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Many important biological functions depend on microorganisms’ ability to

move in viscoelastic fluids such as mucus and wet soil. The effects of fluid elas-

ticity on motility remain poorly understood, partly because the swimmer

strokes depend on the properties of the fluid medium, which obfuscates the

mechanisms responsible for observed behavioural changes. In this study, we

use experimental data on the gaits of Chlamydomonas reinhardtii swimming in

Newtonian and viscoelastic fluids as inputs to numerical simulations that

decouple the swimmer gait and fluid type in order to isolate the effect

of fluid elasticity on swimming. In viscoelastic fluids, cells employing the

Newtonian gait swim faster but generate larger stresses and use more power,

and as a result the viscoelastic gait is more efficient. Furthermore, we show

that fundamental principles of swimming based on viscous fluid theory miss

important flow dynamics: fluid elasticity provides an elastic memory effect

that increases both the forward and backward speeds, and (unlike purely

viscous fluids) larger fluid stress accumulates around flagella moving tangent

to the swimming direction, compared with the normal direction.
1. Introduction
Swimming microorganisms are important to many industrial and natural pro-

cesses including the production of biofuels from algae, fermentation for vaccine

and food production, and bio-mixing in oceans. Recently, there has been a

resurgence of interest in the motility of microorganisms for technological appli-

cations that include micro- and nano-robotics [1–3], drug delivery [4,5] and cell

manipulation [6,7]. While most of our current understanding of microorganism

swimming is drawn from investigations in Newtonian fluids (e.g. water), many

important biological processes occur in fluids that contain polymers and/or

other solids, which introduce non-Newtonian properties to the fluid such as

shear-thinning viscosity and elasticity. Examples include the swimming of fla-

gellated sperm cells in cervical mucus during fertilization [8,9], motility of

pathogens through tissues and stomach lining [10], and burrowing of worms

in wet soil [11]. Importantly, the fluid rheological properties can significantly

affect the motility kinematics of microorganisms [12–15].

Locomotion of microorganisms in viscoelastic fluids has received much recent

attention due to its prevalence in biological processes [13,16–20]. Recent results

highlight the challenges in understanding the effects of fluid elasticity on swim-

ming. For example, simulations of two-dimensional finite-sized waving

filaments [18,20] and rotating helices [21] suggest that fluid elasticity may increase
propulsion speed. Similar trends are found in experiments with mechanically

actuated rotating helices [22], magnetically driven physical models of undulatory

swimmers [23], and Escherichia coli in polymeric solutions [14,24]. On the other

hand, theoretical analysis of two-dimensional, infinitely long waving sheets
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and filaments [13,17,25] as well as numerical simulations of

idealized swimmers in viscoelastic fluids [19] show a reduction
in propulsion speed compared with purely viscous fluids.

These predictions are consistent with experiments with

the undulating worm Caenorhabditis elegans [16] and with the

green alga Chlamydomonas reinhardtii [15]. Moreover, these

experiments show that fluid elasticity significantly modifies

the organism’s stroke kinematics such as the worm’s swimming

amplitude and the alga’s flagellum beating frequency. The

intricate relationship between fluid elasticity and swimming

speed is difficult to understand from just experimental data

because it is challenging to decouple fluid effects from the

microorganism’s swimming stroke kinematics.

In this paper, we investigate the effects of fluid elasticity

and flagellar kinematics on the motility of the green alga

C. reinhardtii using numerical simulations and experimental

data. The eukaryotic biflagellated alga C. reinhardtii is a model

organism found in soil and fresh water [26]. It is widely used

in studies of ciliary kinematics and motility since its two flagella

(approx. 10mm in length) have the same conserved ‘9 þ 2’

microtubule arrangement seen in eukaryotic axonemes and

respiratory cilia [27]. The algal cell swims using cyclical

breast-stroke patterns with asymmetric power and recovery

strokes [26,28], and generates far-field flows that have been

recently characterized in experiments [29,30].

In [15], we investigated C. reinhardtii swimming and

flagellar kinematics in fluids of different viscosity and elas-

ticity, and we showed that the flagellar beat changed both

shape and frequency in response to changes in fluid rheol-

ogy. From our experimental data alone we cannot infer the

mechanism behind the observed changes in swimming

speed in response to fluid rheology because of the changes

in gait. One way to address this difficulty is to perform

numerical simulations of swimming C. reinhardtii using

experimentally derived swimming gaits (or strokes), which

can then be investigated in fluids of varying elasticity.

Here, we focus on two particular strokes from [15] that

have the same beating frequency, but one from a cell in a

Newtonian fluid and the other from a cell in a viscoelastic

fluid of the same viscosity. Thus, the only differences

between these datasets are the elasticity of the fluid and the

shape of the flagellar beat. We perform three-dimensional

numerical simulations based on these two gaits, and we

decouple the alga’s flagellar gait from the fluid rheology by

varying them independently in an effort to understand how

fluid elasticity affects swimming.

We find that, as the organism swims in viscoelastic fluids,

elastic stress accumulates at the distal tip of the flagella and

the size of the elastic stress is larger during the return

stroke than during the power stroke. These elastic stresses

result in an elastic memory effect that propels the cell even

when the flagella stop moving. This memory effect together

with the larger accumulation of elastic stresses in the return

stroke leads to a decrease in net forward speed, a trend

observed in experiments [15]. We posit that the orientation

of the flagella tips is the main contributor to the temporal

asymmetry in accumulation of elastic stresses in the fluid,

which is supported by simulations of a thin cylinder with

different orientations moving in viscoelastic fluids. Surpris-

ingly, we find that in viscoelastic fluids a cylinder moving

along its axis generates larger fluid (elastic) stresses than a

cylinder moving orthogonal to its axis; the opposite is true

for viscous Newtonian fluids.
2. Model: stroke kinematics and fluid system
Experiments with C. reinhardtii in viscoelastic fluids were

performed using dilute polymeric solutions [15], which

were prepared by dissolving small amounts of a high molecular

weight (MW) flexible polymer (polyacrylamide, 18� 106 MW)

in M1 buffer solution. The polymer concentration in solution

ranged from 5 to 80 ppm, resulting in fluid relaxation times

that ranged from 6 ms to 0.12 s, respectively. The low polymer

concentration minimized the effects of shear-thinning viscosity

while the high MW of the polymer introduced elasticity in the

fluid. Motile algae were then suspended in viscoelastic (and

Newtonian) fluids. A small volume of this suspension was

stretched to form a thin film (thickness �20mm) using a wire-

frame device. The motion of freely swimming C. reinhardtii
and its swimming strokes were imaged in the thin film using

an optical microscope and a high-speed camera. Results in

Newtonian fluids (figure 1a) show the well-known power

and recovery strokes that are characteristic of swimming

C. reinhardtii [26,28]. Note that the beating form is mostly

planar, which is confirmed by measuring the length of flagellum

and the cell body rotation. Experiments in which the flagellum

length deviated by more than 10% of its original size and/or

significant body rotation was observed were discarded. More

details on fluid preparation, rheology and experimental

methods are available in [15].

