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Preface

This review deals with some of the methods known under the designation quan-
tum Monte Carlo (QMC) that have been used for the determination of electronic
structure of atomic to many-particle systems. Sources that complement the cov-
erage in this chapter are the reviews [1-10]. and our previous monograph [11].
There are also chapters on QMC contained in selected computational physics
texts [12-14].

QMC methods not covered in this review are the auxiliary field [15-18] and
path integral QMC approaches [19,20]. Other areas that will not be discussed
are rotational and vibrational states of molecules [21-24] and broad areas of
condensed matter [9, 19, 25], and nuclear structure [26, 27] except where relevant
to the present focus.

QMC methods have several advantages:

e Computer time scales with system size roughly as N3, where N is the num-
ber of particles of the system. Recent developments have made possible
the approach to linear scaling in certain cases.

e Computer memory requirements are small and grow modestly with system
size.

e QMC is intrinsically parallel so that associated computer codes are signif-
icantly smaller and more readily adapted to parallel computers than basis
set molecular quantum mechanics computer programs.



e Basis set truncation and basis set superposition errors are absent in one
of the variants of (diffusion MC) of QMC computations.

e Monte Carlo numerical accuracy can be arbitrarily increased. QMC cal-
culations have an accuracy dependence of v/T, where T is the computer
time. This enables one to choose an accuracy range and readily estimate
the computer time needed for performing a calculation of an observable
with an acceptable error bar.

The purpose of the present paper is to described the commonly used algo-
rithms of QMC for electronic structure and to report some recent developments
in the field. We will also review selected recent applications of the approaches.

The chapter is organized as follows. In Section 1, we introduce the topic, as
well as enumerate wave function properties that are useful for QMC applications.
In Section 2 we describe commonly used QMC algorithms. In Sections 2.7.2 -
2.10 we briefly introduce some special topics that remain fertile research areas.
In Sections ?? and 8.3 we present results of calculations of atomization energies,
heats of reaction and excited states energies. We comment on work on carbon
clusters and transition-metal systems in sections 6.2 and 7. In Section 9.1 we
present results of QMC calculations made on silicon nano-clusters. In section
9.2 we describe calculations of two-dimensional quantum dots in vacuum and in
the presence of a magnetic field. Finally, in section 9.2.4 we briefly summarize
recent progress on excitonic complexes.

Atomic units are used throughout, the charge of the electron e and Planck’s
normalized constant & are set to unity. In this metric system, the unit distance
is the Bohr radius ag. Energy units are in hartrees (h), kcal/mol, and eV.

1 Introduction

The goal of the QMC method is to solve the Schrodinger equation, which in the
time independent form is given by

H¥,(R) = E,¥,(R). (1)

Here, H is the Hamiltonian operator of the system, with wave function ¥, (R)
and energy F,. The index n denotes a particular state. n = 0,1,.... R is a
vector that denotes the 3N coordinates of the system of N particles (electrons
and nuclei), R = {ry,...,rn}. For molecular systems, in the absence of electric
or magnetic fields, the Hamlltonlan has the form H=T+ V where T is the
kinetic energy operator, T= —1V%, and V( ) is the potential energy operator.

For atomic and molecular systems ¥ is the Coulomb potential between particles
of charge g;, ie., V=3, i,

ij rij
The first suggestion of a Monte Carlo solution of the Schrodinger equation
dates back to Enrico Fermi [28] who indicated that a solution to the stationary

state equation
—%VQRW(R) = E¥(R) — V(R)Z(R) (2)



could be obtained by introducing a wave function of the form ¥ (R, 7) = ¥(R)e~£7.

This yields the equation

MR _ LR, ) - VRTR, 7). 3)

or 2

Taking the limit 7 — oo, in Eq. 3 recovers Eq. 2. If the second term on the
right hand side of Eq. 3 is ignored, the equation is isomorphic with a diffusion
equation, which can be simulated by a random walk [29,30], where random
walkers diffuse in a R-dimensional space. If the first term is ignored, the equa-
tion is a first-order kinetics equation with a position-dependent rate constant,
V(R), which can also be interpreted as a stochastic survival probability. A nu-
merical simulation in which random walkers diffuse through R-space, reproduce
in regions of low potential, and die in regions of high potential leads to a sta-
tionary distribution proportional to ¥(R), from which expectation values can
be obtained.

1.1 Numerical solution of the Schrédinger equation

Most efforts to solve the Schrédinger equation rely on basis sets. These ap-
proaches rely almost exclusively on one or a linear combinations of Slater de-
terminants, and include the Hartree-Fock (HF), the density functional theory
(DFT), the configuration interaction, (CI) and the multi-configuration self-
consistent field (MCSCF) methods. There are perturbation approaches, for
example the Mgller—Plesset methods (MP(N), N= 2 - 4), and coupled cluster
(CC) approaches, which are presently popular computational procedures. An
exact basis-set calculation with a given basis set expansion requires N! com-
puter operations, where N is the number of basis functions. A method that
competes in accuracy with QMC, such as coupled cluster with singles, doubles,
and perturbative treatment of triple excitations, CCSD(T), scales as N7.!

A term that we will use later is correlation energy (CE). It is defined as the
difference between the exact nonrelativistic energy and the HF energy in the
limit of an infinite basis set [34,35], i. e.,

Ecorr = Liexact — EHF (4)

The CI, MCSCF, MP(N), and CC methods are all directed at generating en-
ergies that approach Feyact. Other methods that have been developed include
dimensional expansions [36], and the contracted Schrodinger equation [37].

Since the pioneering work of the late forties to early sixties [28,38,39] the
MC and related methods have grown in interest. The QMC methods have an
advantage over wave function methods with system size scaling, in the simplicity
of algorithms and in trial wave function forms that can be used for importance
sampling.

1For a more detailed analysis of the scaling of wave-function-based methods see, for exam-
ple, [31], and [32]. For a general overview of these methods, see ref. [33].



1.2 Properties of the exact wave function

The exact time independent wave function solves Eq. 1. Some analytic prop-
erties of this function are very helpful in the construction of trial functions for
QMC methods. R

For the present discussion, we are interested in the discrete spectrum of the H
operator. In most applications the total Schrédinger equation 1 is separated into
an electronic Schrédinger equation and a nuclear Schrédinger equation based
on the large mass difference between electrons and nuclei. This is the essence
of the Born-Oppenheimer (BO) approximation. This separation, in principle,
need not be introduced in QMC, but there is the practical benefit that fixing the
positions of the nuclei results in the simplest form of the electronic Schrédinger
equation.

The wave function also must satisfy the virial, hypervirial, Hellman—Feynman
and generalized Hellman—Feynman theorems [40-42].2 The local energy [43],

_ HY[R)
FL(R) = s 5)
is a constant for the exact wave function. This property is crucial for under-
standing and improving QMC methods.

When charged particles meet, there is a singularity in the Coulomb potential.
This singularity must be compensated by a singularity in the kinetic energy,
which results in a discontinuity in the first derivative, i.e., a cusp, in the wave
function when two or more particles meet [44,45]. For one electron described
by an orbital ¢(r) coalescing at a nucleus. Here, ¢(r) = x(r)Y;"(8,9), x(r) is a
radial function, and Y;(6, ¢) is a spherical harmonic with angular and magnetic
quantum numbers [ and m, the electron—nucleus cusp condition is

1 dn(r) __Z
n(r)y dr |,_, 1+1

Here 7(r) is the radial wave function with the leading r dependence factored
out, n(r) = x(r)/r™, and Z is the atomic number of the nucleus.

(6)

Furthermore, p(r), the spherical average of the electron density, p(r),® must
satisfy another cusp condition, namely,
Do) = 2zp(r) ™
ar? =0 N p

at any nucleus. Another condition on p(r) is that asymptotically it decays
exponentially [46,47]:
plr — 00) s €72V, ®)

2The Hellman-Feynman theorem is discussed in Section 2.9.3.
3If N is the number of electrons, then p(r) is defined by

or) = N [ W(R)P aR.



where Iy is the first ionization potential. This relation can be derived from
consideration of a single electron at large distance.
For electron—electron interactions, the cusp condition takes the form
1 dnij (T) 1

mp(r) dr |,y 20+1) 9)

where 7;;(r) is analogous to 7(r) of Eq. 6[11].
We discuss how to impose properties of the exact wave function on QMC
trial functions in Section 2.1.

1.3 Approximate wave functions

James and Coolidge [48] proposed three accuracy tests of a trial wave function,
Y the root mean square error in ¥

by = [/(wT _ )2 dR] %, (10)

the energy error
op = E(¥r) — Ey (11)

and the root mean square energy deviation

Op, = [/|(ﬁ —EO)W|2dRr (12)

where the local energy is defined by Eq. 5. The calculation of dg by QMC
requires sampling the exact wave function, a procedure that will be described
in Section 2.8.

Several stochastic optimization schemes have been proposed for minimizing
expressions (10)—(12). Most researchers have focused on Eq. 12, i.e., minimizing
0g,; see, for example, ref. [49]. In Section 2.2.5 we turn to stochastic wave
function optimization procedures.

2 Algorithms

Here we describe QMC computational methods. All of these methods use MC
techniques found widely in other fields, such as operations research, applied
statistics, and classical statistical mechanics simulations. Techniques such as
importance sampling, correlated sampling and MC optimization are similar in
spirit to those described in other MC treatises. The reader is referred to refs.
[49-59] for details on the techniques described in this section.

We next present the simple, yet powerful variational Monte Carlo (VMC)
method, in which the Metropolis MC * method is used to sample a known trial

4This algorithm is also known as the M(RT)?, due to the full list of the authors that
contributed to its development, Metropolis, Rosenbluth, Rosenbluth, Teller and Teller, see
ref. [60] .



function ¥r. We follow with the projector Monte Carlo (PMC) methods that
sample the unknown ground state wave function.

2.1 Trial wave functions

In contrast to wave function methods, where the wave function is usually con-
structed from determinants of orbitals, QMC methods can use arbitrary func-
tional forms for the wave function. Because QMC trial wave functions are not
restricted to expansions in one-electron functions, more compact representa-
tions are routinely used. In this section, we review the forms commonly used
for QMC calculations.

Fermion wave functions must be antisymmetric with respect to exchange
of an arbitrary pair of particle coordinates. If they are constructed as the
product of N functions of the coordinates, ¢(r1,r2,...,rn), the most general
wave function can be constructed enforcing explicit permutation,

¥(R,X) = (13)

\/7 E n@(T1,0172,02, ..., "N, ON),

where P, is the nth coordinate permutation operator, I3n¢(r1 3T ey T3y Ty e, IN) =
¢(T1,7’2, Y N T ATER .,T‘N), and Sm(ls(O'l,O'Q,O'z’,O'j, .. .,O'N) = ¢((71,0’2,0’j,0’i, ey
on) is the mth spin coordinate permutation operator. X~ denotes the full spin
space, X = {o01,...,0N}-

If the functions ¢; depend only on single-particle coordinates, their antisym-
metrized product can be expressed as a Slater determinant

D(R7 E) = det|¢17 7¢z(rJ>UJ ¢N| (14)

1
VN!
Trial wave functions constructed from orbitals scale computationally as N3,
where N is the number of particles, compared to N! for the fully antisym-
metrized form.® The number of evaluations can be reduced by determining
which permutations contribute to a particular spin state.

For QMC evaluation of properties that do not depend on spin coordinates X
for a given spin state, the M! configurations that arise from relabeling electrons,
need not be evaluated. The reason is that the Hamiltonian of Eq. 1, contains
no magnetic or spin operators and spin degrees of freedom remain unchanged.
In this case, and for the remainder of this paper, o4 electrons do not permute
with o electrons, so that the full Slater determinant(s) can be factored into
a product of spin-up, DT, and spin-down, D+, determinants. The number of
allowed permutations is reduced from (N4 + N|)! to N4!N, ! [61,62].

5The evaluation of a determinant of size N requires N2 computer operations. If the one-
electron functions scale with system size as well, the scaling becomes N3. In contrast, an
arbitrary fully antisymmetrized form that cannot be expressed using determinants requires
the explicit evaluation of the N! permutations, making the evaluation of this kind of wave
function in QMC prohibitive for systems of large N.



The use of various wave function forms in QMC has been explored by Alexan-
der and Coldwell [63], as well as Bertini et al. [64]. Some of these antisymmetric
descriptions of the wave function are more flexible and require fewer parameters
than determinants, but their evaluation is inefficient due to N! scaling.

A good compromise is to use a product wave function of a determinant or
linear combination of determinants, e.g., HF, MCSCF, CASSCF, CI, multiplied
by a correlation function that is symmetric with respect to particle exchange,

¥y = DF. (15)

Here D denotes the antisymmetric wave function factor and F is the symmetric
factor. We now describe some of the forms used for D and then we describe
forms for F. Such products are also known as the correlated molecular orbital
(CMO) wave functions.

With CMO wave functions, the antisymmetric part of the wave function
is constructed as a linear combination of determinants of independent particle
functions, ¢; (see Eq. 14). The ¢; are usually formed as a linear combination of
basis functions centered on atomic centers, ¢; = }_; ¢;x;. The most commonly
used basis functions in traditional ab initio quantum chemistry are Gaussian
functions, which owe their popularity to ease of integration of molecular inte-
grals. Gaussian basis functions take the form

XG = x“ybzce_€’2. (16)
For QMC applications, it is better to use the Slater-type basis functions
Xs = z°y’2% <, (17)

because they rigorously satisfy the electron—nuclear cusp condition of Eq. 6, and
the asymptotic property of Eq. 8. Nevertheless, in most studies, Gaussian basis
functions have been used, and corrections for enforcing the cusp conditions
can be made to improve local behavior close to a nucleus. For example, in
one approach [65], the region close to a nucleus is described by a Slater-type
function, and a polynomial fit is used to connect the Gaussian region to the
exponential. This procedure strongly reduces fluctuations of the kinetic energy
of these functions, a desirable property for guided VMC and PMC.

