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Abstract. We study the intersection of tropical ψ-classes on tropical heavy/light Hassett
spaces, generalising a result of Kerber–Markwig for M trop

0,n . Our computation reveals that
the weight of a maximal cone in an intersection has a combinatorial intepretation in terms
of the underlying tropical curve and it is always nonnegative. In particular, our result spe-
cialises to that, in top dimension, the tropical intersection product coincides with its classical
counterpart.
Keywords. Tropical intersection theory, Hassett spaces, ψ-classes
Mathematics Subject Classifications. 14T90, 14N35

1. Introduction

In this paper, we study intersection products of ψ-classes on M trop
0,w where w is heavy/light us-

ing tropical intersection theory developed by Allerman and Rau in [AR10] as a generalisation
of [KM09].

Given g ⩾ 0, n ⩾ 2 and w ∈ (Q ∩ [0, 1])n such that 2g +
∑
wi > 2, Hassett [Has03]

introduced the moduli space Mg,w of w-stable nodal n-marked curves of genus g as an alternate
compactification of the well-studied moduli space of n-marked smooth curves of genus g, Mg,n.
We work in genus 0. The moduli space M0,w parametrises reduced connected rational curves C
with n marked points p1, . . . , pn ∈ C, such that

1. a collection of points pi1 , . . . , pis can coincide only if
∑s

j=1wij ⩽ 1;

2. the singularities of C are ordinary double points, called nodes; and

3. for any irreducible component T of C,

#{nodes on T}+
∑
pi∈T

wi > 2.

https://www.combinatorial-theory.org
mailto:hahnma@maths.tcd.ie
mailto:shiyue\protect _li@brown.edu
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In particular, when w is the all 1’s vector, we recover the Deligne–Mumford–Knudsen com-
pactification by stable nodal curves Mg,n of Mg,n. In [Uli15], Ulirsch introduced the tropical
analogue of Mg,w parametrisingw-stable tropical curves of genus g, denoted asM trop

g,w and stud-
ied its geometry.

1.1. Context

The family of ψ-classes represents one of the most studied objects in the intersection theory of
moduli spaces of curves. They parametrise curves satisfying certain tangency conditions at the
marked points.

While in the 90s the intersection theory of ψ-classes on Mg,n was resolved by the
Witten–Kontsevich theorem [Wit91, Kon92], intersection products of ψ-classes on Hassett
spaces Mg,w were first studied by Alexeev and Guy in [AG08]. By the reduction morphism
ρw : Mg,n → Mg,w constructed in [Has03], Alexeev and Guy proved that integrals of ψ-classes
on Mg,w can be expressed as linear combinations of ψ-classes and certain boundary divisors
on Mg,n. Specifically in genus 0, [Moo13, Cey09] related Chow classes on M0,n and M0,w.
Most recently, Blankers and Cavalieri [BC20] extended these results to intersections ofψ-classes
in arbitrary dimension, which in turn resolved the combinatorial relation between ψ-class inter-
sections on Mg,n and Mg,w.

Tropical geometry provides a combinatorial framework for the intersection theory of ψ-
classes in genus 0. In [Mik07], Mikhalkin introduced the moduli space of tropical rational
n-marked stable curves M trop

0,n as an embedded balanced rational polyhedral fan; there, tropi-
cal ψ-classes are certain balanced subfans of codimension 1 corresponding to metric graphs
with certain valency conditions. Then Allermann and Rau [AR10] delevoped tropical intersec-
tion theory on balanced rational polyhedral fans. With this, Kerber and Markwig computed the
intersection of tropical ψ-classes on M trop

0,n in [KM09]; in particular, they showed that the in-
tersection product of tropical ψ-classes on M trop

0,n recovers their algebro-geometric counterpart
on M0,n. In the weighted case, Cavalieri, Hampe, Markwig and Ranganathan studied the cone
complexes M trop

0,w as tropical compactifications analogous to the work of [GM10], and showed
that M trop

0,w is a balanced fan if and only if w is heavy/light in [CHMR16, Theorem A]. This al-
lows us to employ the tropical intersection theory developed in [AR10]. Whenw is such a weight
vector of length n and with m light weights, the tropicalization Σw of the torus embedding

M0,w ↪→ Tw := T (
n
2)−(

n−m
2 )−m

has the underlying cone complex M trop
0,w . Then the closure of M0,w in the toric variety X(Σw)

coincides with Hassett’s compactification M0,w and is indeed a tropical compactification in the
sense of [Tev07]. In [KKL21], Kannan, Karp and the second author employed this setup to
derive the entire Chow ring A∗(M0,w), in which the classical weighted ψ-classes reside, using
toric intersection theory on X(Σw).
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1.2. Main results

Our main result is an explicit formula for the intersection products of tropicalψ-classes onM trop
0,w ,

in the case when w is heavy/light. Our formula shows that the weight of each maiximal cone
appearing in the intersection product has a combinatorial description given by the underlying
tropical curve. See Section 3.1, Section 2.2 for weighted tropical ψ-classes and backgrounds
on M trop

0,w .

Theorem 1.1. Let n ⩾ 4, let n − m ⩾ 2, let 0 < ε < 1/m, let w = (1(n−m), ε(m)), and

let K = (ki)i∈[n] ∈ (Z⩾0)
n. The intersection product

n∏
i=1

ψki
i,w is the weighted subfan of M trop

0,w

consisting of closures of the cones of codimension
∑

i ki satisfying the following conditions:

1. For each maximal cone σ in
n∏

i=1

ψki
i,w with combinatorial type Gσ = (Gσ,mσ), and for

each vertex v ∈ V (Gσ), we have

val(v) + |m−1
σ (v)| = 3 +

∑
i∈m−1

σ (v)

ki.

2. The weight of a maximal cone σ in
n∏

i=1

ψki
i,w with combinatorial type Gσ = (Gσ,mσ) is the

product of the tropical local multiplicities at all vertices of Gσ, i.e.

ω(σ) =
∏

v∈V (Gσ)

TLMσ(v)

=
∏

v∈V (Gσ)

∑
P∈Pw(v)

(−1)|m
−1
σ (v)|−ℓ(P )

( ∑
iK(P )i

K(P )1, · · · , K(P )ℓ(P )

)
.

From this result, we obtain two immediate corollaries. Firstly, when w = (1(n)), we recover
the characterisation of intersection products of tropical ψ-classes on M trop

0,n derived by Kerber
and Markwig in [KM09].

Corollary 1.1 ([KM09, Theorem 4.1]). Let w = (1(n)) and K = (k1, . . . , kn) ∈ (Z⩾0)
n. The

intersection product
∏

i ψ
ki
i is the weighted subfan of M trop

0,n consisting of closures of the cones
of codimension

∑
i ki satsfying the following conditions:

1. For each maximal cone σ in
∏

i ψ
ki
i with combinatorial type Gσ = (Gσ,mσ) and for each

vertex v ∈ V (Gσ),
val(v) + |m−1

σ (v)| = 3 +
∑

i∈m−1
σ (v)

ki.

2. The weight of a maximal cone σ in
∏

i ψ
ki
i with combinatorial type Gσ = (Gσ,mσ) is

ω(σ) =
∏

v∈V (Gσ)

( ∑
i∈m−1

σ (v) ki

k1, · · · , k|m−1
σ (v)|

)
.
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The work of Katz in [Kat12] draws connections between toric and tropical intersection the-
ories and naturally leads to the expectation that the degrees of the top-dimensional intersection
products of ψ-classes, i.e. when

∑
i ki = n−3, onM trop

0,w coincide with their algebro-geometric
counterparts. The following corollary confirms this expectation, in the sense that we indeed re-
cover the intersection product of ψ-classes of Hassett spaces computed in [AG08, Theorem 7.9].

Corollary 1.2. Let w heavy/light. When
∑
ki = n − 3, the intersection product

∏
ψki
i is of

dimension 0, consists of precisely one cone {0} and the weight of the cone {0} of M trop
0,w is

∑
P∈Pw([n])

(−1)n−ℓ(P )

(
ℓ(P )− 3

K(P )1, · · · , K(P )ℓ(P )

)
.

Remark 1.3. Note that it is possible to obtain Corollary 1.2 by generalising [Kat12, Proposi-
tion 7.5] to the heavy/light weighted case. However, the application of the fan displacement rule
as one lifts and intersects the Chow classes in a toric variety following [Kat12, Theorem 6.3] is
more complicated than a direct computation via tropical intersection theory in the present paper
due to less symmetry of the weight vector w. Moreover, our approach features the advantage of
a combinatorial description of intersection products of tropical ψ-classes in any dimension.