We used a three-dimensional computational model of the

C. reinhardtii cell swimming in both Newtonian and visco-

elastic fluids. Other theoretical studies of C. reinhardtii have

been performed using both idealized strokes [31,32] and

strokes based on experimental data [33], although the focus

was on Newtonian fluids while the present study focused on

viscoelasticity. Our approach and method of fitting to data

are similar to [33]. The swimmer body is ellipsoidal with two

symmetric flagella that execute a planar stroke in the mid-

plane of the body. The kinematics of the stroke are prescribed,

independent of the fluid rheology, and they are based on our

experimental measurements of the flagellar kinematics in

fluids with different rheologies [15]. Our model ‘Newtonian

stroke’ is based on the kinematic data from about seven

cycles of a single representative swimmer in a Newtonian

fluid with viscosity 2.6 cP. The model ‘viscoelastic stroke’ is

based on the kinematic data from about seven cycles of a

single representative swimmer in a polymeric solution with

similar viscosity (2.5 cP) and relaxation time corresponding

to a Deborah number De ¼ l/T ¼ 2. The Deborah number is

used to quantify the effects of elasticity and is defined as the

ratio of the fluid relaxation time l to the period of the stroke

T; note that De ¼ 0 for Newtonian fluids.

We generate a model planar stroke by fitting the exper-

imental data of the positions of the flagella from each

stroke pattern to a system of model functions of the form

Xi(t, s) ¼ Mi(s)þ Ai(s) cos
2pt
T
þ fi(s)

� �
, i ¼ 1, 2

and X3(t, s) ¼ 0:

9>=
>;
ð2:1Þ

Here X1, X2 and X3 are the Cartesian components of the fla-

gellum’s location X, t is time and s is the arclength coordinate

on each flagellum. The Fourier transform of the experimental

shape data shows a strong peak at one frequency, and hence

we fit the data using a single mode. The mean value Mi(s),
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Figure 1. Flagellar stroke patterns corresponding to a swimmer in a Newtonian (a,b) and viscoelastic (c,d) fluid. (a,c) Experimental data and (b,d) fit. Power stroke
(blue) and return stroke (red) are distinguished. The experimental data displayed consist of almost seven full cycles for each cell, and the model data shown are for
one full cycle.
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amplitude Ai(s) and phase fi(s) are generated using cubic

spline interpolation. In figure 1, we show both the raw data

(consisting of almost seven full cycles) and single period of

the model stroke sampled at a high time rate for each

stroke, highlighting the power (in blue) and return (in red)

strokes. The experimental data and the values of Mi(s), Ai(s)

and fi(s) used to construct the splines are available from

[34]. For more details about the fitting procedure, see the

electronic supplementary material.

We use Lagrangian coordinates to describe the swimmer’s

position, velocity and forces, and Eulerian coordinates to

describe the fluid velocity, stress and pressure. We use ideas

from the immersed boundary method to couple the Eulerian

and Lagrangian variables [35]. The shape of the swimmer is

prescribed in a fixed body frame. In the laboratory frame, the

position is given by X ¼ XP(s, t) þ X0(t), where X0(t) is the trans-

lation of the origin in the body frame. The velocity of the

swimmer is @tX ¼ Up þ UT, where Up is the prescribed velocity

in the body frame and UT is the translational velocity of the

swimmer. Given the current position of the swimmer and the

prescribed velocity in the laboratory frame, we simultaneously

solve for the fluid velocity and the translational velocity of the

swimmer. The cell body is taken as an ellipsoid with diameters

10 mm, 10mm and 12 mm, the longer axis being aligned with

the swimming direction. The flagellum length of C. reinhardtii
is typically between 10 and 14 mm. Owing to the variance of

individuals used in experiments, each experimental dataset

contains the kinematics of a flagellum with a slightly different

length. In order to make a fair comparison in the model, we

rescale the length of our model strokes so that each model

stroke has an identical flagellum length. We pick the average

arc length throughout a stroke period of our model viscoelastic

stroke with De ¼ 2, which is 12.5 mm, as a ‘standard length’,

and then rescale all other model strokes so that each of them

has the same average arc length.
The fluid is described by the Stokes equations with the

addition of a polymer stress tensor, tp, to account for the

viscoelastic stresses

hsDu�rpþr � tp þ f ¼ 0 ð2:2Þ

and

r � u ¼ 0, ð2:3Þ

where u is the fluid velocity, p is the fluid pressure and hs

is the solvent viscosity. The external force density, f, is used

to enforce the prescribed shape of the swimmer.

As mentioned above, the experimentally derived ‘Newto-

nian’ and ‘viscoelastic’ strokes are obtained in fluids of similar

viscosity (2.6 versus 2.5 cP) and the main difference is the fluid

elastic stresses present in the viscoelastic experiments (De¼ 2).

Here, we use the Oldroyd-B model [36], which is a relatively

simple nonlinear constitutive model widely used to simulate

viscoelastic flows. We note that the Oldroyd-B model has con-

stant viscosity, while the fluids from our experiments show a

small amount of shear thinning as described in [15]. Our inten-

tion is not to match the rheology from the experiments exactly,

but rather isolate and investigate the effects of elasticity on the

swimming behaviour of C. reinhardtii. The Oldroyd-B model

can be derived from a description of the polymers as dumbbells

connected by linear springs. The fluid flow stretches the poly-

mers, giving a memory of past deformations which then

relaxes on some characteristic time scale. The deformation of

the polymers feeds back on the fluid through a macroscopic

extra stress tensor, or polymer stress tensor, given by an average

of distribution of polymer configurations. In the Oldroyd-B

model the polymer stress tensor is related to a conformation

tensor, s, describing the average distribution and orientation

of polymers

tp ¼
hp

l
(s� I), ð2:4Þ
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where hp is the polymer viscosity and l is the fluid relaxation

time. The conformation tensor evolves according to

@tsþ u � rs� s � ruþruT � s
� �

¼ � 1

l
(s� I)þ 1Ds: ð2:5Þ

A numerical regularization term, 1Ds, is added [37,38] where

1/(Dx)2 for grid spacing Dx; thus in the limit Dx! 0 this regu-

larized model converges to the Oldroyd-B model. The elastic

strain energy density is the trace of the stress tensor, Tr(tp).

Full details of the model equations and numerical

methods, including validation, are given in appendix A.
3. Dissecting the effects of fluid elasticity
and stroke

In biological experiments, the cell’s swimming stroke changes

in response to changes in fluid rheology, which makes it diffi-

cult to interpret and use experimental data alone to understand

the role of fluid elasticity in swimming. Here, the relative roles

of swimming stroke and fluid rheology are isolated by varying
them separately using simulations and experimental data. We

begin by extracting the cell’s swimming strokes from exper-

iments in Newtonian and viscoelastic fluids (figure 1). Cells

with these different swimming strokes are then investigated

in fluids in which the polymer relaxation time l, and, conse-

quently, the Deborah number De ¼ l/T, is systematically

varied with the stroke period T held fixed.

