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We present ΛCDM cosmological parameter constraints obtained from delensed microwave back-
ground power spectra. Lensing maps from a subset of DR4 data from the Atacama Cosmology
Telescope (ACT) are used to undo the lensing effect in ACT spectra observed at 150 and 98 GHz.
At 150 GHz, we remove the lensing distortion with an effective efficiency of 30% (TT), 30% (EE),
26% (TE) and 20% (BB); this results in detections of the delensing effect at 8.7σ (TT), 5.1σ (EE),
2.6σ (TE), and 2.4σ (BB) significance. The combination of 150 and 98 GHz TT, EE, and TE delensed
spectra is well fit by a standard ΛCDM model. We also measure the shift in best-fit parameters when
fitting delensed versus lensed spectra; while this shift does not inform our ability to measure cosmo-
logical parameters, it does provide a three-way consistency check among the lensing inferred from the
best-fit parameters, the lensing in the CMB power spectrum, and the reconstructed lensing map. This
shift is predicted to be zero when fitting with the correct model since both lensed and delensed spec-
tra originate from the same region of sky. Fitting with a ΛCDM model and marginalizing over fore-
grounds, we find that the shift in cosmological parameters is consistent with zero. Our results show
that gravitational lensing of the microwave background is internally consistent within the framework
of the standard cosmological model.

I. INTRODUCTION

Measurements of the cosmic microwave background
(CMB) power spectra have yielded powerful constraints

on cosmological parameters [e.g. 1–5]. Gravitational
lensing of the microwave background distorts these
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power spectra; lensing smooths the acoustic peaks of
temperature and E-mode power spectra and generates B-
mode power spectra [6–9]. Since the amplitude of grav-
itational lensing fluctuates from one patch of the Uni-
verse to another patch, lensing induces additional cor-
relations in the CMB angular power spectrum. Delens-
ing the maps undoes both effects and reduces the uncer-
tainty in the resulting band powers.

Delensing was first proposed as a means to remove
lens-induced signal on large-scale B modes to measure
the imprint of primordial gravitational waves [10–13].
At the same time, it has also been shown that delens-
ing small-scale temperature or polarization would give
a cleaner view of the last-scattering surface and help
constrain some of the physics in the acoustic peaks and
diffusion damping in that regime. In particular, [14]
showed that extra relativistic species present in the early
Universe could be better constrained with the improved
acoustic peak localization that delensing makes possible.
Delensing at small scales has been demonstrated with
observational data on several occasions, including with
external tracers of the lensing field [15–17] as well as for
lensing maps obtained internally with the CMB [17–19].

The delensing procedure consists of constructing an
estimate of the specific realization of the matter distri-
bution responsible for the lensing of the CMB; this es-
timated mass map is then used to remap points in the
CMB map to their original undeflected positions. De-
lensing is predicted to increase the extracted cosmo-
logical information by tightening parameter constraints
when combining primordial CMB and CMB lensing
power spectra measurements; this is because delensing
removes the uncertainty in the realization of the inter-
vening lensing matter distribution [14].

In this work, we present the first ΛCDM parameter
constraints obtained from delensed power spectra. Since
CMB lensing power spectrum measurements are not in-
cluded, these parameter constraints are not expected to
be tighter than those from the lensed CMB spectra. We
also measure the shift in best-fit parameters when fitting
delensed versus lensed CMB spectra. When fitting with
the correct model, we expect no detectable shift in pa-
rameters; in addition, the uncertainty on this shift does
not suffer from sample variance since both the lensed
and delensed spectra are sourced from the same region
of sky.

The parameter-shift statistic we introduce in this work
provides a three-way consistency check among the lens-
ing inferred from the best-fit parameters, the lensing in
the CMB power spectrum, and the reconstructed lens-
ing map. In general, an inconsistency among these three
yields a shift between the ΛCDM parameters inferred
from the lensed and delensed power spectra. This con-
sistency test can be used to explore inaccurate modeling
of foregrounds or secondaries, systematic errors, and de-
partures from ΛCDM. While the subset of Atacama Cos-
mology Telescope (ACT) data used in this work does not
yet have the significance to weigh in on potential new

physics in the early Universe that could, for example,
probe the recently noted tension between low and high-
redshift values of H0 [20–22], with future CMB data
sets, we can use this parameter-shift statistic to probe
these types of models. In particular, this parameter-shift
test provides a novel way to search for new physics or
systematic effects that may be degenerate with lensing-
induced peak smoothing. Examples of models with new
physics that can mimic lensing-induced peak smooth-
ing are discussed in [22–28]. We discuss our current
sensitivity to inconsistent lensing in more detail in Sec-
tion VII B, using simulations that match the properties of
the subset of ACT data used in this work.

In section II and III, we discuss the ACT data used in
this work, and the simulations that model this data. The
delensing pipeline is presented in section IV, including
our procedure to remove a known bias that arises when
delensing CMB maps with reconstructions of the lens-
ing potential obtained from those same maps [17–19, 29–
33]. We present the delensed power spectra in section V,
and the likelihood developed for delensed spectra in sec-
tion VI. Section VII shows the resulting cosmological pa-
rameters, followed by a discussion in section VIII. The
analysis products presented in this work are public as
part of the ACT DR4 data release on the NASA Legacy
Archive for Microwave Background Data Analysis.1

II. DATA

We analyze ACT data collected from two seasons of
observations. In particular, this analysis focuses on one
region of the sky, labeled D56, which spans 565 square
degrees (about 1% of the full sky). The coordinates and
map noise levels are given in a companion paper [4]
(hereafter C20). D56 was observed in both the 2014 and
2015 seasons (hereafter s14 and s15).

The Atacama Cosmology Telescope Polarimeter (ACT-
Pol) receivers consist of three bolometer arrays sensi-
tive to both temperature and polarization [34]. From
s14 through s15, data were obtained at 150 GHz. In
s15, 98 GHz data were also obtained. All data used in
this analysis were taken during the nighttime to min-
imize beam and pointing variations induced by solar
heating of the telescope. Details of the mapmaking pro-
cess, a variety of null tests performed on these maps,
and their corresponding spectra are discussed in C20
and a companion paper [5] (hereafter A20). Four map
splits are made by separating the time-ordered data into
equal time splits for each combination of season (s14,
s15), detector array (PA1, PA2, PA3), frequency (98, 150
GHz), and temperature/polarization type (T, Q, U) as
described in A20. Each map split is calibrated using the
calibration factors described in C20. Also, as described

1 https://lambda.gsfc.nasa.gov/product/act/
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in A20, point sources detected above 5σ at 150 GHz in
a matched-filtered map are subtracted from each map
split. This roughly corresponds to removing all sources
above 5 mJy from the map splits.2

The power spectrum analysis in C20 keeps the four
map splits separate in order to maximize signal-to-noise
ratio by taking as many cross spectra as possible to min-
imize the noise. Here, we coadd two sets of two splits
(out of the four) to make two ‘coadded data splits’.
These coadded splits are used to obtain both lensed
and delensed power spectra. Since the optimal delens-
ing procedure involves delensing only signal-dominated
modes [14], we do not expect a gain in delensing signal-
to-noise ratio by making as many splits as in C20; how-
ever, we still require some splits in order to reduce the
noise bias. Furthermore, we coadd each set of four map
splits to make one ‘coadded data map’ to use for the lens-
ing reconstruction.

To do the coadding, each of the four map splits is first
multiplied, pixel by pixel, by its corresponding inverse-
variance weight map. The products are then summed
over pixel-wise to make the single coadded data map,
Dcoadd, and the two coadded data splits, Dsplit

coadd:

Dcoadd = (∑4
i=1Wi Dspliti )/∑4

i=1Wi, (1)

D
splitj
coadd = (∑kWk Dsplitk )/∑kWk, (2)

where k ∈ [1, 2] or k ∈ [3, 4]. Coadded weight
maps, Wcoadd, are made by averaging over the weight
maps pixel-wise, i.e. Wcoadd = ∑4

i=1Wi/4 and W
splitj
coadd =

∑kWk/2 where k ∈ [1, 2] or k ∈ [3, 4].
We next combine these individual season and array

maps. First, we combine data from all seasons and arrays
for the observations of patch D56, constructing a ‘patch
map’ of the region and two ‘patch-map splits’. The for-
mer is used for lensing reconstruction and the latter for
obtaining the CMB power spectra, as mentioned above.
For the maps used in the lensing reconstruction, we also
combine maps of different frequencies. For the maps
used in calculating the CMB power spectra, we add back
all detected and removed point sources below 15 mJy
to each map to have a single flux threshold, as is done
in C20.

We make the above combinations by first convolving
each map to a common beam. We choose the 98 GHz PA3
beam from season s15 to be the effective beam for this
patch, since it is the largest beam; we deconvolve with
the effective beam later. All the coadded data maps and

2 Note that removing these sources does not result in a uniform flux
threshold since the noise levels spatially vary in the matched-filtered
map. Thus we later add back sources below 15 mJy to the maps
used to make the power spectra in order to obtain a uniform flux
threshold.

splits are convolved with the ratio of the effective beam
to its original beam. These coadded maps are then com-
bined, weighted by the corresponding Wcoadd:

DX
patch = (∑mWX

coaddm
DX

coaddm
)/∑mWX

coaddm
(3)

where m sums over all seasons and arrays (and frequen-
cies if relevant), and X ∈ (map, split1, split2); this cre-
ates the patch map and patch-map splits.

We choose the D56 ‘common boundary mask’ de-
scribed in C20 as the analysis mask. (Note that using
the ‘spatial window function mask’ in C20, which is spa-
tially varying because it includes the weighting of the
inverse noise variation, would distort the local gradient
of the reconstructed lensing potential.) We then multi-
ply the patch map and patch-map splits with the anal-
ysis mask. This results in an effective sky area of 482
square degrees. In order to obtain the two-dimensional
noise power spectrum, N2D, of the patch map, for use
in the lensing reconstruction filter, we subtract the cross
spectra of the two map splits from the mean of their auto
spectra. To correct for the analysis mask and account for
the factor of two higher noise power in the splits com-
pared to the full map, we normalize N2D by the number
1/(2w), where w = ∑i(Mi)

2/∑i1, and i sums over all
pixels in the mask M.

Finally, we in-paint the temperature maps used in the
lensing reconstruction at the positions of galaxy clus-
ter candidates detected above 5σ at 150 GHz, using the
method described in [35]. Similarly, we in-paint using
a 5 arcminute radius both the temperature maps and
the polarization maps at the positions of irregular-shaped
sources or bright sources (detected with signal-to-noise
ratio greater than 90). In the D56 analysis area used here,
we have seven irregular-shaped or bright sources. Note
that these sources have already been removed from the
maps, but we are in addition in-painting a large radius
around these sources in case there is any leakage from
them into a surrounding area. In order to remove the
large-scale ground contamination in our maps, we ap-
ply a Fourier-space mask that cuts out ` modes in the
ranges −90 < `x < 90 and −50 < `y < 50. We then
deconvolve the patch map and patch-map splits with the
effective beam. We also compute the pixel window func-
tion in two-dimensional Fourier space, and deconvolve
each map by this function as is done in C20. We remove
all ` > 10, 000 modes from the maps for ease of analysis,
since they contribute negligible signal-to-noise. We refer
to the resulting patch map and patch-map splits as pre-
pared maps. In total, we have three patch maps (T, Q, U)
and 12 patch-map splits (two splits for T, Q and U at 150
GHz and 98 GHz).

