than one AGNs happen during
the course of cluster formation. We will study the multiple AGN injections in the
near future. We will make synthetic observations (RM and Synchrotron) from our
simulations and compare them to the observations, especially with the forthcoming
results from EVLA.

Acknowledgments: This chapter, in part, is the material as it appears in the
Astrophysical Journal, 2009. Xu, Hao; Li Hui; Collins, David C.; Li, Shengtai; Nor-
man, Michael L., �Turbulence and Dynamo in Galaxy Cluster Medium : Implications
on the Origin of Cluster Magnetic Fields�, IOP Publishing, 2009. The dissertation
author was the primary investigator and author of this material.



Chapter 6

Summary and Future Work

6.1 Summary
Magnetic �elds are important components of galaxy clusters. Even though in-

tense research has been performed , fundamental questions concerning the origin
and evolution of cluster magnetic �elds remain unanswered. In this dissertation,
we have used the adaptive mesh re�nement cosmology magnetohydrodynamics code
EnzoMHD to study the origin and evolution of magnetic �elds in galaxy clusters,
especially the case of seed �elds from feedbacks of active galaxies.

Chapter 2 describes the EnzoMHD numerical method in detail and presents ver-
i�cations of the code. Developed from Enzo, EnzoMHD keeps the basic hydro data
structure, gravitational solver, cosmology expansion and other physical packages used
in Enzo. In EnzoMHD, we use the PDE solver of Li et al. (2006) to solve the ideal
MHD equations, which is second order accurate in both time and space. We use a
slightly modi�ed version of the AMR algorithm of Balsara (2001) to create interpo-
lated �ne grids and project the more accurate �ne grid data to the cheaper coarse
grid data. We have used the CT methods of Balsara & Spicer (1999) and Gardiner
& Stone (2005) to advance the induction equation while maintaining the constraint
∇ · B = 0. The results of a broad array of tests are presented to demonstrate the
accuracy of the code. It shows that EnzoMHD can handle the magnetic �elds quite
well while hydro variables are computed at an accuracy close to the original Enzo.

In chapter 3, we discuss magnetic �elds generated from the Biermann battery
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mechanism in the large scale structure formation. We perform simulations of the
formation of Population III stars and galaxy clusters including the Biermann battery
e�ect. We show that in both cases very small magnetic �elds will be created by the
battery e�ect. In Population III star formation, we �nd that the tiny magnetic �elds
are ampli�ed by both compression of magnetic �elds falling into the star-forming
halo with collapsing gas and stretching magnetic �elds by the shear �ows, and reach
as large as 10−9 G in the center of the star-forming halo. In the case of galaxy cluster
formation, we �nd that the magnetic �eld energy per unit mass increases by a factor
of 103 in the cluster core region from z=3 to z=0. But the �nal �elds are still much
smaller (∼ 10−18 G) than observations. The �elds from Biermann battery e�ect are
too small to be seed �elds of galaxy cluster at the scale we studied.

Chapter 4 presents a study of the formation of X-ray cavities in galaxy cluster
by Poynting-dominated jet/lobe injected by AGN. We simulated the injection of 6
× 1060 ergs of magnetic energy from an AGN into a galaxy cluster. We show the
expansion of magnetic �elds produce the bubbles as well as the shocks surrounding
the bubbles, both of which resemble observations. We also show that about 80-90%
of injected magnetic energy converts into potential and kinetic energy and in turn,
heats the cluster core.