3.1. Elastic stress and swimming speed during a
single stroke

Fluid elastic (polymeric) stresses are an important quantity

that is difficult to obtain in experiments, but can be resolved

in simulations. In this section, we use the viscoelastic stroke

(figure 1d) obtained from experiments and vary the fluid relax-

ation time l and consequently De in simulations. In figure 2a,

we show snapshots of the fluid strain energy density in the cen-

tral swimming plane at De ¼ 2 (the Deborah number of the

experiment from which this stroke was derived). The strain

energy density is the trace of the elastic stress tensor and it

gives a measure of the size of the elastic stress. It is notable

that high stress is concentrated only near the distal tips of the
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flagella, contrary to the conjecture in [15] that high-stress

regions develop near both ends of the flagella as well as near

the body. The flagellar tips are travelling three to four times

faster than the cell body (see the electronic supplementary

material), but this speed difference alone cannot account for

the orders of magnitude difference in elastic stress found

near the flagellar tips and the cell body.

In figure 2b, we show the time course of the spatially aver-

aged strain energy density throughout the entire stroke for

different Deborah numbers. The elastic stress is generally

lower during the power stroke than during the return stroke

for all Deborah numbers. The lowest stresses occur near the

middle of the power stroke, and the highest stresses occur

towards the end of the return stroke. The magnitude of the

stress increases monotonically with Deborah number (figure 2c).

Next, we investigate the effects of accumulated stresses on

the cell propulsion speed. The velocity of the swimmer over the

course of a complete stroke is shown in figure 2d for different

Deborah numbers. We see that fluid elasticity boosts the

speed of both the power and return strokes and produces a

phase shift in which the peak velocities occur later in time.

The size of the boosts and the extent of the phase shifts both

increase with De. The speed of the return stroke as the cell

moves backwards is boosted to a greater extent than the

speed of the power stroke when the cell is moving forwards.
We conjecture that the accumulated fluid elastic stress is pri-

marily responsible for the speed boost, which is supported

by the observation of larger elastic stress and larger speed

enhancements during the return stroke. An elastic slow-

down in the net swimming speed results from the fact that

the return stroke experiences a stronger speed boost (going

backwards) than the power stroke (figure 2d), and as De
increases the size of the speed enhancements increases.
3.2. Comparing Newtonian and viscoelastic strokes
Next we compare the swimming performance of the viscoelastic

stroke with that of the Newtonian stroke (figure 1b) using model

fluids that range from De ¼ 0 (Newtonian) to De¼ 2. The results

of the previous section (spatial–temporal stress distributions

and effect of elasticity on swimming speed) do not change

qualitatively when the Newtonian stroke is used in place

of the viscoelastic stroke (see the electronic supplementary

material). Here, we examine time-averaged quantities to

assess the swimming performance of the two strokes. The New-

tonian stroke yields swimming speeds 60% faster than those of

the viscoelastic stroke (figure 3a), but both speeds decrease with

increasing Deborah number at about the same rate, which is

evident after normalizing by the De¼ 0 (i.e. Newtonian)

swimming speed (figure 3b). Also shown in this figure are
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experimental data from [15], and although each De involves

different kinematics the speed decrease with De shows the

same trend as the model. By contrast, the power consumption

(figure 3c) increases much more substantially with increasing

elasticity for the Newtonian stroke than for the viscoelas-

tic stroke. Comparing the results for De ¼ 2 with those for

De¼ 0, we see the Newtonian stroke uses over twice as much

power, while the increase from the viscoelastic stroke is only

approximately 50%.

We compute the instantaneous power output by integrat-

ing F . U over the swimmer body and flagella, where U is the

pointwise velocity of the swimmer and F is the force density

on the swimmer body and flagella. The power consumption

reported in figure 3c is the average power in one period. A simi-

lar mechanical measurement of the average power output per

period was reported in [29] to be approximately 5 fW based on

two-dimensional measurements of the fluid flows in the swim-

mer’s midplane with a resolution of 3 mm. We attribute our

higher power estimate to the fact that it involves the full

three-dimensional flow field with submicrometre spatial resol-

ution. Our value of 110 fW for the average power consumption

corresponds to approximately 2 � 106 ATP s21 (using 54 �
10221 J/ATP [39]) or 106 ATP s21 per flagellum, which agrees

with the measured value of 0.97 � 106 ATP s21 [40].

Figure 3d shows the swimming efficiency, quantified as the

ratio of average speed to average power (distance travelled per

energy dissipated), for both strokes. We note that this measure

of efficiency is different from the typical measure for microor-

ganism locomotion in viscous fluids, which is the ratio of the

power needed to drag the body at the average swimming

speed to the power dissipated during swimming [41]. For

viscoelastic fluids, the drag force is a nonlinear function of

the velocity and it depends on the time history of the motion.

Thus, it is not clear that normalizing by the power needed

for steady motion is appropriate, and so we use the dimen-

sional distance per energy dissipated. In a Newtonian fluid

(De ¼ 0), the two strokes have comparable efficiencies. Both

strokes result in lower efficiency as fluid elasticity increases,

but the greater increase in power needed to maintain the

Newtonian stroke with increasing elasticity (figure 3c) leads

to less efficient swimming in a viscoelastic fluid.

We also find that the Newtonian stroke induces higher elas-

tic stress, as shown in figure 3e–g. These elevated stresses are

responsible for the larger power needed by the swimmers

using the Newtonian stroke. In the presence of fluid elasticity,

the cell requires more power to maintain a fixed stroke,

suggesting that the swimmer may change its stroke to the

fluid properties based on energy availability. In particular,

we note from figure 3c that it requires a similar amount of

power to maintain the Newtonian stroke at De ¼ 0 as the visco-

elastic stroke at De ¼ 2 (the stroke was based on experiments at

De ¼ 2).
4. Mechanisms of asymmetric speed
enhancements

Our simulations revealed that the stress accumulated during

the return stroke is higher than the stress accumulated during

the power stroke. Similarly, elasticity led to a larger enhance-

ment of the swimming speed during the return stroke than

during the power stroke. These observations motivate two

questions. (i) How are the accumulated stresses related to
speed enhancements? (ii) Why is there an asymmetric stress

response on power and return?

4.1. Speed enhancements from fluid memory
In our computational model, if the shape of the swimmer is

suddenly fixed, the cell stops moving instantaneously in a

Newtonian fluid (at zero Reynolds number) because the

motion of the fluid and the translation of the cell are driven

entirely by the changing shape of the flagella as all forces are

equilibrated instantaneously. In a viscoelastic fluid, however,

once the shape of the flagella is suddenly fixed, the swimmer

continues to translate because as the accumulated elastic stres-

ses relax they drive a flow. In figure 4a,b, we show the resulting

velocity fields from the accumulated stress alone when the

swimmer shape is suddenly fixed at its peak power and peak

return strokes, respectively, at De ¼ 2 for the viscoelastic

stroke. The swimmer continues to move in the direction it

was travelling when the stroke was frozen.