The starting point of the proof of Theorem 1.1 is a combinatorial characterisation of weighted
tropicalψ-classes onM trop

0,w in Theorem 1.2. In Section 3.1, we define tropicalψ-classes onM trop
0,w

via pushforward of linear combinations of ψ-classes and boundary divisors on M trop
0,n along the

projection morphism
prtropw :M trop

0,n →M trop
0,w ,

defined by contracting cones inM trop
0,n parametrisingw-unstable tropical curves. See Section 2.1

for terminology on the moduli space M trop
0,w .

Theorem 1.2. Let n ⩾ 4, n−m ⩾ 2, 0 < ε < 1/m, w = (1(n−m), ε(m)). For N ∈ [n], we have
the following two cases.

1. If N is heavy, then the class ψN,w is the balanced subfan of M trop
0,w that is the union of

closed cones σ of dimension n − 4 with associated combinatorial type Gσ = (Gσ,mσ)
such that Gσ has a unique vertex v satisfying

val(v) + |m−1
σ (v)| = 4 and N ∈ m−1

σ (v).

2. If N is light, then ψN,w is the balanced subfan of M trop
0,w that is the union of closed cones

σ of dimension n− 4 with associated combinatorial type Gσ = (Gσ,mσ) such that

(a) Gσ has a unique vertex v such that

val(v) + |m−1
σ (v)| = 4 and N ∈ m−1

σ (v).

(b) σ is not contained in maximal cones contracted by prtropw :M trop
0,n →M trop

0,w .
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Another key in the proof of Theorem 1.1 is a realisability result for the weighted tropical
ψ-classes. We show in Theorem 1.3 below that the weighted tropical ψ-classes are realised as
rational multiples of the tropical Weil divisors of a family of rational functions on M trop

0,w , anal-
ogous to the case of M trop

0,n studied in [KM09, Proposition 3.5]. See Section 3.3 for terminology
on rational functions on balanced polyhedral fans; see Section 2.2 for backgrounds on tropical
boundary divisors and tropical Weil divisors.

Theorem 1.3. For n ⩾ 4, n−m ⩾ 2 and 0 < ε < 1/m, w = (1(n−m), ε(m)), and N ∈ [n], we
have the following equality of tropical divisors

div(fN,w) = K(N,w)ψN,w,

where the coefficients K(N,w) depend on n,m as follows.

1. If n−m = 2, i.e. the weight vector w contains exactly 2 heavy weights, then

K(N,w) =

{
m if N ∈ [n−m],

2m− 2 otherwise;

2. If n−m > 2, then

K(N,w) =

{(
n−1
2

)
−
(
m
2

)
if N ∈ [n−m],(

n−1
2

)
−
(
m−1
2

)
otherwise.

1.3. Future directions

In this paper, we have focused on the combinatorics of intersection products of heavy/light
weighted tropical ψ-classes in genus 0. We aim to point to two related works that provide
interesting future directions. Firstly, Fry extended [CHMR16] to the moduli spaces of ratio-
nal tropical curves with stability conditions given by a graph and an ordered partition on the
vertices in [Fry19]. When the graph is complete multipartite, Fry [Fry19, Theorem 3.28] iden-
tifies the moduli space as the Bergman fan of the graphic matroid, which is balanced. A key
assumption for our work is that the moduli space of rational stable tropical curves associated
to a heavy/light weight is balanced, proved in [CHMR16, Theorem I]. It would be interesting
to extend our methods to this new family of tropical moduli spaces. Secondly, with Clader,
Damiolini, Huang, Ramadas, the second author constructed a moduli space of rational curves
with cyclic action Lr

n in [CDH+22] and its tropical counterpart Lr,trop
n in [CDLR22]. It will be

interesting to employ tropical intersection techniques for computing intersection numbers on Lr

n

or Lr,trop
n . Lastly, Cavalieri, Gross and Markwig developed a theory of tropical ψ-classes on

stable elliptic curves in [CGM20]. In particular, the authors derive a correspondence theorem
and recover the 1-point elliptic ψ-integral on the tropical side [CGM20, Theorem A]. In light of
the present paper, a generalisation of their work to the weighted case is an interesting topic of
further research.
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2. Moduli spaces of tropical weighted stable curves

In this section, we review the basics about M trop
0,w in Section 2.1 and recall backgrounds on trop-

ical intersection theory in Section 2.2.

2.1. Tropical w-stable curves and their moduli

Let n ⩾ 2, and letw ∈ (Q∩(0, 1])n be a weight vector. We start from scratch with the following
definitions.

Definition 2.1. A rational n-marked graph is a tuple G = (G,m) such that

1. G is a finite tree with vertex set V (G) and edge set E(G);

2. m : [n] → V (G) is a function (called the “marking function” of G).

Definition 2.2. A rational n-marked graph G = (G,m) is w-stable if for all v ∈ V (G)

val(v) +
∑

i∈m−1(v)

wi > 2.

Definition 2.3. An abstract rational tropical w-stable curve is a tuple (G, ℓ) where G is a
rational w-stable graph and ℓ : E(G) → R⩾0 is a function.

We call G the combinatorial type and ℓ the length function of an abstract rational tropical
w-stable curve.

The moduli space of abstract rational tropicalw-stable curvesM trop
0,w parametrises all abstract

rational tropical w-stable curves. When w = (1(n)) is the all 1’s vector, we recover the moduli
space of tropical n-marked curves M trop

0,n . In this paper, we focus on heavy/light weight vectors,
recalled as follows.

Definition 2.4. Let w = (w1, . . . , wn) ∈ Qn ∩ (0, 1]n be a vector of weights.

1. We call i ∈ {1, . . . , n} heavy in w if for all j ̸= i we have wi + wj > 1.

2. We call i ∈ {1, . . . , n} small in w if wi + wj > 1 implies j is heavy in w.

If in addition the total weight of all small weights is less than 1, we call them light.

For example, the weight vector w = (1, 1, 3/4, 1/2) has all wi heavy, whereas the weight
vector w′ = (1, 1, 1/3, 1/3) has w′

1, w
′
2 heavy, and w′

3, w
′
4 light.

Convention 2.1. We hereafter assume that w is heavy/light unless specified otherwise. As it
is customary, we order the weights of a heavy/light weight vector such that all heavy weights
precede light weights. Explicitly, we always take n ⩾ 4, n − m ⩾ 2, 0 < ε < 1/m and
let w = (1(n−m), ε(m)).
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We now describe an embedding ofM trop
0,w . Let (G, ℓ) be an abstract rational tropicalw-stable

curve, and let i, j ∈ [n]. We define the distance function dist(G,ℓ) : [n]
2 → R⩾0 as follows:

dist(G,ℓ)(i, j) := min
P∈P (i,j)

(∑
e∈P

ℓ(e)

)
,

where the minimum is taken over all paths P (i, j) in (G, ℓ) from the vertex supporting i to the
vertex supporting j. Moreover, we define the map

ϕw : Rn → R(
n
2)−(

m
2 )

(a1, . . . , an) 7→ (ai + aj),

for all {i, j} ̸⊆ [n]∖ [n−m].
Then, we consider the map

Φw :M trop
0,w → Rw :=

R(
n
2)−(

m
2 )
⧸Im(ϕw)

defined by

(G, ℓ) 7→ (dist(G,ℓ)(i, j)).

for all {i, j} ̸⊆ [n]∖ [n−m].
A similar argument in [FR13, Example 7.2] shows that this map embeds M trop

0,w as a fan
intoRw, whose cones are in bijection with the combinatorial types of abstract rational tropicalw-
stable curves. In particular, a top-dimensional cone σ with combinatorial types Gσ = (Gσ,mσ)
satisfies that for every vertex v ∈ V (Gσ), val(v) + |m−1(v)| = 3.

Example 2.5. The space M trop
0,5 is the cone over the Petersen graph (Figure 2.1, left). Its image

under the contraction map prtropw for w = (1(2), ε(3)) is the tropical Losev–Manin space M trop
0,w ,

which is the cone over the 1-skeleton of the permutohedron associated withS3 (Figure 2.1, right).

The reason for focusing on M trop
0,w for heavy/light w is the following theorem, and the fact

that tropical intersection theory requires that the fans in question be balanced.

Theorem 2.2 ([CHMR16, Theorem I]). The morphism of rational polyhedral fans

prtropw :M trop
0,n →M trop

0,w

contracts all cones parametrising w-unstable tropical curves. Its image is a balanced fan if and
only if the weight w is heavy/light.