An alternative form for the antisymmetric part of the trial wave-function, D,
is the antisymmetrized geminal power (AGP) form. It has recently been used
in QMC calculations by Casula and Sorella [66]. The AGP function takes the
form of

Daar = A [0(],t)8(c],1f) - 8]y .1k )] (18)
where the geminal 45(1'2, rf) is a two-electron singlet function,
1
(r],x}) = $(r],r}) —— (@(1)B(D) — a(DB(1)) . (19)

V@)



The pair function qﬁ(rZT, r;L) is expanded in orbitals x;, e. g.

o(xl ) = Y- oD ), (20)

where \; are variational parameters. The AGP wave function can be evaluated
as the determinant of a matrix, and it can be generalized to include unpaired
electrons. Furthermore, the use of more basis functions M than the number of
particles V includes some types of static correlation effects, making a single AGP
matrix equivalent to several Slater determinants. All the previous properties
make the AGP wavefunction a promising ansatz for QMC calculations.

The symmetric part of the wave function is usually built as a product of
terms explicitly dependent on inter-particle distance, r;; = |r; — r;j|. These
functions are usually constructed to reproduce the form of the wave function
at electron—electron and electron—nucleus cusps. A now familiar form is that
proposed by Bijl [67], Dingle [68], and Jastrow [69] and known as the Jastrow
ansatz:

F =eVris) = eXic; 9id (21)

where the correlation function g;; is

_ ity
= 22
9is 1+ bijl‘z’j ( )
with constants specified to satisfy the cusp conditions
% if ij are like spins,
ai; =4 % if ij are unlike spins, (23)

—Z if ij are electron/nucleus pairs

Electron correlation for parallel spins is taken into account by the Slater deter-
minant.

This simple Slater—Jastrow ansatz has a number of desirable properties. As
stated above, scaling with system size for the evaluation of the trial function
is N3, where N is the number of particles in the system, Second, the correct
cusp conditions are satisfied at two-body coalescence points and the correlation
function g;; correctly approaches a constant at large distance.

The inclusion of 3-body correlation terms has been shown to improve wave
function quality. The work of Huang et al. [70] shows that if the determinant
parameters Ap are optimized along with the correlation function parameters,
Ac, the nodal structure of the wave function does not significantly improve by
including 4-body correlation terms. This finding suggests that increasing the
number of determinants is more important than adding fourth- and higher-order
correlation terms.

Feynman—Cohen backflow correlation functions [71] have been suggested by
Schmidt and Moskowitz [72] for describing three body correlations of atoms



and molecules in U. These functions have been used in trial functions for ho-
mogeneous systems such as the electron gas [73,74]. and liquid helium [75, 76].
The backflow concept is based on the conservation of particle current and the
variational principle. The procedure involves replacing mean field orbitals by
backflow-corrected orbitals of the form

AOETACES Seen)k (24)

i#i

where v(r;;) is the backflow function. Pandharipande and Itoh [77] proposed
that v(r;;) should consist of the difference between the I = 0 and [ = 1 states of
an effective two-particle Schrodinger equation. Furthermore, Pandharipande et
al. proposed [78] the inclusion of a 1/73 tail, as originally suggested by Feynman
and Cohen,

ri—r;

v(r) = /\,,e_[T] + Av

r3’

(25)

where, A, A\, and w,, are variational parameters. As recently noted by Kwon et
al. [73] , the incorporation of the full backflow trial function into wave functions
involves a power of N increase in computational expense, but yields a better
DMC energy for the electron gas.%

A common practice is to use orbitals from a mean field calculation with the
first term in a series expansion of the backflow contribution in the correlation
function F. The advantage of this approach is that orbitals are unperturbed
and readily obtainable from mean field computer codes.

The Schmidt and Moskowitz correlation function [72] is a selection of terms
from the general form originally proposed in connection with the transcorrelated
method [79]:

F = eXomi<i Unis) (26)
where
N(I)

Urij = Y Almarngr)err (g7 gi8" + gl g1t ) gkt (27)
k

The sum in Eq. 26 goes over I nuclei, ¢j electron pairs, and the sum in Eq. 27 is
over the N (I) terms of the correlation function for each nucleus. The parameters
m,n and o are integers. The function A(m,n) takes the value 1 when m # n,
and £ otherwise. The functions g;; are specified by Eq. 22.

This correlation function defined by Eqs. 26,27 can be shown to have con-
tributions to averaged backflow effects from the presence of electron—electron—
nucleus correlations that correspond to values of m,n and o in Eq. 27 of 2,2,0
and 2,0,2. These contributions recover &~ 25% or more of the total correlation
energy of atomic and molecular systems above that from the simple Jastrow
term [72].

6 As discussed in Section 2.3.10, an improved fixed-node energy is a consequence of better
nodes of the trial wave function, a critically important characteristic for importance sampling
functions in QMC methods.



2.2 Variational Monte Carlo
2.2.1 Formalism

Variational methods involve the calculation of the expectation value of the
Hamiltonian operator using a trial wave function ¥p. This function is dependent
on a set of parameters, A, that are varied to minimize the expectation value of
the energy, i.e., R
(ﬁ) — <WT|H|WT>
(W |[¥r)

Equation 28 can be sampled from a probability distribution proportional to ¥Z,
and evaluated from the expression

= E[A] > E,. (28)

H¥7(R) 2
SRSy | o . o9
J dRIZ(R) - JdR#®R) ="

where Ej, is the local energy of Eq. 5. The procedure involves sampling random
points in R-space from
77(R)
R)= —1 7.
PR= TRz ®)

The advantage of using Eq.30 as the probability density function is that one
need not perform the averaging of the numerator and denominator of Eq. 29.
The calculation of the ratio of two integrals with the MC method is biased by
definition: the average of a quotient is not equal to the quotient of the averages,
and Eq. 30 avoids this problem.

In general, sampling is done using the Metropolis method [60], that is well
described in Chapter 3 of Ref [53] , and briefly summarized later in this section.

Expectation values can be obtained using the VMC method from the follow-
ing general expressions [5]:

(30)

~_ [dRFH(R)ZOR) _ 1 <~

Oa¥r(R)
5y = de[ ;;T’{R) :|LDT(R)2 B N Oar(R) .
(0a) = [ dR¥7(R)? N &~ ¥ (Ry) 32)

Eq. 31 is for a coordinate operator, 6, and Eq. 32 is preferred for a differential
operator, Oy .

2.2.2 The generalized Metropolis algorithm

The main idea of the Metropolis algorithm is to sample the electron density,
¥2Z(R), using fictitious kinetics that in the limit of large simulation time yields

10



the density at equilibrium. A coordinate move is proposed, R — R’, which has
the probability of being accepted given by

ﬂwﬁm%m»

T(R = R)Z2(R) (33)

PR—-R)= min(l,

where T(R — R') denotes the transition probability for a coordinate move from
R to R'. Condition 33 is necessary to satisfy the detailed balance condition

T(R' - R)¥2(R') = T(R — R')¥2(R) (34)

which is needed for ¥2Z(R) to be the equilibrium distribution of the sampling
process.

Several improvements to the Metropolis method have been pursued both in
classical and in quantum simulations. These improvements involve new tran-
sition probability functions and other sampling procedures. See, for example,
refs. [5,25,80-85].

A common approach for improving T'(R — R') in VMC, is to use the quan-
tum force,

Fq = Vin|¥r(R)?| (35)

as a component of the transition probability. The quantum force can be incor-
porated by expanding f(R,7) = |¥7(R)?| = e~ " 1¥7(R)] in a Taylor series in
In |¥2(R)| and truncating at first order

1 ,
TR - R') =~ Ne*FcﬂR)'(R —R), (36)

where N is a normalization factor, and A is a parameter fixed for the simulation
or optimized in some fashion; see, for example, ref. [86]. A usual improvement
is to introduce a cutoff in AR = (R’ — R), so that if the proposed displacement
is larger than a predetermined measure, the move is rejected.

A good transition probability should also contain random displacements, so
that all of phase space can be sampled. The combination of the desired drift
arising from the quantum force of Eq. 36 with a Gaussian random move, gives
rise to Langevin fictitious dynamics, namely,

1
R - R+ 5Fq(R) + Gsrs (37)

where Gs, is a number sampled from a Gaussian distribution with standard
deviation é7. The propagator or transition probability for Eq. 37 is

1 . 17 71 2
T,(R—-R') = " (R'—R—§Fq(R)7)° /267 (38)

which is a drifting Gaussian, spreading in §7. Using Eq. 37 is equivalent to
finding the solution of the Fokker—Planck equation [30]

iR, 7) (aP: Dol (V- R R, (39)

11



Equation 38 has proved to be a simple and effective choice for a VMC tran-
sition probability. More refined choices can be made, usually with the goal of
increasing acceptance probabilities in regions of rapid change in |¥7(R)?|, such
as close to a nucleus. For a more detailed discussion of this formalism, the
reader is directed to Chapter 2 of [11]. More elaborate transition rules can be
found in refs. [86-89].

2.2.3 Variational Monte Carlo algorithm

The VMC algorithm is an application of the generalized Metropolis MC method.
As in most applications of the method, one needs to insure that the ensemble
has achieved equilibrium in the simulation sense. Equilibrium is reached when
the ensemble W is distributed according to Eq. 30. This is usually achieved by
performing a Metropolis random walk and monitoring the trace of the observ-
ables of interest. When the trace fluctuates around a mean, it is generally safe
to start averaging in order to obtain desired properties.
An implementation of the VMC algorithm follows:

1. Equilibration stage

(a) Generate an initial set of random walker positions, Wy; it can be
read in from a previous random walk, or generated at random.
(b) Perform a loop over N steps,

i. For each r; of the N, number of particles,

A. Propose a move from ¥(R) = ¥(ry,rs,...,r;,...,ry,) tO
Y(R') = ¥(ry,r,...,1},...,ry,). Move from r to r’ ac-
cording to

, 1
r' <r+Gs + EFqJT, (40)

where Gs, is a Gaussian random number with standard devi-
ation d7,which is a proposed step size, and Fq is the quantum
force; see Egs . 36 and Eq. 37..

(B) Compute the Metropolis acceptance/rejection probability

(41)

P(R — R') = min (1 T (R~ R)%Q"(R')),

"T(R = R)P2(R)

where T7, is given by Eq. 38.

(C) Compare P(R — R') with a uniform random number be-
tween 0 and 1, Ujp,1j- If P > Ujp 1], accept the move, other-
wise, reject it.

(D) Calculate the contribution to the averages %&,{)I), and per-
form blocking statistics as described in Section 2.2.4.

(if) Continue the loop until the desired accuracy is achieved.

12



2.2.4 Statistics

Usually, VMC calculations are performed using an ensemble of Ny, random
walkers W = {Ri,Ras,...,Rn} that are propagated following T(R — R/)
using the probability P(R — R’) to accept or reject proposed moves of ensemble
members. Usually, the displacements are small enough that the MC observables
evaluated at R’ are statistically correlated with those evaluated at R. This
autocorrelation has to be taken into account for estimating the error of the
calculation. The variance for an observable, O, measured over Ny MC steps of

a random walk is 1

Ns Ny
where (O) is the average of the observations, O;, over the sample. A simple

approach to remove auto-correlation between samples is to define a number of
blocks, Np, where each block is an average of Ng steps, with variance

(0i = (0)), (42)

96

1
NsNwy

oB = (Ob - <O)), (43)
where O, are the Np observations in block b. If Np is sufficiently large, op is
a good estimator of the variance of the observable over the random walk. The

auto-correlation time is a good measure of computational efficiency, and is given
by

02
Teorr = lim Ns(—f>. (44)

Ng;—o00 0'6

The efficiency of a method depends on the time step [90]. Serial correlation
between sample points should vanish for an accurate estimator of the variance.
For an observable {O), the serial correlation coefficient is defined as

N—k

& = (0i = (0)) (Oigr — (0)), (45)

1
((0%) = (OP)(N - k)

=

decays exponentially with k. The correlation length, L, is defined as the number
of steps necessary for & to decay to zero within statistical error. For an accurate
variance estimator, blocks should be of at least L steps.

The efficiency of a simulation is inversely proportional to &;. The & de-
pendence on time step is usually strong [11]; the larger the time step, the fewer
steps/block L necessary, and the more points available for calculating the global
average (0). A rule of thumb is to use an Ny ~ 10 times larger than the
auto-correlation time to insure statistical independence of block averages, and
therefore a reliable variance estimate.

The VMC method shares some of the strengths and weaknesses of tradi-
tional variational methods: the energy is an upper bound to the true ground
state energy. If reasonable trial functions are used, often reliable estimates of
properties can often be obtained.

13



2.2.5 Trial Wave function optimization

Trial wave functions ¥ (R, A) for QMC are dependent on variational parame-
ters A = {A1,..., \n}. Optimization of A is a key element for obtaining accurate
trial functions. Importance sampling using an optimized trial function increases
the efficiency of DMC simulations. There is a direct relationship between trial-
function accuracy and the computer time required to calculate accurate expec-
tation values. Some of the parameters A\; may be fixed by imposing appropriate
wave function properties, such as cusp conditions (see Section 1.2).