We quantify the effect of the accumulated elastic stress on

the swimming speed by recording the initial coasting velocity

(the initial velocity of the swimmer after the stroke is frozen) as

a function of the stroke phase for a range of De, as shown in

figure 4c. We find that increasing fluid memory (larger De)
leads to larger initial coasting velocities, and the peak initial

coasting velocity is 30–35% higher during the return stroke

at De ¼ 2.

In figure 4d, we plot the speed boost measured in our

simulations (given by the difference between Newtonian

and viscoelastic peak power or return velocities, as seen in

figure 2d) together with the peak values of initial coasting

velocity as a function of De. These two quantities show a similar

dependence on De that strongly suggests that the accumulated

stress is a significant factor in the speed boost. Further, from

figure 2d, we see that the peak power and return enhancements

occur with a time lag (phase shift) from the peak velocities in

the Newtonian fluid, indicating that, as the stroke is beginning

to slow down, fluid elasticity is continuing to accelerate the

swimmer. Both this effective acceleration and the tendency of

the swimmer to continue to move when the flagellar motion

is suddenly stopped are the result of the accumulated elastic

stress which provides an elastic memory effect.

4.2. Flagellar tip orientation and elastic stress
It is well known that net translation in a Newtonian fluid at zero

Reynolds number requires non-reciprocal motion [42]. Much of

our intuition regarding flagellated swimmers is based on the

idea of resistive force theory (RFT) [43,44]. RFT relates the

force and velocity on a segment of the flagellum by treating it

as a locally straight cylinder and ignoring the long-range hydro-

dynamic interactions. The fundamental idea behind this theory

is that organisms generate net motion by exploiting the fact that

in a Newtonian fluid it requires less force to drag a long, thin

cylinder along its axis than perpendicular to its axis [45].

In figure 5a,d we plot the flagellum shapes from the Newto-

nian and viscoelastic strokes, respectively, with the distal tip

highlighted, and in figure 5b,e we plot the angle of the tip rela-

tive to the swimming direction. It is clear that the tip orientation

during the power stroke is less aligned with the direction of

motion than during the return stroke. This temporal asymmetry

of the orientation of this segment of the flagellum generates

more force, and thus velocity, during the power stroke than

during the return stroke in a Newtonian fluid. Of course, the
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difference in shape of the entire flagellum during the return

stroke and power stroke is responsible for generating motion,

but we focus on the tip because that is where the large elastic

stresses concentrate. Returning to figure 2, we observed that

higher elastic stress is accumulated when the flagellar tip is

oriented tangential to the direction of motion in the return

stroke than when oriented normal to the direction of motion

in the power stroke. This temporal asymmetry in elastic stress

and the resultant speed boosts work against the advantages

obtained by the breast-stroke motion, and are contrary to the

expectations based on viscous fluid theory.

In order to gain insight into the effects of flagellar tip orien-

tation in a viscoelastic fluid on swimming, we simulate a thin

cylindrical rod travelling at a constant velocity both tangential

and normal to its long axis and measure the elastic stress as a

function of fluid elasticity. We use a rod length of 8 mm, and

drag it at a constant velocity of 100mm s21 (characteristic

lengths and speeds of a free swimming alga) until the elastic

stress is equilibrated. To characterize the strength of elasticity,

we define a dimensionless Weissenberg number for this pro-

blem as Wi ¼ lU1/L, where l is the polymer relaxation time,

U1 is the velocity of the rod and L is the length of the rod.

The elastic strain energy density for a rod that is tangential

and normal to a viscoelastic flow at Wi ¼ 7.5 is shown in

figure 6a,b, respectively. A region of very high elastic stress is

found near the trailing tip of the rod moving in the tangential

direction, while lower elastic stress is found near the rod

moving in the normal direction. In figure 6c, we examine

how the elastic stress in each orientation depends on Wi, and

we find that the difference between the size of the elastic
stresses between the two rod orientations grows with increas-

ing fluid elasticity.

Viscous stress and elastic stress have significantly different

trends as the Weissenberg number increases (figure 6d). The

viscous stress ratio (tangential to normal) is always less than

1, which agrees qualitatively with what we expect from viscous

fluid theory, but the elastic stress ratio increases with Wi, and

for sufficiently large Wi this ratio is larger than 1. Thus, the

orientation asymmetry between power and return strokes,

which enables swimming in viscous fluids, can induce higher

fluid elastic stress and potentially hinder swimming in strongly

elastic flows.

The orientation of the flagella during swimming changes

continually throughout the stroke, and because viscoelastic

stress is not instantaneously equilibrated the steady-state

relationship between elastic stress and orientation does not com-

pletely explain elastic stress development during swimming. In

figure 6e, we show how the elastic stress grows in time starting

from rest at Wi ¼ 7.5, and even on time scales below the relax-

ation time the elastic stress is larger for rods moving in

the tangential direction than for rods moving in the normal

direction. We conjecture that the difference in orientation of

the tips of the flagella on power and return strokes contributes

substantially to the higher elastic stress observed during the

return stroke, and the fact that this effect is heightened for

larger Wi also agrees well with the observed increase in peak

elasticity as De increases in figure 2d. This conjecture is further

supported by comparing tip motion in the Newtonian and

viscoelastic strokes in figure 5; the tip of the Newtonian stroke

is more aligned to the direction of motion, the amplitude of
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the motion is larger and the resulting elastic stresses are larger

(figure 3).
5. Discussion
Swimming microorganisms change their gait in response to

changes in fluid rheology, which makes it difficult to understand

the effects of fluid elasticity on swimming based on experimental

measurements alone. Using our three-dimensional compu-

tational model with experimentally derived kinematics of

swimmers in fluids with rheologies that are comparable to

those used in our experiments, we separate the two effects and

provide new insight into how fluid elasticity affects flagellated

swimmers. By fixing the stroke and varying the fluid elasticity,

we observed both the power and return stroke velocity increase

with elasticity, but the speed on the return stroke was boosted to

a greater extent, leading to a net slow-down in swimming speed

(figure 2d). This trend is different from the experimental results
from [15], in which the power stroke speed appeared to be

retarded by elasticity until a very high Deborah number, and

the return stroke was enhanced only for De . 2. We attribute

the difference in observations to the fact that in the experiments

the stroke changes as the fluid elasticity changes. Using the com-

putational model, we showed that the viscoelastic stroke itself

leads to slower swimming than the Newtonian stroke in fluids

with the same rheology. Thus the changes from elasticity in

speed during the power and return strokes that we measured

experimentally were the sum of two competing effects of a

slow-down due to changing stroke and a speed-up from the

development of elastic stress.