We note that with respect to the embedding we constructed, the map prtropw corresponds to a
projection R(

n
2) → R(

n
2)−(

m
2 ) which forgets the coordinates indexed by {i, j} ⊂ [n]∖ [n−m].
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(14, 235)

(25, 134)

(34, 125)

(15, 234)

(24, 135)

(35, 124)

(23, 145)

(13, 245)

(12, 345)

(45, 123)

(14, 235)(25, 134)

(34, 125)

(15, 234) (24, 135)

(35, 124)

Figure 2.1: Each label (ij, kℓm) indicates the tropical curve with 2 vertices connected by 1 edge
with the left vertex supporting the marks i, j, and the right vertex supporting the marks k, ℓ,m.
In M trop

0,n , the 1-dimensional cones, indicated as black vertices, are contracted under prtropw .

2.2. Tropical Weil divisors and boundary divisors

In this section, we recall the definitions of tropical Weil divisors and boundary divisors from
[Rau16]. Let X be a rational, weighted, pure-dimensional polyhedral fan in Rn. For each cone
τ and each cone σ containing τ such that dimσ = dim τ + 1, there is a primitive integral vector
uσ/τ in Zn such that

Zuσ/τ + τ ∩ Zn = σ ∩ Zn,

called the primitive generator of σ with respect to τ . Writing the weight of each cone σ of X
by w(σ), we say that X is balanced if for any codimension-1 cone τ in X ,∑

σ⊋τ,
dimσ=dimX

w(σ)uσ/τ ∈ τ.

If X is balanced and of dimension d, we call X a d-cycle. Let |X| denote the support of X , i.e.
|X| is the union of all cones in X .

Definition 2.6. A nonzero rational function on a d-cycleX is a nonzero continuous piecewise
linear function φ : |X| → R that is linear with a rational slope on each cone.

Definition 2.7. The tropical Weil divisor div(φ) of a nonzero rational function φ on a d-cycle
X is the weighted codimension-1 skeleton of X with the weight for each codimension-1 cone τ
given as follows:

ωφ(τ) =
∑
σ⊋τ

dimσ:=dim τ+1

φ(ωφ(σ)uσ/τ )− φ

( ∑
σ⊋τ

dimσ=dim τ+1

ωφ(σ)uσ/τ

)
.

Let d′ < d and Z be a d′-cycle in X and φ a nonzero rational function on X . Then, the
tropical intersection product of Z and div(φ) is the Weil divisor of φ|Z .

By the work of [Mik07] and [KM09],M trop
0,n can be embedded as a rational weighted balanced

polyhedral fan in a real vector space. We recall tropical boundary divisors on M trop
0,n as follows.
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To begin with, for I ⊊ [n], we denote by vI the primitive generator of the cone inM trop
0,n that has

the combinatorial type of one bounded edge, and two vertices supporting marks in I and marks
in Ic respectively. The tropical boundary divisor indexed by I can be defined as the tropical Weil
divisor associated with the following rational function given by I on M trop

0,n .

Definition 2.8. For I ⊊ [n], the rational function φI onM trop
0,n is the linear extension of the map

defined as follow: for each primitive generator vS ,

φI(vS) :=

{
1 if I = S or Ic = S,

0 otherwise.

The tropical boundary divisor Dtrop
I is defined to be the tropical Weil devisior of φI , i.e.

Dtrop
I := div(φI).

We denote Dtrop
I by DI for simplicity. In [Rau16, Lemma 2.5], Rau expresses each tropical

divisorDI for I ⊊ [n] as an integral linear combination of codimension-1 cones as follows. Each
codimension-1 cone σ inM trop

0,n corresponds to a combinatorial type Gσ = (Gσ,mσ) possessing
a unique vertex v satisfying val(v) + |m−1

σ (v)| = 4. Upon denoting the elements in the edge set
of v unioned with m−1

σ (v) as e1, e2, e3, e4, we obtain a partition

P (σ) = P1(σ) ⊔ P2(σ) ⊔ P3(σ) ⊔ P4(σ) ⊢ [n],

where each part

Pi(σ) =

{ei} if ei ∈ m−1
σ (v),

{marks supported on the component ofGσ∖{v} that con-
tains ei}

otherwise.

P1(σ)

P2(σ)

P3(σ)

P4(σ)

v

Figure 2.2: The neighborhood of the unique vertex v inGσ satisfying val(v) + |m−1(v)| = 4 for
a codimension-1 cone σ in M trop

0,n . Here we visualise m−1
σ (v) as half-edges.

Lemma 2.9 ([Rau16, Lemma 2.5]). Let I ⊆ [n]. The tropical divisor DI is an integral linear
combination of codimension-1 cones of M trop

0,n . More precisely,

DI =
∑

dim(σ)=dim(X)−1

c(σ)σ,
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where the coefficient c(σ) is

ω(σ) :=


1 if I = Pi(σ) ∪ Pj(σ), {i, j} ⊂ [4],

−1 if I = Pi(σ) or Ic = Pi(σ), i ∈ [4],

0 otherwise.

Example 2.10. We describe D45 on M trop
0,5 . The relevant combinatorial types are shown in

Figure 2.3, where the first three combinatorial types have weight 1 and the last one has weight
−1 in D45. Therefore, the tropical boundary divisor D45 can be written as linear combination
of codimension-1 cones as follows.

D45 = 1-dimensional cones with generators {v12, v13, v23}
− 1-dimensional cone with generator {v45}.

1 3
4 4

1
4

4

5

1
2
32 3

1 2

35

2

5 5

Figure 2.3: The four combinatorial types appear in the boundary divisor D45, where the first
three appear with weight 1 and the last appears with weight −1.

3. ψ-classes on M trop
0,w

In this section, we introduce weighted tropical ψ-classes on M trop
0,w . In Section 3.1, we define

weighted tropical ψ-classes as pushforwards of certain tropical cycles along prtropw . In Sec-
tion 3.2, we give a purely combinatorial description of the cones in these weighted tropical
ψ-classes, which enables us to show in Section 3.3 that each weighted tropical ψ-class is a
rational multiple of the tropical Weil divisor of a rational function, generalising the result for
w = (1(n)) in [KM09].

3.1. ψ-classes on M trop
0,w as pushforward of tropical cycles

Given a weight vector w, we define an abstract simplicial complex

Cw :=

{
S ⊆ [n] :

∑
i∈S

wi ⩽ 1

}
.

Let C2
w denote the elements of Cw of cardinality at least 2. For example, for 0 < ε < 1/3 and

w = (1(2), ε(3)), we have Cw = {1, 2, 3, 4, 5, 34, 35, 45, 345} and C2
w = {34, 35, 45, 345}.

Firstly, we recall tropical ψ-classes on M trop
0,n .
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Definition 3.1 ([Mik07, Definition 3.1]). For N ∈ [n], the tropical ψ-class ψN is the weighted
balanced fan of the closed cones of dimension n− 4 in M trop

0,n such that for each maximal cone
σ in ψN with corresponding combinatorial type Gσ = (Gσ,mσ), Gσ have a unique vertex v
satisfying

val(v) + |m−1(v)| = 4 and N ∈ m−1
σ (v).

The weight of each cone in ψN is 1.

We are now ready to define weighted tropical ψ-classes on M trop
0,w .

Definition 3.2. For w as in Convention 2.1 and N ∈ [n], the weighted tropical ψ-class ψN,w is
defined as

ψtrop
N,w :=

(
prtropw

)
∗ (ψ

trop
N −

∑
N∈S∈C2

w

Dtrop
S ).

Remark 3.3. This definition of weighted tropical ψ-classes is inspired by the classical ψ-
classes on Mg,w, studied first by Alexeev and Guy in [AG08]. The authors proved that
ψN = π∗

w(ψN,w) +
∑

S∈C2
w
DS , where the divisor DS parametrises all rational curves with a

“rational-tail” component marked by S ∈ C2
w and πw is the projection morphismMg,n → Mg,w.

Example 3.4. Let w = (1(3), ε(2)). Firstly, we compute ψtrop
N,w using Definition 3.2 as follows.

ψtrop
4,w = prtropw (ψtrop

4 −D45) = prtropw (ψtrop
4 )− prtropw (D45).

By Example 2.10, this becomes

prtropw (1-dimensional cones with generators {v12, v13, v15, v23, v25, v35})
− prtropw (1-dimensional cones with generators {v12, v13, v23}).

Thus ψtrop
4,w = 1-dimensional cones with generators {v15, v25, v35}.

3.2. A combinatorial description of ψ-classes

We give a completely combinatorial description of tropical weighted ψ-classes onM trop
0,w , which

will come handy when computing their intersection products. This description is analogous to
[Mik07, Definition 3.1] and [KM09, Definition 3.1].

Theorem 1.2. Let n ⩾ 4, n−m ⩾ 2, 0 < ε < 1/m, w = (1(n−m), ε(m)). For N ∈ [n], we have
the following two cases.

1. If N is heavy, then the class ψN,w is the balanced subfan of M trop
0,w that is the union of

closed cones σ of dimension n − 4 with associated combinatorial type Gσ = (Gσ,mσ)
such that Gσ has a unique vertex v satisfying

val(v) + |m−1
σ (v)| = 4 and N ∈ m−1

σ (v).