III. SIMULATIONS

We make simulations of our full data set in order to
verify our delensing pipeline, estimate biases to our de-
lensed spectra, and obtain the covariance matrix for our
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spectra. In particular, we make simulated maps for each
D56 season, array, and frequency using the simulation
software pipeline described in C20. The cosmology we
use for these simulations is based on Planck2015 param-
eters.3 We construct these simulations to include Gaus-
sian foregrounds in the temperature maps matched to
the levels measured in the data. We do not model any
polarization foregrounds in these simulations (see more
discussion in Section VII C). These are the simulations
used throughout this work unless otherwise stated.

For the maps we use to calculate the CMB power spec-
tra, where we add back all detected point sources be-
low 15 mJy to each map as discussed above, we use
the foreground power spectrum templates described
in C20 to construct Gaussian temperature foreground
realizations. Since the maps we use to make the lens-
ing reconstructions have lower foreground levels to min-
imize foreground-induced bias, we generate separate
foreground templates for them from the data. We do this
by first taking the cross spectra of the data splits to ob-
tain spectra at 150× 150 GHz, 98× 150 GHz, and 98× 98
GHz. In order to fit our high-` foreground model to the
data in the ` range of [2000, 8000], we first subtract both
CMB and thermal Sunyaev-Zel’dovich (tSZ) effect the-
ory power spectra calculated using the publicly available
szar package [36]. This is done in order to remove an
approximation to the lower-` contributions of the data,
while still remaining blind to the actual low-` data spec-
tra. We fit the residual spectra to a polynomial func-
tion to capture the contributions of the kinetic Sunyaev-
Zel’dovich effect, radio galaxies, and dusty star-forming
galaxies. Finally, we add back the tSZ theory curve to the
fitted spectra. We use these foreground power spectrum
templates to make Gaussian temperature foreground re-
alizations. As discussed later in Section VI B, we inves-
tigate the impact of switching to more realistic simula-
tions including non-Gaussian foregrounds; these more
realistic foregrounds also have correlations between the
foregrounds and the lensing potential itself.

We follow the procedure described in Section II to
make simulated prepared patch maps and patch-map
splits. In total, we make three sets of 512 simulated pre-
pared maps (set1, set2, and set3). Set1 and set2 share
common lensing potential maps, but have independent
realizations of the primordial CMB. Set3 has indepen-
dent realizations of both the primordial CMB and the
lensing potential. We use set1 and set2 to estimate the
delensing bias and Monte Carlo (MC) bias discussed in
Section IV; we use set3 to verify the delensing pipeline,
as we show in Figure 1, and to obtain the covariance ma-
trix.

3 These Planck2015-based simulations use Ωbh2 = 0.02219, Ωch2 =
0.1203, h = 0.6702, optical depth τ = 0.066, amplitude of scalar
perturbations As = 2.151× 10−9, and scalar spectral index of ns =
0.9625. We take k0 = 0.05 Mpc−1 as the pivot scale and the total mass
of neutrinos as 0.06 eV.

IV. DELENSING PIPELINE

The steps of the delensing pipeline are to (1) make
a minimum-variance lensing reconstruction for the D56
patch, (2) delens each T, Q, U patch-map split using the
lensing reconstruction, (3) convert the delensed map
splits to TT, TE, EE, and BB power spectra, and (4) sub-
tract off a ‘delensing bias’ and an ‘MC bias’ from these
spectra to obtain the final delensed power spectra. We
describe each of these steps in more detail below.

A. Reconstructing Lensing Convergence Maps

We reconstruct the minimum-variance lensing conver-
gence map for the D56 patch by first converting the Q
and U prepared patch maps to E and B maps using
the flat-sky pure E-B decomposition method outlined
in [37] and discussed first in [38]. This E-B decompo-
sition has the advantage that it clearly isolates the low-
cosmic-variance B-mode field, allowing us to mitigate
and test for E-B leakage; it also simplifies the analysis
because E and B fields are independent of the coordi-
nate system used. We then generate two-dimensional fil-
ters used to make the lensing reconstructions by adding
together the two-dimensional lensed CMB theory spec-
trum and foreground theory spectrum (assuming az-
imuthal symmetry), and two-dimensional noise power
spectrum (N2D described in Section II), appropriate for
each map, after deconvolving the latter with the effec-
tive beam. In addition, we apply the following `-space
cuts to the lensing filters: (|`xmin |, |`ymin |, `min, `max) =
(90, 50, 500, 3000) for both temperature and polarization
maps. We apply the |`xmin | and |`ymin | cuts to remove
ground pick up, the `min cut to minimize atmospheric
contamination and large-scale systematics, and the `max
cut to minimize extragalactic foreground contamination.

Using these lensing filters and the T, E, and B maps,
we reconstruct lensing convergence maps using a flat-
sky, quadratic lensing estimator, following the proce-
dure detailed in [39–41].4 Our use of a flat-sky recon-
struction algorithm is justified since the D56 sky patch is
relatively small (about 1% of the total sky area), close to
the equator, and only spans about ten degrees in declina-
tion. We find a mean normalization bias across Fourier
modes in the lensing reconstruction of 0.1% due to the
use of a flat-sky, as opposed to a curved-sky, reconstruc-
tion algorithm; we correct for this normalization bias
with the MC bias correction discussed below. We note
that all other harmonic-space algorithmic steps through-
out this work are done with spherical harmonic trans-
forms, with the exception of the FFT-based lensing rou-

4 Given the noise level in our maps, this quadratic estimator is optimal.
For lower noise levels, one can improve the delensing efficiency by
switching to an iterative maximum likelihood estimator [13].
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tine detailed in [40, 41] and described above, the pixel
window deconvolution, and the Fourier-space filtering.

We further process the reconstructed lensing conver-
gence maps, κ, by applying an L-space cut to each con-
vergence map such that (Lmin, Lmax) = (80, 3000); the
Lmin cut restricts κ to modes minimally impacted by un-
certainty in the mean field map discussed below, and
the Lmax cut ensures we only include modes accurately
modeled in the simulations. Then we construct a two-
dimensional estimate of the lensing noise power, N(L),
that is computed using Eq. 11 in [40], which takes as in-
put the `-space lensing filters described above. We con-
struct the Fourier-space minimum-variance convergence
map,

κMV(L) = N(L)MV (∑
i

κ(L)i/N(L)i), (4)

where N(L)MV = (∑i 1/N(L)i)
−1 and i ∈

(TT, EE, EB).5 For large-scale lensing modes (i.e
L < 150), which are responsible for most of the delens-
ing signal-to-noise ratio, the TT, EE and EB estimators
contribute about 50%, 35%, and 15%, respectively, to
κMV. For simulation set1 and set3 described in Section III,
we repeat the steps above to reconstruct the κMV for
each simulation and obtain the mean of all these κMV
maps, which we call the mean field convergence map.6
We subtract this mean field map from each κMV map
(data and all simulations) in order to remove the largest
effect of the mode coupling due to the mask.

Finally, we Wiener filter each κMV to downweight the
noisy modes. The Wiener-filtered convergence map is
given by the Fourier transform of

κ(L)W
MV = κ(L)MV

Cκκ(L)theory

(Cκκ(L)theory + N(L)MV)
, (5)

where Cκκ(L)theory is the theory convergence power
spectrum used to generate the simulations described in
Section III. Thus we obtain final minimum-variance re-
constructed convergence maps in Fourier space.7

5 By excluding the TE lensing estimator, the delensing bias in the TE
spectra becomes negligible. This is because we are not delensing this
spectra using a lensing potential derived from the same TE combi-
nation. The absence of the TE delensing bias provides a useful con-
sistency test (see Section VI A and Figure 1).

6 Note that the mean field convergence map estimate does not include
simulations from set2 because we never make lensing reconstruc-
tions using set2.

7 Note that the D56 convergence map in [42] differs from the one pre-
sented here in that it includes the TE lensing estimator, and was
constructed using CMB maps that were foreground cleaned follow-
ing the method in [35] and coadded in Fourier space as opposed to
real space. When the TE estimator is removed from the minimum-
variance convergence map in [42], and we use the latter to delens
the CMB maps described herein, then the delensed spectra are con-
sistent, agreeing, for example, to within 20% of the error bars for TT
at 150 GHz out to ` = 4000.

B. Delensing Maps and Obtaining Power Spectra

We convert the final convergence maps, κW
MV(L), into

lensing potential maps, φMV(L), using the relation
φMV(L) = 2κW

MV(L)/L2 (obtained from converting the
relation ∇2φMV = −2κW

MV [43] into Fourier space). We
then inverse Fourier transform each resulting φMV(L) to
a real-space lensing potential map. Then we ”lens” each
of the two prepared map splits for T, Q, and U with the
negative of the real-space potential map (−φMV) in or-
der to delens them.8 The lensing algorithm used for this
is the publicly available, flat-sky, Taylens software [37].

We then multiply the lensed and delensed T, Q, and
U splits with a mask that has 5 and 8 arcminute ra-
dius holes for 150 and 98 GHz respectively, at the loca-
tion of each point source that was subtracted from the
maps; this removes the impact on the spectra of imper-
fect source subtraction. We convert the Q and U maps
to E and B maps by rotating in harmonic space using the
curved-sky routines in the libsharp library [45]; since we
undo mask-induced mode-coupling with the pseudo-C`
formalism described below we do not need to use a pure
E-B decomposition as discussed in Section IV A.

We calculate cross spectra between map splits for both
the lensed and delensed maps using a curved-sky power
spectrum routine that implements a standard pseudo-
C` formalism; this Power-spectrum In Tracts Algorithm
on the Sphere (PITAS) is publicly available at https:
//github.com/dwhan89/pitas. For this analysis, all the
spectra are binned in the same manner as in C20, using
the ` range of 575 < ` < 7925 for TT and 475 < ` < 7925
for TE, EE, and, BB. The TT ` range matches that used
in C20 and A20, and the minimum polarization ` of 475,
which has been standard in prior ACT lensing analyses,
is higher than what is used in C20/A20, which have a
minimum ` of 325. This gives us 47 spectral bins for
TT and 49 for TE, EE, and BB. We have verified that
our power spectrum code gives results consistent with
the power spectrum code used in C20. The mean power
spectrum over 500 simulations agrees to better than 0.6%
across all `s, which is an agreement within roughly 4%
of the error bars for a single simulation. The error bars
differ by up to 11% before accounting for the difference
in mask area and coadding procedure used; after cor-
recting for the effective mask area, the error bars agree
to better than 5%.

To correct for the missing Fourier modes that are re-
moved by the Fourier-space mask discussed in Section II,
we compute a Fourier-space transfer function. We calcu-
late this transfer function by taking the ratio of the power
spectra computed with and without the Fourier-space

8 This is technically anti-lensing, where the lensing potential is eval-
uated at the lensed, as opposed to the unlensed, position. This is a
good approximation to inverse-lensing, using the unlensed position
for evaluating φ [14, 15, 44].

https://github.com/dwhan89/pitas
https://github.com/dwhan89/pitas
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mask, and find the average of this over 512 simulations.
We then correct the power spectra by this transfer func-
tion, which is `-dependent and ranges from a roughly 1%
departure from unity at high ` to a roughly 20% depar-
ture from unity at the lowest ` we consider, ` = 475. We
also compute the Fourier-space transfer function covari-
ance matrix, Σkt, from these 512 transfer functions, and
add it to both the lensed and delensed covariance matri-
ces (Σlen and Σdelen) described in the next sub-section.