It is useful to divide A into groups distinguished by whether the parameter
affects the nodes of the wave function. The Slater determinant parameters, )\TDL
and the Slater determinant weights, A\r, change wave function nodal structure
[72,91-96]. The correlation function parameters, Ac do not change the nodal
structure of the overall wave function, and therefore the DMC energy. For some
systems, the optimization of ¢ is sufficient for building reliable trial functions
for PMC methods, because the correlation function is designed in part to satisfy
cusp conditions [44,45].

Several optimization methods have been proposed previously. Some involve
the use of analytical derivatives [62,97-101], others use of a fixed sample for
variance minimization [102], and more recently [91,103,104]. Histogram analy-
sis can be useful for the optimization of energy, variance and geometries [105].

The variance functional ( VF) [91] is given by

HU(R;, A 2
Zé\il gpi(g{ ;1)) —EBr| w;
VF = o , (46)
2im1 Wi
where Er is a trial energy, w; is a weighting factor defined by
U2(R;, A)
(A) = 0 4

and Ag is an initial set of parameters. The sum in Eq. 46 is over configurations
initially distributed as ¥?(R, Ag). Numerical optimization methods are used to
find the minimum of V' F.

2.2.6 Optimization of the full trial wave function

Recently, several new approaches have appeared for optimizing the determinan-
tal (single or linear combination) part of the wave function simultaneously with
a correlation function. Exploration of the full variational freedom of these wave
functions shows that significant improvements can be achieved.

The method of Filippi and Fahy [106] combines variance minimization of
the correlation function as given by Eq. 46 with the use of a self-consistent
field method that takes into account the effect of the correlation function, F.
These effects are introduced by means of an energy fluctuation potential (EFP)
constructed from discrete R-space configurations. The EFP is represented as
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an external potental V., in the self-consistent-field procedure for the orbitals.
Tterative refinement of F by variance optimization followed by generation of new
orbitals using a Hamiltonian containing V,,; converges to a set of optimal orbital
parameters and determinantal mixing parameters for the given wave function
form.

The EFP is obtained from a least squares fit of the local energy to the
function,

"~ . Ox(D(Ry))
Er+ ; M=y ®); (48)

based on configurations R; sampled from ¥r(R)2. Here, Eg and )\ are fitting
parameters. The operators Oy can be either local or non-local, and are coupled
to the ab initio external potential, e.g.,

Vet = Vo + Y _ MO, (49)
k=1

where V4 is the external potential of traditional ab initio methods. The wave
functions obtained from the EFP method provide excellent guiding functions
for DMC.

A similar method was used by Schautz and Fahy [107] to optimize CI coeffi-
cients of a truncated multideterminant wave-function. An effective Hamiltonian
is constructed by optimizing a least squares fit of the local energy to the func-
tion,

n
Er + Z e |Pr) (Do (50)
k=0
Here, &; are CI determinants, and Ay and Eg are fitting parameters. The \g
are used to construct an effective Hamiltonian for the next CI iteration,

Hepp = HYp + ) Ak|Bi)(Bo| + A |Bo) (|- (51)
k=0

Least squares fits of Eqs. 48 and 50 are equivalent to solving a system of
stochastic linear equations. For the exact details of the numerical procedure,
the reader is referred to the original references [106,107].

An alternative method for optimizing the full wave function is the use of
the stochastic reconfiguration (SR) technique of Sorella [108] and Casula and
Sorella[66]. In this approach, the wave function is expanded as Taylor series in
the parameters A = {\1,..., A\, }, with A, = X + 6A;. The series truncated to
first order yields,

y—/T(A) = !l—/T(AO) + i&)\kwgif‘/lo)

k=1

(52)
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A set of local operators OF (R) is defined as logarithmic derivatives with respect
to the variational parameters,

1 d
O*R) = TR 6—)\kWT(R, A). (53)

A renormalized function ¥} is expanded in the subspace of dimension n + 1,
ie.,

n
2(A)) = 36X OF[i), (54)
k=0
where 0% =1, 6Ag = 1 and dXg>0 = Ak /INo-
A projection operator Psg(Esg — H) is constructed that projects the func-
tion on to the space defined by Eq. 54,

&5 (A)) = Psr(Esr — H)|¥r). (55)

Here, Egpg is a large energy shift used to insure ¥/ has a lower energy than ¥r.
The coefficents 64 = {6\1,0A2,...,0A,} that correspond to the projected wave
function ¥4, are found by solving,

> 6N (W |0 OF ) = (@r|O¥ (Esg — H)|r). (56)

With the solutions of Eq. 56, the Ay are updated, i.e., A = A + §4/5A,.
Iterations are continued until d\;/dAg — 0. Casula and Sorella [66] note that
this system of equation is similar to that derived from Eqgs. 48 and 50.

Estimating the overlap of ¥ with the ground state wave function, (¥r|%),
by DMC methods [109] is a very efficient way of assessing wave function quality.
There is also a trend that correlates the variational energy of the wave function
with the associated variance in a linear relationship [73,74]. This correlation
is expected because the quantities, §g, and dg, , approach the limits — Ey and
zero, respectively — as wave function quality improves. Observing these quanti-
ties during optimization provides a good method of validating the optimization
method, as well as assessing wave function quality.

2.3 Projector methods

The QMC approaches of DMC and GFMC are usefully called projector Monte
Carlo (PMC) methods.” The general idea is to project out a state of the Hamil-
tonian by iteration of a projection operator P. For simplicity, we assume that
the desired state is the ground state ¥, but projectors can be constructed for

any state, N
lim P'|¥r) = |P). (57)
71— 00

"This presentation follows refs. [110-112] .
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After sufficient iterations ¢, the contribution of all excited states |¥,,s0) will be
filtered out, and only the ground state is recovered.

If |&r) is a vector and P is a matrix, then the procedure implied by Eq. 57
is the algebraic power method: If a matrix is applied iteratively to an initial
arbitrary vector for a sufficient number of times, only the dominant eigenvector
|Wo) will survive. For large 4, one has

Pi|wr) = N (@o|r)|Zo) + O(M), (58)

where )¢ is the leading eigenvalue, and A; is the largest sub-leading eigenvalue.
For this approach, it is possible to obtain an estimator of the eigenvalue [51],

given by .
Ao = lim (M) " (59)
(9| P*|Pr)

72— 00

2.3.1 Markov processes and stochastic projection

For high-dimensional vectors, such as those encountered in molecular electronic
structure, the algebraic power method described in the previous section needs to
be generalized with stochastic implementation. For this to occur, the projection
operator must be symmetric, so that all eigenvalues are real. This is the case for
QMC methods because P is a function of the Hamiltonian operator, H, which
is Hermitian.

A stochastic matrix is a normalized nonnegative matrix. By normalization,
we mean that the stochastic matrix columns sum to one, i.e., >, M;; = 1. A
R-space representation of the normalization condition is a stochastic propagator
M(R,R’) that satisfies the condition

/ M(R,R')dR' =1. (60)
A Markov chain is a sequence of states obtained from subsequent transitions
from state i to state j with a probability related to the stochastic matrix element
M;;, or in R-space, M (R, R/ ) Note that any given move only depends on the

current state, ¢. For example, in R-space, this is equivalent to the process

r(R) = / M(R',R")x(R") dR",

~(R) / M(R,R')x(R) dR/, (61)

The sequence of states S = {r(R"),n(R'),7(R), ...} is the Markov chain.

The propagators of QMC for electronic structure are not generally normal-
ized, therefore they are not stochastic matrices, but one can represent them in
terms of the latter by factoring the projection operator as follows,

~

Pij = Mijw, (62)
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where the weights, w;, are defined by w; = >, 13” This definition unambigu-
ously defines both the associated stochastic matrix M and the weight vector w.

A MC sampling scheme of P;;|%r) can be generated by first performing a
random walk, and then retaining a weight vector W (R)) of the random walkers,

IR = r(R)W(R)= / P(R',R")Z(R") dR"

/ M(R',R")B(R")¥(R") dR",

ZR) = 7(R)W(R)= / P(R,R)¥(R') dR’

/ M(R,R')B(R)7(R') dR/, (63)

Here, B(R) is the function that determines the weight of the configurations at
each state of the random chain. This leads to a generalized stochastic projec-
tion algorithm for unnormalized transition probabilities that forms the basis for
population Monte Carlo (PopMC) algorithms, which are are also used for sta-
tistical information processing and robotic vision [113]. A generalized PopMC
stochastic projection algorithm, represented in R-space, follows:

1. Initialize
Generate a set of n random walkers, located at different spatial positions,
W = {Rq,Ra,...,Ra}, where R; denotes a Dirac delta function at that
point in space, (R — R;). These points are intended to sample a proba-
bility density function #(R).

2. Mowe

(a) Each walker j is moved independently from R to a new position R/,
according to the transition probability

T(R—R')=M(R,R). (64)

(b) Ensure detailed balance if T(R — R') # T(R' — R) by using a
Metropolis acceptance/rejection step as in Eq. 41.

3. Weight
(a) Calculate a weight vector using a weighting function B(R;),
w} = B(R,). (65)

The ideal weight function preserves normalization of ]3(R, R') and
maintains individual weights w; close to unity.

(b) Update the weight of the walker, multiplying the weight of the pre-
vious iteration by the weight of the new iteration,

wi = wiw. (66)
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4. Reconfiguration

(a) Split walkers with large weights into multiple walkers with weights
that add up to the original weight.

(b) Remove walkers with small weight.

Step 4 is necessary to avoid statistical fluctuations in the weights. It is a form
of importance sampling that makes the calculation stable over time. Some
algorithms omit this step; see, for example, the work of Caffarel and Claverie
[61], but it has been proved that such calculations eventually diverge [114].
There is a slight bias associated with the introduction of step 4 together with
population control methods, that will be discussed in Section 2.3.7. When step
4 is used, B(R) is also referred in the literature as a branching factor.

It is important to recall that PopMC algorithms are not canonical Markov
Chain Monte Carlo (MCMC) algorithms [58,115], in the sense that the prop-
agator used is not normalized, and therefore factoring the propagator into a
normalized transition probability and a weighting function is required.

2.3.2 Projection operators or Green’s functions

Different projection operators lead to different QMC methods. If the resolvent

operator,
~, o~ 1

P(H) ==,
1+ (sT(H - ER)
is used, one obtains Green’s function Monte Carlo (GFMC) [39,116]. This

algorithm will be described in Section 2.3.9. If the imaginary time evolution
operator is used, i.e.,

(67)

P(H) = e~7=Fn), (68)
one has the DMC method [117,118], which is discussed in the following Sec-
tion 2.3.5.

For finite §7, and for molecular systems, the exact projector is not known
analytically. In GFMC, the resolvent of Eq. 67 is sampled by iteration of a
simpler resolvent, whereas for DMC, the resolvent is known exactly as 7 — 0,
so an extrapolation to 47 — 0 is done.

Note that any decreasing function of H can serve as a projector. Therefore
the possibility of new QMC methods remains.

2.3.3 Imaginary time propagator

If one transforms the time-dependent Schrédinger equation (Eq. 2) to imaginary
time 7, i.e.,

it =T, (69)
then one obtains, after introducing an energy offset Er as reference energy,
ol ~
gW(R, 7) = (H — Eg)¥(R, 7). (70)
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For real ¥(R,7), Eq. 70 has the advantage of being in R, whereas Eq. 2 has,
in general, complex solutions.
Equation 70 can be cast into integral form,

U(R,7+07) = \s /G(R, R',é67)¥ (R/,7) dR'. (71)

The Green’s function, G(R', R, §7), satisfies the same boundary conditions as
Eq. 70:

%G(R, R',67) = (H — Br)G(R, R, 67) (72)

with the initial conditions associated with the propagation of a Dirac delta
function, namely,

G(R,R’,O)z(S(R—R’). (73)
The form of the Green’s function that satisfies Eq. 72, subject to Eq. 73, is
G(R,R,67) = (Rle~"H-Fr)|R)) (74)

which can be expanded in eigenfunctions, ¥,,, and eigenvalues E,, of the system,
ie.,

G(R,R,67) =) e "HEOwr(R!) T, (R). (75)
For an arbitrary initial trial funct?on, ¥(R), as T — 00, one has
lim e 7 EDy = Jim [ G(R,R,7)¥(R') dR’
= lim (F|Fo)e "EERg,, (76)

and only the ground state wave function ¥, is obtained from any initial wave
function. Therefore, the imaginary time evolution operator can be used as a
projection operator as stated at the beginning of this section.

2.3.4 Diffusion Monte Carlo stochastic projection

Due to the high dimensionality of molecular systems, a MC projection procedure
is used to obtain expectation values. In this approach, the wave function is
represented as an ensemble of delta functions, also known as configurations,
walkers, or psips (psi-particles),

#(R) «— > (R — Ry). (77)
k

The wave function is propagated in imaginary time using a Green’s function.
In the continuous case, one can construct a Neumann series

AR, 7) =M / G(R, R, — )7 (R') dR,

g3 (R, ,’_) =\ /G(Rl, R, 75 — TQ)W(Q) (R') dR,

20



Equation 78 is a specific case of the PopMC propagation of Section 2.3.1. A
discrete Neumann series can be constructed in a similar way,

THD(R, 7 + 67) —— At Z el (R, R/, 67—). (79)
k

A stochastic vector of configurations W = {Ry,...,R,} is used to represent
¥(R) and is iterated using G (R, R/, 7).

2.3.5 The form of the propagator

Sampling Eq. 74 can not be done exactly, because the argument of the ex-
ponential is an operator composed of two non-commuting terms. In practice,
approximate forms of the propagator are used.