2. If N is light, then ψN,w is the balanced subfan of M trop
0,w that is the union of closed cones

σ of dimension n− 4 with associated combinatorial type Gσ = (Gσ,mσ) such that
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(a) Gσ has a unique vertex v such that

val(v) + |m−1
σ (v)| = 4 and N ∈ m−1

σ (v).

(b) σ is not contained in maximal cones contracted by prtropw :M trop
0,n →M trop

0,w .

Example 3.5. When w = (1(2), ε(n−2)), M trop
0,w is the tropical analogue of the Losev–Manin

space, studied in [LM00]. The theorem implies that ψN,w = ∅ for all N /∈ [2]. Their algebro-
geometric counterparts ψN are also 0 for all N /∈ [2], as a result of [AG08, Lemma 5.5].

Example 3.6. Let w = (1(3), ε(2)) and we compute ψ1,w and ψ4,w. The 1-dimensional cones
corresponding to those tropical curves with combinatorial types Gσ = (Gσ,mσ) possessing a
unique vertex v satisfying val(v) + |m−1

σ (v)| = 4 and 4 ∈ m−1
σ (v) are the 1-dimensional cones

with generators
v12, v13, v15, v23, v25, v35.

The maximal cones in M trop
0,5 that are contracted under the reduction map prtropw for w =

(1(3), ε(2)) are those for which v45 is a primitive generator, which does not correspond to a w-
stable curve. These cones contain the codimension-1 cones generated by v12, v13, v23, which are
not present in ψN,w for N = 4, 5. See Figure 3.1. Therefore,

ψ4,w = 1-dimensional cones with generators {v15, v25, v35}.

In contrast for N = 1, we obtain:

ψ1,w = 1-dimensional cones with generators {v23, v24, v25, v34, v35}.

4

5

1
2
3

1

2

3
4
5

1

3

2
4
5

2

3

1
4
5

Figure 3.1: The maximal cones in M trop
0,5 contracted by prtropw for w = (1(3), ε(2)).

Proof of Theorem 1.2. ForN ∈ [n−m], the set {S ∈ Cw : N ∈ S} is empty. By Definition 3.2,
ψN,w = (prtropw )∗(ψN).

Now suppose N ∈ [n]∖ [n−m]. Recall that by Definition 3.2

ψtrop
N,w =

(
prtropw

)
∗ (ψ

trop
N −

∑
N∈S∈C2

w

Dtrop
S ), (3.1)
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Firstly, we consider the cones in
∑

N∈S∈C2
w
Dtrop

S that remain under pushforward of prtropw . For
each S ∈ C2

w containing N , let

PS := {σ : dim(σ) = dim(X)− 1, N ∈ S = Pj(σ) ∪ Pk(σ) ∈ C2
w, {j, k} ⊂ [4]},

NS := {σ : dim(σ) = dim(X)− 1, N ∈ S = Pj(σ) ∈ C2
w orN /∈ Sc = Pj(σ) ∈ C2

w, j ∈ [4]},

standing for those cones appearing with positive coefficients and with negative coefficients re-
spectively in the tropical boundary divisor DS . By Lemma 2.9,

DS =
∑
σ∈PS

σ −
∑
σ∈NS

σ. (3.2)

We compute DS under the pushfoward (prtropw )∗. Fix a codimension-1 cone σ appearing with
nonzero coefficients in the expression above. Let Gσ = (Gσ,mσ) be its combinatorial type
satisfying that Gσ has a unique vertex v with val(v) + |m−1(v)| = 4 and let the partition

P1(σ) ⊔ P2(σ) ⊔ P3(σ) ⊔ P4(σ) ⊢ [n]

be given in the same manner as in Section 2.2; we write Pj(σ) as Pj for simplicity.
There are two cases, depending on whether the mark N ∈ m−1(v) or N /∈ m−1(v).

Case 1: If the marking N /∈ m−1(v), then {N} ⊊ Pi for some i ∈ [4]. Since G is a finite tree,
there exists a vertex u ∈ V (G) such that val(u) = 1 and that m−1(u) ⊆ Pi. Since Pi ⊆ S ∈ C2

w

by the fact that σ has nonzero coefficient in Equation 3.2, we have that∑
k∈m−1(u)

wk ⩽
∑
k∈Pi

wk ⩽
∑
k∈S

wk < 1.

Thus,
val(u) +

∑
k∈m−1(u)

wk < 1 + 1 = 2,

implying that Gσ is not a w-stable combinatorial type. Therefore, the pushforward under prtropw

of σ is empty.

Case 2: If the marking N ∈ m−1(v), then without loss of generality let P4 = {N}. Since
|S| ⩾ 2 and by the fact that σ has nonzero coefficient in Equation 3.2, there are then 4 cases,
grouped by whether S = {N} ∪ Pi for some i ∈ [4] or S = {N} ⊔ Pi ⊔ Pj for {i, j} ⊂ [4], and
further subdivided by cardinality considerations.

Case 2(a): If S = {N} ∪ Pi for some i ∈ [3] and |Pi| ⩾ 2, then by the same argument as in
Case 1 when N /∈ m−1(v), there exists a vertex u ∈ V (G) such that m−1(u) ⊆ Pi ⊂ S ∈ C2

w

and val(u) = 1. The vertex u is then a witness that Gσ is not w-stable and thus its image
pushforward under prtropw is trivial.

Case 2(b): If S = {N}∪Pi for some i ∈ [3], |Pi| = 1 and one of the remaining parts, say Pj

for j ∈ [4]∖ {4, i} has cardinality 1. If we have that Pj ⊂ [n−m], we have

val(v) +
∑

k∈m−1(v)

wk = 2 + 2ε > 2.
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Then Gσ is w-stable and thus the pushforward preserves σ.
Case 2(c): If S = {N}∪Pi for some i ∈ [3], |Pi| = 1 and one of the remaining parts, say Pj

for j ∈ [4]∖ {4, i} has cardinality 1. If we have that Pj ⊂ [n]∖ [n−m], we have

val(v) +
∑

k∈m−1(v)

wk = 1 + 3ε < 2.

Then Gσ is not w-stable and thus the pushforward under prtropw is trivial.
Case 2(d): If S = {N} ∪Pi for some i ∈ [3], |Pi| = 1, and both of the remaining parts have

cardinality greater than 1. Then thew-stability depends on the remaining parts Pj for j /∈ {i, 4}.
Case 2(e): IfS = {N}⊔Pi⊔Pj for {i, j} ⊂ [3], it is an easy exercise using similar arguments

to see that Gσ is not w-stable and pushforward under prtropw is trivial.
Now, denoting

SN,S := {σ : N ∈ m−1(v), if |Pj(σ)| = 1with j ∈ [3], then Pj ⊂ {[n−m]}},

Equation 3.1 becomes

ψN,w = (prtropw )∗

(
ψN −

∑
σ∈SN,S

σ

)
=
∑

σ∈SN,S

σ.

Note that the cones in SN,S are exactly those cones with combinatorial types Gσ = (Gσ,mσ)
such that the unique vertex v in Gσ does not carry two light marks. Therefore, they are not
contained in a maximal dimensional cone inM trop

0,n that is contracted. This proves the result.

3.3. ψ-classes on M trop
0,w as Weil divisors of rational functions

In this section, we define a rational function fN,w for each N ∈ [n] such that the tropical Weil
divisor div(fN,w) is a multiple of ψN,w in M trop

0,w .

Definition 3.7. Let w be heavy/light as in Convention 2.1. Let I ⊂ [n] of cardinality 1 < |I| <
n − 1. We define a vector vI ∈ R(

n
2)−(

m
2 ) as follows. Each coordinate of R(

n
2)−(

m
2 ) is indexed

by a tuple T ∈
(
[n]
2

)
∖
(
[m]
2

)
. For each coordinate indexed by T = {t1, t2} ̸⊆ [n]∖ [n−m], we

define

(vI)T =

{
1 if |I ∩ T | = 1

0 otherwise
∈ R(

n
2)−(

m
2 ).

For example, when n = 4, w = (1(4)), I = 24 ⊂ [4], the vector v24 = (1, 0, 1, 1, 0, 1).
The motivation for defining such vI is as follows. The vector vI is the primitive vector in M trop

0,w

corresponding to a 1-dimensional cone with two vertices and one bounded edge of length 1,
such that the markings in I on are supported on one endpoint of the bounded edge and [n] ∖ I
is supported on the other endpoint. Each 1-dimensional cone in M trop

0,w is the primitive vector vI
for some I ⊂ [n]. Note that vI = v[n]∖I .