In chapter 5, we demonstrate how the magnetic �elds from AGN feedback at
high redshift can be used to magnetize the whole cluster to the observed level. We
simulate cluster formation with AGN magnetic �elds injected at z=3 with a new
way to control the mesh re�nement by magnetic �eld strength. We �nd that the
local magnetic �elds spread throughout the cluster by large scale �ows induced by
mergers and accretion. We also �nd that magnetic �elds are further ampli�ed and
maintained by the stretching of turbulent �ows driven by the continuous mergers
and accretion shocks at smaller scales, and by bulk �ows at large scales. At z=0,
the strength of the magnetic �eld is a couple µG in the cluster core and dropping
slowly outward to just below 1 µG at 1 Mpc away from the center, while the total
magnetic energy increases by about 25 times. The radial pro�le of magnetic �eld
strength from our simulation is similar to observations(Govoni et al., 2006; Guidetti
et al., 2008).
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The work presented in this thesis, as summarized in the previous paragraphs,
contributes directly to a better understanding of the origin and evolution of magnetic
�elds in galaxy clusters. This work studied the magnetic �elds from two proposed
origins of magnetic �elds in clusters, Biermann battery e�ect and AGN, and showed
that AGN feedback may provide enough seed �elds for the cluster magnetic �elds.
Since AGNs inject large amount of energy into the ICM and may regulate the cluster
evolution, understanding interaction between AGN and ICM, in which magnetic
�elds may be important, is signi�cant to the reseach on the formation of galaxy
clusters. This work helps to understand magnetic �eld distribution and ampli�cation
in cluster environment. Magnetic �elds are an important component of galaxy cluster
evolution and observations, so understanding the evolution of cluster magnetic �elds
and their impact on cluster formation will help to better constrain cluster properties
and, in turn, cosmological parameters in the e�ort to realize �precision cosmology�.

6.2 Future Work
While the research presented in this dissertation has provided insights to the

origin and evolution of magnetic �elds in galaxy clusters, there is still work left to
do. This entails improving our code in many respects, and futher enhancing its
capability in handling more physical processes. The Population III star formation
with Biermann battery e�ects (chapter 3) is limited by the lack of a proper treatment
of radiation and chemistry at densities larger than 1010 cm−3. In previous enzo
simulations with pure hydrodynamics, higher density is achieved by implementing
more chemical and cooling processes (Turk et al., 2008). We can also study magnetic
�elds at this higher density by installing those packages. But with higher density and
lower temperature, the ionization factor should be even smaller and the ambipolar
di�usion may become important, so properly handling ambipolar di�usion is also
required. For the simulation of the Biermann battery in clusters, higher spatial
resolution is essential to lower numerical resistivity. This will be discussed more
later.

The study of magnetic bubble formation and evolution in chapter 4 is concen-
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trated on the morphology of the bubbles and the energy evolution in general. Further
research should study the distribution of injected energy in the ICM and the details
of heating processes in the cluster core. To do this, a cluster with a cool core better
resembling observations is required. This implies that more heating and/or cooling
processes should be included in the simulations with better spatial resolution. These
will be discussed in details in the next paragraph with AGN injected at high redshift.

Much work is needed to improve the study of evolution of magnetic �elds from
high redshift AGN presented in chapter 5. Better spatial resolution is very important.
Observationally, the magnetic turbulence spectrum as well as other observation re-
sults are obtained through RMs at sub-kpc scale (Vogt & Enÿlin, 2003; Govoni et al.,
2006; Guidetti et al., 2008). To compare with them directly, we need to increase res-
olution in our simulations at lease one order of magnitude. In addition, the spatial
resolution is important to study the ampli�cation and saturation of magnetic �elds.
From the current simulations, we expect to observe energy equipartition between
magnetic energy and kinetic energy at smaller scale if the resolution increase 10-fold.
The energy equipartition may set the magnetic �eld saturation level.

In this research, we only injected magnetic �elds from one AGN. Although the
distribution of AGNs in clusters is still poorly understood (McNamara & Nulsen,
2007), we expect ∼ 10 AGNs happened over a cluster lifetime based on the AGN
luminosity function. Multiple AGN injections at di�erent redshifts are interesting
and will be studied in the future. This work is also related to the problem of heat-
ing the cool cores of galaxy clusters. Energetic AGNs are believed to be important
sources of heating in the cluster. One possible reason that current simulations can't
produce cool cores properly is because the AGN feedbacks are not included in the
simulations correctly. The heating history is believed critical to the formation of cool
core clusters (Voit, 2005). Both preheating the ICM by AGNs at high redshifts and
heating cluster cores by recent AGNs should be important to reproduce the obser-
vations with simulations. So, in addition to the study of magnetic �eld evolution,
we will study the details of the cooling and heating processes in our AGN feedback
simulations.