In the short-time approximation (STA), the propagator G(R, Ry, d7) is ap-
proximated as if the kinetic and potential energy operators commuted with each
other, i.e.,

eTHVIT ~ eT07 . V" + O((67)%) = Gsr =Gp - G- (80)

The Green’s function becomes the product of a diffusion factor Gp and a branch-
ing factor Gg. Both propagators are known:

_Rr’\2
Gp = (27rT)73N/267(R 2 (81)
and
GB — e—JT(V(R)—2ET)_ (82)

Gp is a fundamental solution of a Fourier equation that describes a diffusion
process in wave function space, and G is the fundamental solution of a first-
order kinetic birth—death process.

The Campbell-Baker-Hausdorff (CBH) formula,

eAeB = A+B+3A B+ 5[(A=B),[A,B]l+- (83)

makes possible more accurate decompositions, such as an expansion with a cubic
error O((67)3%),

ITIHY) = b7(V/2) 87T 37(V/2D) 4 0((67)?). (84)

There are also more sophisticated second-order [111] and fourth-order [119,120]
expansions that reduce the error considerably and generate higher accuracy
DMC algorithms at the expense of a more complex propagator.

The most common implementation uses Gp as a stochastic transition proba-
bility T(R — R’), and G g as a weighting or branching factor, B(R). Sampling
Eq. 81 can be achieved by obtaining random variates from a Gaussian distribu-
tion of standard deviation 6.
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2.3.6 Importance sampling

Direct application of the algorithm of the previous section to systems governed
by the Coulomb potential leads to large population fluctuations. These arise be-
cause the potential V' (R) can become unbounded and induce large fluctuations
in the random walker population. A remedy, importance sampling, was first
used for GFMC by Kalos [39] and extended to the DMC method by Ceperley
and Alder [25].

In importance sampling Monte Carlo, the goal is to reduce fluctuations, by
multiplying the probability distribution by a known trial function, ¥ (R), that
is expected to be a good approximation for the wave function of the system.
Rather than ¥(R, 7), one samples the product

fR,7) =9 R)PR,T). (85)
Multiplying Eq. 71 by @7 (R) yields

FR,7+dr) = /K(R', R, 5T)f(R', 7') dR’, (86)

where K(R,R/,d7) = e~T(H-Fr) %. Expanding K in a Taylor series gives

K= Ne—(Rz—Rl-l-%Vln‘FT(Rl)éT)Q/(Q(ST) x e_(IAfp‘pTT(g:l))—ET)‘ST =Kp x Kg. (87)

Equation 87 is closely associated with the product of the kernel of the Smolu-
chowski equation, which describes a diffusion process with drift, multiplied by a
first-order rate process. Here the rate process is dominated by the local energy,
instead of the potential. The random walk is modified by appearance of a drift
term that moves configurations to regions of large values of the wave function.
This drift is the quantum force of Eq. 35.

The excess local energy (ET — Er(R)) replaces the excess potential energy
in the branching term exponent, see Eq. 82. The local energy has kinetic and
potential energy contributions that tend to cancel each other, giving a smoother
function. If ¥r(R) is a reasonable function, the excess local energy will be nearly
a constant. The regions where charged particles meet remain finite by enforcing
the cusp conditions on ¥r(R) (see Section 1.2).

The local energy is an estimator of the energy with a low statistical variance,
so it is preferred over other possible choices for an estimator. A simple average
of the local energy yields the estimator of the energy of the quantum system,?

(B) = /f(R,T—)OO)EL(R) dR//f(R)dR

/ 7 (R)77(R) [%] iR/ / 7 (R)¥7(R)

/ #(R)H¥(R) dR / / #(R)¥7(R) dR
- F. (88)

8For other energy estimators, see the discussion in refs. [11,116]
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Simple averaging of the local energy yields the DMC energy estimator,

' 1 Ny
(EL) = lim EZ:EL(R,). (89)

N;— o0

Because the importance sampled propagator, K(R,R/,d7), is only exact to a
certain order, for an exact estimator, it is necessary to extrapolate to d7 = 0
for several values of (EL).

Importance sampling with appropriate trial functions, such as those used
for accurate VMC calculations, can increase the efficiency of the random walk
by several orders of magnitude. In the limit of the exact trial function as the
importance sampling function, only a single evaluation of the local energy yields
the exact answer. Importance sampling has made atomic, molecular and nano-
structure calculations feasible. Note that the quantum force of Eq. 87 also moves
random walkers away from nodal regions to regions of large values of the trial
wave function, reducing the number of attempted node crossings by typically
several orders of magnitude.

2.3.7 Population control

If left uncontrolled, the population of random walkers will eventually vanish or
fill all computer memory. Therefore, some form of population control is needed
to stabilize the number of random walkers. Control is usually achieved by slowly
changing Er as the simulation progresses. As more walkers are produced in the
procedure, one needs to lower the trial energy Ep or, if the population starts
to decrease, then one needs to raise Er. This can be achieved by periodically
changing the trial energy in the appropriate direction. One version of the ad-

justment is to use
0

Er = (Ep) + aln &, (90)
Ny,
where (Ep) is the best approximation to the eigenvalue of the problem to this
point, « is a parameter that should be as small as possible while still having a
population control effect, N is the number of desired random walkers, and N,,
is the current number of random walkers.

This simple population control procedure has a slight bias if the population
control parameter « is large, or if the population is small. The bias observed
goes as 1/N,, and, formally a N,, — oo extrapolation is required. Bias is absent
in the limit of an infinite population.

A recently resurrected population control strategy, stochastic reconfiguration
[114,121-123] follows the work of Hetherington [110]. In this algorithm, walkers
carry a weight, but the weight is recomputed at each step to keep the population
constant. The idea behind this method is to control the global weight w of the
population,

1

i=1
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by introducing a renormalized individual walker weight, w;, defined by
wi; = —. (92)

Another stochastic reconfiguration scheme proposes setting the number of copies
of walker i for the next step to be proportional to the renormalized walker weight
w;. This algorithm has shown to have less bias than the approach following
Eq. 90. Tt also has the advantage of having the same number of walkers at each
step and simplifies implementation of the algorithm for parallel computers.

2.3.8 Diffusion Monte Carlo algorithm

There are several versions of the DMC algorithm. The approach presented here
focuses on simplicity; see refs. [118,124,125].

1. Initialize an ensemble W of Ny configurations, distributed according to
P(R) for ¥7(R); for example, use the random walkers obtained from a
previous VMC run.

2. For every configuration in W:

(a) Propose an electron move from R = ¥(ry,ra,...,r;,...,ry,) toR' =
U(ry,ry,...,r5,...,ry, ). The short-time approximation propagator,
K(R,R’;d7), has an associated stochastic move

R' — R+ Fq(R)0T + G5, (93)

(b) Enforce the fixed node constraint: if a random walker crosses a node,
i.e., sign(Pr(R)) # sign(Pr(R')), then reject the move of the current
electron and proceed to treat the next electron.

(c) Compute the Metropolis acceptance/rejection probability
Kp(R,R';07)77(R')
"Kp(R',R;0r)P2(R) )’

P(R - R') = min (1 (94)

where Kp is the diffusion and drift transition probability given by

Eq. 87.

(d) Compare P(R — R') with an uniform random number between 0
and 1, U q)- If P > Up,1}, accept the move, otherwise, reject it.

(3) Calculate the branching factor G for the current configuration

Heq(R') | HIp(R)

B(R; RI) = e(ER_%( wp(R) T Ur(R) ))5T. (95)

(4) Accumulate all observables including the energy. The contributions, O;,
are weighted by the branching factor, i.e.,

o+ — 0 4 B(R,R)O:(R), (96)

where O(T") is the cumulative sum of the observable at step n.
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(5) Generate a new generation of random walkers, reproducing the existing
population, creating an average B(R,R’) new walkers out of a walker
at R. The simplest procedure for achieving this goal is to generate n new
copies of R where n = int(B(R,R') + Ujp,1})-

(6) Perform blocking statistics (see Section 2.2.4), and apply population con-
trol (see Section 2.3.7)

(a) One choice is to update the reference energy Egr at the end of each
accumulation block,

Eg < Egp + Ej, * (EB), 97)

where EY is a re-weighting parameter, usually chosen to be = 0.5,
and (Epg) is the average energy for a block B.

(b) Discard a relaxation time of steps, Nge1, which is of the order of a
tenth of a block, because moving the reference energy induces the
most bias in unit relaxation time.

3. Continue the loop until the desired accuracy is achieved.

Umrigar et al. [125] proposed several modifications to this algorithm to reduce
time-step error. These modifications concentrate on improving the propagator
in regions where the short-time approximation performs poorly; namely, near
wave function nodes and Coulomb singularities. These propagator errors are
expected, because the short-time approximation propagator assumes a constant
potential over the move interval, which is a poor approximation in regions where
the Coulomb interaction diverges.

2.3.9 Green’s function Monte Carlo

The GFMC method is a QMC approach that has the advantage of having no
time-step error. It has been shown to require more computer time than DMC,
and therefore, has been applied to atomic and molecular systems less frequently
than the latter. Good descriptions of the method can be found in refs. [39, 53,
126-128]. The GFMC approach is a PopMC method for which the projector
for obtaining the ground state Green’s function is the standard resolvent of the
Schrédinger equation (see Eq. 67). The integral equation for this case, takes the
form

gD — [M] ) (98)

where the constant E¢ is positive and fulfills the condition that |E¢| > |Ey|, and
Er is a trial energy. The resolvent of Eq. 98 is related to the DMC propagator
by the one-sided Laplace transform

o / e~ (ATE)T 4. (99)
H + E¢ 0
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The integral 99 is evaluated by MC. After equilibration, the sampled times have
a Poisson distribution with a mean of EOJJ\:—EC after N, steps. The parameter
E¢ controls the average time step.

The Green’s function is not known in closed form, but it can be sampled
by MC. This may be done by rewriting the resolvent in the form

1 1 1 ~ ~

1
= = = + = (HU—H)
H+ E¢ Hy+E:; Hy+ Ec

ﬁ-l-Ec‘

(100)

The Hamiltonian ﬁU represents a family of solvable Hamiltonians. To sample
the Green’s function, one samples the sum of terms on the right-hand side of
Eq. 100. The Green’s functions associated with H and Hy satisfy the relations

(H + Ec)G(R,R') =6(R—R/), (101)
(Hy + E¢)Gy (R,R') =6(R—R/). (102)
The most commonly used form of ﬁU is
~ 1,
Hy =V +U, (103)

2

where U is a potential that is independent of R. It is convenient to have
Gy (R, R') vanish at the domain boundary. Hy should be a good approximation

to H in the domain to achieve good convergence. The R-space representation
of Eq. 100 is

G(R,R) = Guy(R,R)— / dR"G(R,R")[-7 - VGy (R",R)]

+ / dR'G(R,R")[U - V(R")]Gu(R",R)).  (104)
\4

2.3.10 Fixed-node approximation

In this section, we discuss the implications of the fermion character of ¥(R). It
is an excited state in a manifold containing all the fermionic and bosonic states.
A fermion wave function has positive and negative regions that are difficult to
sample with the DMC algorithm described in Section 2.3.8. For real wave func-
tions, ¥(R) contains positive and negative regions, #+(R), and ¢~ (R) that, in
principle, could be represented as probabilities. The sign of the wave function
could be used as an extra weight for the random walk. In practice, doing so
leads to a slowly convergent method.

Returning to the importance sampling algorithm, recall that the initial dis-
tribution, |¥(R)|?, is positive. Nevertheless, the Green’s function, K(R,R’),
can become negative if a random walker crosses a node of the trial wave function.
Again, the sign of K(R,R') could be used as a weight for sampling |[K(R,R)|.
The problem is that the statistics of this process lead to exponential growth of
the variance of the observable.
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The simplest approach to avoid exponential growth is to forbid moves in
which the distribution f changes sign, see Eq. 85. This boundary condition on
permitted moves is the defining characteristic of the fixed-node approximation
(FNA). The nodes of the sampled wave function are fized to be the nodes of
the trial wave function. The FNA is an inherent feature of the DMC method,
which is, by far, the most commonly used method for atomic and molecular MC
applications [117], [118].

The fixed-node energy is an upper bound to the exact energy of the system.
In fact, the fixed-node wave function is the best solution for that fixed set of
nodes. The DMC method has much higher accuracy than the VMC method.
For atomic and molecular systems, it is common to recover 95-100% of the CE,
cf. Section 1.1, whereas the CE recovered with the VMC approach is typically
less than 80% of the total.

The FNA is the most commonly imposed boundary condition. It satisfies
the variational principle, i.e., FNA solutions approach the exact energy from
above. This is an useful property, but one that does not facilitate the search for
exact results, because there is no known general way to parametrize the nodal
surface and to vary it to obtain the exact solution. In the following section, we
describe methods that impose no approximate boundary conditions on the wave
function.

2.4 Exact methods

Probably the most important algorithmic challenge that remains to be explored
is the “node problem”. Although progress has been made on systems that
contain up to a dozen electrons [129-133], a stable algorithm that can sample
the exact wave function without resorting to the FNA remains to be determined.
In this section, we discuss a family of methods that avoid the FNA. These
approaches yield exact answers at the expense of a considerable increase in
computational time.

The Pauli antisymmetry principle imposes a boundary condition on the wave
function. It is the requirement that the exchange of like-spin electrons changes
the sign of the wave function. This condition is global and holds even for an
algorithm that is fundamentally local such as those of QMC methods.