For N ∈ [n], we define

VN,w = {vI ∈M trop
0,w : N /∈ I and |I| = 2}
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By a similar argument as in [KM09, Lemma 2.3], we obtain that for any heavy/light vector
w = (1(n−m), ε(m)) andN ∈ [n] that the span of elements in VN,w is precisely the quotient space
Rw, i.e.

⟨VN,w⟩ = Rw =
R(

n
2)−(

m
2 )
⧸Im(ϕw)

.

The next definition/lemma follows from the same ideas as [KM09, Definition/Lemma 2.5].

Definition/Lemma 3.1. For any N ∈ [n], any primitive generator vI has a unique positive
representation in VN,w

vI =
∑

vS∈VN,w

cSvS

satisfying that

1. if N ∈ I , then S ⊆ [n]∖ I; otherwise, S ⊆ I;

2. for all vS ∈ VN,k, we have cS ⩾ 0;

3. there exists vS ∈ VN,k with cS = 0.

For example, if the weight vector w is (1(n), ε(m)) andN = 4, V4,w is {v12, v13, v23, v25, v35}.
The positive representation of v34 is v34 = v12+ v15+ v25, and the positive representation of v13
is v13 = v24 + v25.

Motivated by this definition, we define the following function that is linear on each cone
of M trop

0,w .

Definition/Lemma 3.2. For each N ∈ [n], we define a rational function fN,w on M trop
0,w by

fN,w(vI) =

{
1 if vI ∈ VN,w,

0 otherwise.

and linearly extend fN,w to R(
n
2)−(

m
2 ). In particular, the function fN,w is linear on each cone

of M trop
0,w .

For w = (1(n)), the linearity of fN,w on each cone was derived in [KM09, Lemma 3.3]
where they defined an analogous rational function fN on M trop

0,n . Kerber–Markwig also showed
that the Weil divisor div(fN) is a multiple of the tropicalψ-classψN onM trop

0,n , which reduces the
question of intersecting tropical ψ-classes to intersecting Weil divisors with tropical ψ-classes.

Proposition 3.8. [KM09, Proposition 3.5] Let w = (1(n)). With notation as above, we obtain
that

div(fN) =

(
n− 1

2

)
ψN .

Our next theorem is an analogous result on M trop
0,w , generalising the above proposition.
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Theorem 1.3. For n ⩾ 4, n−m ⩾ 2 and 0 < ε < 1/m, w = (1(n−m), ε(m)), and N ∈ [n], we
have the following equality of tropical divisors

div(fN,w) = K(N,w)ψN,w,

where the coefficients K(N,w) depend on n,m as follows.

1. if n−m = 2, i.e. the weight vector w contains exactly 2 heavy weights, then

K(N,w) =

{
m if N ∈ [n−m],

2m− 2 otherwise;

2. if n−m > 2, then

K(N,w) =

{(
n−1
2

)
−
(
m
2

)
if N ∈ [n−m],(

n−1
2

)
−
(
m−1
2

)
otherwise.

Remark 3.9. Note that when n −m = 2 and N ∈ [n] ∖ [n −m], the tropical ψ-class ψN,w is
empty; see Example 3.5. In particular, we have that div(fN,w) is empty.

Now we are positioned to adapt the result in [KM09, Remark 3.4] to the weighted case,
allowing us to write the tropical weighted ψ-classes as a rational multiple of the tropical Weil
divisors.

Proof of Theorem 1.3. Fix N ∈ [n], and denote M trop
0,w . For each codimension-1 cone τ in X ,

we compute the weight of fN,w on τ . Recall that

ωfN,w
(τ) =

∑
σ⊋τ

dimσ=dim τ+1

fN,w(ω(σ)uσ/τ )− fN,w

( ∑
σ⊋τ

dimσ=dim τ+1

ω(σ)uσ/τ

)
.

Since τ has codimension-1 in M trop
0,w , it parametrises tropical curves with combinatorial types

Gσ = (Gσ,mσ) such that Gσ has a unique vertex v satisfying val(v) +m−1
σ (v) = 4. We again

obtain a partition
P1(σ) ⊔ P2(σ) ⊔ P3(σ) ⊔ P4(σ) ⊢ [n]

in the same manner as in Section 2.2; write Pi = Pi(σ) for all i. There are at most 3 top-
dimensional cones σ containing τ , corresponding to tropical curves with combinatorial types
shown in Figure 3.2. Any such top-dimensional cone σ contains τ in M trop

0,w if and only if
the primitive generator uσ/τ correspond to a w-stable tropical curve. Equivalently, the top-
dimensional cone σ contains τ , if and only if the primitive generator uσ/τ = vSσ = v[n]∖Sσ

exists in M trop
0,w , if and only if ∑

i∈Sσ

wi ⩾ 1, and
∑

i∈[n]∖Sσ

wi ⩾ 1,
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where Sσ ∈ {P1∪P2, P1∪P3, P1∪P4}. Furthermore, for each uσ/τ present inM trop
0,w , the unique

positive representation is given by Definition/Lemma 3.1. Therefore, we have that

ωfN,w
(τ) =

∑
σ⊋τ

dimσ=dim τ+1

fN,w(ω(σ)uσ/τ )− fN,w

( ∑
σ⊋τ

dimσ=dim τ+1

ω(σ)uσ/τ

)

=
∑
σ⊋τ

dimσ=dim τ+1

ω(σ)fN,w

( ∑
vS∈VN,w

cσ,SvS

)
− fN,w

( ∑
σ⊋τ

dimσ=dim τ+1

ω(σ)

( ∑
vS∈VN,w

cσ,SvS

))
.

Switching the order of summation and evaluating fN,w(vS) = 1, we have that

ωfN,w
(τ) =

∑
vS∈VN,w

∑
σ⊋τ

dimσ=dim τ+1

ω(σ)cσ,S − fN,w

 ∑
vS∈VN,w

∑
σ⊋τ

dimσ=dim τ+1

ω(σ) (cσ,SvS)

 .

We note that
∑

vS∈VN,w
vS = 0 by a similar argument as in [KM09, Lemma 2.4]. Therefore, we

may obtain the unique positive representation of the argument of fN,w in the second term above,
by subtracting Mτ

∑
vS∈VN,w

vS , where

Mτ := min
vS∈VN,w

( ∑
σ⊋τ

dimσ=dim τ+1

ω(σ)cσ,S

)
.

Therefore, the weight of fN,w on τ becomes

ωfN,w
(τ) =

∑
vS∈VN,w

Mτ = K(N,w)Mτ

by linearity of fN,w. Then Lemma 3.11 and 3.12 gives the desired result.

P1

P2

P3

P4

P1

P3

P2

P4

P1

P4

P2

P3

Figure 3.2: The combinatorial types of the 3 top-dimensional cones sharing a common
codimension-1 cone with combinatorial type in Figure 2.2.

The following corollary holds immediately from the proof of Theorem 1.3.
Corollary 3.10. In the situation of Theorem 1.3, let Z be an arbitrary d-cycle in M trop

0,w

for d ⩽ n − 3 and let τ be a codimension-1 cone in Z. The weight of τ in the intersection
product of Z and ψN,w is

ω(τ) = minvS∈VN,w

( ∑
σ⊋τ

dim(σ)=dim(τ)+1
Aσ/τ⊃S

ω(σ)

)
,

where Aσ/τ ⊂ [n]∖ {N} is the unique set, such that the primitive generator uσ/τ = vAσ/τ
.
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We now prove the two lemmata used in the proof of Theorem 1.3.

Lemma 3.11. In the situation of Theorem 1.3, for each codimension-1 cone τ inX , andN ∈ [n],
the quantity

Mτ := min
vS∈VN,w

( ∑
σ⊋τ

dimσ=dim τ+1

ω(σ)cσ,S

)
=

{
1 if τ ∈ ψN,w;

0 otherwise.

Proof. Since τ has codimension 1 inX , it parametrises combinatorial types with a unique vertex
v such that val(v) +m−1(v) = 4. We obtain a partition A ⊔B ⊔ C ⊔D ⊢ [n] in the manner of
Section 2.2 and without loss of generality assume that N ∈ A. There are two cases:

Case 1: {N} = A. For any vS in VN,w, S is contained in one of {B ∪ C,B ∪D,C ∪D}.
Furthermore, by w-stability and without loss of generality, there exists b ∈ B and c ∈ C such
that v{b,c} ∈ VN,w. Consider all σ ⊋ τ with dimσ = dim τ + 1; the number of times v{b,c}
appears in Sσ/τ is 1 where Sσ/τ ⊆ [n] ∖ {N} such that the primitive generator uσ/τ = vSσ/τ

.
Thus {b, c} is a witness of the minimum value of∑

σ⊋τ
dimσ=dim τ+1

ω(σ)cσ,S = 1.