For the data power spectra, we make two additional
corrections: (1) we correct for aberration and modu-
lation, and (2) we apply a one-dimensional mapper
transfer function. Aberration and modulation both arise
from the motion of the Earth in the CMB rest frame;
aberration is a frequency-independent geometric effect
that looks like lensing, and modulation is a frequency-
dependent intensity shift [46]. The aberration and
modulation correction factors are computed by taking
the mean difference in 512 lensed simulation spectra,
before and after aberration and modulation are applied.
Following C20, we also compute one-dimensional
mapper transfer functions by comparing spectra of
simulations before and after being run through the
ACT mapping pipeline described in C20. This transfer
function corrects for imperfections in the mapmaking
pipeline, and is less than 0.5% of the total power at all `s
used in this analysis. These two data-specific corrections
are applied to both the lensed and delensed data spectra.

We call the resulting delensed spectra for TT, TE, EE,
and BB the raw delensed spectra.

C. Subtracting Delensing Bias and MC Bias

The raw delensed spectra are biased because the noise
in the reconstructed φMV map is correlated with the
CMB map when delensing, as pointed out in [17–19, 29–
33]. We estimate this bias, Cbias

` , as described below and
subtract it from the raw delensed spectra, Craw,delen

` . In
addition, we also subtract a Monte Carlo (MC) bias, Cmc

` ,
in order to account for small imperfections in the ability
of the simulations to capture theory. After these subtrac-
tions, both detailed below, we obtain the final delensed
spectra, Cdelen

` .
To calculate Cbias

` we use the two simulation sets, set1
and set2, that share common φ maps. We delens the pre-
pared map splits from both set1 and set2 using the re-
constructed φMV1 from set1. Then we calculate the raw
delensed spectra of both sets, C

raw,delenS1
` and C

raw,delenS2
` .

Since we use φMV1 to delens set2, then C
raw,delenS2
` has no

delensing bias, i.e. C
raw,delenS2
` = C

delenS2
` .

Naively defining the delensing bias as the difference
between C

raw,delenS1
` and C

delenS2
` does not cancel sample

variance due to the different CMB background realiza-

tions for set1 and set2. In order to cancel sample variance
and reduce the error on Cbias

` , we calculate

Cbias
` =

∑i[(C
raw,delen,s1
`i

− Clen,s1
`i

)− (Cdelen,s2
`i

− Clen,s2
`i

)]

Nsim
,

(6)

where Clen
` is the lensed spectra prior to delensing, i is

the simulation number, and Nsim is the total number of
simulations used to estimate the bias. To get a sense of
the size of Cbias

` , it is the difference between the biased
delensing points (blue triangles) and the corrected de-
lensing points (orange circles) in Figure 1. Note that for
the TE spectra there is negligible delensing bias because
we do not include the TE lensing quadratic estimator in
the minimum-variance lensing reconstruction.

To estimate and correct for several non-idealities in our
analysis that are captured in our full simulation suite, we
also compute a bias based on Monte Carlo simulations,
i.e. the MC bias. This bias corrects for (1) the small bias
in φMV from using a flat-sky code as discussed above,
(2) imperfect delensing around the edges of the patches,
(3) the slight change in mask-induced mode-coupling
due to delensing the masked CMB map, and (4) any
change to the foreground power spectra due to the de-
lensing procedure. This MC bias is calculated by

Cmc
` =

∑i[(C
delen,s2
`i

− Clen,s2
`i

)− (Cdelen,th
` − Clen,th

` )]

Nsim
,

(7)

where Cdelen,th
` and Clen,th

` are theoretical delensed and
lensed spectra calculated with the CAMB software pack-
age [47] using the same parameters used to generate the
simulations; the calculation of Cdelen,th

` is described in de-
tail in Section VI. We use simulation set2 to calculate the
MC bias since the delensed spectra from set2 have no de-
lensing bias. We show Cmc

` in Figure 1 (green stars), and
note that it is a small change to the spectra.9

In addition, to account for the fact that the CMB power
in the simulations is cut above ` = 510010, we apply a
correction to each sim spectra to account for this missing
power. This correction factor is calculated by taking the
difference between input CMB theory spectra that have
and have not been truncated at ` = 5100. We have veri-
fied using Gaussian simulations without missing power,
that our PITAS pipeline for computing power spectra is

9 In particular, the MC bias is less than a 0.4% change to the TT spectra
for the full ` range, and less than a 1.7% change to the EE spectra
below ` = 3000 at 150 GHz.

10 The lensed CMB part of the simulations used in this work was cre-
ated with an ` = 5100 cut in order to save disk storage space since
512x3x3=4,608 CMB simulated maps were required for this analysis
(the last factor of 3 is for the separate T, Q, and U maps).
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Figure 1: Shown are lensed minus delensed spectra from the mean of 512 simulations (described in Section III) for 150 × 150
GHz. The black dashed curves show “perfect delensing” assuming no noise, calculated from CAMB with the CMB theory spectra
used to generate the simulations. The orange solid curves show the expected delensing achievable given ACT noise levels, also
calculated from CAMB using the same CMB theory spectra along with the lensing noise power spectrum discussed in Section IV.
The delensing procedure described in Sections IV and V is used to delens simulated ACT data from simulation set3. The orange
points show the delensed spectra after correcting for the delensing bias (obtained from simulation set1 and set2) and the MC bias
(obtained from simulation set2 and shown as green stars); these biases are discussed in Section IV. These difference spectra clearly
show the peak sharpening expected from delensing. The blue triangles show the delensed spectra prior to subtracting both the
delensing bias and the MC bias. Note that the fact that the amplitudes of the biased delensing simulations for TT, EE and BB
are similar to the amplitudes of the perfect delensing is an artifact of the signal to noise of the ACT D56 data set. By contrast, as
described in the text, the TE simulations have a negligible bias. We also show the error on the mean of 512 simulations.

unbiased. We have also verified that our power spec-
trum pipeline, using the nominal simulations, is unbi-
ased below ` = 5000. Note that this high-` correction
factor is only applied to simulated spectra, and not to
the data.

We compute the final TT, TE, EE, and BB delensed
spectra as Cdelen

` = Craw,delen
` − Cbias

` − Cmc
` . We also cal-

culate the covariance matrix, Σdelen, from the variance
of Cdelen

` using simulation set3. To this we add the vari-
ance of the total bias, Ctotbias

` = Cbias
` + Cmc

` , calculated
as Σtotbias = Σbias + Σmc + 2 Cov(Cbias

` , Cmc
` ) using simu-

lation set1 and set2. In addition, we compute the lensed
spectra, Clen

` , using the cross spectra of the prepared map
splits, and the lensed covariance matrix, Σlen, from sim-
ulations. We use these simulation-based Σlen and Σdelen

for the diagonal and ±1 off-diagonal elements of our fi-
nal lensed and delensed covariance matrices.

Since the lensing-related off-diagonal components of
the covariance matrices from simulations (excluding
the ±1 off-diagonal elements) are not fully converged
given our number of simulations, we analytically com-
pute them. In particular, we analytically compute two
components, (1) internal lensing covariance (LC) and
(2) super-sample covariance (SSC). The LC term arises
because lensing scales within the patch couple together
previously-independent CMB modes [14, 48–50]. For
the lensed and delensed spectra, we use the code pre-
sented in [14] to evaluate the LC component using the
CMB noise level and lensing map filtering choices from
this analysis. We note that while [14] found that CMB
delensing would essentially remove all internal lens-
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induced covariance for a futuristic survey, at the noise
levels of the current analysis these covariances are re-
duced by about 50%. The SSC term in the covariance ma-
trix originates from CMB modes within the patch cou-
pling to lensing modes larger than our relatively small
analysis region, and is therefore not affected by delens-
ing. The SSC component for both lensed and delensed
spectra is analytically computed following the procedure
described in [51, 52]. We test these analytic LC and SSC
components against the off-diagonal covariance matrix
terms derived from lensed CMB signal-only simulations,
and find a good match. In particular, we find less than
a 5% difference in off-diagonal correlation matrix ele-
ments up to ` = 3000; above ` = 3000 the lensing in-
duced off-diagonal components become subdominant.
We replace the off-diagonal terms (except the ±1 off-
diagonal elements) in Σdelen and Σlen with the analytic
LC and SSC terms calculated above.

We compute the difference between Clen
` and Cdelen

` to
obtain the difference spectra, Cd f

` = Clen
` - Cdelen

` . The
covariance matrix of the difference spectra, Σd f , is com-
puted following the same procedure as Σdelen above, ex-
cept that we do not replace the sim-based off-diagonal
terms with the analytic ones. We expect these off-
diagonal terms to converge faster for Σd f since there is
less scatter from noise and cosmic variance. We check
that these off-diagonals are in fact converged by looking
at their behavior as a function of number of simulations.

D. Pipeline Verification

In order to verify the delensing pipeline, we use sim-
ulation set3, which has CMB and φ realizations that are
independent from set1 and set2. We generate Cdelen

` and
Cd f
` for each simulation in set3, using reconstructed φMV

maps from the same simulation set. Ctotbias
` is obtained

from simulation set1 and set2, as described above. In
Figure 1, we show the mean Cd f

` as the orange points.
Blue triangles show the mean Cd f ,raw

` prior to subtract-
ing the biases, Cbias

` and Cmc
` . We also separately show

the MC bias, Cmc
` , as green stars to give a sense of the

size of this correction.11 Here, the black dashed curves
show the theoretical expectation for the case of ‘perfect
delensing’ assuming no noise; the orange solid curves
show the expected delensing achievable given ACT noise
levels. These theoretical expectations are calculated us-
ing CAMB [47], given the input theory CMB spectra
used to generate the simulations discussed in Section III

11 Since the MC bias is a small correction, it is only important to include
it for the pipeline verification; our error bars for the data are large
enough that this MC bias correction is negligible. However, we still
correct the data spectra for this MC bias for consistency.

Freq (GHz) Spectra PTE Spectra PTE

150× 150 TT 0.40 EE 0.12
TE 0.12 BB 0.91

150× 98 TT 0.92 BB 0.73
TE 0.47 EE 0.60
ET 0.53 – –

98× 98 TT 0.54 EE 0.08
TE 0.17 BB 0.81

Table I: Shown are the PTEs for the average of the delensed
spectra from 512 simulations in set3 described in Section III.
These PTEs are calculated with respect to delensed theory
curves that are generated with the same cosmology used to
make the simulations and the achievable level of delensing
given ACT D56 noise levels. We find good PTEs for each spec-
trum type and frequency, indicating the delensing pipeline de-
scribed in Section IV is unbiased.

and the lensing noise power spectrum discussed in Sec-
tion IV. Using the full covariance matrix, we calculate
the probability to exceed the given chi-square (PTE) for
the average of the delensed spectra from simulation set3.
These PTEs are calculated with respect to delensed the-
ory curves that are generated with the same cosmology
used to make the simulations and the achievable level
of delensing given ACT D56 noise levels. We list these
PTE’s in Table I, and find that the average of the delensed
spectra are consistent with the theory expectation.