By comparing the swimming performances of a Newtonian

and a viscoelastic stroke pattern in different fluids, we address

whether the changes in gait that occur with rheology offer any

advantage. We note that both strokes are similar to the pre-

dicted optimally efficient stroke in a Newtonian fluid [46].

Cells using the Newtonian stroke swim faster in all fluids.

However, this higher speed comes at a cost as it requires
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more mechanical energy to maintain than the viscoelastic stroke

as fluid elasticity increases. Thus the viscoelastic stroke is more

efficient (measured as distance per energy dissipated) in fluids

with high elasticity. It is notable that it requires a similar

amount of power to maintain the Newtonian stroke at De ¼ 0

as the viscoelastic stroke at De ¼ 2, as shown in figure 3b (the

stroke was based on experiments at De ¼ 2). The value of the

average power we obtain in these two cases is on a par with

the energy usage by the organism as measured by ATP con-

sumption [40]. These results suggest that the viscoelastic gait

may result from the power limitations. The change to the gait

in response to fluid elasticity yields more efficient swimming

in viscoelastic fluids, although we note that Chlamydomonas do

not swim in viscoelastic fluids in their natural environment.

However, given the conserved internal structure of the eukary-

otic axoneme, these results may be related to why similarly

flagellated cells such as spermatozoa exhibit qualitatively

different beat patterns in Newtonian and viscoelastic fluids [12].

It is difficult to measure the elastic stress in experiments

[16,22,23], but it is essential to know what the elastic stresses

are to interpret experimental observations. In [15], based on

measured changes in flagellar kinematics with elasticity and

previously measured flow fields from [29], we conjectured

that elastic stresses accumulated near both the distal and proxi-

mal ends of the flagella and near the body, but our experiments

alone did not give us the means to test this conjecture. One of the

major results of the present study is that the elastic stresses con-

centrate only near the distal tips of flagella at all phases of a

swimming stroke, and the stress accumulated on the return

stroke is higher than the stress accumulated during the power

stroke. These large tip stresses are reminiscent of those repor-

ted in previous two-dimensional computational studies of

undulatory swimmers [18,20,47,48], but to date the effects
of localized elastic stress on swimming performances are

poorly understood.

The initial coasting velocity provides a quantification of

the effect of the large elastic stresses on the swimming

speed. We observed that the initial coasting velocity and

speed enhancement of the power and return strokes follow

the same increasing trend in fluid elasticity. These accumu-

lated stresses provide an elastic memory effect that

continues to increase the speed even as the speed of the

stroke begins to decrease. This elastic memory effect together

with the temporal asymmetry of the larger stresses on the

return stroke lead to an overall slow-down in swimming as

the elasticity is increased for a fixed stroke.

We conjecture that the asymmetry of the orientation of fla-

gellar tips between the power and return stroke leads to the

higher elastic stress in the return stroke (figure 6), which is

supported by our simulations and analysis (see the electro-

nic supplementary material) of a thin cylinder moving in

viscoelastic fluids with different orientations. Our results

reveal a fundamental difference between viscous and elastic

effects in the relationship between orientation and stress.

In a Newtonian fluid, the larger viscous stress associated

with motion normal to the cylinder axis compared with

motion tangential to the cylinder axis is essential to gaining

net displacement for flagellated swimmers. In viscoelastic

fluids, however, this stress asymmetry is reversed, which

leads to the higher elastic stress accumulation during the

return stroke compared with the power stroke, causing a

decrease in overall swimming speed.

The orientation-dependent elastic stress asymmetry is

likely to be important in understanding other microorganism

motility and flagellar motion in complex fluids. It is difficult,

however, to generalize from one organism to another as it
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has been shown that the effect of fluid elasticity on swimming

speed is gait dependent [20,49,50]. The particular motion

studied here has similarities to pulmonary cilia, which

beat in a layered fluid consisting of the periciliary liquid

surrounding the base of the cilia and a mucus layer on top

which is more viscous and strongly elastic [51,52]. Cilia

extend into the mucus layer during the power stroke, but

recoil to stay within the watery liquid layer during the

return stroke. While it is not surprising that this asymmetry

would be beneficial for transport, our results suggest that

ducking the more elastic mucus on the return stroke is essen-

tial to avoid large elastic stress that works against transport.

Finally, we note that, while the present study focuses on

purely elastic effects using the Oldroyd-B model, complex

fluids often display rate-dependent rheological properties

which are not captured by the model. Nevertheless, it is

known that large stresses still accumulate in regions of high

stretching (and gradients) even in models with these

additional nonlinearities [53–56], and the qualitative results

showing both the concentration of elastic stress at tips

as well as asymmetric accumulation that depends on tip

orientation are not expected to change.
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Appendix A. Numerical method
In this section, we describe our numerical formulation to solve

the coupled swimmer–fluid system. Our method is similar to

[33] in that the kinematics of the flagellum are prescribed

exactly, and the force density and swimming speed are

solved for simultaneously. However, in [33] they use the

method of regularized Stokeslets [57], which is similar to

boundary integral methods that require the linearity of the

Stokes equations and does not generalize to viscoelastic

fluids. Because the viscoelastic stress introduces additional

body forces distributed throughout the fluid domain, the

equations of motion cannot be reduced to integral equations

on the swimmer body alone. We use the immersed boundary

method [35], which has been used for simulations of flexible

undulatory swimmers in viscoelastic fluids [18,20,47,48] as

well as for simulating C. reinhardtii swimming in Newtonian

fluids [32]. We use Lagrangian coordinates to describe the

swimmer’s position, velocity and forces, and Eulerian coordi-

nates to describe the fluid velocity, stress and pressure. We

use the framework of the immersed boundary method to com-

pute the Eulerian and Lagrangian variables [35]. Specifically,

the force density on the swimmer is related to the force applied

to the fluid by

f(x, t) ¼ SF ¼
ð

swimmer

F(s, t)d(x� X(s, t)) ds, ðA 1Þ

where we use the notation S to denote the spreading operator,

which maps Lagrangian variables to Eulerian variables.
Similarly, the adjoint operator S� maps the Eulerian fluid

velocity to the velocity on the swimmer by

U(s, t) ¼ S�u ¼
ð

fluid

u(x, t)d(x� X(s, t)) dx: ðA 2Þ

In the discretization of the transfer operators defined

in equations (A 1) and (A 2), we use the standard four-point

regularized delta function [35].