Case 2: {N} ⊊ A. Then there exists at least one other element, denoted by j in A. For
any vS ∈ Vi,w such that j ∈ S, we have that S ∩ A ̸= ∅, and thus S is contained in one of
{B ∪ C,B ∪D,C ∪D}. The set vS is a witness of the minimum value of∑

σ⊋τ
dimσ=dim τ+1

ω(σ)cσ,S = 0,

giving Mτ = 0 in this case. In both cases, we used the fact that for any σ satisfying σ ⊋ τ ,
dimσ = dim τ + 1, cσ,S = 1 if S ⊆ Sσ/τ and 0 otherwise. Here, Sσ/τ is the unique subset of
[n]∖ {N} such that uσ/τ = vSσ/τ

.

Lemma 3.12. For n ⩾ 4, n−m ⩾ 2 and 0 < ε < 1/m, w = (1(n−m), ε(m)), we have that

1. if n−m = 2, i.e. the weight vector w contains exactly 2 heavy weights, then

K(N,w) =

{
m N ∈ [2],

2m− 2 otherwise;

2. if n−m > 2, then

K(N,w) =

{(
n−1
2

)
−
(
m
2

)
if N ∈ [n−m],(

n−1
2

)
−
(
m−1
2

)
otherwise.
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Proof. Fix N ∈ [n]. Recall that K(N,w) is the number of subsets S ⊆ [n] such that |S| = 2,
N /∈ S, and the tropical curve with only one bounded edge supporting S on one endpoint is
w-stable, i.e. ∑

N∈S

wi ⩾ 1, and
∑

N∈[n]∖S

wi ⩾ 1.

For (i), suppose N ∈ [2]. Any S ∈ VN,w is precisely of the form ([2]∖N)∪ j for a light weight
index j ∈ [n]∖ [2]. Thus K(N,w) is the number of ways of choosing a light weight index, and
is m. Now suppose N ∈ [n] ∖ [2]; then any S ∈ VN,w is of the form j ∪ k for j ∈ [2] and
k ∈ [n]∖ (N ∪ [2]), giving the count K(N,w) = 2(m− 1) = 2m− 2.

For (ii), any 2-subsets of [n] not containing N can be VN,w except for those contained in
[n]∖ [n−m]. In the case whenN ∈ [n−m], this excludes

(
m
2

)
subsets of [n]∖ [n−m]; when

N ∈ [n]∖ [n−m], this excludes the
(
m
2

)
contained in [n]∖ [n−m] but not containing N .

4. Tropical local multiplicities and intersection numbers

In this section, we prove Theorem 1.1, and we first prepare by introducing the notion of tropical
local multiplicity at each vertex of a tropical curve.

Definition 4.1. Let w be as in Convention 2.1 and a set S ⊆ [n], a partition P = P1 ⊔ · · · ⊔ Pr

of S is totally w-unstable if ∑
i∈Pj

wi ⩽ 1,

for all j ∈ [r].

We denote the set of all totally w-unstable partition of S by Pw(S).
We will use the following definitions involving set partitions.

Definition 4.2. Given a partition

P = P1 ⊔ · · · ⊔ Pr ⊢M

of a set M and a subset S ⊆ M , the partition P is called S-admissible if there exists a subset
I ⊆ [r] such that ⊔i∈IPi = S.

As an example, consider the partition P = {1, 23, 4} ⊢ [4] and the subset S1 = 12 and
S2 = 234. Then P is S2-admissible but not S1-admissible.

Definition 4.3. Given a sequence of numbers K = {ki}i∈Z>0 and a partition P of a subset of
Z>0, the P -sequence of K is

K(P ) :=

{
1− |Pi|+

∑
j∈Pi

kj

}
i∈Z>0

.

Next, we define the tropical local multiplicities at the vertices of abstract tropical curves.
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Definition 4.4. Let σ be a cone in M trop
0,w with combinatorial type Gσ = (Gσ,mσ) and let

v ∈ V (Gσ). We define the tropical local multiplicity at the vertex v of σ as

TLMσ(v) :=
∑

P∈Pw(m−1
σ (v))

(−1)|m
−1
σ (v)|−ℓ(P )

( ∑
iK(P )i

K(P )1 · · ·K(P )ℓ(P )

)
.

Remark 4.5. Importantly, Lemma A.1 implies that TLMσ(v) is always nonnegative.

Question 4.6. Is there a natural enumerative interpretation for TLMσ(v)?

We are now ready to formulate Theorem 1.1 precisely.

Theorem 1.1. Let w ∈ (Q ∩ (0, 1])n be heavy/light, and K = (k1, . . . , kn) ∈ (Z⩾0)
n. The

intersection product
n∏

i=1

ψki
i,w is the weighted subfan of M trop

0,w consisting of closures of the cones

of codimension
∑

i ki satisfying the following conditions:

1. For each maximal cone σ in
n∏

i=1

ψki
i,w with combinatorial type Gσ = (Gσ,mσ), and for

each vertex v ∈ V (Gσ), we have

val(v) + |m−1
σ (v)| = 3 +

∑
i∈m−1

σ (v)

ki.

2. The weight of a maximal cone σ in
n∏

i=1

ψki
i,w with combinatorial type Gσ = (Gσ,mσ) is the

product of the tropical local multiplicities at all vertices of Gσ, i.e.

ω(σ) =
∏

v∈V (Gσ)

TLMσ(v)

=
∏

v∈V (Gσ)

∑
P∈Pw(v)

(−1)|m
−1
σ (v)|−ℓ(P )

( ∑
iK(P )i

K(P )1 · · ·K(P )ℓ(P )

)
.

Proof of Theorem 1.1. We prove by induction on the number of intersecting weighted tropical
ψ-classes, or equivalently,

∑
i ki. To proceed, we set the following notations for convenience.

1. If P(M) is a set of partitions of a set M , we denote the set of S-admissible partitions by
PS(M).

2. Given any partition P = P1⊔· · ·⊔Pr of [n] and I ⊆ [r], we set Supp({Pi}i∈I) := ∪i∈IPi,
i.e. the support of some parts is the union of those parts.

3. For any cone σ, write the combinatorial type of σ as Gσ = (Gσ,mσ). Write V (Gσ) and
E(Gσ) as the vertex and the edge set of Gσ.

4. In the inductive step, denote I =
∏
ψki
i and IN = ψN

∏
ψki
i for N ∈ [n].
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5. Given a codimension-1 cone τ in I and vT ∈ VN,w, define

S(τ, vT ) := {σ : σ ⊋ τ, σ ∈ I, and T ⊂ Sσ/τ},

where for each σ, Sσ/τ is the unique set [n]∖ {N} such that uσ/τ = vSσ/τ
as usual.

6. Given a codimension-1 cone τ in I and vT ∈ VN,w, let

Σ(τ, vT ) :=
∑

σ∈S(τ,VT )

ω(σ).

The base case is when
∑

i ki = 1; there is i ∈ [n] such that ki = 1, kj = 0 for all j ̸= i and
then the combinatorial description of a weighted tropical ψ-class in Theorem 1.2 implies the
desired result. For the inductive step, we assume that Theorem 1.1 holds for I. We compute IN
for N ∈ [n] and there are two parts to prove.

For part (i), suppose τ is a codimension-1 cone in I and thus Gτ is the edge-contraction of
an edge e ∈ E(G(σ)) for some maximal dimensional cone σ in I. By the induction hypothesis,
the vertex v in Gτ as the result of the edge-contraction of e satisfies

val(v) + |m−1
τ (v)| = (val(v1) + |m−1

σ (v1)| − 1) + (val(v2) + |m−1
σ (v2)| − 1)

=

(
3− 1 +

∑
i∈m−1

σ (v1)

ki

)
+

(
3− 1 +

∑
i∈m−1

σ (v2)

ki

)
= 4 +

∑
i∈m−1

σ (v1)∪m−1
σ (v2)

ki

= 4 +
∑

i∈m−1
τ (v)

ki.

Furthermore, following a similar argument in the proof of [KM09, Theorem 4.1], we have
that N ∈ m−1(v). Then the above can be rewritten as

val(v) + |m−1
τ (v)| = 3 + (1 + kN) +

∑
i∈m−1

τ (v),
i ̸=N

ki

as desired and proving part (i).
For part (ii), let us restate Theorem 1.1 (ii) as follows. Firstly, note that for each σ such

that τ ⊊ σ ∈ I, writing the contracted edge as e ∈ E(Gσ) with endpoints v1 and v2, we
can assume without loss of generality that N ∈ m−1

σ (v1). Furthermore, by Corollary 3.10 and
recalling set notations,

ω(τ) = min
VT∈VN,w

( ∑
σ∈S(τ,vT )

ω(σ)

)
= min

VT∈VN,w

Σ(τ, vT ).