V. DELENSED POWER SPECTRA

We apply the delensing pipeline described in Sec-
tion IV to the data described in Section II in order to ob-
tain lensed and delensed spectra, Clen,data

`j
and Cdelen,data

`j

where j ∈ (TT, TE, EE, BB). We also obtain the differ-
ence spectra, Cd f ,data

`j
.

To obtain the final covariance matrices for the data
we also add beam uncertainties, calibration uncertain-
ties, and the trispectrum error from Poisson sources
largely following C20. In particular, we calculate the
beam uncertainties by first generating a beam realiza-
tion for each season, array and frequency, from beam
profiles described in A20. These simulated beams are
applied to signal-only simulations, which are then pro-
cessed through our map combining procedure described
in Section II. By comparing the beam-convolved output
spectra to the original signal-only input spectra, we ob-
tain the effective beam for the combined map. We repeat
this process 1024 times to obtain the mean beam and its
error, and we apply the formula in [53] to calculate the
beam covariance matrix, Σbeam. Similarly, we simulate
the mean calibration and its error, and apply the for-
mula mentioned above to obtain the calibration covari-
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Figure 2: Shown are lensed minus delensed spectra for 150×
150 GHz only, using the data described in Section II. The error
bars shown are obtained from the diagonal elements of Σd f ,
described in Sections IV C and V. We also show binned theory
curves using the parameters obtained from fitting to the lensed
and delensed spectra as discussed in Section VII. Table II gives
the significance with which the delensing effect is detected,
using the full covariance matrix, as well as the delensing ef-
ficiencies. For TT, roughly half the signal-to-noise ratio comes
from off-diagonal correlations, and most comes from roughly
` ∈ [1500, 4000]. For all the spectra, the modes with ` > 4000
contribute very little to the signal-to-noise ratio.

ance matrix, Σcal . The trispectrum component from Pois-
son sources included in the covariance matrix is identical
to that in C20.

In Figure 2, we show the resulting difference spectra
of the data, Cd f ,data

` , for 150 × 150 GHz, with the diag-
onals of Σd f as the error bars. We also obtain lensed
and delensed theory spectra, Clen,th

`j
and Cdelen,th

`j
, from

CAMB, as discussed in more detail in Section VI, com-
puted assuming the cosmological parameters obtained
from fitting to the lensed and delensed spectra as dis-
cussed in Section VII. The difference of these, Cd f ,th

` =

Clen,th
` −Cdelen,th

` , is shown as the solid curves in Figure 2.
We compute the chi-squared with respect to theory for
the difference spectra as

χ2
th,d f = (Cd f ,data

` − Cd f ,th
` )T(Σd f )

−1(Cd f ,data
` − Cd f ,th

` ).
(8)

Figure 3: Shown are the delensed spectra for 150× 150 GHz
only, using the data described in Section II, with error bars from
the diagonals of Σdelen (described in Sections IV C and V). We
also show the binned theory curves using the parameters ob-
tained from fitting to the delensed spectra as discussed in Sec-
tion VII. PTEs with respect to the theory are given in Table II.

We verify with simulation set3 that Eq. 8 does follow a
χ2 distribution. The χ2 for the null-hypothesis, χ2

null,d f ,

is calculated by replacing Cd f ,th
` with Cd f ,null

` = 0 in the
equation above. Following [54, 55], we use a likelihood
ratio test to define the significance with which the model
fits the data better than a null signal, i.e. the signal-to-
noise ratio, S/N, as

S/N =
√

χ2
null,d f − χ2

th,d f . (9)

We note that for the detection statistic defined by Eqs. 8
and 9, much of the common signal and instrument noise
in the lensed and delensed power spectra cancels out.
This can then yield higher-significance detections of de-
lensing than would be expected without this cancella-
tion. For example, we can detect BB delensing with
greater significance than the BB signal itself. This fact
has also been used in previous detections of delensing
[15–19]. We find that most of the signal-to-noise ratio is
from ` modes below 4000. For example, for the 150 ×
150 GHz TT spectrum, the full range of ` ∈ [575, 7925]
yields a signal-to-noise ratio of 8.7σ; using the range of
` ∈ [575, 3925], yields a signal-to-noise ratio of 7.0σ.

Following Eq. 3.6 in [18], we also calculate the delens-
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Figure 4: Shown is an image of the lensed minus delensed CMB map from the ACT D56 150 GHz temperature data. Here we
coadd two splits of the lensed and delensed data before differencing. We also Wiener filter the difference map to downweight the
noisy modes. This image shows the familiar distortions caused by gravitational lensing of the CMB. In addition, we overlay the
contours of the reconstructed minimum variance ACT D56 lensing potential map (φMV) obtained as described in Sections IV A
and IV B. The black contours indicate regions of overdensity, while the magenta contours show regions of underdensity in the
potential map. As shown, the regions with the steepest contour gradients line up with the largest residuals in the CMB difference
map.

Freq (GHz) Spectra Delens S/N Delens Eff. PTE

150× 150 TT 8.7σ 30% 0.36
EE 5.1σ 30% 0.97
TE 2.6σ 26% 0.96
BB 2.4σ 20% 0.93

98× 150 TT 4.3σ 40% 0.41
EE 2.5σ 47% 0.97
ET 2.6σ 63% 0.43
TE − 0% 0.98
BB 0.6σ 31% 0.12

98× 98 TT 5.5σ 29% 0.17
EE 2.6σ 29% 0.58
TE 1.6σ 25% 0.62
BB 0.6σ 17% 0.04

All TT, TE, ET, EE – – 0.35

Table II: Shown are the delensing detection significances (cal-
culated from Equation 9) and efficiencies (ε, calculated using
Equation 10) of the data presented in Figure 2. Note that we do
not detect delensing in the 98× 150 GHz TE spectra. We also
list the PTE values of the delensed spectra shown in Figure 3
with respect to theory curves based on the parameters obtained
from fitting to the delensed spectra as discussed in Section VII.
The PTE values are calculated with the covariance matrix Σdelen
described in Sections IV C and V, using 47 degrees of freedom
for TT and 49 for TE, EE, and BB.

ing efficiency, ε, for each spectrum by minimizing

χ2(ε) = ∑
l
[Cd f ,data

` − ε(Clen,th
` − Cunlen,th

` )]2/σ2
l (10)

for ` ∈ [575, 3125] for TT, and ` ∈ [475, 3125] for TE
and EE12, where σ2

l are the diagonal elements of Σd f .
To calculate Cunlen,th

` , we generate unlensed spectra with
CAMB, using the parameters obtained from fitting to the
lensed spectra as discussed in Section VII. The resulting
delensing signal-to-noise ratios and delensing efficien-
cies (ε) for the data are listed in Table II.

In Figure 3, we show Cdelen,data
` for the data for

TT, TE, EE, and BB at 150 × 150 GHz, plotting the di-
agonals of Σdelen as the error bars. We show in Table II
the PTEs for all the individual delensed spectra com-
pared to theory curves derived from the parameters ob-
tained from fitting the delensed spectra as discussed in
Section VII; the PTEs are computed assuming 47 degrees
of freedom for TT and 49 for TE, EE, and BB, the num-
ber of spectral bins in each case. In Sections VI and VII,
we discuss in detail how we use these delensed spectra
to obtain cosmological parameters. For obtaining the to-
tal PTE from all the spectra (“All” in Table II), we use a
total of 484 − 20 = 464 degrees of freedom (484 spec-
tral bins minus 20 free parameters) when fitting all the
spectra together. Note that we do not detect delensing in
the 98× 150 GHz TE spectra, and the delensing signal-
to-noise ratio and the delensing efficiency are only cal-
culated for individual spectra.

In Figure 4, we show for purely visualization purposes
an image of the lensed CMB minus the delensed CMB
from our data. Here we coadd the two splits of the
lensed and delensed data before differencing. We also
Wiener filter the difference map to downweight the noisy
modes. In this image, we see the familiar distortions

12 We set `max = 3125 here because technically ε has an `-dependence
that becomes more pronounced as we include higher `.
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caused by gravitational lensing.13 We also overlay the
contours of the reconstructed minimum variance lens-
ing potential map (φMV) obtained as described in Sec-
tions IV A and IV B. The black contours indicate regions
of overdensity and the magenta contours regions of un-
derdensity in the potential map. We see that the regions
with the steepest contour gradients in the φMV map line
up with the largest residuals in the lensed minus de-
lensed CMB map.

VI. LIKELIHOOD FOR DELENSED SPECTRA

We use the delensed spectra, Cdelen,data
`j

, from Section V
for j ∈ (TT, TE, EE) in the likelihood analysis to obtain
cosmological parameters. To generate appropriate de-
lensed theory spectra, Cdelen,th

`j
, given our ACT lensing

noise levels, for a given parameter set from CAMB, we
follow the procedure in [18]. Specifically, we first obtain
Cκκ(L)th and Cunlen,th

` for that parameter set. We then
Wiener filter Cκκ(L)th using the lensing noise N(L)MV
described in Section IV, and calculate the residual lens-
ing power:

Cκκ(L)th,res = Cκκ(L)th

[
1− Cκκ(L)th

Cκκ(L)th + N(L)MV

]
.

(11)
Inputting Cκκ(L)th,res and Cunlen,th

` into CAMB yields
Cdelen,th
` . We cross check our “CAMB-derived” Cdelen,th

`
against similar code used in [14], and find excellent
agreement. Assuming Gaussian uncertainties on the de-
lensed spectra and using Σdelen from Section IV C, we
write the log-likelihood as:

− 2lnL =

(Cdelen,data
`j

− Cdelen,th
`j

)TΣ−1
delenj,j′

(Cdelen,data
`j′

− Cdelen,th
`j′

).

(12)

A. Cosmology Dependence of Cbias
`

We compute the delensing bias, Cbias
` , with simula-

tions that are based on the Planck cosmology. To make
sure the likelihood given above is sufficiently accurate,
we investigate the dependence of Cbias

` on cosmological
parameters. We do this by generating flat-sky periodic
simulations for a D56-sized sky patch at 150 GHz follow-
ing a more simplified procedure than described in Sec-
tion III; namely, the simulations include 10 µK-arcmin

13 We note that since the lensing potential map has large-scale lensing
modes of L < 80 removed, we do not see the largest-scale filamen-
tary structures in this CMB difference map.

white noise, are convolved with a 1.3 arcminute Gaus-
sian beam, and do not contain any foregrounds. We gen-
erate these simulations at several additional cosmolo-
gies: (i) one with the parameters set to the Planck val-
ues from TT+lowP (obtained using the Plik likelihood
and varying 6 ΛCDM parameters) [56], and (ii) ten with
parameters drawn randomly from the bottom 30% of a
converged Planck 2015 parameter chain (also generated
using TT+lowP and varying 6 ΛCDM parameters). We
find that the difference in Cbias

` between case (i) and the
ten cases of (ii), is generally less than 5% of the rele-
vant error bars for all bandpowers in the ` range used in
this cosmological analysis. (The error bars being com-
pared to are the square root of the diagonal elements of
Σdelen.) For our most deviant cosmology case, the devi-
ations away from the fiducial Cbias

` are less than 20% of
the relevant error bars, and the sum of the fractional de-
viations, added in quadrature over the spectral bins, is
less than 40%.