Both viscosity and resistivity are important to this research, especially for the
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study of turbulence and dynamo processes. In current simulations, only the numer-
ical viscosity and resistivity are involved in the computation, so the viscosity and
resistivity are at the same level (magnetic Prandtl number is 1). In galaxy clusters,
the magnetic Prandtl number may be quite large with large magnetic Reynold's
number (Carilli & Taylor, 2002) but small Reynold's number (Reynolds et al., 2005).
High magnetic Prandtl number may make the magnetic �eld evolution very di�er-
ent (Brandenburg & Subramanian, 2005). Simulations explicitly including viscosity
and resistivity will be performed to study the in�uence of di�erent viscosities and
resistivites.

As mentioned many times in this section, higher resolution is essential for the
further reseach, though we already used AMR to achieve pretty good resolutions
with the computing resources we current have. Higher resolution is computationally
very costly, needs much more computing cores and distributed memory. This will
be made possible when next generation peta�op supercomputers, like Blue Water
scheduled to be built at the NCSA, become available and provide much stronger
computational ability in the coming several years. But our code is still not suited
for the peta�op computering yet, which requires better parallelization and faster
I/O of our code. In addition, it may also have di�culties on the data analysis and
visualization. Further development of the code to make it more e�cient and peta�op
capable will start soon. Additionally, the possibility of porting our code to the newly
developing hybrid supercomputers, like Roadrunner, will be studied.



Appendix A

Some Numerical Scheme and
Procedures of EnzoMHD

A.1 AMR MHD Reconstruction

A.1.1 MHD Reconstruction
For completeness, we will brie�y outline the AMR reconstruction used in En-

zoMHD. The reader is encouraged to see the details in the original paper by Balsara
(2001).

In this appendix, we have dropped the subscript f from the face centered �elds,
as the face centered �eld is the only one in question.

Balsara's reconstruction method for the magnetic �eld is a 3 dimensional, quadratic
reconstruction of all 3 vector �elds simultaneously. If we let b be the polynomial �t
to the discrete face centered �eld �eld B, the general reconstruction is

bx(x, y, z) = a0 + axx + ayy + azz + axxx
2 + axyxy + axzxz (A.1)

by(x, y, z) = b0 + bxx + byy + bzz + bxyxy + byyy
2 + byzyz (A.2)

bz(x, y, z) = c0 + cxx + cyy + czz + cxzxz + cyzyz + czzz
2 (A.3)

The coe�cients are found by the following constraints:

1. The analytic reconstruction should be divergence free.
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2. At the faces of the parent cell, the reconstruction should reduce to a bilin-
ear reconstruction, where the slopes are monotonized with the minmod slope
limiter. For instance,

bx(x =
∆x

2
, y) = Bx,i+ 1

2
,j,k +

∆yBx,i+ 1
2

∆y
y +

∆zBx,i+ 1
2

∆z
z (A.4)

where

∆yBx,i+ 1
2

= minmod(Bx,i+ 1
2
,j+1 −Bx,i+ 1

2
,j, Bx,i+ 1

2
,j −Bx,i+ 1

2
,j−1) (A.5)

minmod(x, y) =





x, |x| < |y| and xy > 0

y, |y| < |x| and xy > 0

0, xy < 0

(A.6)

The minmod slope is used in order to minimize oscillations. Area weighted averages
over these polynomials are then used to assign the �ne grid values.