Let T ∗ = {t1, t2} ⊂ ([n]∖ {N}), such that the above minimum is achieved.
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We make two observations about such T ∗. Firstly, because vT ∗ ∈ VN,w, we may as-
sume wt1 = 1 without loss of generality. Secondly, we may assume that t1, t2 are marks on
distinct connected components ofGσ ∖ e. Otherwise, suppose t1, t2 are marks on the same con-
nected component of Gσ ∖ e and take t′2 ̸= N to be any mark on another connected component,
then

S(τ, vT ∗) ⊆ S(τ, v{t1,t′2}).
By Lemma A.1, we have ω(σ) ⩾ 0 for any σ ∈ S(τ, vS) for VS ∈ VN,w. This implies that

Σ(τ, vT ∗) ⩽ Σ(τ, v{t1,t′2}).

Therefore, we hereafter take T ∗ = {t1, t2} ⊂ ([n] ∖ {N}), such that t1, t2 are contained in
distinct connected components ofGσ∖e and wt1 = 1, and we compute ω(τ) = Σ(τ, vT ∗). Now
we want to show that

Σ(τ, vT ∗) =
∏

v∈V (Gτ )

TLMτ (v). (4.1)

We further simplify the above by making the following observation: recall that Σ(τ, vT ∗) =∑
σ∈S(τ,vT∗ ) ω(σ). By the inductive hypothesis, the weight of each σ equals

ω(σ) =
∏

u∈V (Gσ)

TLMσ(u).

By Remark 4.5, any σ ∈ S(τ, vT ∗) satisfies that∏
u∈V (Gσ),
u̸=v1,v2

TLMσ(u) =
∏

w∈V (Gτ ),
w ̸=v

TLMτ (w).

Cancelling out these terms on both sides of Equation (4.1), proving Equation (4.1) amounts to
showing that ∑

σ∈S(τ,VT∗ )

TLMσ(v1)TLMσ(v2) = TLMτ (v). (4.2)

To proceed, we study the range of the summation above, namely, the set S(τ, VT ∗). The
cones in S(τ, VT ∗) can be described completely combinatorially: for any such σ, again writing
the contracted edge as e with endpoints v1 and v2, we have that

1. for the markings m−1
τ (v) = m−1

σ (v1) ⊔m−1
σ (v2);

2. the marking N ∈ m−1
σ (v1) by assumption; and

3. T ∗ is contained the same component of Gσ ∖ e as v2.

Therefore, writing m−1
σ (v1) as S and m−1

τ (v) as M , the left hand side of Equation (4.2) is∑
σ∈S(τ,VT∗ )

TLMσ(v1)TLMσ(v2) =
∑

N∈S⊆M,
T ∗⊂M∖S

∑
σ∈I,

S=m−1
σ (v1)

TLMσ(v1)TLMσ(v2). (4.3)
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We now analyse the right hand side of Equation (4.3). For each S, the number of maximal
cones σ satisfying that S is the set of markings supported on v1 is precisely the number of distinct
ways of distributing edges adjacent to v. The total number of edges adjacent to v is

val(v) = 4− |M |+
∑
i∈M

ki.

Furthermore, for any such cone σ, by our assumption that t1, t2 are on different components
of Gσ ∖ e, there are precisely 2 edges on the same components with t1 and t2 respectively that
are not adjacent to v1. Thus the total number of edges adjacent to v in Gτ that could be adjacent
to v1 in Gσ is

val(v)− 2 = 4− 2− |M |+
∑
i∈M

ki = 2− |M |+
∑
i∈M

ki.

The total number of edges adjacent to v1 and existent in Gτ is equal to the valence of v1 sub-
tracting 1 (disregarding the edge e):

val(v1)− 1 = 3− 1− |S|+
∑
i∈S

ki = 2− |S|+
∑
i∈S

ki.

Therefore, the total number of maximal cones σ in I such that S = m−1
σ (v1) is precisely the

binomial coefficient (
2− |M |+

∑
i∈M ki

2− |S|+
∑

i∈S ki

)
.

Moreover, for each such S and σ, the product of tropical local multiplicities at v1 and v2 is ∑
P1∈Pw(S)

(−1)|S|−ℓ(P1)

( ∑
iK(P1)i

K(P1)1, . . . , K(P1)ℓ(P1)

) ·

 ∑
P2∈Pw(Sc)

(−1)|S
c|−ℓ(P1)

( ∑
iK(P2)i

K(P2)1, . . . , K(P2)ℓ(P2)

) .

Next, we observe that

{P1 ∪ P2 : P1 ∈ Pw(S), P2 ∈ Pw(S
c), N ∈ S, t1 /∈ S, t2 /∈ S, S ⊆M}

is precisely the S-admissble partitions in Pw(M), such that t2 and N are not contained in the
same part of the partition.

To summarise, the right hand side of Equation (4.3) becomes∑
P,P1,P2

(−1)λ
(

2− |M |+
∑

i∈M ki
2− | ∪j∈ℓ(P1) P1,j|+

∑
i∈S ki

)( ∑
iK(P1)i

K(P1)1, . . . , K(P1)ℓ(P1)

)
· (4.4)( ∑

iK(P2)i
K(P2)1, . . . , K(P2)ℓ(P2)

)
,

where
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1. P ∈ Pw(M) with t2, N not in same part of P ;

2. P1 ∪ P2 = P such that N ∈ Supp(P1) and t1, t2 ̸∈ Supp(P1);

3. λ = |M | − ℓ(P ).

We simplify Equation (4.4) as follows. Firstly, we note the following equality of the binomial
coefficients(

2− |M |+
∑

i∈M ki
2− |Supp(P1)|+

∑
i∈S ki

)
=

(
2− ℓ(P ) +

∑
i∈M ki − (|M | − ℓ(P )))

2− ℓ(P ) +
∑

i∈S ki − (|Supp(P1)| − ℓ(P1))

)
.

Secondly, we observe that∑
i∈M

ki − (|M | − ℓ(P )) =
∑
Pi∈P

(∑
j∈Pi

kj

)
− (|Pi| − 1) =

∑
i

K(P )i,

and that∑
N∈Supp(P1),
t1,t2 /∈SuppP1

ki − (|Supp(P1)| − ℓ(P1)) =
∑

P1,i∈P1

( ∑
j∈P1,i

kj

)
− (|P1,i| − 1) =

∑
i

K(P1)i,

Third, observe that for a fixedP ∈ Pw(M), and any pair ofP1 andP2 such that {P1}∪{P2} = P ,
the terms indexed by (P1, P2) in the right hand side of Equation (4.4) have the same denominator∏

i

K(P1)i!
∏
j

K(P2)j! =
∏
i

K(P )i!

Therefore, Equation 4.4 equals∑
P∈Pw(M)
t2,N not in

same part of P

(−1)|M |−ℓ(P )∏
iK(P )i!

∑
{P1}∪{P2}=P
N∈Supp(P1)

t1,t2 ̸∈Supp(P1)

(
2− ℓ(P ) +

∑
iK(P )i

2− ℓ(P1) +
∑

j K(P1)j

)(∑
i

K(P1)i

)
!

(∑
j

K(P2)j

)
!.

By [KM09, Equation (3)], for fixed P the second summation becomes∑
{P1}∪{P2}=P

( ∑
iK(P )i − ℓ(P ) + 2∑

j K(P1)j − ℓ(P1) + 2

)(∑
i

K(P )i

)
!

(∑
j

K(P1)j

)
! =

(
∑

iK(P )i + 1)!

(K(P ∗)1 + 1)

where P ∗ is the unique part in P such that N ∈ P ∗. Putting everything together, Equation 4.4
becomes ∑

P∈Pw(M)
t2,N not in

same part of P

(−1)|M |−ℓ(P ) (
∑

iK(P )i + 1)!

(K(P ∗)1 + 1)
∏

iK(P )i!
. (4.5)
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By Lemma A.2, we have that Equation (4.5) achieves minimum for such T ∗, where t2 andN can
never be in the same part of P . For such a choice of T ∗, we obtain that Equation (4.5) becomes∑

P∈Pw(M)

(−1)|M |−ℓ(P ) (
∑

iK(P )i + 1)!

(K(P ∗)1 + 1)
∏

iK(P )i!
= TLMτ (v)

as desired.

One immediate corollary is that, when w = (1(n)), we recover the result of Kerber–Markwig
on M trop

0,n . In the case of top dimension, this also confirms Katz’ expectation that the tropical
intersection product ofψ-classes coincides with their classical counterparts, computed in [AG08,
Theorem 7.9]. See Corollary 1.1 and Corollary 1.2.