We also check that the delensing bias does not have
significant cosmology dependence for beyond-ΛCDM
cosmologies. We repeat the test described above for two
extended ΛCDM cosmologies that also vary 1) the ef-
fective number of relativistic species and the running
of the scalar spectral index, or 2) the effective number
of relativistic species and the sum of neutrino masses.
We use the Planck 2018 TT,TE,EE+lowE [1] best-fit pa-
rameters to generate simulations and obtain the delens-
ing bias for each extended cosmology. For consistency
with the analysis above, we compare each to the delens-
ing bias obtained from simulations generated using the
Planck 2015 TT+lowP ΛCDM parameters [56]. For these
extended cosmologies, we find deviations in the delens-
ing bias consistent with those found in the test described
above.

In addition, we take simulations that have WMAP5
cosmology [57], and perform the same delensing pro-
cedure, except that we use our original Cbias

` computed
from Planck2015-based simulations.14 If Cbias

` has a no-
ticeable cosmology dependence, we would obtain incor-
rect delensed spectra that do not match the theory expec-
tation. However, when we compute the delensed spectra
with these WMAP5 simulations and calculate the PTE
with respect to the best-fit delensed theory curve, we
find good agreement with a PTE value of 0.29. Thus we
neglect the cosmology dependence of Cbias

` .

14 The WMAP5-based simulations use Ωbh2 = 0.02218, Ωch2 = 0.1109,
h = 0.71, τ = 0.087, As = 2.45× 10−9, and ns = 0.96. Here we take
k0 = 0.002 Mpc−1 as the pivot scale and the total mass of neutrinos
as 0.0 eV.
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Figure 5: Difference in the resulting delensed spectra with
Gaussian and non-Gaussian foregrounds applied to the same
CMB realization. We show the mean difference and the scatter
of 72 simulations discussed in Section VI B as a fraction of the
error bar on the delensed D56 data spectra. Each simulation
has an independent CMB realization with separate Gaussian
and non-Gaussian foreground realizations and a size of about
100 square degrees. The horizontal dotted and dashed black
lines indicate a difference that is 5% and 10%, respectively, of
the error bar. We find that the difference is less than 10% of the
error bar on the delensed D56 data spectra with no evidence of
bias.

B. Impact of Foregrounds

Another potential source of systematic effects is the
impact of foregrounds. For example, it is possible that
(i) the foreground spectra may change appreciably dur-
ing the process of delensing. Another potential system-
atic effect is that (ii) the delensed spectra might be biased
because we used reconstructed potential maps that have
residual foregrounds in them that are correlated with the
foregrounds in the maps we are delensing, and with the
lensing potential itself. A final possible systematic is that
(iii) the non-Gaussian nature of the foregrounds them-
selves could add bias to the lensing reconstruction and
delensed spectra.

To test these potential systematic effects, we use sim-
ulations from [58] that include non-Gaussian distribu-
tions of extragalactic foregrounds that are correlated
with the lensing potential. The amplitudes of the non-
Gaussian foregrounds in these simulations have been
adjusted to match recent CMB data; these adjusted simu-
lations were used in the Simons Observatory (SO) fore-
casting paper [59] and are public at https://lambda.
gsfc.nasa.gov/toolbox/tb_cmbsim_ov.cfm.

We start by regenerating new unlensed CMB maps15

with the input CMB power spectra from [58], and then
lens them with the kappa map provided in [58]. We then
add to each CMB realization a noise realization match-
ing our data. To each CMB plus noise realization, we
then add (1) a realization of non-Gaussian (NG) fore-
grounds from [58], or (2) a realization of Gaussian (G)
foregrounds, both with identical foreground flux cuts of
15 mJy at 150 GHz and identical total foreground power
spectra (made to match by construction). We run these
CMB plus noise realizations with G and NG foregrounds
through the delensing pipeline described above. This
is repeated for 72 independent CMB plus noise realiza-
tions with a footprint-size of about 100 square degrees.
Each of the 72 independent CMB realizations has a sep-
arate G and NG foreground realization. A bias would
show up as a difference in delensed spectra with G ver-
sus NG foregrounds, the latter of which have residual
foregrounds correlated with the lensing potential (sys-
tematic ii), non-Gaussian structure (systematic iii), and
may have a different behavior when undergoing the pro-
cess of delensing than G foregrounds (systematic i).

To quantify the difference in delensed spectra for the
case with G versus NG foregrounds, we first explic-
itly correct both the lensed and delensed spectra for the
difference between G and NG foreground power spec-
tra from each lensed realization. Specifically, we add
∆CFG

` = Clen,G
` −Clen,NG

` to Clen,NG
` and Cdelen,NG

` . There-
fore, at the power spectrum level, the lensed spectra for
each CMB realization with either G or NG foregrounds
matches by construction. We then difference the result-
ing delensed spectra with G and NG foregrounds, and
find that the difference is less than 5 to 10% of the error
bars on the delensed spectra, with no evidence of bias,
as shown in Figure 5.

Additionally, as a more stringent test, we check the re-
sulting parameters obtained from the delensed G and
NG power spectra, this time using D56-sized patches, as
shown in Figure 6. In this case, we also apply a 5 mJy flux
cut for both G and NG foregrounds in the simulations
used to make the lensing reconstruction (to match the 5σ
flux cut we apply to the data). We also do not force each
realization of the lensed G and NG foreground spectra
to match by construction. Figure 6 shows the parame-
ter results from one of our two D56 simulated patches,
where we have either G or NG foregrounds when con-
structing the delensed spectra. We see that the differ-
ences in marginalized mean parameters obtained from
the delensed spectra using either G or NG foregrounds
is in general smaller than the parameter differences be-
tween lensed and delensed spectra. We also find the
same to be true for the best-fit parameters discussed fur-
ther in Section VII A. Thus we neglect any bias from us-

15 We regenerate new CMB maps since the original simulations do not
include lensed CMB polarization maps.

https://lambda.gsfc.nasa.gov/toolbox/tb_cmbsim_ov.cfm
https://lambda.gsfc.nasa.gov/toolbox/tb_cmbsim_ov.cfm
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Figure 6: Here we test the impact of non-Gaussian foregrounds on our delensing analysis using a D56-sized simulation from [58],
described in Section VI B. Shown are parameter constraints from the spectra of these simulations, with both Gaussian (G, dashed
curves) and non-Gaussian (NG, solid curves) foregrounds applied to the same CMB realization. This plot shows that the pa-
rameter differences between delensed spectra using either G or NG foregrounds (e.g. the difference between the dashed and
solid curves of the same color) are typically smaller than the parameter differences between lensed and delensed spectra (e.g. the
difference between the magenta and blue curves).

ing G as opposed to NG foregrounds in our simulations,
and more broadly we neglect any bias related to delens-
ing foregrounds.

VII. COSMOLOGICAL PARAMETERS

The Monte Carlo sampler CosmoMC [60] is used to
find the marginalized mean cosmological parameters
from the likelihood for the delensed spectra discussed in
Section VI. We vary the ΛCDM parameters Ωbh2, Ωch2,
θMC, ln(1010 As), ns, and τ, and adopt the same 14 fore-
ground and calibration parameters as in C20 and A20.
We use the same prior ranges on these parameters as
in C20 and A20, which we list in Table III.

We also set the effective number of relativistic species,
Neff, equal to 3.046, the dark energy equation state, w
equal to −1, the sum of the neutrino masses Σmν equal
to 0.06 eV, and the pivot scale k0 equal to 0.05 Mpc−1.
The helium fraction, Yp, is set assuming BBN consistency
within CosmoMC. We also find marginalized mean pa-
rameters for the lensed spectra, using the same priors as
mentioned above.

Parameter Prior Parameter Prior
Ωbh2 [0.005, 0.1] ln(1010 As) [2, 4]
Ωch2 [0.001, 0.99] ns [0.8, 1.2]

100θMC [0.5, 10.0] τ 0.065± 0.015

As,d 3.1± 0.4 Ac 4.9± 0.9

ATE
PS [-1, 1] βc [0, 5]

AEE
PS [0, 1] Ad [0, 11]

ATT
dust,d 2.79± 0.45 AtSZ, AkSZ [0, 10]

ATE
dust,d 0.11± 0.10 ξ [0, 0.2]

AEE
dust,d 0.04± 0.08 yP

98, yP
150 [0.9, 1.1]

Table III: Shown are the prior ranges for the 20 parameters used
in the parameter analysis. Priors in brackets are flat priors, and
the others are Gaussian priors with the given center and 1σ
uncertainty. Priors on all the parameters match those in C20,
which also defines the 14 parameters related to foregrounds
and calibration.

A. Parameter-shift Covariance Matrix

Since we separately obtain parameters for delensed
spectra and lensed spectra, we can also measure the shift
between these parameters. When fitting with the correct
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model, we expect the ensemble average of the parame-
ter shifts to be zero. In addition, since both the lensed
and delensed spectra are sourced from the same region
of sky, uncertainty in this shift is minimized due to sam-
ple variance cancellation. As mentioned in Section I, a
significant non-zero shift in parameters would suggest a
failure of the model being fit, and could indicate either
new physics at early times or a systematic effect.

To assess whether any parameter shift we find from
the data is as expected, we need to obtain a covari-
ance matrix for the parameter shifts using lensed and
delensed spectra from simulations. Since obtaining
a parameter-shift covariance matrix from hundreds of
CosmoMC parameter chain runs would be computation-
ally infeasible, we instead use the action = 2 setting in
CosmoMC to determine global best-fit parameter val-
ues. This action = 2 setting allows us to start at four
random initial positions in parameter space, and itera-
tively maximize the likelihood, checking that the four
initial positions converge to the same maximum likeli-
hood point. We find that the difference between the
ΛCDM marginalized mean parameters from a full Cos-
moMC chain (action = 0) and the best-fit parameters
(action = 2) is less than 2% for each parameter, except
for τ (the least constrained parameter) which can differ
by up to 6%. This random scatter between action = 2
and action = 0 parameters can be reduced further by
averaging a number of action = 2 runs together for the
same spectra. We show in Figure 12 in Appendix B that
averaging twenty action = 2 runs together for a given
spectra is sufficient to achieve convergence in cosmologi-
cal parameters. When we do this, the difference between
ΛCDM parameters from action = 2 versus action = 0 is
often less than 0.5%. (We note that in general marginal-
ized means and best-fits should only agree exactly when
the distributions are multi-variate Gaussian.) Thus, in
this analysis, the best-fit parameters for a given spectra
set are obtained from an average over twenty action = 2
runs. Similarly, the parameter-shift covariance matrix
(discussed below) is also computed by averaging twenty
action = 2 runs for each of the lensed and corresponding
delensed spectra from simulation set3.

To compute the parameter-shift covariance matrix, we
first compute the difference in best-fit parameters be-
tween lensed and delensed spectra from each of 300 sim-
ulation realizations in set3. We denote this shift within
the space of the 20 parameters as~θshift. From these differ-
ences, we obtain the parameter-shift covariance matrix,
Cshift, according to

Cshift
ab = 〈~θshift

a
~θshift

b 〉, (13)
where the angled brackets denote the average over the
300 simulations. This covariance matrix, shown in Fig-
ure 7, includes the 14 foreground and calibration param-
eters (bottom right blocks) in addition to the 6 ΛCDM
parameters (top left block).