2.4.1 Release node method

The evolution operator, e T(H ~Fr) is symmetric and has the same form for

both fermions and bosons. Its straightforward application to an arbitrary initial
wave function |%) leads to collapse to the overall ground state (bosonic) wave
function, as can be seen from Eq. 76.

An arbitrary fermion wave function, ¥(R.), can be separated into two func-
tions ¥ (R) and ¥~ (R) as follows,

E(R,T) = %HW(R, )| £ ¥(R,7)]. (105)
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Note that the original trial wave function is recovered as
YR, 7)=¥TR,7) -F (R,7). (106)

The released node (RN) algorithm involves two independent DMC calcula-
tions, using ¥+ and ¥~ as the wave functions to evolve

U(R,7) = / G(R,R',57)¥(R’,0) dR’

- / G(R,R,7) 7" (R',0)dR’ / G(R,R,7)7" (R',0) dR’
= ¥HR,7) -7 (R,7). (107)

The time evolution of the system can be followed from the difference of separate
simulations for ¥*(R). Note that both distributions are always positive during
the simulation, and that they decay to the ground state bosonic wave function.
This decay is problematic because the “signal-to-noise” ratio in this method
depends on the difference between these two distributions. The decay of the
difference #+(R,7) — ¥~ (R, 7) goes roughly as e~ "(FFr—FB) where Er is the
lowest fermion state energy and Ep is the bosonic ground state energy.

For this method to be practical, one needs to start with the distribution
of a good fermion trial wave function. The distribution will evolve from this
starting point to the bosonic ground state at large imaginary time 7. In an
intermediate “transient” regime one can collect information on the exact fermion
wave function.

The energy can be estimated from the expression

[¥(R,7)HUr(R) dR
[¥(R,7)¥r dR
[@+(R,7)HP;(R)dR
[7+ R, 7) -7~ (R, 7)¥r(R) dR
[~ (R,7)HUr(R) dR
- JIF®R, ) -7 (R, )] (R) dR,
= Ep. (108)

Epn(T) =

In the release-node method [130], a fixed-node distribution is propagated as
usual, but now two sets of random walkers are retained: Wrny, the fixed node
ensemble, and Wy, the release-node ensemble. Walkers are allowed to cross
nodes, and when they do, they are transferred from Wgpn to Wgrn. Also a
count is made of the number of iterations that a walker has survived, Sgn =
{s1,.-.,8n,}. This index is used to bin walkers by age. Each time a walker
crosses a node, a summation weight associated with it, 2gn = {w1,...,wN, }
changes sign. These weights determine the sign of the walker contribution to
global averages.
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The released node energy can be calculated using the estimator,
Nw . @r(Rq
Yo wi lPT((R ,-)) EL(R;)

N i
Z ey

Frx = (109)

2.4.2 Fermion Monte Carlo

From the previous section one can infer that if a method in which the distri-
bution does not go to the bosonic ground state, but stays in an intermediate
regime, then it will not have the deficiency of exponential growth of “signal to
noise”. This leads to the fermion Monte Carlo (FMC) method. The approach
[134-139] involves correlated random walks that achieve a constant signal to
noise.

The expectation value of Eq. 109 for an arbitrary distribution of signed
walkers can be rewritten as

Nw ﬁwT(R:') ﬁl/’T(Rz_)
il vF(RT) %‘(R:)]
Nwryr(RY)  ¢r(BD)7

Ei:l [wg(Rj) o WG—(R;)]

(EBrMmc) = (110)

where Wg (R*) are the guiding functions for a pair of random walkers P; =
{Rzr,Ri_ }. Note that the variance of the energy estimator of Eq. 110 goes to
infinity as the difference between the two populations goes to zero, i.e., the
denominator,

+ —
D= Z [“’i UL (111)
UE(RF) T 0GR
goes to zero as the simulatlon approaches the bosonic ground state. A procedure
that does not change (Ermc), Eq. 110, would be to cancel positive and negative
random walkers whenever they meet [129]. Although random walks are guaran-
teed to meet in one dimension, they need not meet in several dimensions, due
to the exponentially decaying walker density in R-space. Besides, cancellation
has to be combined with other procedures to insure a stable algorithm.
Cancellation can be increased by introducing correlation between the random
walkers. Recall the diffusion step in DMC, in which walkers diffuse from R
to R' following Gp of Eq. 81. In the DMC algorithm, this is implemented
stochastically by updating the coordinates of the random walkers with a random
displacement taken from a Gaussian distribution with a variance of dr,

Rt ->RT+G, and R >R +G; . (112)

If one introduces correlation between the Gaussian vectors, G5 and G;_, the
expectation value of Eq. 110 is unaffected, because it is linear in the density of
random walkers.
An efficient cancellation scheme can be achieved if the Gaussian vectors are
correlated as follows:
Rt —R™
G5, =G U~ —2(93?-%) -(RT—R"). (113)
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Equation 113 accounts for reflection along the perpendicular bisector of the
vector that connects the pair, R™ — R~. This cancellation scheme generates
a correlated random walk in one dimension along the vector Rt — R~. This
one-dimensional random walk is independent of the number of dimensions of the
physical system, and therefore overcomes the cancellation difficulties mentioned
above. Walkers are guaranteed to meet under these conditions.

The modifications to the DMC algorithm mentioned to this point are nec-
essary, but not sufficient for achieving a stable algorithm. If one were to in-
terchange the random walker populations, {R},... ,R}w} < {R;,...,Ry,}
the fictitious dynamics would not be able to distinguish between the two pop-
ulations, leading to a random walk with two degenerate ground states. Specifi-
cally, a ground state in which all the positive walkers R* are marginally on the
positive region of the wave function, and vice versa, {#*(R1),#~(R™)} and
{¢t{R~},¢~(R")}. This plus—minus symmetry can be broken by using two
distinct guiding functions. An example is the guiding function

¢ = \/TLR) + ATL(R) + Pa(R), (114)

where T5(R) is a symmetric function under permutation of electron labels;
¥4(R) is an antisymmetric function, and ¢ is a small adjustable parameter.
The guiding functions of Eq. 114 are almost equal, which provides nearly iden-
tical branching factors for the walker pair. They are positive everywhere, a
requirement for the DMC algorithm, and are symmetric under permutation of
the coordinates, ¥Z (PR) = ¥ (R).

The use of different guiding functions in the respective regions is the last
required ingredient for a stable algorithm. It breaks the plus—minus symmetry
effectively, because the drift dynamics is different because the quantum force of
Eq. 35 is distinct for each population. For a complete description of the FMC
algorithm, the reader is referred to Ref. [137].

The denominator of Eq. 111 is an indicator of stability of the algorithm.
It is a measure of the antisymmetric component of the wave function. FMC
calculations have mantained stable denominators for thousands of relaxation
times, indicating the stability of the algorithm.

Early versions of the method [129] did not scale well with system size due
to the use of uncorrelated cancellation schemes. Nevertheless, researchers have
successfully applied the method to several small molecular systems and obtained
solutions to the Schrodinger equation with no systematic error [131,140-142].
An early version of the FMC algorithm, with GFMC propagation and without
correlated dynamics, is known as exact quantum Monte Carlo (EQMC).

2.5 Zero variance principle

Besides improving the trial function ¥r, one can improve the procedure for
the evaluation of the operator 0. One way of proceeding is to renormalize
the operator in such a way that it has the same expectation value, but lower
variance. Recently Assaraf and Caffarel [143,144] have shown how to construct
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such operators for the energy and energy derivatives with respect to nuclear
position. One defines a trial operator Hy and auxiliary trial function ¥y such
that the evaluation of a renormalized observable O will have a variance that is
smaller than that of the original observable O, and in the exact limit can be
made zero. R

To develop this concept, let us construct a trial operator Hy such that,

/ Hy (R,R')y/7(R') dR’ = 0, (115)

where 7(R/) is the MC distribution. For example, in VMC the MC distribution
is the wave function squared, ¥7-(R)?, and in DMC it is the mixed distribution
of Eq. 85. Next, define a renormalized observable O(R) related to the observable
O(R) given by

_ ~ Hy (R, Ry (R') dR
O(R) = O(R) + 111 sz{f')( JdR' (116)
The mean of the rescaled operator is formally
I a(R)w(R) dR + Jf =(R)Hv (R,R)&y (R') dR R’
(0) = V() (117)

Jm(R)dR
which by property 115 is the same as the mean for the unnormalized operator:
(0) =(0). (118)

The operator O can be used as an unbiased estimator, even though statistical
errors for O and O can be quite different. The goal of this kind of importance
sampling is to reduce fluctuations by construction of such an operator.

The implementation of the procedure requires optimization of a set of pa-
rameters of the auxiliary trial wave function, ¥y (R, Ay ), using the minimization
functional

/ vy (R,R) Ty (R, Ay) dR' = —[O(z) - (0)]Va(®).  (119)

After the parameters Ay are optimized, one can run a simulation to average 0,
instead of O. A possible choice of auxiliary Hamiltonian [143] is

1 1
Hy = —§v§ + ——V&V7(R). (120)

2¢/m(R)
Note that when Eq. 120 is applied to v/7(R), the R’ integration vanishes by

construction. The choice of auxiliary wave function is open, and an interesting
observation is that for any choice of auxiliary trial wave function, minimization
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of the normalization factor of ¥y (R), will reduce fluctuations in the auxiliary
observable

<6(R) [ H(R,R)¥y (R')dR’ >2
m(R)

< [fﬁ(R,R’)WV(R’) dR’:| 2
V(R

because the second term on the right hand side of Eq. 121 is always negative

This variance reduction technique, applied to VMC and GFMC simulations,
has achieved an order of magnitude reduction in computational effort [143]. It
can also be used to calculate energy derivatives [144].

7(0)* =0(0)* - : (121)

2.6 Fermion nodes

For the ground state of a bosonic system, i.e., one for which the wave function
has the same sign everywhere, QMC provides an exact solution in a polynomial
amount of computer time. It is a solved problem. Research on fermion systems
seeks an algorithm that has the same favorable scaling, but for wave functions
that have both positive and negative regions.

Investigation of nodes has been pursued [145-149] to understand the prop-
erties of the nodes of fermion wave functions.

The full nodal hyper-surfaces of a wave function, ¥(R), where R is a 3N-
dimensional vector and N is the number of fermions in the system is a 3(INV —1)-
dimensional function we label n(R). For this function, symmetry requirements
determine a (3N — 3)-dimensional surface, the symmetry sub-surface, o(R).
This is unfortunate, because even though that o(R) C n(R), the remainder of
the nodal surface, the peculiar nodal surface, wR) which is a function of the
specific form of the nuclear and inter-electronic potential, is difficult to specify
a priori for an arbitrary system. Note that o(R) Uw(R) = n(R).

Understanding nodal properties is important for further development of
QMC methods.Ceperley discusses general properties of wave function nodes[146].
A listing follows.

1. The coincidence planes 7(r; = r;), are located at nodes when two electrons
have the same spin, i.e., §,;;, = 1. In more than 1 dimension, 7(R) is a
subspace through which the complex nodal surface passes through. Note
that 7(R) C o(R).

2. The nodes possess all the symmetries of the ground state wave function.

3. The nodes of the many-body wave function are distinct from the orbital
nodes ¢;(r) of Section 2.1.

4. For degenerate wave functions, node positions are arbitrary. For a p-fold
degenerate energy level, one can pick p — 1 points in R and find a linear
transformation for which the transformed wave functions vanish at all but
one of these points.
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5. A nodal cell 2(R) around a point R is defined as the set of points that
can be reached from R without crossing a node. For potentials of present
interest, the ground state nodal cells have the tiling-property: any point
R’ that is not on a node is related by symmetry to a point in 2(R).
This implies that there is only one type of nodal cell: all other cells are
copies that can be accessed by relabeling the particles. This property is
the generalization to fermions of the theorem that the wave function of
the bosonic ground state is a nodeless wave function.

Ceperley suggests that DMC simulations benefit from the tiling property [146].
One only needs to sample one nodal cell, because all cells are equivalent. Any
trial function resulting from a strictly mean field theory, such as the LDA ap-
proximation, will satisfy the tiling property.

Glauser et al. showed that simple HF wave functions of first-row atoms have
four nodal regions (two intersecting nodal surfaces) instead of two regions [147].
This structure is attributed to factorizing the wave function into two distinct
Slater determinants, DT and D¥, each composed of two surfaces, one for the 1
and one for the | electron, as discussed in Section 2.1.

Recently, after analysis of wave functions for He, Li and Be, it was conjec-
tured by Bressanini et al., that any atomic wave function can be factored as
follows [149],

Z(R) = N(R)e/®), (122)

where N(R) is antisymmetric polynomial of finite order, and f(R) is a positive
definite function. A weaker conjecture is that N may not be a polynomial,
but can be closely approximated by a lower-order antisymmetric polynomial.
The variables in which N should be expanded are inter-particle coordinates.
For example, for all 3S states of two-electron atoms, the nodal factor N(R) in
Eq. 122 is

N(I‘l,l‘g) =TI] —7TIy, (123)

where r; and ry are the coordinates of the two electrons.

2.7 Treatment of heavy elements

There is a steep computational dependence of QMC methods with atomic num-
ber Z. The computational cost of QMC methods has been estimated to scale
as 755765 [150,151]. This has motivated the replacement of the core elec-
trons by effective core potentials (ECPs). With this modification, scaling with
atomic number is improved to Z3% [151]. Other approaches involve the use
of core-valence separation schemes [152] model potentials [153], and effective
Hamiltonians [154,155].