Often, a �ne grid patch will encroach on unre�ned territory. This results in the
re�nement of coarse zones that a.) share a face with �ne grids but b.) don't have
corresponding �ne grids of their own. Balsara refers to this as �Prolongation� of the
�ne grid. To avoid generating any divergence at the boundary of the face, the inter-
polation polynomials need to match the old �ne data. The interpolation equations
above (eqns A.1 - A.3) do not have enough degrees of freedom to accommodate that
many data points. In this case, Balsara describes a new polynomial that DOES have
enough degrees of freedom, by adding 3rd order cross terms to equations A.1 - A.3:

bx(x, y, z) =a0 + axx + ayy + azz + axxx
2 + axyxy + axzxz

+ ayzyz + axyzxyz + axxzx
2z + axxyx

2y (A.7)

by(x, y, z) =b0 + bxx + byy + bzz + bxyxy + byyy
2 + byzyz

+ bxzxz + byyzy
2z + bxyzxyz + bxyyxy2 (A.8)

bz(x, y, z) =c0 + cxx + cyy + czz + cxzxz + cyzyz + czzz
2

+ cxyxy + cyzzyz2 + +cxzzxz2 + cxyzxyz (A.9)
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The yet undetermined coe�cients are found by matching the polynomial to a
bilinear �t on the face:

b(x =
∆x

2
, y, z) = Bx,i+ 1

2
,j,k +

∆yBx,i+ 1
2

∆y
y +

∆zBx,i+ 1
2

∆z
z +

∆yzBx,i+ 1
2

∆y∆z
yzp (A.10)

and now the �nite di�erences are taken from the �nest grid:

∆yzBx,i+ 1
2

= 4((Bx,i+ 1
2
,j+ 1

2
,k+ 1

2
−Bx,i+ 1

2
,j− 1

2
,k+ 1

2
)−

(Bx,i+ 1
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,j+ 1

2
,k− 1

2
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,j− 1
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,k− 1

2
)) (A.11)

∆yBx,i+ 1
2

= ((Bx,i+ 1
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,j+ 1
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,k+ 1

2
−Bx,i+ 1

2
,j− 1

2
,k+ 1

2
)+

(Bx,i+ 1
2
,j+ 1

2
,k− 1

2
−Bx,i+ 1

2
,j− 1

2
,k− 1

2
)) (A.12)

where B is the �eld on the �ne grid. Note that since this is now a centered di�erence,
the minmod slope limiter is not used.

A.1.2 Implementation in Enzo
In order to avoid complicated book keeping routines to determine which cells are

being prolonged into, and from which direction, we formulate only one interpolation
polynomial, given by equations A.7-A.9. The necessary �nite di�erences for a given
re�nement region are taken from the �nest data available, as in equations A.11 and
A.12. The last four terms in each reconstruction polynomial are there exclusively
to ensure consistency of Old Fine Grid Data, so for faces that have no Fine Data
before the reconstruction, these are set to zero. Since the reconstruction polynomial
exactly matches the old �ne grid data, this also eliminates the need to copy the old
�ne grid data to the newly re�ned patch.

A.2 Flux Correction
At any given time in an AMR simulation, there are points in space that are

described by more than one data structure. In a �nite volume hydro calculation, with
cell centered data �elds, this occurs at the boundary between coarse and �ne grids
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in the Flux �elds, ~F . In an AMR MHD calculation, with face centered magnetic
�elds, this occurs at the same boundary, in the face centered magnetic �eld, and
the edge centered electric �eld. Ensuring consistency between data is vital for the
conservation of quantities like mass, energy, momentum, and ∇·B. Flux Correction
is essential for this consistency.

A.2.1 Conservation Form
It is useful to brie�y describe the basic formulation of the methods used in Enzo

and EnzoMHD before moving on to the �ux correction mechanism.
Any conservative system, such as ideal MHD, can be written in a di�erential form

as
∂V

∂t
+∇ · F = 0 (A.13)

where V and F are suitably de�ned, in our case by 2.24 and 2.25. Here we ignore
any source terms.

In �nite volume methods, we store average quantities of V and F , and re-write
the conservation law in Conservation Form, using the Fundamental Theorem and
Stokes Theorem. Starting with eqn A.13, and integrating, we get:

∫ t+∆t

t

∫

V

∂V

∂t
dV dt = −

∫ t+∆t

t

∫

A

F · dAdt (A.14)

where the volume V is taken from the point (x, y, z) to (x + ∆x, y + ∆y, z + ∆z).
Now let

V̂ n =
1

∆V

∫

V

V (x, y, z, tn)dV (A.15)