Given the shift in the best-fit parameters from delens-
ing obtained with the data,~θshift,data, we then define a χ2

bh
2

ch
2

10
0

M
C n s

ln
(1

01
0 A

s)

A t
SZ

A k
SZ A d A s
, d A c

A
TT du

st
, d c

A
TE PS A
EE PS

A
TE du

st
, d

A
EE du

st
, d yP 98

yP 15
0

bh2

ch2

100 MC

ns

ln(1010As)

AtSZ

AkSZ

Ad

As, d

Ac

ATT
dust, d

c

ATE
PS

AEE
PS

ATE
dust, d

AEE
dust, d

yP
98

yP
150 -1.0

-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

1.0
Parameter-Shift Correlation Matrix

Figure 7: Shown is the full final 20x20 parameter-shift covari-
ance matrix, described in Section VII A and used throughout
this work, represented as a correlation matrix to make the
structure more apparent. This covariance matrix includes the
20 parameters (6 ΛCDM parameters and 14 foreground and
calibration parameters defined in C20) varied in the parame-
ter analysis described in Section VII. Each element of the co-
variance matrix is the variance/covariance of the difference in
inferred best-fit parameters derived from lensed and delensed
spectra obtained from 300 simulations.

statistic given by

χ2 = (~θshift,data)T
(

Cshift
)−1

~θshift,data (14)

which we will use below to assess whether there are
appreciable shifts in parameters between the lensed and
delensed datasets. We note that for this definition, our
theory expectation is that there is no appreciable shift
after delensing is applied, i.e. ~θshift,theory = 0.16 We
show explicitly with simulations in Figures 16 and 17 in
Appendix B that Eq. 14 follows a χ2 distribution, and in
Figure 15 that there is no significant bias away from the
expectation of a mean shift of zero.

Dependence on Cosmology: To check for any depen-
dence on cosmology of the parameter-shift covariance
matrix, we perform a test where we use lensed and
delensed spectra from a CMB simulation that uses

16 In principle, various lensing approximations, such as using anti-
lensing instead of inverse-lensing (see footnote 8), might induce a
non-zero, albeit very small, shift in parameters. However, these sec-
ondary shifts should be corrected for by the MC bias we discuss in
Section IV C.
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the WMAP 5-year best-fit cosmology [57], instead of
the Planck best-fit cosmology on which the covariance
matrix is based. We then run the WMAP5-based lensed
and delensed spectra through the cosmology analysis,
and find that the shifts between lensed and delensed
parameters are consistent with the expectations of the
covariance matrix, yielding a PTE of 0.18 (20 dof).
Hence we conclude that there is negligible cosmology
dependence of our parameter-shift covariance matrix.

Addition of Galactic Dust: Since we generate the
parameter-shift covariance matrix using simulations
with no Galactic dust, we also check whether the inclu-
sion of Galactic dust would generate a failing PTE for
this parameter-shift statistic. We add to one simulation
realization from set3 a realization of Galactic dust
for temperature maps obtained from the simulation
of [58]. Running this simulation including Galactic
dust through our delensing pipeline, we find shifts
between lensed and delensed parameters consistent
with our parameter-shift covariance matrix, yielding
an acceptable PTE of 0.66 (20 dof). Thus we find that
the omission of non-zero Galactic dust foregrounds in
the simulations used to generate the parameter-shift
covariance matrix does not result in a failure of the
parameter-shift test when applied to data that includes
Galactic dust foregrounds.

Impact of Non-Gaussian Foregrounds: In addition, we
show in Figure 8 the sensitivity of the parameter-shift
statistic to a non-Gaussian versus Gaussian foreground
model. We do this by obtaining shifts in best-fit pa-
rameters from lensed versus delensed spectra obtained
from the CMB plus foreground simulation of [58], de-
scribed in Section VI B. The red curves show the shifts
from these simulations that include non-Gaussian fore-
grounds that are also correlated with the lensing po-
tential. We then replace the foreground part of this
simulation with Gaussian foregrounds that have power
spectra matched to the non-Gaussian foregrounds, when
both spectra are calculated over the full-sky (however,
they do not identically match in the D56-sized patch
used here). The blue curves show the parameter shifts
when using this Gaussian foreground model. Even
though the foregrounds in this simulation are not ex-
actly matched to the foreground model used to gener-
ate the parameter-shift covariance matrix, both Gaussian
and non-Gaussian models have acceptable PTEs, which
are 0.092 (1.7σ for 20 dof) and 0.059 (1.9σ for 20 dof) for
Gaussian and non-Gaussian models respectively. More
importantly, there is little difference between the Gaus-
sian and non-Gaussian shifts shown in Figure 8, indicat-
ing that non-Gaussian correlated foregrounds do not ad-
versely impact this parameter-shift statistic.

B. ΛCDM Lensing Consistency Test

To test our sensitivity to physics outside of the ΛCDM
model, we implement a toy model in which there is an
anomalously high lensing-like signal in the CMB power
spectrum that is not consistent with the lensing power
spectrum within the framework of ΛCDM. This demon-
stration model is in part motivated by the recent Planck
lensing results that found excess smoothing in their CMB
power spectra [1]. Another motivation is that several
models of interest that differ from ΛCDM include a fea-
ture that can mimic lensing-induced peak smoothing, as
discussed in [22–28].

To implement this toy model we obtain best-fit param-
eter shifts from lensed versus delensed spectra, using
a simulation from set3. We then add extra smoothing
that matches 20% of the lensing-induced peak smooth-
ing (i.e., we make AL = 1.2 [61]), by adding 0.20 ×
(Clen,th

` − Cunlen,th
` ) to both lensed and delensed spectra.

We find that this extra smoothing shifts the cosmologi-
cal parameters in the direction we expect, namely higher
Ωch2, higher As, lower ns, and lower H0 [1].

This extra smoothing results in a PTE of 0.076 (1.8σ)
comparing the shift in best-fit parameters between
lensed and delensed spectra over 20 free parameters.
We see that this deviation is coming from the ΛCDM
block of the parameter-shift covariance matrix, with a
PTE of 0.032 (2.1σ for 6 dof) marginalizing over the
14 foreground and calibration parameters. In contrast,
the PTE marginalizing over the 6 ΛCDM parameters is
0.14 (1.5σ for 14 dof). If we increase the extra smooth-
ing to 30%, i.e. make AL = 1.3, then the parameter-
shift test deviates at 2.5σ with a PTE of 0.013 (20 dof).
Marginalizing over the foreground plus calibration fac-
tors results in a PTE of 0.0054 (2.8σ for 6 dof). In con-
trast, the PTE marginalizing over the ΛCDM parameters
is 0.17 (1.4σ for 14 dof). This demonstrates the ability of
this parameter-shift statistic not only to detect a devia-
tion from the ΛCDM plus foreground model, but also to
identify whether the deviation is due to the foreground
model or the ΛCDM cosmological model. This abil-
ity arises essentially because foregrounds do not mimic
acoustic peak smearing, as is well known. Repeating
the above on 10 different simulation realizations with
AL = 1.2 and AL = 1.3 we find, marginalizing over fore-
grounds, a mean PTE of 0.076 and 0.0023 respectively,
corresponding to 1.8σ and 3.1σ deviations (for 6 dof) re-
spectively (see Figure 17 in Appendix B).

To explain more intuitively why this parameter-shift
statistic provides a novel lensing consistency test, let us
consider the case where delensing removes 30% of the
lensing signal in the CMB power spectrum (as in this
work). Let us also assume that there is extra lensing-like
peak smoothing in the CMB power spectrum. Let the
true amount of lensing be X, and let us measure X + E,
where E is the extra smoothing in the CMB spectrum. By
internally reconstructing the lensing signal from CMB
measurements, we can directly measure the true lensing
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signal X. When we delens, we remove 0.3 X; however,
we will measure Y = 0.7 X + E (the spurious lensing-
like signal E will not be affected by the delensing proce-
dure). Thus the expected ratio of lensing in the delensed
and lensed power spectra should be 0.7, but instead will
be (0.7 X + E)/(X + E). (Note that the more one can
delens, the larger will be this discrepancy between ex-
pected and measured ratios.) When we fit the delensed
spectra, we will then obtain a set of inferred ΛCDM pa-
rameters that will differ from the set obtained from the
lensed spectra.

This parameter-shift statistic is a more sensitive probe
of inconsistent lensing in the CMB power spectrum than
fitting to an AL parameter as is done in A20.17 This is
because this parameter-shift test directly probes the con-
sistency between lensing-induced peak smoothing and
the reconstructed lensing map, and does not suffer from
sample variance. Thus, going forward with future CMB
datasets, the parameter-shift statistic we introduce here
can provide a novel way to search for physics in the early
Universe that differs from ΛCDM.

C. Parameter Results from ACT Data

We unblind the data following the procedure outlined
in the steps below.

1. Delensing pipeline and likelihood code are verified
as described in Section IV and Appendix B.

2. A set of null tests is performed on the data. For
details of these null tests we refer to C20.

3. Without unblinding the cosmological and fore-
ground parameter results, we calculate the re-
duced χ2 and the PTEs of the best-fit point in the
CosmoMC chains for both lensed and delensed
spectra. CosmoMC returns the χ2 of this best-
fit point, and we assume 490 − 22 = 468 de-
grees of freedom (since we have 10 spectra, 49 bins
per spectra, and 22 free parameters).18 We check
whether the PTE values are within a reasonable
range (0.05 ≤ PTE ≤ 0.95).

4. We unblind the marginalized mean parameter re-
sults for the lensed and delensed data spectra ob-
tained from the CosmoMC chains.

5. We generate theory curves derived from the
marginalized mean parameters for the lensed and

17 Note A20 uses the full ACT DR4 data set which has more than twice
the data presented here.

18 Note that after unblinding we updated the TT `min from 475 to 575
and removed the ATE

sync and AEE
sync foreground parameters, as dis-

cussed later in this section. This reduces the number of TT spectral
bins to 47, and changes the total degrees of freedom to 484− 20 =
464.

delensed spectra. Given these theory curves, we
calculate the delensing signal-to-noise ratio, the
delensing efficiency, and the PTEs of the delensed
spectra with respect to the delensed theory curves.

6. Then we run the action = 2 statistic described
in Section VII A to find the best-fit values for the
lensed and delensed spectra.

7. We then difference these best-fit values obtained
for the lensed and delensed spectra, and calculate
the resulting PTE, using the parameter-shift co-
variance matrix, to determine whether it is within
a reasonable range.

Following the unblinding protocols enumerated above,
we unblind the data and obtain the cosmological pa-
rameter results presented in Appendix A.

After unblinding the data, we make the following
changes based on additional information, as is also done
in C20 and A20. All of the sections in this paper that are
presented above incorporate these changes. We present
the initial unblinded parameters in Figure 11 of Ap-
pendix A.

1. We find after unblinding the data that the Galac-
tic synchrotron parameters, ATE

sync and AEE
sync are

consistent with zero. In addition, there is no ev-
idence for Galactic synchrotron emission in D56
as presented in C20. Thus we remove these two
foreground parameters from our likelihood and fix
their values to zero as is also done in C20. This
gives us 14 foreground parameters as opposed to
our original 16.

2. We limit the range of the Poisson amplitude of po-
larized radio sources in the EE spectrum, AEE

PS , to
be positive after initially finding a result consistent
with zero.

3. We update the priors on the Galactic dust levels
based on analysis presented in C20 cross correlat-
ing 353 GHz Planck data with 150 GHz ACT DR4
deep patch data. Since the D56 sky region used
in this work carries most of the DR4 deep patch
weight, we use this information to add priors on
the Galactic dust parameters, ATT

dust,d, ATE
dust,d, and

AEE
dust,d, shown in Table III.