2.7.1 Effective core potentials

In the ECP method [156-160], core electrons are simulated by an effective po-
tential acting on the valence electrons. The effective Hamiltonian for these
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electrons is

Hea = f‘*“ Z — + ZW (124)

r
i ? i<j i

where 7 and j designate the valence electrons, Zg is the effective nuclear charge
in the absence of core electrons, and W is the pseudopotential operator. The
latter can be written,

Wr) =S W) S lim) (iml, (125)
=0 m

where | and m are the angular momentum and magnetic quantum numbers. The
projection operator ). |lm){lm|, connects the pseudopotential with the one-
electron valence functions. A common approximation to Eq. 125 is to assume
that the angular momentum components of the pseudopotential, w;(r) do not
depend on [ for [ > L, the angular momentum of the core. This approximation
leads to the expression

L
W(r) = Wi (r) + > (Wi(r) = Wrga(r)) Y [lm)(im|. (126)

=0

The operator 126 can be applied to a valence orbital, i.e., pseudo-orbital, ¢;(r).
This function is usually represented by a polynomial expansion for distances less
than a cutoff radius, r < r., and by a fit to the all-electron orbital for r > r..

Rapid fluctuations in potential terms can cause the first-order propagator of
Eq. 84 to fail to describe the wave function accurately and leads to seeking a
slowly varying ECP for QMC simulations. Greeff and Lester [161, 162] proposed
the use of norm-conserving soft ECPs for QMC. Soft ECPs derive their name
from the property of being finite at the nucleus and leads to a pseudo-orbital
with no singularities at the origin in the kinetic energy. The associated effective
potential has no discontinuities or divergences.

2.7.2 Embedding methods

For the treatment of large systems, a commonly used approach with wave
function-based methods is to use embedding schemes, in which a region of high
interest of a large system is treated by an accurate procedure for the remainder
of the system is described by a less accurate method. Recent work by Flad et

[163] has extended the methodology to QMC methods. In the latter ap-
proach, a mean field calculation is performed for the whole system. An electron
localization procedure is performed, the orbitals to be correlated are chosen and
separated from the remaining orbitals. An effective Coulomb and exchange po-
tential VE is constructed VE which is added to the standard Hamiltonian of Eq. 1
to construct an effective Hamiltonian ,H g, for QMC calculations. Localization
procedures, similar to those required for ECPs, are needed for representing the
effect of nonlocal terms.
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The effective Hamiltonian, H E, takes the form
ﬁE = ﬁint + ‘/;;ext + jext + I?ext + gext (127)

where fIint is the Hamiltonian for the QMQ active region, f}éxt is the Coulomb
potential exerted by external nuclei, and Jext represents Coulomb repulsions,
The term Ky denotes exchange interactions, and Seyy is a shift operator that
prevents the wave function expanded in core orbitals ¢. by raising their single-
particle energies to infinity, and is given by

int ext

Sext = Jlim. A3 6p @) (bp(x)] dr. (128)
a B

Here ) is an effective orbital coupling constant that is derived from considering
single and double excitations into core and virtual orbitals of the system. The
Coulomb term, Jext, and the external Coulomb potential, Vext, are local poten-
tials, and can be evaluated within QMC without further approximation. The
remaining terms require localization approximations that have been discussed
in detail [163].

2.8 The exact wave function and quantities that do not
commute with the Hamiltonian

Given a trial wave function @7 (R), atomic and molecular properties are readily
computed in VMC calculations [164]. Expectation values are calculated directly
from Eqs. 31 and 32. The accuracy of the results obtained with VMC depend
on the quality of ¥ (R).

To obtain expectation values of operators that do not commute with the
Hamiltonian in an importance sampled PMC calculation, one needs to extract
the exact distribution ¥2(R) from the mixed distribution f(R) = ¥(R)¥r(R).
The expectation values for an operator O, (¥(R) |5|L!7T(R)) and (Zr(R) |6|L!7(R)),
are not the same. MC sampling requires knowledge of the exact ground state
distribution: a mixed distribution is not sufficient to obtain the exact result.

If the operator O is a multiplicative operator, then the algorithms described
in this section will be pertinent. Treatment of nonmultiplicative operators, are
described in Section 2.9.

2.8.1 Extrapolation method

An approximate procedure for estimating the ground state distribution can
be obtained by extrapolation from the mixed and VMC distributions. This
procedure is valuable because no modifications of the canonical VMC and PMC
algorithms are needed. Extrapolation can fail even in very simple cases [20],
but it also has provided very accurate results in more favorable cases [165]. The
mixed estimator of a coordinate operator O is

S _ IR Ou'/T (R)dR
O =TomEm @

(129)
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which is to be distinguished from the pure estimator

W dR
(0), = LEEIORE) &

Equation 129 can be rewritten in a Taylor series in the difference between the
exact and approximate wave functions, §¥ = ¥(R) — ¥r(R),

(0),, = (0), + / ((0), — O(R))WdR +O((62)2).  (131)

(130)

A similar expansion can be constructed for the variational expectation, (6)7],

(), = (0), +2 / 7((0), - O(R))IT AR+ O((6F)?).  (132)

Combining Eqgs. 131 and 132, we can arrive at an expression with a second-order
error,

(0), =2(0),, - (0), = (0) +0((52)?), (133)

where (6)6 is an extrapolation estimate readily available from VMC and PMC
calculations.

2.8.2 Future walking

The future walking method can be combined with any importance sampled
PMC method that leads to a mixed distribution. If one multiplies both sides of
Eq. 129 by the ratio ¥(R) /% (R), one recovers Eq. 130. The ratio is obtained
from the asymptotic population of descendants of a single walker [166] .

A walker in R-space can be represented as a sum of eigenfunctions of H:

§(R'—R) =7 (R') ) ci(R)Z,(R). (134)
n=0
The coeflicients ¢;(R) can be obtained by multiplying Eq. 134 by #(R') /@7 (R’)
and integrating over R/:
(R') 7(R)
(5 dR' = . 135
R) = [ S R) g R = (15

One wants to know the contribution to the ground state wave function, ¢o(R)
of the walker at R. If propagated for sufficiently long time, all coefficients
ci(R) # co(R) for the random walker will vanish. This can be seen from the
decay in 7 of Egs. 75 and 76.

If one defines P, (R) to be the asymptotic population of walkers descended
from a random walker at R, one finds,

Po(R) = / co(R)e Fo~En)Tg(R")wr (R') dR/
= —;T((RR))e‘(EO‘ET)T(W(R)|WT(R)>. (136)
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To obtain Py (R) in a PMC algorithm, one keeps a list of all descendants of
each walker R; at each time step 7;. The number of steps needed to keep
track of descendants Ny is a critical parameter. The statistical error of the
asymptotic walker population grows in the limit Ny — oo, and if only few
steps are used, a bias is encountered by nonvanishing contributions from excited
states ¢;(R) # ¢o(R). Efficient algorithms for keeping track of the number of
descendants can be found in the literature [11,61,165-169]. Recently, a method
that does not require keeping explict track of the number of descendants has
been proposed [170,171].

Trial wave function overlap with the exact ground state can also be obtained
with these methods, as shown by Hornik et al. [109]. These methods have been
applied for obtaining dipole moments [172], transition dipole moments [173] and
oscillator strengths [174]. Other methods for obtaining the exact distribution
that are not discussed here are bilinear methods [175], and time correlation
methods [176].

2.9 Force calculations

Most QMC applications assume the Born-Oppenheimer (BO) [177] approxima-
tion. In this approximation, the nuclear coordinates R are fixed at a certain
position during the calculation.® The wave function and energy depend para-
metrically on the nuclear coordinates R, i.e., E(R) and (R, R). We will omit
this parametric dependence for the remainder of the discussion, and simplify
the arguments to E and ¥(R), where appropriate.

Forces are derivatives of the energy with respect to nuclear displacement:

F(R) = —VrE(R). (137)

Because of the stochastic nature of QMC, obtaining forces in the approach is
a difficult task. Generally, QMC calculations are carried out using geometries
obtained with a different quantum chemical method such as density functional
theory (DFT) [179], or wave function methods. Whereas DFT and HF wave
function methods can use the Hellman—Feynman theorem for the calculation of
forces, a straightforward application of the theorem in QMC leads to estimators
with very large variance.

2.9.1 Analytic derivative methods

The calculation of analytic derivative estimators is a costly process both for
wave function-based methods, and for QMC methods. Fortunately, in QMC
one does not have to evaluate derivatives at each step, but rather sample points
intermittently, both to reduce computer time and serial correlation.

The local energy estimator for a DMC mixed distribution is

J %R ) r(R) dR
J % (R)dR

9The QMC method can be used for calculations without the BO approximation, but ap-
plications to date have been to nodeless systems, such as Hy [178].

Eo =(EL) = (138)
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The gradient of Eq. 138 involves derivatives of the unknown exact wave function
Py(R), and the trial wave function ¥y (R). Derivatives of ¥(R) have to be
obtained with a method devised for sampling operators that do not commute
with the Hamiltonian, that are described in Section 2.8. This approach leads
to an exact estimator for the derivative, but with the added computational
complexity inherent in those methods. A simple approximation can be used of
replacing the derivatives of ¥y(R) with those of ¥7(R) to obtain

Vzr¥r(R) > _ 2E0< Vzr¥r(R) >

7r(R) r(R) (139)

VrEo ~ (VREL(R)) + 2<EL

The derivatives of ¥r(R) are readily obtainable from the known analytic ex-
pression of ¥r(R).

The exact derivative involves the cumulative weight of configuration R; at
time step s, R},

s
B; = [[ B(R}), (140)
s0
where the range so — s is the number of generations for the accumulation of the
cumulative weight, and B(R{) is the PMC branching factor of Egs. 65 and 95.
This is an application of the future walking method of Sec. 2.8.2. The energy
expression using cumulative weights is

By = fw%(R)E(Ii)EL(R) dR_ (141)
J#;(R)B(R)dR
and the derivative of 141 is,
= Vr¥r(R) Vr¥r(R)
Vb = (Vasu®) -2 B TETE ) -om( SR
VzB(R) VrB(R)
(mm Sy 5w ) (2

Analytic energy derivatives have been applied to Ha [167], LiH and CuH [180].
Higher order derivatives can be obtained as well. Details on the latter can be
found in Refs [181,182].

2.9.2 Correlated sampling

An efficient approach to force calculation is correlated sampling, which is a
MC method that uses correlation between similar observations to reduce the
statistical error of the sampling. If one represents Eq. 137 in a finite difference
scheme for evaluating a derivative along the difference vector,rg,

OE _ E(R+rq) — E(R)
8I‘d = g ’

(143)

38



then one obtains an approximate energy derivative along the ry. If two separate
calculations are carried out, with a statistical error of the energies of og, the
statistical error for the difference o4 is approximately

OF

. (144)
rq

Oq ~
One can see that because ry is a small perturbation, of &~ 0.01 a.u., the statistical
error of the difference will be several times larger than the statistical error of
the energies. If ry is sufficiently small, a single random walk can be performed,
while evaluating the energy at the original and perturbed geometries, E[¥(R)]
and E[W(R +rg4)]. In this case, both the primary (R) and secondary (R) walks
will be correlated, and therefore have a lower variance than uncorrelated random
walks.

To implement correlated sampling for forces in a PMC algorithm, Filippi and
Umrigar [183] used expressions including branching factors B(R), re-optimized
the parameters of the wave function A for each perturbed geometry, and per-
formed additional coordinate transformations. Implementation details of the
correlated sampling method for derivatives are described in detail in refs. [183,
184].

2.9.3 Hellman—Feynman derivatives and the zero variance theorem

The Hellman—Feynman theorem states that the force can be obtained from the
gradient of the potential

_JP®R)VRV(R)dR

(VrE) = [0P(R)dR )

(145)

where V(R) is the Coulomb potential for the system. A QMC estimator of
the Hellman—Feynman force, Fyr = —VzV (R), can be constructed, but it has
infinite variance. This property is a consquence of the dependence of the force at
short electron—nucleus distances, r;y. Because the variance of Fgr depends on
(F?5), one has a singularity. Furthermore, the Hellman—Feynman theorem only
holds for exact wave functions and in the Hartree-Fock limit, in general basis
set errors need to be accounted for [185]. Also, the fixed-node approximation
introduces an extra requirement on the nodal surface. The former has to be
independent of the position of the nuclei, or it has to be the exact one. An
elaborate discussion of this issue can be found in refs. [186,187]. Lu [188,189)
has been succesful in avoiding these difficulties with the use of floating spherical
gaussian basis functions and gaussian geminals.

One solution to the infinite variance problem is to evaluate the forces at a
cutoff distance close to the nuclear position, and then extrapolate to the nuclear
position [181]. This approach has the problem that the extrapolation procedure
is difficult, because the variance increases as the cutoff value is decreased.

As discussed in Section 2.5, renormalized operators can be obtained in such
a way that they have the same expectation value, but lower variance. Recently,
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Assaraf and Caffarel [144] introduced a renormalized Hellman-Feynman opera-

tor ~ ~
_— Hy?y(R) Hy¥r(R)] %y (R)
Fyr = Fur + 7y (R) - Ur(R) |Fr(R)’ (146)

Here ¥y (R) is an auxiliary wave function and Hy is an auxiliary Hamiltonian.
The variance of operator (146) can be shown to be finite, and therefore smaller
than the variance of Fyp. The form of ¥y (R) proposed in [144] is a simple form
that cancels the singularities of the force in the case of a diatomic molecule.
General forms of the auxiliary wave function can be constructed.