In each time step of the simulation, we alternately

advance the conformation tensor and the fluid/body

system. Given the current fluid velocity field (u), we evolve

the conformation tensor (s) according to equation (2.5),

from which we compute the polymer stress tensor (tp) from

(2.4). Given the updated polymer stress tensor and the pre-

scribed velocity of the flagella and cell body in the body

frame (UP), we then simultaneously solve for the fluid vel-

ocity (u) and pressure ( p), the translational velocity of the

swimmer body (UT) and fluid forces on the swimmer (F),

which satisfy

hsDu�rpþ SF ¼ �r � tp, ðA 3Þ
r � u ¼ 0, ðA 4Þ

S�u�UT ¼ UP ðA 5Þ

and ð
swimmer

F ds ¼ 0: ðA 6Þ

Equation (A 5) determines that the swimmer moves with the

local fluid velocity (i.e. there is no slip on the body surface),

and equation (A 6) requires that the net force on the swimmer

is zero. To solve equations (A 3)–(A 6), we eliminate the vel-

ocity and pressure, and first solve the much smaller system

for the body forces and translational velocity,

S�L�1SF�UT ¼ UP � S�L�1r � tp ðA 7Þ

and ð
swimmer

F ds ¼ 0, ðA 8Þ

where L is the Stokes operator that maps a fluid velocity to

the applied forces. After solving this system for the transla-

tional velocity and the force on the swimmer, we use these

quantities to update the body position in the laboratory

frame and the fluid velocity field to complete a time step.

The fluid domain is taken as a periodic cube with side

lengths 40 mm, which is discretized with 128 points in each

direction. Each flagellum is discretized with 27 grid points

along its central line, and the body is discretized using a set

of minimum energy interpolation points on the sphere [58],

where neighbouring points are approximately equally

spaced. We use the Fourier spectral method to discretize the

spatial operators. Equations (A 7) and (A 8) are solved using

the conjugate gradient method, which is preconditioned

using the method of regularized Stokeslets [57] to approximate

the mobility operator S�L�1S. Equation (2.5) for the confor-

mation tensor is discretized in time using a Crank–

Nicholson–Adams–Bashforth scheme (AB for the nonlinear

terms), with the diffusion coefficient 1 ¼ 8Dx2/T, where T is

the stroke period and Dx is the mesh spacing. We use a time

step Dt ¼ 1
60 ms, and fix the viscosity ratio hp/hs ¼ 0.2.

We run all the simulations until the difference in average

speeds between two successive periods falls below 5%, at

which time the elastic stress field is approximately periodic
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in time. The strain energy, elastic stress and viscous stress

averages are computed over the entire three-dimensional

computational domain.

We validate the model by comparing the swimming vel-

ocities from our simulations with the experiments on which

the stroke was based. In figure 7, we plot the experimentally

measured swimming velocities for cells swimming in
Newtonian fluids of two different viscosities along with the

velocities produced by our simulations using strokes fitted

from the same datasets. The ‘Newtonian stroke’ used

throughout this paper is based on the data corresponding

to viscosity 2.6 cP. In the electronic supplementary material,

we show a similar comparison between the experiment and

the simulations at De ¼ 2.
References
1. Huang HW, Sakar MS, Petruska AJ, Pane S, Nelson
BJ. 2016 Soft micromachines with programmable
motility and morphology. Nat. Commun. 7, 12263.
(doi:10.1038/ncomms12263)

2. Ahmed D, Baasch T, Jang B, Pane S, Dual J, Nelson
BJ. 2016 Artificial swimmers propelled by
acoustically activated flagella. Nano Lett. 16,
4968 – 4974. (doi:10.1021/acs.nanolett.6b01601)

3. Palagi S et al. 2016 Structured light enables
biomimetic swimming and versatile locomotion of
photoresponsive soft microrobots. Nat. Mater. 15,
647 – 653. (doi:10.1038/nmat4569)

4. Ghosh A, Fischer P. 2009 Controlled propulsion of
artificial magnetic nanostructured propellers. Nano
Lett. 9, 2243 – 2245. (doi:10.1021/nl900186w)

5. Koo OM, Rubinstein I, Onyuksel H. 2005 Role of
nanotechnology in targeted drug delivery and imaging:
a concise review. Nanomed. Nanotechnol. Biol. Med. 1,
193 – 212. (doi:10.1016/j.nano.2005.06.004)

6. Sakar MS, Eyckmans J, Pieters R, Eberli D, Nelson
BJ, Chen CS. 2016 Cellular forces and matrix
assembly coordinate fibrous tissue repair. Nat.
Commun. 7, 11036. (doi:10.1038/ncomms11036)

7. Ding Y, Qiu FM, Solvas XCI, Chiu FWY, Nelson BJ,
deMello A. 2016 Microfluidic-based droplet and cell
manipulations using artificial bacterial flagella.
Micromachines 7, 25. (doi:10.3390/mi7020025)

8. Fauci LJ, Dillon R. 2006 Biofluidmechanics of
reproduction. Annu. Rev. Fluid Mech. 38, 371 – 394.
(doi:10.1146/annurev.fluid.37.061903.175725)

9. Suarez S, Pacey A. 2006 Sperm transport in the
female reproductive tract. Hum. Reprod. Update 12,
23 – 37. (doi:10.1093/humupd/dmi047)
10. Celli JP et al. 2009 Helicobacter pylori moves
through mucus by reducing mucin viscoelasticity.
Proc. Natl Acad. Sci. USA 106, 14 321 – 14 326.
(doi:10.1073/pnas.0903438106)

11. Jimenez-Sanchez C, Wick LY, Cantos M, Ortega-Calvo
JJ. 2015 Impact of dissolved organic matter on
bacterial tactic motility, attachment, and transport.
Environ. Sci. Technol. 49, 4498 – 4505. (doi:10.1021/
es5056484)

12. Suarez S, Dai X. 1992 Hyperactivation enhances
mouse sperm capacity for penetrating viscoelastic
media. Biol. Reprod. 46, 686 – 691. (doi:10.1095/
biolreprod46.4.686)

13. Lauga E. 2007 Propulsion in a viscoelastic
fluid. Phys. Fluids 19, 083104. (doi:10.1063/1.
2751388)

14. Martinez VA, Schwarz-Linek J, Reufer M, Wilson LG,
Morozov AN, Poon WCK. 2014 Flagellated bacterial
motility in polymer solutions. Proc. Natl Acad. Sci.
USA 111, 17 771 – 17 776. (doi:10.1073/pnas.
1415460111)

15. Qin B, Gopinath A, Yang J, Gollub JP, Arratia PE.
2015 Flagellar kinematics and swimming of algal
cells in viscoelastic fluids. Sci. Rep. 5, 9190. (doi:10.
1038/srep09190)

16. Shen X, Arratia PE. 2011 Undulatory swimming in
viscoelastic fluids. Phys. Rev. Lett. 106, 208101.
(doi:10.1103/PhysRevLett.106.208101)

17. Fu HC, Wolgemuth CW, Powers TR. 2009 Swimming
speeds of filaments in nonlinearly viscoelastic fluids.
Phys. Fluids 21, 033102. (doi:10.1063/1.3086320)

18. Teran J, Fauci L, Shelley M. 2010 Viscoelastic fluid
response can increase the speed and efficiency of a
free swimmer. Phys. Rev. Lett. 104, 038101. (doi:10.
1103/PhysRevLett.104.038101)