4. We add a prior on the clustered part of the cosmic
infrared background (CIB) of 4.9 ± 0.9 based on
previous ACT data that included a 220 GHz chan-
nel [62].

5. We shift the prior on the Poisson part of the CIB
to be 3.1± 0.4 instead of 2.9± 0.4, and shorten the
prior range of the CIB spectral index, βc, from [0,
8] to [0, 5] to be consistent with C20.
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6. We correct a bug in the calibration factors for the
data that mainly affected the 98 GHz channel; this
correction shifted the 98 GHz spectra up by 3%.

7. We increase the `min for the TT spectra to be 575
instead of our original 475, based on information
gained by cross correlating with Planck data and
possible systematics at lower ` in our TT data, as
presented in C20.

8. We correct for residual temperature to polarization
leakage and polarized beam buddies described
in A20 following the procedure in C20. We find
that these corrections result in changes of less than
0.6% to the cosmological parameter results pre-
sented in this work.

Table IV and Figure 9 give the marginalized mean
ΛCDM cosmological parameter constraints from ACT
lensed and delensed spectra (blue and orange solid
curves in the figure). They also give the best-fit pa-
rameters for ACT lensed and delensed spectra, obtained
from averaging twenty action = 2 runs (blue and or-
ange dashed vertical lines in the figure). Figure 9 also
shows via purple solid bands the 1 and 2σ error on the
shift in best-fit parameters between ACT lensed and de-
lensed spectra; these errors we obtain from the diago-
nal elements of the parameter-shift covariance matrix de-
scribed in Section VII A. As is shown, the allowed uncer-
tainty on a shift in best-fit parameters is much smaller
than the error on each parameter individually due to
sample-variance cancellation. We also include in this
figure the marginalized mean parameters from Planck
lensed spectra calculated over the full sky (green solid
curves) [1]. We obtain these marginalized mean pa-
rameters from the available chains in the Planck legacy
archive. We also confirm these parameters by using
CosmoMC and the latest 2018 Planck data and likeli-
hood [1, 63]; we run eight CosmoMC chains using the
Planck 2018 baseline TT,TE,EE+lowE data, and the de-
fault CosmoMC flat priors on the six varied cosmological
parameters.

We find that the marginalized mean parameters from
both ACT lensed and delensed spectra are consistent
with each other and with the marginalized mean pa-
rameters obtained from Planck. For the delensed spec-
tra, the model from the marginalized mean parameters
yields a reduced χ2 of 1.02 (PTE= 0.35) as shown in Ta-
ble II. The derived parameters H0 and σ8 obtained from
delensed TT, TE, and EE spectra are:

H0 = 67.3± 3.5 km s−1Mpc−1 ACT D56 (15)
σ8 = 0.819± 0.034 ACT D56 (16)

From Table IV we see that the error bars are larger on
some of the parameters obtained from the delensed spec-
tra compared to the lensed spectra. In order to ob-
tain tighter parameter constraints from delensing CMB
power spectra one needs to combine that informa-
tion with additional information from the CMB lensing

power spectrum [14]. This is because while delensing
sharpens the acoustic peaks and improves cosmologi-
cal parameters that affect the acoustic structure, delens-
ing also removes lensing information in the CMB power
spectrum; if the lensing power spectrum were used to-
gether with the delensed CMB power spectra, which is
beyond the scope of this paper, this lost lensing informa-
tion would be added back [14].

Figure 9 also shows that the shifts in the best-fit
ΛCDM parameters (dashed vertical lines) are within the
expected scatter (shown by the vertical bands). To quan-
tify this, we marginalize over foreground and calibration
parameters (i.e., we compute the χ2 of Eq. 14 using only
the 6x6 block of ΛCDM parameters, corresponding to
the top-left corner of Figure 7); doing this we obtain a
PTE of 0.31, corresponding to only a 1.0σ deviation from
expectation (6 dof).

Figure 10 is a zoom-in on the difference between best-
fit parameters derived from ACT lensed and delensed
spectra, now including the foreground and calibration
parameters. Here a dotted vertical line indicates zero
shift between best-fit lensed and delensed parameters.
The shift in best-fit parameters that we measure is given
by the solid purple line, and the allowed marginalized
uncertainty based on the diagonals of the parameter-
shift covariance matrix is given by the solid purple
curves.

In many CMB analyses one can separate ΛCDM pa-
rameters from foreground and calibration parameters,
and the same is true for the parameter-shift statistic.
While the parameter-shift statistic does not inform the
mean values or error bars of parameters, for example,
as determined in C20 and A20, it can inform whether
the correlated shift in parameters matches expectations.
We find a PTE of 0.0008 using the measured parameter
shifts shown in Figure 10 and the full 20x20 parameter-
shift covariance matrix (depicted in Figure 7). This PTE
corresponds to a 3.3σ deviation from the expectation of
our ΛCDM plus foreground model, given 20 degrees of
freedom. When we marginalize over the ΛCDM param-
eters (i.e. use the bottom right 14x14 foreground and cal-
ibration block of the covariance matrix), we obtain a PTE
of 0.0007, corresponding to a 3.4σ deviation from expec-
tations (14 dof). This indicates that the deviation we see
is from the foreground plus calibration model, and not
from the ΛCDM parameters. Note that this deviation
from expectation would not have impacted the C20 and
A20 CMB power spectra analyses; it is a feature that is
uniquely relevant here.

When we break down the foreground plus calibration
sector into smaller pieces and marginalize over the other
parameters, we find that the largest deviations from ex-
pectation are coming from the modelling of the extra-
galactic temperature foregrounds (2.7σ deviation for 7
dof), and the polarized Galactic foregrounds (2.6σ de-
viation for 2 dof), with the combination of these yield-
ing a 3.7σ deviation (9 dof) from our model expectation.
All of the other foreground plus calibration factors com-
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Figure 9: Shown are the marginalized mean ΛCDM parameter constraints from ACT D56 lensed and delensed data power spectra
(blue and orange curves). We also show the marginalized mean parameters from Planck lensed power spectra (green curves) [1].
As discussed in C20, Ωbh2 and ns for ACT versus Planck become more consistent with the inclusion of external data to constrain
the amplitude of the first peak of the TT spectrum. The dashed blue and orange vertical lines indicate the best-fit parameters
from ACT lensed and delensed spectra. (Note for Ωch2 and σ8 the dashed blue line is under the orange line.) These marginalized
mean and best-fit parameters are given in Table IV. The purple solid bands (centered on the best-fit parameters from the delensed
spectra) indicate the 1σ and 2σ error on the shift in best-fit parameters between ACT lensed and delensed spectra obtained from
the diagonal elements of the parameter-shift covariance matrix described in Section VII A. We see that the allowed uncertainty on
a shift in best-fit parameters is much smaller than the error on each parameter individually due to sample-variance cancellation.
A separation in best-fit values wider than the purple bands would indicate a deviation from the ΛCDM model or an unknown
systematic effect.

bined yield an acceptable PTE (0.5σ for 5 dof).
The deviation due to the polarized Galactic fore-

grounds (2.6σ) is likely because we do not model polar-
ized Galactic foregrounds in our simulations described
in Section III. Thus our parameter-shift covariance ma-
trix is not capturing the scatter from polarized Galactic
dust nor the correlations between ATE

dust,d and AEE
dust,d, as

seen in Figure 7.
When we break down the extragalactic temperature

foregrounds (that had a deviation of 2.7σ) into smaller
subsets, we find that the largest deviation from ex-
pectation is coming from the amplitude of the kinetic
Sunyaev-Zel’dovich (kSZ) effect (AkSZ) and the cross-
correlation between the thermal Sunyaev-Zel’dovich ef-
fect and the cosmic infrared background (ξ); these two
parameters alone give a PTE of 1.00 (corresponding to
0.0σ for 2 dof). Marginalizing over these two param-
eters, the other extragalactic temperature foregrounds
yield an acceptable PTE of 0.04 (2.0σ for 5 dof). We
find that the best-fit values of these foreground param-
eters have a preference for AkSZ = 0 and ξ = 0.2,
both of which are at the boundaries of their prior ranges
(see Table III). In Figure 10, we see zero shift in these

parameters between lensed and delensed data spectra,
whereas we do see shifts in the other extragalactic tem-
perature foreground parameters. This is not expected
given our parameter-shift covariance matrix, shown in
Figure 7, which shows significant correlations between
all the extragalactic temperature foreground parameters.
This suggests that more refinement of the modelling of
AkSZ and ξ may be warranted to better match the data.

We also further check that there is no correlation be-
tween the lensed minus delensed CMB map, shown in
Figure 4, and Galactic dust in temperature, in case, for
example, there is residual Galactic dust in our lensing
potential map. We cross correlate the Planck 545 GHz
Galactic dust temperature map obtained from [64] with
the lensed minus delensed map from the data and from
512 simulations. We use the cross correlation with the
simulations to obtain the covariance. We find a cross cor-
relation consistent with zero, with PTEs of 0.4 and 0.6 for
the 150 and 98 GHz cross correlations respectively.
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ACT-D56 Lensed ACT-D56 Delensed ACT Full DR4 Lensed Planck Lensed
Parameter Marginalized Mean Best Fit Marginalized Mean Best Fit Marginalized Mean Marginalized Mean

Ωbh2 . . . . . 0.02136 ± 0.00055 0.02161 0.02130 ± 0.00053 0.02150 0.02154 ± 0.00030 0.02236 ± 0.00015
Ωch2 . . . . . 0.1199 ± 0.0072 0.1232 0.1179 ± 0.0091 0.1232 0.1177 ± 0.0038 0.1202 ± 0.0014
100θMC . . . 1.0410 ± 0.0011 1.0406 1.0407 ± 0.0011 1.0403 1.04225 ± 0.00072 1.04090 ± 0.00031
τ . . . . . . . . . 0.064 ± 0.015 0.067 0.064 ± 0.015 0.066 0.065 ± 0.014 0.0544+0.0070

−0.0081

ns . . . . . . . . 1.013 ± 0.029 0.992 1.017 ± 0.033 0.994 1.008 ± 0.016 0.9649 ± 0.0044
ln(1010 As) 3.040 ± 0.036 3.064 3.037 ± 0.042 3.062 3.050 ± 0.030 3.045 ± 0.016

σ8 . . . . . . . . 0.827 ± 0.026 0.841 0.819 ± 0.034 0.841 0.824 ± 0.016 0.8120 ± 0.0073
H0 . . . . . . . 66.7 ± 2.8 65.5 67.3 ± 3.5 65.3 67.9 ± 1.5 67.27 ± 0.60

Table IV: Shown are the marginalized mean and best-fit ΛCDM parameter values from ACT lensed and delensed power spectra
presented in this work. The first six rows contain the cosmological parameters that are sampled during the cosmological anal-
ysis, and the last two rows contain the derived parameters σ8 and H0. Included in the last two columns for comparison are the
marginalized mean parameter values from the ACT Full DR4 given in A20 and the Planck TT,TE,EE+lowE [1] lensed spectra. As
described in C20, combining ACT DR4 with WMAP reduces the tension of Ωbh2 and ns compared to Planck.