2.9.4 Geometry Optimization

The solution mapping (SM) methodology has evolved from the needs of reactive
flow simulations of combustion processes, where the large size of reaction models
has driven the development of economic numerical strategies [190,191]. In the
SM approach an approximation is sought not to the mathematical equations
that define the model, but to the solution of these equations [192]. The ap-
proximation is developed through the statistical techniques of response surface
design by performing a relatively small number of computer experiments with
the original model and fitting the numerical results with simple functions such
a polynomials [193,194].

The computer experiments are preformed at preselected combinations of
the factorial variables, and the set of these computer experiments is called a
factorial design. Factorial designs originate from rigorous analysis of variance
with the objective of minimizing the number of computer experiments that must
be performed in order to gain the desired information.

As a test of the SM method for geometry optimization, Schuetz et al [195]
applied it to formaldehyde. A total of 15 single-point energy evaluations were
carried out with single determinant ECP VMC and DMC methods. The QMC
energies were fit to a second order polynomial. The resultant function yielded
optimized bond lengths and bond angle in the DMC method that lie within
experimental error. The VMC optimized geometry is within experimental error
except for the CH bond length which is slightly underestimated. The resulting
quadratic represenatation of the potential energy surface in the region of the
minimum was used to calculate three force constants and harmonic frequencies.
The accuracy of the force constants and vibrational frequencies were relatively
low. The authors indicate that this is in part due to the quality of the fitting
function to the VMC and DMC singlet point energies.

2.9.5 Variational Monte Carlo dynamics

Correlated sampling can be combined with a fictitious Lagrangian technique,
similar to that developed by [196] in a way first proposed by [197] for geometry
optimization. In this approach, the expectation value of the Hamiltonian is
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treated as a functional of the nuclear positions and the correlation parameters:

(P|H|P)

() = g

= E[{A}, {R}] (147)
With Eq. 147, a fictitious Lagrangian can be constructed of the form
_ 1 12 1 12
L= ; 5/‘(1)\(1 + ; EMI,R'I - E[{A}a {R}]7 (148)
where M| are the nuclear masses and p, are the fictitious masses for the varia-

tional parameters, A,. The modified Euler—Lagrange equations can be used for
generating dynamics for the sets of parameters, {R} and {4},

M/R! = Vg,E, (149)
OF

N = 150

PaAg o (150)

A dissipative transformation of Eqgs. 149 and 150, where the masses M; and i,
are replaced by damped masses M; and j, can be used for geometry optimiza-
tion. A more elaborate approach that attempts to include quantum effects in
the dynamics is described in [198] .

2.10 Linear Scaling QMC

In insulator systems, interactions between electrons diminish rapidly with dis-
tance between them. Several computational methods have been devised to take
advantage of this property. Quantum simulations of complex chemical systems
have recently become accessible in QMC with the development of linear-scaling
methods. One such method is the local diffusion Monte Carlo method (LDMC);
see refs. [199,200]. The reader is referred to these references for further details
on the implementation and efficiency of the method. A brief description follows.

The time-determining step of most QMC codes for chemical applications
is the calculation of local energy averages of Eq. 89. Local energy evalua-
tion requires most (usually ~ 95 — 99%) of the total computational effort of a
calculation.

We now analyze the computational effort in sufficient detail to indicate the
strategy leading to linear scaling. The computer time for a given QMC calcu-
lation is proportional to the number of evaluations of the local energy function

tcpy = N X tEL (151)

where tg, is the time for a single evaluation of the local energy, and N is the
number of evaluations during the MC run.

To achieve a given accuracy requires a certain number of evaluations N. The
scaling of N with system size depends on the type of system studied and on
trial wave function quality. If a given accuracy is sought, regardless of system
size, the number of evaluations scales roughly linearly with system size.

We next describe methods for improving the scaling of ¢g, .
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2.10.1 Linear scaling of the local energy

For evaluating correlated molecular orbital (CMO) wave functions described in
Eq. 85, the following steps are performed

1. Evaluation of basis functions x(r).

2. Evaluation of MOs and their first and second derivatives with respect to
electronic positions ¢y (r), Véy(r), and V2¢y(r).

3. Calculation of the Slater determinant(s) and their first and second deriva-
tives with respect to the coordinates of the configuration, i.e., D(R),
VrD(R), and VED(R), where R = {r1,rs,...,1,}.

4. Calculation of the correlation function F, see Eqs. 26 and 27.

5. Calculation of the potential energy, V(R) = V.. (R) + Von (R).

In the succeding we describe the procedure for Gaussian or Slater expansions
suggested by Manten and Liichow [200]. For plane-wave calculations, analogous
steps are described in ref. [199].

(1) Basis Functions
Molecular orbitals (MOs) are given as linear combination of M basis functions,

M
B (ri) = Y chnXn(ri)- (152)
n=0

The form of the basis functions X, is usually employed is that of Eqs. 16 or
17. Linear scaling can be achieved by eliminating the contributions of basis
functions that lie beyond a predetermined cut-off radius, i.e. |r; — rex| > Teut,
where r.; is the center of the k-th basis function, and r.,; is the cut-off radius.
The cut-off criterium for the radius used by Manten and Liichow [200] is the
absolute value of the laplacian of the basis function, i.e., |VZxkn|-
(2) Molecular Orbitals
Evaluation of the MOs is a cubic (N?) procedure that is achieved by a sum over
the particle index ¢ in Eq. 152. Procedures, such as those described in refs.
[201-204] can be used to construct localized MOs (LMOs). By using LMOs, a
constant number of basis functions is required for each electronic evaluation. In
practice, the methods described above require that LMOs remain orthogonal.
This constraint is evidenced in small contributions to the LMOs at centers that
lie far from the main contribution to the orbital. To achieve linear scaling, cut-
offs are introduced. One discards the remote small contributions and uses the
modified LMOs to construct the MC guiding function.
(3) Slater Determinant(s)

The linear algebra operations for inverting a slater determinant require N3
operations. Usually, these operations require modest time compared to the
needed for MO evaluation. If LMOs are used, the Slater determinant is sparse
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and the inverse can be obtained using sparse LU decomposition [205]. The later
scales linearly with system size.
(4) Correlation Function
The g;; terms in correlation function of Eq. 27 can be made to decay exponen-
tially with respect to interparticle coordinates, by using an exponentially scaled
reduce distance,
gij = 1 — exp reris, (153)

The exponent A. can be made sufficently small without notably decreasing the
quality of the wave function. Analogous to the case of basis functions, the g;;
terms can be ignored after a cut-off radius, thus achieving linear scaling.
(5) Potential Energy

This is usually the part of the local energy computation that requires the least
computer time. The scaling is quadratic with respect to system size, due to the
double sum over electrons and nuclei. If necessary, fast multipole methods can
be employed ([206]. Section 9 reviews several applications to large systems that
would otherwise be infeasible without the use of LDMC.

3 Applications - general comments

A range of chemical reactions, atoms, molecules, and solids has been studied
using the QMC method. Properties, including atomization energies, heats of
formation, optical transitions, and relative stabilities, have been computed to a
high degree of accuracy with this method. The DMC approach typically recovers
~95% of the correlation energy and does not suffer from the strong basis set
dependence of other ab initio methods such as HF, DFT, and coupled-cluster
(CC) methods. There are however, systematic errors that can be encountered in
QMC calculations: fixed-node error in DMC and localization error with ECPs,
dicussed in section. The fixed-node error can be as much as ~5% of the total
correlation energy. The localization error is typically not of significance and is
often masked by the fixed-node error.

4 Atoms

The literature on QMC calculations and methods for atoms is growing rapidly.
Various correlation functions, including variants of the Jastrow [207] and Boys-
Handy functions [79], as well other compact forms, have been used to calculate
the total energy of first-row atoms. Many procedures have been proposed to
optimize correlation function parameters in conjunction with MO and linear
coefficients in multi-determinant trial functions; see, for example Refs. [62,95,
101,103,208-210]. In the next section, we comment on neutral and charged
species with particular attention to the work of Schmidt and Moskowitz [72]
and Galvez et al.[211].

In Table 1, VMC energies for first-row atoms are compared to estimated ex-
act non-relativistic total energies (E;) [212]. The VMC energies were calculated
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using correlation functions containing 7 (E7), 9 (Eg) and 17 (Ey7) parameters.
The 17-parameter function recovers 100% of the He correlation energy and 97%
of the Li correlation energy. For Be, B, and C the correlation energy recovered
is less than that for other first-row atoms due to known 2s-2p degeneracy effects.

Galvez et al. [211] carried out a VMC study using the 17- and 42-parameter
variants of the Schmidt-Moskowitz Boys-Handy (SMBH) correlation function.
Non-dynamic correlation due to the 2s-2p near degeneracy was accounted for
using a 2-CSF wave function of the form

=11 + Ao

where ) is a variational parameter, 1/, is the 1522522p* CSF, and 1)» is the
1522p**2 configuration state function (CSF). A DMC CSF is typically written

Y=Y diDg DY (154)

where d; is a linear coefficient and D® and D? are determinants of MOs
of a and f spin electrons. For four-, five-, and six-electron systems, k = 0, 1,
and 2, respectively. Multi-configuration HF (MCHF) wave functions of these
descriptions were used as VMC trial functions

The MCHF trial functions with a 17-parameter SMBH correlation function
recovered 80-100% of the correlation energy; see Table 1. In particular, for Be
97.2%, for B 87%, and C for 83% of the correlation energy was recovered com-
pared to 68%, 69%, and 72%, respectively, using a HF trial function. Increasing
the number of correlation parameters to 42 from 17 improves the correlation
energy recovered by ~ 2% for all first-row atoms.

Galvez et al. also used MCHF trial functions to compute VMC energies
for first-row positive and negative ions [211]. These results are compared with
VMC results of Schmidt-Moskowitz and estimated exact total non-relativistic
energies in Table 2; note bound states do not exist for Be and N~. For the
bound systems, the MCHF trial function multiplied by the 17-parameter SMBH
function of Galvez et al. recovered 82-100% of the correlation energy while a
9-parameter SMBH-HF trial function of Schmidt and Moskowitz at the VMC
level recovered 60-88% of the correlation energy; see Table 2. For B—, C~,
O~ and F~ the MCHF wave function also with the 17 correlation parameters
recovered 81.4-96.5% of the correlation energy compared to 73-85% obtained
with the HF with tbe 17 parameter correlation function. Increasing the number
of parameters in the correlation function to 42 coupled with the MCHF trial
function did not yield significant improvement in total energy relative to the
MCHF 17-parameter wave functions.

In Table 3. we compare computed ionization potentials (IP) and electron
affinities (EA) of first-row atoms to experiment. The IP and EA results obtained
with HF and MCHF trial functions are in good agreement with experiment,
except for the B and F EAs. For B the EA is underestimated because the
trial functions does not properly contain the more diffuse p orbitals in B~ as
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addressed by Botch and Dunning [213]. For F the VMC EA is greatly improved
using a 2-CSF trial function

Greeff et al. computed several properties of Al and Als, including the IPs and
binding energies [214]. In the DMC calculations, the 1s, 2s, and 2p electrons
were replaced with the Stevens Basch and Krauss (SBK) ECP, resulting in
effective 3- and 6-electron systems for Al and Al,, respectively. To determine
the ECP localization error in the DMC calculations, two trial functions were
calculated; the first consisted of an 8-parameter SMBH correlation function and
the second a simple Jastrow function. The VMC energy with a simple Jastrow
recovered 33% of the correlation energy defined as the difference between the
SCF energy and the DMC energy. The DMC energy obtained with the ECP and
simple Jastrow function is 1.93320(57) h compared to the 8-parameter SMBH
function that yielded an energy of -1.93339(43) h. The DMC energies agree to
within statistical uncertainty, indicating that the ECP localization error is small
for Al. However, this cannot be assumed to hold for all atoms. In transition
metals using argon-core ECPs, the localization error has been found to be large
[215].

DMC calculation for ground state Al, were carried out at the experimen-
tal bond length of 5.140 bohr, while for the AT and Al™ states, Jones bond
lengths were used [216]. The DMC IP for Al(*P) is smaller than experiment
by 0.023(13) eV. The DMC calculation is expected to underestimate the IP of
Al because there is no fixed-node error for Al ('S), which is a nodeless two-
electron system with the ECP, while the energy of Al(*P) is governed by the
fixed-node approximation. These results are in better accord with experiment
than the previous CCD+ST calculations of Sunil and Jordan [217] and the
MRCI result of Bauschlicher et al. [218]. The EA of Al is in agreement with the
experimental value of 0.44(1) eV and is comparable in accuracy to large-scale
CI calculations. The DMC binding energies for the state is in agreement with
contracted MRCI (CMR-CI) and MRCI calculations, although these values lie
just within experimental uncertainty and 0.1-0.05 eV above previous ab initio
calculations.

Removing an electron from the p orbital of the ground state of Al, yields
the ground state of Al7. The adiabatic and verticals IPs for Alj were carried
out using the experimental Al, bond length. The DMC vertical IP is signifi-
cantly larger than that of Sunil and Jordan [217]. This is likely due to different
bond lengths used in the calculations, however, this result is smaller than the
experimental value of Harrington and Weishaar [219]. The binding energies for
Alfand Al; are larger than previous calculations, while the electron affinity of
Aly and the binding energy of Al are in agreement with the results of Sunil
and Jordan [217]. The fact that Greeff et al. obtain an IP and EA for Al atom
in somewhat better agreement with experiment leads to the belief that these
fixed-node calculations obtain more of the valence correlation energy than the
CC calculations.
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5 Diatomics

5.1 Diatomics - homonuclear

Filippi and Umrigar [93] calculated the VMC and DMC total energies for the
first-row homonuclear diatomics, Liz, Bes, B2,Cs, N2, and O, at the experi-
mental bond lengths. The exponents and MO coefficients of the Slater basis
functions were obtained by variance optimization at the VMC level of theory.
The Slater determinant was multiplied by a generalized Jastrow, siimilar to an
earlier study [91]. VMC and DMC calculations were carried out using an accel-
erated Metropolis algorithm and a small-time-step-error algorithm, respectively
[87,125].