19. Zhu L, Lauga E, Brandt L. 2012 Self-propulsion in
viscoelastic fluids: pushers versus pullers. Phys.
Fluids 24, 051902. (doi:10.1063/1.4718446)

20. Thomases B, Guy RD. 2014 Mechanisms of elastic
enhancement and hindrance for finite-length
undulatory swimmers in viscoelastic fluids. Phys.
Rev. Lett. 113, 098102. (doi:10.1103/PhysRevLett.
113.098102)

21. Spagnolie SE, Liu B, Powers TR. 2013 Locomotion of
helical bodies in viscoelastic fluids: enhanced
swimming at large helical amplitudes. Phys. Rev.
Lett. 111, 068101. (doi:10.1103/PhysRevLett.111.
068101)

22. Liu B, Powers TR, Breuer KS. 2011 Force-free
swimming of a model helical flagellum in
viscoelastic fluids. Proc. Natl Acad. Sci. USA 108,
19 516 – 19 520. (doi:10.1073/pnas.1113082108)

23. Espinosa-Garcia J, Lauga E, Zenit R. 2013 Fluid
elasticity increases the locomotion of flexible
swimmers. Phys. Fluids 25, 031701. (doi:10.1063/1.
4795166)

24. Patteson AE, Gopinath A, Goulian M, Arratia PE.
2015 Running and tumbling with E. coli in
polymeric solutions. Sci. Rep. 5, 15761. (doi:10.
1038/srep15761)

25. Fu HC, Powers TR, Wolgemuth CW. 2007 Theory of
swimming filaments in viscoelastic media. Phys.
Rev. Lett. 99, 258101. (doi:10.1103/PhysRevLett.99.
258101)

26. Goldstein RE. 2015 Green algae as model organisms
for biological fluid dynamics. Annu. Rev. Fluid Mech.

http://dx.doi.org/10.1038/ncomms12263
http://dx.doi.org/10.1021/acs.nanolett.6b01601
http://dx.doi.org/10.1038/nmat4569
http://dx.doi.org/10.1021/nl900186w
http://dx.doi.org/10.1016/j.nano.2005.06.004
http://dx.doi.org/10.1038/ncomms11036
http://dx.doi.org/10.3390/mi7020025
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175725
http://dx.doi.org/10.1093/humupd/dmi047
http://dx.doi.org/10.1073/pnas.0903438106
http://dx.doi.org/10.1021/es5056484
http://dx.doi.org/10.1021/es5056484
http://dx.doi.org/10.1095/biolreprod46.4.686
http://dx.doi.org/10.1095/biolreprod46.4.686
http://dx.doi.org/10.1063/1.2751388
http://dx.doi.org/10.1063/1.2751388
http://dx.doi.org/10.1073/pnas.1415460111
http://dx.doi.org/10.1073/pnas.1415460111
http://dx.doi.org/10.1038/srep09190
http://dx.doi.org/10.1038/srep09190
http://dx.doi.org/10.1103/PhysRevLett.106.208101
http://dx.doi.org/10.1063/1.3086320
http://dx.doi.org/10.1103/PhysRevLett.104.038101
http://dx.doi.org/10.1103/PhysRevLett.104.038101
http://dx.doi.org/10.1063/1.4718446
http://dx.doi.org/10.1103/PhysRevLett.113.098102
http://dx.doi.org/10.1103/PhysRevLett.113.098102
http://dx.doi.org/10.1103/PhysRevLett.111.068101
http://dx.doi.org/10.1103/PhysRevLett.111.068101
http://dx.doi.org/10.1073/pnas.1113082108
http://dx.doi.org/10.1063/1.4795166
http://dx.doi.org/10.1063/1.4795166
http://dx.doi.org/10.1038/srep15761
http://dx.doi.org/10.1038/srep15761
http://dx.doi.org/10.1103/PhysRevLett.99.258101
http://dx.doi.org/10.1103/PhysRevLett.99.258101


rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170289

12
47, 343 – 375. (doi:10.1146/annurev-fluid-010313-
141426)

27. Harris EH. 1999 The Chlamydomonas sourcebook.
New York, NY: Academic Press.

28. Ruffer U, Nultsch W. 1985 High-speed
cinematographic analysis of the movement of
Chlamydomonas. Cell Motil. Cytoskeleton 5,
251 – 263. (doi:10.1002/cm.970050307)

29. Guasto JS, Johnson KA, Gollub JP. 2010 Oscillatory
flows induced by microorganisms swimming in two
dimensions. Phys. Rev. Lett. 105, 168102. (doi:10.
1103/PhysRevLett.105.168102)

30. Drescher K, Goldstein RE, Michel N, Polin M, Tuval I.
2010 Direct measurement of the flow field around
swimming microorganisms. Phys. Rev. Lett. 105,
168101. (doi:10.1103/PhysRevLett.105.168101)

31. Jones MS, Baron LL, Pedley TJ. 1994 Biflagellate
gyrotaxis in a shear flow. J. Fluid Mech. 281,
137 – 158. (doi:10.1017/S002211209400306X)

32. Fauci LJ. 1993 Computational modeling of the
swimming of biflagellated algal cells. Contemp.
Math. 141, 91 – 102. (doi:10.1090/conm/141/
1212579)

33. O’Malley S, Bees MA. 2012 The orientation of
swimming biflagellates in shear flows. Bull. Math.
Biol. 74, 232 – 255. (doi:10.1007/s11538-011-9673-1)

34. Li C, Qin B, Gopinath A, Arratia P, Thomases B, Guy
R. 2017 Flagellar shape data of chlamydomonas
reinhardtii swimming in a Newtonian fluid and a
viscocelastic fluid respectively. (doi:10.6084/m9.
figshare.4879568.v7)

35. Peskin CS. 2002 The immersed boundary method.
Acta Numer. 11, 479 – 517.

36. Bird RB, Armstrong RC, Hassager O. 1987 Dynamics
of polymeric liquids, volume 1: fluid mechanics.
New York, NY: John Wiley & Sons.