F̃x,I+ 1
2
,J,K =

1

∆y∆x

∫

∆y,∆z

F (x = I +
1

2
, y, z) · x̂dydz (A.16)

where x̂ is the unit vector in the x direction. Similar de�nitions apply F̃y and F̃z,
and

F̂x =
1

∆t

∫

∆t

F̃xdt (A.17)

The averaging here was taken explicitly in two steps to emphasize that ∆x,∆y and
∆z are possibly functions of t, as the are in cosmological hydrodynamics. Putting this
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all together, we get the equations in their �nal analytical form before discretization
(also the last form we'll be using here)

V̂ n+1
I,J,K = V̂ n

I,J,K −∆t(
1

∆x
(F̂x,I+ 1

2
,J,K − F̂x,I− 1

2
,J,K)+

1

∆y
(F̂y,I,J+ 1

2
,K − F̂y,I,J− 1

2
,K)+ (A.18)

1

∆z
(F̂z,I,J,K+ 1

2
− F̂z,I,J,K− 1

2
))

Note that equation A.18 is an exact equation, since only averages and the fundamen-
tal theorem of calculus have been used up to this point. The trick in �nite volume
methods such as our MHD is �nding appropriate approximations to F̂ that are both
accurate and stable.

A.2.2 Conservation Form and AMR: Enter Flux Correction
As mentioned at the beginning of the section, an AMR simulation has multiple

data structures representing a single point in space. In entirely cell centered codes
such as PPM, the only such instance is at the surface of a �ne grid boundary, where
both the �ne grid and coarse grid represent the �ux at that point. Moreover, after
the �ne grid �eld is projected into the coarse, there's a mismatch on the coarse grid
itself as to the value of the �ux at the surface. The value of that discrepancy can
be easily found. After the projection, a coarse grid at a point (I, J) has the value
(restricting to 2d, for clarity)

V̂ n+1
I,J =

∑

i=I± 1
4

j=J± 1
4

q̂n+1
i,j (A.19)

where lower case quantities denote the value of the �ne grid data. Expanding the
time update for q̂n+1 in space and time, we �nd that

V̂ n+1
I,J =

∑

i=I± 1
4

j=J± 1
4

q̂n
i,j−(
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2
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+ −
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4

∆tm
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f̂m
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2
,j
) (A.20)

−(y and z terms)
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By construction of the interpolation polynomial (and projection at the last timesteps)
the �rst term is just equal to V̂ n

I,J , which means that, by equation A.18 V̂I,J e�ectively
sees, at the point I + 1

2
,

∆t

∆V
F̂x =

n+1∑
m=n

∑

x,j=J± 1
4

∆tm

∆V m
f̂m

I+ 1
2
,j

:=< fx > (A.21)

However, for the cell (I−1, J), which has no corresponding �ne grid �ux, F̂I+ 1
2
come

from the discretization method on the coarse grid. There is absolutely no reason for
the two to match, so we have a discrepancy in the descriptions of the data. This can
be solved by simply replacing the less re�ned data that V̂I+1,J used with the more
re�ned average, given by equation A.21:

V̂I+1,J,fc
= V̂I+1,J +

∆t

∆V
F̂x,I+ 1

2
,J −

∑
m

∑
j

∆tm

∆V m
f̂m

x,I+ 1
2
,j

(A.22)

Now every place F̂x,I,J show up in our method, the exact same approximation is
used.

A.2.3 Flux Correction and MHD
A similar formalism to that described in A.2.1 is used for to advance the magnetic

�elds in EnzoMHD, but instead of using volume averages, we use area averages. The
magnetic evolution is given by the induction equation:

∂ ~B

∂t
= −∇× ~E (A.23)

When discretized, equation A.23 yields the equation

B̂n+1
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2
,J

= B̂n
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2
,J
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,K)+ (A.24)
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where
B̂n
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2
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Ên =
1