A. Technical lemmata for Theorem 1.1

We now prove two lemmata, giving a characterisation of the primitive generators for maximal
cones σ that minimise the sum appearing in the inductive step in the main theorem. Lemma A.1
is a recursive formula of the multinomial coefficient and a concrete application of the inclusion-
exclusion principle. Lemma A.2 is a direct application of Lemma A.1 to yield the desired char-
acterisation.

Lemma A.1. Let w be as in Convention 2.1 and K = (k1, . . . , kn) ∈ (Z⩾0)
n. Then∑

P∈Pw(S)

(−1)|S|−ℓ(P )

( ∑
iK(P )i

K(P )1, . . . , K(P )ℓ(P )

)
⩾ 0. (A.1)

Proof. The proof proceeds by induction on n +
∑

i ki. In the base case when n +
∑

i ki = 1,
we must have that n = 1, ki = 0 for all i, and thus the equality holds trivially. Assume that the
result holds for all n′ ⩾ 1, k′1, . . . , k

′
n ∈ Z⩾0, such that n′ +

∑
k′i < n+

∑
ki.

To compute the left hand side of (A.1), for each P ∈ Pw(S), we apply the recursive formula
for multinomial coefficients:( ∑

iK(P )i
K(P )1, . . . , K(P )ℓ(P )

)
=

ℓ(P )∑
j=1

(
(
∑

iK(P )i)− 1

K(P )1, . . . , K(P )j − 1, . . . , K(P )ℓ(P )

)
.

Then the left hand side of (A.1) becomes∑
P∈Pw(S)

(−1)|S|−ℓ(P )

( ∑
iK(P )i

K(P1), . . . , K(P )ℓ

)

=
∑

P∈Pw(S)

(−1)|S|−ℓ(P )

ℓ(P )∑
j=1

( ∑
iK(P )i − 1

K(P )1, . . . , K(P )j − 1, . . . , K(P )ℓ(P )

)
.

To proceed, we prepare new notations as follows.
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1. For ∅ ⊊ I ⊂ S ∖ [n−m], set SI := S ∖ I ∪ {•I}.

2. Set k•I :=
∑

i∈I ki − |I| and KI be the sequence obtained from K by deleting ki indexed
by I and appending k•I .

3. Set wI := (1(n−m), ε(m−|I|+1)) to be the weight vector obtained from w by deleting the
weights indexed by I and appending the weight of the mark •I as ε.

Firstly, since |SI | = n− |I|+ 1 and |I| ⩾ 1, we have∑
i∈SI

ki + |SI | =
∑
i∈S

ki − |I|+ |SI | =
∑
i∈S

ki + n− 2|I|+ 1 <
∑
i∈S

ki + n.

Secondly, we have the following claim:

∑
P∈Pw(S)

(−1)|S|−ℓ(P )

ℓ(P )∑
j=1

( ∑
iK(P )i

K(P )1, . . . , K(P )j − 1, . . . , K(P )ℓ(P )

)
(A.2)

=
∑

∅⊊I⊂S∖[n−m]

∑
P∈PwI

(SI)

(−1)|SI |−ℓ(P )

( ∑
j KI(P )j

KI(P )1, . . . , KI(P )ℓ(P )

)
.

To prove the claim, we fix P ∈ Pw(S), j ∈ [ℓ(P )], and compare the coefficients of the multino-
mial coefficient ( ∑

iK(P )i
K(P )1, . . . , K(P )j − 1, . . . , K(P )ℓ(P )

)
on both sides. Observe that it appears with coefficient (−1)|S|−ℓ(P ) on left hand side of Equa-
tion (A.2). On the right hand side of Equation (A.2), for each nonempty I ⊂ Pj , the partition

P1 ⊔ · · · ⊔
(
Pj ∖ I ∪ {•I}

)
⊔ · · · ⊔ Pℓ(P )

is inPwI
(SI). Thus, the multinomial coefficient appears on the right hand side of Equation (A.2)

with coefficient ∑
∅⊊I⊂Pj

(−1)|SI |−ℓ(P ) =
∑

∅⊊I⊂Pj

(−1)|S|−|I|+1−ℓ(P )

= (−1)|S|−ℓ(P )
∑

∅⊊I⊂Pj

(−1)|I|+1

= (−1)|S|−ℓ(P )

|Pj |∑
i=1

(−1)i+1

(
|Pj|
i

)
= (−1)|S|−ℓ(P ),

thus proving the claim. The last equality is an application of the inclusion-exclusion principle
in terms of binomial coefficients: for any integer m > 0,

m∑
i=1

(−1)i+1

(
m

i

)
= 1.
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Lastly, by the induction hypothesis, every summand∑
P∈PwI

(SI)

(−1)|SI |−ℓ(P )

( ∑
j KI(P )j

KI(P )1, . . . , KI(P )ℓ(P )

)
,

of the right hand side of Equation (A.2) is nonnegative, and thus the entire sum is nonnegative.
Therefore, we obtain that∑

P∈Pw(S)

(−1)|S|−ℓ(P )

( ∑
iK(P )i

K(P )1, . . . , K(P )ℓ(P )

)
⩾ 0,

as desired.

The following lemma is a direct application of Lemma A.1.

Lemma A.2. Let w be as in Convention 2.1 and S = [n]. Let N be an element in [n],
T = {t1, t2} ⊆ ([n]∖ {N}) with t1 ∈ [n−m], then the following inequality holds:∑

P∈Pw(S)

(−1)|S|−ℓ(P )

( ∑
iK(P )i

K(P )1, . . . , K(P )ℓ(P )

)
⩽

∑
P∈Pw(S)
t2,N not in

same part ofP

(−1)|S|−ℓ(P )

( ∑
iK(P )i

K(P )1, . . . , K(P )ℓ(P )

)
.

Proof. We first observe that the left hand side is∑
P∈Pw(S)
t2,N not in

same part ofP

(−1)|S|−ℓ(P )

( ∑
iK(P )i

K(P )1, . . . , K(P )ℓ(P )

)

+
∑

P∈Pw(S)
t2,N in

same part ofP

(−1)|S|−ℓ(P )

( ∑
iK(P )i

K(P )1, . . . , K(P )ℓ(P )

)
.

The proof amounts to showing that the second term is not positive. There are two cases, depend-
ing on the weights indexed by t2 and N .

Case 1 : If wt2 = 1 or wN = 1, then t2 and N are never in the same part of the partition and
lemma follows immediately.

Case 2 : If wt2 = wN = ε, we prepare notations for the analysis that follows:

1. Set S ′ := S ∖ {t2, N} ∪ {•}.

2. Let k• := kt2 + kN − 1 and K ′ be the sequence obtained from K by deleting kt2 and kN
and appending k•.
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3. w′ := (1(n−m), ε(m−1)) is the weight vector obtained from w by deleting the weights in-
dexed by t2 and N , and appending the weight of the mark • as ε.

Then ∑
P∈Pw(S)
t2,N in

same part ofP

(−1)|S|−ℓ(P )

( ∑
iK(P )i

K(P )1, . . . , K(P )ℓ(P )

)

= −
∑

P∈Pw′ (S′)

(−1)|S
′|−ℓ(P )

( ∑
iK

′(P )i
K ′(P )1, . . . , K ′(P )ℓ(P )

)
⩽ 0

by Lemma A.1, thus proving the lemma.

Acknowledgements

We thank Hannah Markwig and Renzo Cavalieri for several helpful discussions during the work
on this manuscript. Furthermore, we thank two anonymous referees for their careful reading
and insightful comments. The first author gratefully acknowledges financial support by the Max
Planck Gesellschaft. The second author would like to express thanks to Bernd Sturmfels and
Max Planck Institute for Mathematics in the Sciences for their hospitality during this project.

References

[AG08] Valery Alexeev and G. Michael Guy. Moduli of weighted stable maps and their
gravitational descendants. Journal of the Institute of Mathematics of Jussieu,
7(3):425–456, 2008. doi:10.1017/S1474748008000108.

[AR10] Lars Allermann and Johannes Rau. First steps in tropical intersection theory.
Mathematische Zeitschrift, 264(3):633–670, Mar 2010. arXiv:0709.3705, doi:
10.1007/s00209-009-0483-1.

[BC20] Vance Blankers and Renzo Cavalieri. Wall-Crossings for Hassett Descendant Po-
tentials. International Mathematics Research Notices, 2020. doi:10.1093/imrn/
rnaa077.

[CDH+22] Emily Clader, Chiara Damiolini, Daoji Huang, Shiyue Li, and Rohini Ramadas.
Permutohedral complexes and rational curves with cyclic action. manuscripta
mathematica, pages 1–52, 2022.

[CDLR22] Emily Clader, Chiara Damiolini, Shiyue Li, and Rohini Ramadas. Wonder-
ful compactifications and rational curves with cyclic action. arXiv preprint
arXiv:2208.05463, 2022.
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