37. Sureshkumar R, Beris AN. 1995 Effect of artificial
stress diffusivity on the stability of numerical
calculations and the flow dynamics of time-
dependent viscoelastic flows. J. Non-Newtonian
Fluid Mech. 60, 53 – 80. (doi:10.1016/0377-
0257(95)01377-8)

38. Thomases B. 2011 An analysis of the effect of stress
diffusion on the dynamics of creeping viscoelastic
flow. J. Non-Newtonian Fluid Mech. 166,
1221 – 1228. (doi:10.1016/j.jnnfm.2011.07.009)

39. Howard J. 2001 Mechanics of motor proteins
and the cytoskeleton. Sunderland, MA:
Sinauer Associates.

40. Chen DT, Heymann M, Fraden S, Nicastro D, Dogic Z.
2015 ATP consumption of eukaryotic flagella
measured at a single-cell level. Biophys. J. 109,
2562 – 2573. (doi:10.1016/j.bpj.2015.11.003)

41. Lighthill J. 1976 Flagellar hydrodynamics. SIAM Rev.
18, 161 – 230. (doi:10.1137/1018040)

42. Purcell EM. 1977 Life at low Reynolds number.
Am. J. Phys. 45, 3 – 11. (doi:10.1119/1.10903)

43. Gray J, Hancock GJ. 1955 The propulsion of sea-
urchin spermatozoa. J. Exp. Biol. 32, 802 – 814.

44. Lighthill J. 1976 Flagellar hydrodynamics. SIAM Rev.
18, 161 – 230. (doi:10.1137/1018040)

45. Cox RG. 1970 The motion of long slender bodies
in a viscous fluid part 1. General theory. J. Fluid
Mech. 44, 791 – 810. (doi:10.1017/S0022112
07000215X)

46. Tam D, Hosoi AE. 2011 Optimal feeding and
swimming gaits of biflagellated organisms. Proc.
Natl Acad. Sci. USA 108, 1001 – 1006. (doi:10.1073/
pnas.1011185108)

47. Salazar D, Roma AM, Ceniceros HD. 2016 Numerical
study of an inextensible, finite swimmer in
stokesian viscoelastic flow. Phys. Fluids 28, 063101.
(doi:10.1063/1.4953376)

48. Thomases B, Guy RD. 2017 The role of body
flexibility in stroke enhancements for finite-
length undulatory swimmers in viscoelastic fluids.
J. Fluid Mech. 825, 109 – 132. (doi:10.1017/jfm.
2017.383)
49. Riley EE, Lauga E. 2014 Enhanced active swimming
in viscoelastic fluids. Europhys. Lett. 108, 34003.
(doi:10.1209/0295-5075/108/34003)

50. Elfring GJ, Goyal G. 2016 The effect of gait on
swimming in viscoelastic fluids. J. Non-Newtonian
Fluid Mech. 234, 8 – 14. (doi:10.1016/j.jnnfm.2016.
04.005)

51. Fulford G, Blake J. 1986 Muco-ciliary transport in
the lung. J. Theor. Biol. 121, 381 – 402. (doi:10.
1016/S0022-5193(86)80098-4)

52. Jayathilake P, Tan Z, Le D, Lee H, Khoo B. 2012
Three-dimensional numerical simulations of human
pulmonary cilia in the periciliary liquid layer by the
immersed boundary method. Comput. Fluids 67,
130 – 137. (doi:10.1016/j.compfluid.2012.07.016)

53. Van Heel A, Hulsen M, Van den Brule B. 1998 On
the selection of parameters in the FENE-P model.
J. Non-Newtonian Fluid Mech. 75, 253 – 271.
(doi:10.1016/S0377-0257(97)00060-8)

54. Alves M, Pinho F, Oliveira P. 2001 The flow of
viscoelastic fluids past a cylinder: finite-volume
high-resolution methods. J. Non-Newtonian Fluid
Mech. 97, 207 – 232. (doi:10.1016/S0377-
0257(00)00198-1)

55. Thomases B, Shelley M. 2007 Emergence of singular
structures in Oldroyd-B fluids. Phys. Fluids 19,
103103. (doi:10.1063/1.2783426)

56. Guy RD, Thomases B. 2015 Computational
challenges for simulating strongly elastic flows in
biology. In Complex fluids in biological systems
(ed. SE Spagnolie), pp. 359 – 397. Berlin, Germany:
Springer.

57. Cortez R. 2001 The method of regularized
stokeslets. SIAM J. Sci. Comput. 23, 1204 – 1225.
(doi:10.1137/S106482750038146X)

58. Womersley R. 1999 Minimum energy (ME)
interpolation points on the sphere S2. See http://
web.maths.unsw.edu.au/ rsw/sphere/images/me/
me_data.html..

http://dx.doi.org/10.1146/annurev-fluid-010313-141426
http://dx.doi.org/10.1146/annurev-fluid-010313-141426
http://dx.doi.org/10.1002/cm.970050307
http://dx.doi.org/10.1103/PhysRevLett.105.168102
http://dx.doi.org/10.1103/PhysRevLett.105.168102
http://dx.doi.org/10.1103/PhysRevLett.105.168101
http://dx.doi.org/10.1017/S002211209400306X
http://dx.doi.org/10.1090/conm/141/1212579
http://dx.doi.org/10.1090/conm/141/1212579
http://dx.doi.org/10.1007/s11538-011-9673-1
http://dx.doi.org/10.6084/m9.figshare.4879568.v7
http://dx.doi.org/10.6084/m9.figshare.4879568.v7
http://dx.doi.org/10.1016/0377-0257(95)01377-8
http://dx.doi.org/10.1016/0377-0257(95)01377-8
http://dx.doi.org/10.1016/j.jnnfm.2011.07.009
http://dx.doi.org/10.1016/j.bpj.2015.11.003
http://dx.doi.org/10.1137/1018040
http://dx.doi.org/10.1119/1.10903
http://dx.doi.org/10.1137/1018040
http://dx.doi.org/10.1017/S002211207000215X
http://dx.doi.org/10.1017/S002211207000215X
http://dx.doi.org/10.1073/pnas.1011185108
http://dx.doi.org/10.1073/pnas.1011185108
http://dx.doi.org/10.1063/1.4953376
http://dx.doi.org/10.1017/jfm.2017.383
http://dx.doi.org/10.1017/jfm.2017.383
http://dx.doi.org/10.1209/0295-5075/108/34003
http://dx.doi.org/10.1016/j.jnnfm.2016.04.005
http://dx.doi.org/10.1016/j.jnnfm.2016.04.005
http://dx.doi.org/10.1016/S0022-5193(86)80098-4
http://dx.doi.org/10.1016/S0022-5193(86)80098-4
http://dx.doi.org/10.1016/j.compfluid.2012.07.016
http://dx.doi.org/10.1016/S0377-0257(97)00060-8
http://dx.doi.org/10.1016/S0377-0257(00)00198-1
http://dx.doi.org/10.1016/S0377-0257(00)00198-1
http://dx.doi.org/10.1063/1.2783426
http://dx.doi.org/10.1137/S106482750038146X
http://web.maths.unsw.edu.au/ rsw/sphere/images/me/me_data.html
http://web.maths.unsw.edu.au/ rsw/sphere/images/me/me_data.html
http://web.maths.unsw.edu.au/ rsw/sphere/images/me/me_data.html
http://web.maths.unsw.edu.au/ rsw/sphere/images/me/me_data.html

	Flagellar swimming in viscoelastic fluids: role of fluid elastic stress revealed by simulations based on experimental data
	Introduction
	Model: stroke kinematics and fluid system
	Dissecting the effects of fluid elasticity and stroke
	Elastic stress and swimming speed during a single stroke
	Comparing Newtonian and viscoelastic strokes

	Mechanisms of asymmetric speed enhancements
	Speed enhancements from fluid memory
	Flagellar tip orientation and elastic stress

	Discussion
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	Appendix A. Numerical method
	References