∆t

∫ t+∆t

t

1

∆x

∫

x

~E · dldt (A.26)
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which is also exact, and the main problem is �nding a suitable approximation for Ê.
Again, after the area-weighted projection of the �ne grid �eld b̂x into the coarse

grid B̂x, there's a discrepancy between the electric �eld at a re�ned point on the
surface of a re�ned grid, as it's seen by both grids that have subgrids and grids that
don't. In Balsara (2001), he suggests a similar �ux correction mechanism to that of
the standard hydro, described in A.2.2. However, due to an issue with the initial
implementation of �ux correction in Enzo (which has since been �xed) and ease of
computational logic, we chose a di�erent route. In EnzoMHD, instead of projecting
�ne grid magnetic �elds into coarse magnetic �elds and then correcting zones in the
coarse grid, we project the electric �eld and then take the curl of the entire coarse
grid. Thus, all coarse grid magnetic �elds see the most accurate data at the same
time, and no a-posteriori correction needs to be done. Where there are no subgrids,
the coarse grid sees an electric �eld that comes from the CT module in section 2.2.7,
and where there are subgrids it sees

Ên
z,i− 1

2
,j− 1

2
,k
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+ e
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2
,j− 1

2
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4

) (A.27)

While a complete �ux correction treatment would potentially save on memory and
�ops, in practice the extra memory is negligible compared to the total memory and
time used by the rest of Enzo, and the extra �oating point operations done here are
o�set by increase cache utilization of the data, as the entire grid is done in a single
stride one sweep instead of an essentially random access pattern.

As described in section 2.2.5, some of the subgrids get their boundary conditions
updated from the parent zones. Because of this, the curl of the magnetic �eld is
actually taken twice. The �rst time is done immediately after the hyperbolic update,
in order to ensure that the parent zones are up to date for the interpolation of the
ghost zones of the subgrids that need it. The second time is after the subgrids project
their electric �eld to the parent, to ensure maximal accuracy of the parent grids. This
additional call takes negligible time, as the curl has relatively few operations. See
appendix A.3 for the details of this order of operations.
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A.3 Schematic for the Cosmological MHD Code
In this appendix, we present a schematic of the MHD code, for clarity and easy

reference.
Step 0.� We start with conserved quantities density, total energy, and momentum

(ρn
BM , En

total,p
n
BM), and primitive quantities velocity and gas pressure (vn

BM , P n
gas) for

the baryonic matter; face and cell centered magnetic �elds (Bn
c , Bn

f ); and Lagrangian
dark matter mass, position, and velocity (ρn

DM ,xn,vn
DM). These are all at time tn.

Where needed, primitive quantities will be described by U = (ρBM , Pgas,vBM ,B),
and conserved quantities by V = (ρBM , Etotal,pBM ,B). Conversion between the two
is done as needed.

Step 1. Solve Poisson's equation for the acceleration �eld at tn+ 1
2

φn ⇐=ρn
BM + ρn

DM (A.28)

φn+1/2 =φn(1 +
∆tn

2∆tn−1
)− φn−1 ∆tn

2∆tn−1
(A.29)

g
n+1/2
i =

1

2an+1/2δxi

(φ
n+1/2
i+1 − φ

n+1/2
i−1 ) (A.30)

Step 2.� Update particle positions and velocities. (Strictly speaking, this happens
after the Expansion step, but the narrative works better if it's here.)

v
n+1/2
DM = vn

DM − ∆tn

2

ȧn+1/2

an+1/2
vn

DM − ∆tn

2
gn+1/2 (A.31)

xn+1
DM = xn

DM + ∆tn(v
n+1/2
i,DM /an+1/2) (A.32)

vn+1
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2
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v

n+1/2
i,DM − ∆tn

2
g

n+1/2
i (A.33)

Step 3.� Apply half of the gravitational and expansion update to the �elds that
require it, to obtain the temporary state Ũ = (ρ, P̃ n

total, ṽ
n
BM , B̃n

c )

ṽn
BM = vn

BM − ∆tn

2

ȧn

an
vn

BM − ∆tn

2

1

an
gn+1/2 (A.34)

p̃n = pn − ∆tn

2

2ȧn

an
pn (A.35)

B̃n
c = Bn

c −
δtn

4

ȧn

an
Bc (A.36)

Ũ = (ρ, P̃ n
total, ṽ

n
BM , B̃n

c ) (A.37)
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Step 4. Compute interface states at i± 1
2
, n+ 1

2
using linear spatial reconstruction

and second order time integration:

U
n+ 1

2

i+ 1
2
,L

, U
n+ 1

2

i+ 1
2
,R
⇐= Ũi−1, Ũi, Ũi+1, Ũi+2 (A.38)

Step 5. Compute approximation of the �ux in equation 2.25 at the interface i+ 1
2
.