VIII. DISCUSSION

We have presented for the first time cosmological pa-
rameters obtained from delensed CMB power spectra.
The combination of 150 and 98 GHz TT, EE, and TE de-
lensed spectra from ACT data covering 482 square de-
grees of sky are well fit by a standard ΛCDM model. We
find marginalized mean parameters from lensed and de-
lensed spectra that are consistent with each other and
with the latest Planck 2018 results [1].

We have also presented a new tool – the shift in pa-
rameters between lensed and delensed spectra – that
can allow us to explore the match between data and
model in a different way than standard techniques to
date. Marginalizing over foreground and calibration pa-
rameters, we find that the shift in ΛCDM parameters is
consistent with zero within 1.0σ. This implies that the
lensing in the CMB power spectrum is consistent with
expectations. To put this result in context, as discussed
in Section VII B and shown in Figure 17, if the effective
peak-broadening parameter AL had an actual value of
1.2, our shift statistic with the current ACT data would
detect the difference from the ΛCDM value of AL = 1 at
a statistical significance of 2σ. Our result is also consis-
tent with the AL constraint from A20 using the full ACT
DR4 data set.

Upcoming microwave background temperature and
polarization maps with higher sensitivity from the Ad-
vanced ACT Polarimeter, as well as from future ex-
periments such as the Simons Observatory [59], CMB-
S4 [65], and CMB-HD [66, 67], hold the possibility of de-
lensing with significantly improved efficiency. The pow-
erful consistency tests that result will provide a novel di-
agnostic of possible systematic errors in these challeng-
ing systematics-dominated experiments. Ultimately, in-
ternal consistency tests of cosmological models from mi-

crowave background data alone offer the enticing possi-
bility of revealing any departures from the standard cos-
mological model which our universe may hold.
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Figure 10: The solid purple vertical lines show the best-fit parameters from ACT lensed spectra minus the best-fit parameters from
ACT delensed spectra (i.e. the shift in best-fit parameters). The marginalized uncertainty on the shift in each parameter is obtained
from the diagonal elements of the parameter-shift covariance matrix described in Section VII A; this uncertainty is indicated by
the solid purple curves, which are a zoom-in of the purple bands shown in Figure 9. The dotted black lines indicate zero shift in
a parameter. We also add the shift in the derived parameters, H0 and σ8, for completeness. Using the full 20x20 parameter-shift
covariance matrix, we find a shift in parameters that deviates from the expectation of our ΛCDM plus foreground model at 3.3σ. In
this figure, we can see that some of the largest shifts are from polarized Galactic foregrounds, ∆ATE
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dust,d, which are in

the data but whose scatter is not modeled in our simulations (see Section VII C for more detail). Marginalizing over foregrounds,
we find that the shift in ΛCDM parameters agrees with expectations within 1.0σ.
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Appendix A: Initial Unblinded Results

As discussed in Section VII C, we initially performed
the analysis with the parameter priors listed in Table V.
We also originally used `min = 475, as opposed to `min =
575, for the TT power spectra. When we unblinded the
data we obtained from delensed TT, TE, and EE spectra:

H0 = 64.6± 3.3 km s−1Mpc−1 ACT D56 (A1)
σ8 = 0.840± 0.032 ACT D56 (A2)

As shown in Figure 11, there is small change in the cos-
mological parameter results after making the updates to
the likelihood and analysis discussed in Section VII C.
We also initially obtained a PTE of 0.0063 using the
measured parameter shifts between lensed and delensed
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Figure 11: Comparison of the cosmological parameters from delensed spectra obtained just after unblinding and the final cosmo-
logical parameters presented in this work. See Section VII C for details about the changes made post unblinding.

spectra, using the original 22x22 parameter-shift covari-
ance matrix. This PTE corresponds to a 2.7σ devia-
tion from the expectation of our ΛCDM plus foreground
model, assuming 22 degrees of freedom. The final PTE
for the parameter shifts we obtain is 0.0008 which is a
3.3σ deviation from the expectation and similar to the
initial unblinded value.

Parameter Prior Parameter Prior
As,d 2.9± 0.4 Ac [0, 15]
ATE

PS [-1, 1] βc [0, 8]
AEE

PS [-2, 2] Ad [0, 11]
ATT

dust,d [-20, 20] AtSZ, AkSZ [0, 10]

ATE
dust,d [-3, 3] ξ [0, 0.2]

AEE
dust,d [-2, 2] yP

98, yP
150 [0.9, 1.1]

ATE
synch, AEE

synch [-2, 2]

Table V: Shown are the initial prior ranges for the 16 foreground
parameters used in the parameter analysis before unblinding.

Appendix B: Parameter-Shift Covariance Matrix

In this appendix, we discuss the properties of the
parameter-shift covariance matrix, discussed in Sec-
tion VII A, in more detail.

As mentioned above, best-fit parameters inferred us-
ing the action = 2 CosmoMC statistic have random scat-
ter of about 2% of the true best-fit parameter values. In
order to reduce this scatter, we average many action = 2
runs together for the same spectra. To determine how
many runs to average together to achieve stability in the
best-fit parameters shifts, we use a simulation from sim-
ulation set3 described in Section III and run it through
the pipeline described in Section IV to generate a lensed
and corresponding delensed spectra set. We then com-
pute the difference in best-fit parameters for these spec-
tra fifty times using the action = 2 statistic, and show the
convergence on the running average in Figure 12. For
each iteration, we also compute the reduced χ2 for the
average difference in parameters using the parameter-
shift covariance matrix discussed in Section VI. Averag-
ing twenty versus fifty action = 2 runs, changes the re-
duced χ2, and subsequent PTE, by 5%. Thus, we con-
clude that the difference in best-fit parameters are suffi-
ciently converged when averaged over twenty action = 2
runs.

We also test the convergence of our parameter-shift co-
variance matrix by computing the running average and
the running standard deviation of the parameter shifts
derived from N simulations. Figure 13 shows that the
mean converges to zero (red dots) and that the standard
deviation of each parameter (blue stars) is stable after
200 simulations. We use 300 simulations to generate the
parameter-shift covariance matrix; thus we expect it to
be well converged. In general, using a finite number of
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Figure 12: Shown are the running averages of best-fit
parameter-shift values as a function of N action = 2 CosmoMC
runs, derived from a single simulated lensed/delensed spectra
pair (red dots). The dashed and solid blue curves show for
reference the 1σ and 2σ diagonal errors of the parameter-shift
covariance matrix shown in Figure 7. We find the running av-
erages become stable after roughly ten action = 2 runs. For
this analysis, we decide to average over twenty action = 2 runs
(dotted vertical lines) to make sure we have converged shifts.

simulations to estimate a covariance matrix can bias the
resulting χ2 and PTE values. We use Equation 17 in [68]
to account for this bias by applying a multiplicative cor-
rection factor to the inverse of our covariance matrix; for
our baseline analysis using 300 simulations, this correc-
tion is roughly equivalent to multiplying the parameter-
shift covariance matrix by a factor of 1.07 (a 7% increase
in uncertainty). We apply this correction factor to all the
parameter-shift PTE values presented in this analysis.

We also verify that the parameter-shift covariance ma-
trix is not biased. Figure 14 shows the histogram of best-
fit parameters derived from each simulation realization
in set3. Note that to include the impact of marginalizing
over a Galactic dust prior and polarization foreground
priors in simulations having no Galactic dust or polar-
ized foregrounds, we impose the same prior widths as
for the data but center the priors on zero. We find each
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Figure 13: We show the convergence of the parameter-shift co-
variance matrix diagonal elements as a function of N simu-
lations. The absolute value of the mean parameter shift con-
verges to zero (red dots), and the scatter is well converged after
300 simulations (blue stars).

histogram is well described by a Gaussian distribution
centered at the input value used to generate these sim-
ulations. This figure also demonstrates that our best-fit-
parameter measurements are not biased, both for lensed
and delensed spectra.

Figure 15 shows the histogram of the best-fit parame-
ter shifts derived from lensed versus delensed spectra.
We find that these histograms each are also well de-
scribed by a Gaussian distribution, this time centered at
zero. Since both lensed and delensed spectra are derived
from the same region of sky, we do not expect any mean
difference in parameters derived from them.

We further check that the distribution of reduced χ2

values from the 300 simulations using this parameter-
shift covariance matrix follows a χ2 distribution for 20
degrees of freedom, as we show in Figure 16. We also
check that the distribution of reduced χ2 values fol-
lows a χ2 distribution when marginalizing over the fore-
ground and calibration parameters (6 dof) as shown in
Figure 17. Shown also is the mean reduced χ2 value
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Figure 14: Shown is the agreement between best-fit parameters obtained from lensed (red histograms) and delensed (blue his-
tograms) spectra from 300 simulations in simulation set3, which is discussed in Section III. The red and blue curves are Gaussian
distributions centered on the means of the best-fit parameters obtained from the lensed and delensed spectra, respectively, which
are indicated by the red and blue vertical lines. The widths of these distributions are determined by the scatter in the best-fit
parameter values. The dashed black vertical lines show the input parameters of the simulations, indicating no significant bias in
the best-fit parameters

.

for these simulations (vertical blue line). The vertical
dashed black lines show the reduced χ2 values corre-
sponding to 1σ, 2σ, and 3σ shifts. These simulations
are constructed with AL = 1.0; we also show the mean
reduced χ2 value calculated from 10 simulations con-
structed with AL = 1.2 (vertical green line) and AL =
1.3 (vertical red line) (see Section VII B). From this we
see that if the CMB power spectrum contained a lensing-
like signal that is AL = 1.2 times that in ΛCDM, then
our parameter-shift statistic (which is formulated as-
suming ΛCDM) would deviate at the 2σ level. Similarly,
it would deviate at the 3σ level for a lensing-like signal
with AL = 1.3. The vertical orange line gives the reduced

χ2 value for the ACT D56 data, which is consistent with
AL = 1.0.
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Figure 15: Shown is the distribution of parameter shifts (blue histograms) derived from lensed versus delensed spectra for the
300 simulations shown in Figure 14 and described in Section III. We see that the distributions are Gaussian, shown by the black
curves, with 1σ marginalized errors obtained from the diagonal elements of the parameter-shift covariance matrix (described in
Section VII A) given by the dashed vertical lines. The solid vertical lines are the means of the distributions, and the dotted vertical
lines are at zero. We see no significant bias away from the expectation of a mean shift of zero.
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degrees of freedom (shown in black).
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Figure 17: Shown is the histogram of reduced χ2 values from 300 simulated best-fit parameter shifts when marginalizing over
foreground and calibration parameters and only considering the ΛCDM parameters. Shown also is the mean reduced χ2 value
for these simulations (vertical blue line). The vertical dashed black lines show the reduced χ2 values corresponding to 1σ, 2σ,
and 3σ deviations from zero shift. These simulations are constructed with AL = 1.0; we also show the mean reduced χ2 value
calculated from 10 simulations constructed with AL = 1.2 (vertical green line at 1.8σ deviation) and AL = 1.3 (vertical red line at
3.1σ) (see Section VII B). From this we see that if the CMB power spectrum contained a lensing-like signal that is AL = 1.2 times
that in ΛCDM, then our parameter-shift statistic (which is formulated assuming ΛCDM) would deviate at the 2σ level. Similarly,
it would deviate at the 3σ level for a lensing-like signal with AL = 1.3. The vertical orange line gives the reduced χ2 value for the
ACT D56 data.
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