This is done by solving the Riemann problem using one of the solvers mentioned in
section 2.2.6
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n 1

2

i+ 1
2

= Riemann(U
n+ 1

2

i+ 1
2
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, U
n+ 1

2

i+ 1
2
,R

) (A.39)

Step 6. Update the conserved quantities with the new �uxes:

(V n+1
i )

MHD
= V n

i −
∆t

∆x
[F̂i+ 1

2
− F̂i− 1

2
] (A.40)

Step 7. Compute Electric �eld from Fluxes

E
n+ 1

2

i+ 1
2
,j+ 1

2

⇐= F̂i+ 1
2

(A.41)

Step 9. Update magnetic �elds from electric �elds for the �rst time.

Bn+1
f = Bn

f −
∆t

a
∇× E

n+ 1
2

i+ 1
2
,j+ 1

2

(A.42)

Step 8.�Gravitational step for the baryonic matter, with time centered density

(pn+1
i,BM)

MHD,Grav
= (pn+1

i,BM)
MHD

−∆tn
(ρn + ρn+1

MHD
)

2
g

n+1/2
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Step 9.�Expansion step for the baryonic matter,

(vn+1
BM )

MHD,Grav,exp =
1− (∆tn/2)(ȧn+1/2/an+1/2)

1 + (∆tn/2)(ȧn+1/2/an+1/2)
(vn+1

BM )
MHDGrav

(A.44)

pn+1 =
1− (∆tn)(ȧn+1/2/an+1/2)

1 + (∆tn)(ȧn+1/2/an+1/2)
(pn+1)

MHD
(A.45)

Step 10. Recurse to �ner grids. Integrate �ne grids from tn to tn+1

V n+1
FineGrids ⇐= V n

FineGrids (A.46)

Step 11.�Flux correction step for conserved baryon �eld quantities

V n+1
MHD,Grav,exp,fc

⇐= (F̂ n+1/2), (F̂ n+1/2)FineGrids, V
n+1

MHDGrav,exp
(A.47)
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Step 12.�Project conserved baryon �eld quantities and electric �eld from �ne grids
to coarse grids. This is done after the �ux correction step to avoid any bookkeeping
errors. The average is taken over ∆tn and the surface of each FineGrid.

V n+1
ParentGrid = < V n+1

FineGrid >t,surface (A.48)

E
n+ 1

2
ParentGrid = < E

n+ 1
2

FineGrid >t,surface (A.49)

Step 13. Update magnetic �elds from electric �elds for the �nal time.

Bn+1
f = Bn

f −
∆t

a
∇× E

n+ 1
2

ParentGrid (A.50)

Step 14. Apply expansion to the Face Centered Fields

Bn+1
f,exp

=
1− (∆tn/4)(ȧn+1/2/an+1/2)

1 + (∆tn/4)(ȧn+1/2/an+1/2)
(Bn+1

f ) (A.51)

Step 15. Compute cell centered magnetic �eld from face centered (with the
expansion subscript from step 9 dropped for clarity)

Bn+1
c,x,i,j,k = 0.5 ∗ (Bf,x,i+ 1

2
,j,k + Bf,x,i− 1

2
,j,k)
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2
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2
,k) (A.52)

Bn+1
c,z,i,j,k = 0.5 ∗ (Bf,z,i,j,k+ 1

2
+ Bf,z,i,j,k− 1

2
)

Step 16. We have now �nished an update of this level. Rebuild the hierarchy
from this level down.

V n+1
New FineGrids ⇐=V n+1 (A.53)

Bn+1
f,New FineGrids ⇐=Bn+1

f (A.54)
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