To determine the percentage of correlation energy recovered the QMC total
energies were compared to Cade and Huo’s [220] HF-limit energies. In order
to judge the quality of the trial functions, VMC and DMC energies, (Ey ¢
and Epr¢) and the standard deviations (o) of the VMC local energies were
compared. For systems that have multi-configurational character, inclusion of
higher order CSF's to HF configuration leads to significant improvement in VMC
and DMC energies. The correlation energy recovered with a single CSF, plus
correlation function with VMC ranged from 67.82(9)% for Cs to 82.26(5)%
for Liy, while the DMC correlation energy recovered varied from 88.1(2)% for
Ca to 96.5(1)% for Lis. The correlation energy recovered with multiple CSFs
with VMC ranged from 83.10(7)% for B, to 87.56(6)% for Bes, while the DMC
correlation energy recovered varied from 93.1% for N» to 98.7% for Lis.

For both VMC and DMC the correlation energy recovered with multi-determinant
wave functions increased with Z, for Z > 6. The auto-correlation times of
multi-determinant trial wave functions are reduced compared to the single-
determinant wave functions. In addition, local energy fluctuations for single
and multi-determinant trial functions increase almost linearly with Z. The multi-
determinant wave functions do not exhibit significant variance reduction relative
to the single-determinant trial functions.

5.2 Diatomics - heteronuclear diatomics

The dissociation energy of first-row heteronuclear diatomics, LiH, BeH, BH,
CH, NH, OH, and FH were examined by Luchow and Anderson with the VMC
and DMC method [221]. Trial functions for these calculations consisted of a HF
function and the SMBH correlation function at the experimental bond distance
in all hydrides except BeH for which a MCSCEF trial wave function consisting
of 6 CSFs was also used.

The of correlation energy recovered by DMC ranged from 99.9(2)% (LiH) to
92.1(3)% (CH). For LiH, CH, OH, and FH the DMC dissociation energies are
within 0.2 keal/mol of experiment, taking account of the statistical uncertainty
of the DMC calculations. The VMC results underestimate experiment by ~2-20
kcal/mol. The authors suggest that this is due to the inadequacy of the opti-
mization procedure. For BeH, the single reference trial function overestimated
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the dissociation energy by ~2 kcal/mol. Using a trial function that includes
the 1522p? configuration the DMC calculations yielded a dissociation energy in
agreement with experimental value of 49.8(3) kcal/mol.

6 Carbon and silicon compounds

6.1 Small hydrocarbons

Barnett et al. examined multi-determinant expansions for acetylene and its
dissociation fragments Cz, CH, and CoH [96]. Multi-determinant wave functions
for C, Co, CH, C2H, and CoHs, were obtained from complete active space SCF
(CASSCF) calculations. The CSFs were obtained from CASSCF calculations in
which the CSFs with a weight above a predetermined threshold were retained.

The trial wave functions included a SMBH correlation function. The corre-
lation function parameters were minimized in a fixed-sample variance minimiza-
tion procedure in which the walkers are held fixed and the energy is minimized
according to the variance functional.

For C, CH, and Cs,, fewer than 20 CASSCF determinants for each system
generated greater than 96% of the correlation energy. The CyH fragment is
less well described with correlatin energy recovered in the range of 88.6(6) -
90.5(2)%, with 25 determinants needed for the most favorable case. For CoHa,
66 determinants recovered 97.9% of the correlation energy.

Larger determinant expansions of trial functions and satisfaction of electron-
nucleus cusp conditions would likly result in better agreement with experiment.
Note that the energy converges slowly with respect to the number of determi-
nants in the trial function. A possible contribution to this trend is that only
low angular momentum s and p basis functions were used to construct the MOs.
To improve convergence, higher angular momentum basis functions such as d,
f, and g are likely needed [96].

6.2 Carbon clusters

Carbon clusters are found in interstellar space in addition to various regions
of the earth. In the laboratory, carbon clusters, including fulleres, are typi-
cally formed by a combination of laser vaporization and annealing processes of
graphite. Mass spectra indicate that these experimental techniques yield a va-
riety of cluster sizes. The number of C atoms in these clusters (C,,) range from
10 <n <18 and 32 < n < 60. See, for example, the mass spectra described in
refs. [222] and [223]. These clusters display a variety of physical and chemical
properties that are due to bonding, electrostatic interactions and other factors.
Clusters at the lower end of the mass range are believed to be mostly mono-
cyclic rings containing both even and odd numbers of C atoms. Other possible
structures include chains and polycyclic rings, although monocyclic structures
are believed to be the lowest energy isomers. The clusters at the higher end
of the mass scale include an abundance of fullerene structures as well as chain,
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mono and polycylic rings. The abundance of the types of clusters generated
experimentally depends heavily on experimental conditions. For reviews of ex-
perimental and theoretical studies of small C clusters, see, for example, Van
Orden and Saykally [224], Weltner and Van Zee [225], and Martin et al. [226].

Factors that influence cluster stability include vibrational energies, energetic
barriers and thermodynamic stability to rearrangement. Clusters are generally
formed at temperatures of 1000 K or greater. At these temperatures, vibrational
contributions to the free energy can be significant. Clusters with fullerene-type
structures, are more rigid than ring systems. This rigidity causes the fullerenes
to have higher vibrational free energies than ring systems, which have many
low-lying vibrational energies. As a result, vibrational effects tend to favor ring
isomers at high temperatures. High energy barriers to formation explain the
absence experimentally of the sheet/bowl structures that have been predicted to
be stable at 0K. Thermodynamic stability to rearrangements of different cluster
sizes determines which isomers are observed but does not however, determine
which cluster sizes are observed. Clusters in the intermediate range have smaller
energy differences among competing structures than large clusters, for which
energy differences are much greater.

There are several stable isomers of Cyg; these include such as chains, rings,
bowls, and cages (fullerenes). The bowl is essentially a curved pentagonal piece
of graphite, while the cage structure is the smallest example of a fullerene. It
is not known whether the Cyy cage structure is stable and several studies have
shown conflicting results. For example, Raman spectra indicate the existence
of a chain isomer, but not bowl and cage structures [227].

Of the small fullerenes, the most abundant is Cz,. This system is thought to
form through a mechanism in which larger fullerenes are formed by the addition
of carbon atoms to smaller fullerenes. It is believed that the first fullerenes are
formed for n < 32; the smallest consists of 20 carbon atoms, although it is not
the most stable isomer of Cag. Fullerene stability is achieved in the range of
20 < n < 30. Studies examining the stability of fullerenes are discussed below.
Factors such as electronic correlation and electrostatic interactions are impor-
tant in determining relative stability and binding energies of carbon clusters. In
certain cases, energy differences between isomers are small due to broad min-
ima on the potential energy surfaces, as in the case of Cg and Cyy. Described
below are DMC calculations applied to a variety of carbon clusters, including
the Cg — Cqo isomers which are the work of Sokolova et al., Grossman et al.,
and Torelli et al. [228-230].

6.2.1 Carbon rings and chains

The monocyclic C,, rings, with k = 4n+2 (n = 1—4) are examples of precursors
to the formation of fullerenes and nanotubes. In annealing processes, a non-
fullerene Cf, ion can be converted into a fullerene and a large monocyclic ring
isomer. Second-order Jahn-Teller distortion, aromaticity, and Peierls instability
cause these ring systems to be stabilized by different mechanisms. Torelli et al.
[229] and Shlyakhter et al. [230] examined specific ring and chain systems to
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determine which isomers are most stable.

There are eight possible isomers of Cg and Cyg. These are comprised of the
singlet and triplet states of the linear and cyclic structures with either acetylenic
or cumulenic bonding for both Cg and C;¢ isomers. For the eight structures, the
lowest energy structures from ab initio calculations are the linear cumulenic and
cyclic acetylenic structures for Cg, and the cyclic cumulenic, the cyclic acetylenic
and the cyclic cumulenic. The geometries of these structures are found in regions
of broad minima on the potential energy surfaces; the geometries are insensitive
to small variations in nuclear positions.

The ring systems examined by Torelli et al. [229] are a cumulenic ring
with full D,,, symmetry, with equal bond angles and bond lengths, and two
distorted ring structures with either alternating bond lengths or alternating
angles. The trial functions used in this series of calculations were obtained from
MCSCEF calculations. Including single excitations in the trial function resulted
in significant lowering of the DMC energies and indicate that C4,, 2 ground state
structures have alternated carbon-carbon bond at all sizes, while the cumulenic
isomer is a transition state.

DMC calculations were carried out for rings isomers from Cg to Cig [229].
For carbon ring labeling see ref. [229] The B structure is the most stable Cg
isomer because of overlap of the in-plane 7 orbitals. Isomer A is a transition
state for the angle alternating structure, while isomer C is unstable. For the
Cio ring isomer, the B isomer is the most stable, lying ~1 kcal/mol below the
A transition structure, in agreement with CCSD(T) calculations of Martin and
Taylor [231]. Isomer B is stabilized by second-order Jahn-Teller distortion, while
A is stabilized by aromaticity. The acetylenic isomer appears to be unstable in
DMC. In two previous studies, DMC results for this structure indicated that it
was stable - a result that is likely due to the use of a HF trial function [232].

The B isomer is unstable for the Cy14 and Cig isomers because in-plane 7
orbital overlap is reduced due to the increased ring radius. The dimer of isomer
C is favored at the MCSCF and DMC levels of theory, while LDA favors the
aromatic structure due to overestimation of the correlation energy.

Shlyakhter et al. who also examined these carbon ring systems, constructed
trial wave functions from single determinant SCF calculations multiplied by a
10-parameter SMBH correlation function [230]. To satisfy the electron-nuclear
cusp condition, each contracted 1s Gaussian orbital was replaced by a Slater-
type orbital.

In this study the DMC total energies for the Cg and Cyg structures differ
by ~0.5 hartrees. Compared to the CCSD(T) and MP4 methods, the DMC
energy for Cg is lower by 0.4 and 0.8 hartrees, respectively. For Cyg, the DMC
total energy is 0.8 hartrees lower than CCSD(T) and MP2 energies. The DMC
calculations predict the cyclic Cyg structures to be 55-65 kcal/mol lower in
energy than the linear Cyg structure, in agreement with CISD results of Liang
and Schaefer [233]and Parasuk and Almlof [234]. The cyclic structure is slightly
higher in energy than the cyclic Cy¢ structure.
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6.2.2 C(Cy clusters

Of the many Cyg isomers, the ring, bowl, and cage are of lowest energy. Calcu-
lations using HF, MP2, CCSD and CCSD(T), LDA, and B3LYP methods give
a variety of results dependent usually on size and quality of the basis set. In
addition, the number of electrons in these systems limits the size of the basis
set used. For example, the CCSD(T) method is limited to basis set of cc-pVDZ
quality. The HF method predicts the ring to be most stable; the ring/cage sep-
aration is ~4.5 eV. MP2 calculations using s small basis set, e.g. 6-31G(d,p),
predict the cage as most stable while similar calculations with a large basis
set e.g. cc-pVTZ, favors the bowl. The CCSD method favors the bowl while
CCSD(T) favors the cage. DFT calculations using LDA predict the reverse of
the HF ordering with a ring/cage energy difference of 4.0 eV. GGA results favor
the HF ordering [8].

DMC calculations by Grossman et al. [228] using single determinant trial
wave functions and non-local pseudopotentials, indicate that the bowl is the
most energetically stable isomer. This finding contradicts DFT results, subse-
quent all-electron DMC calculations confirm te ECP-DMC results[235].

The ring structure contains large Coulomb and exchange contributions. The
correlation energy in the ring is 3.4(2) eV less than the cage structure. The
cage contains the largest amount of correlation energy due to the number of sp?
hybrid bonds. The bowl structure has less correlation energy than the cage due
to electrostatic interactions and, as a result, has the lowest total energy.

Comparisons of the HF and LDA energies reveal that the cage and bowl
energies vary by less than 0.5 eV for different geometries. The various ring ge-
ometries indicate that this structure is energetically more than twice as sensitive
as the cage. The effect of different optimization schemes on relative energies is
small; see, for example, the study by Taylor et al. [236].

6.2.3 Larger fullerenes Cay — C3o

As stated earlier, stable fullerenes occur in the range of 20-30 atoms. At the
lower end of this range is the Cgo cage isomer, the first example of an unsta-
ble fullerene, while at the upper end of the range Csz fullerenes are found in
abundance. To identify the first stable fullerene, Kent et al.[237] examined a va-
riety of isomers ranging from Ca4 to Cs2. In this range, three classes of isomers
are energetically competitive: fullerenes, planar sheets, bowls, and monocyclic
rings.

The isomers that were examined in this study included five isomers of Cay,
three isomers of Cyg and three isomers of Cog. Geometries for the isomers were
obtained at the BEYLP /cc-pVDZ level of theory. The sensitivity of the energy
to geometry was ascertained by comparing the B3LYP and BLYP geometries
of the Cyg ring and Dg fullerene. Differences in geometries were 0.03 A for
bond lengths and 0.04° for bond angles. Differences in energy of 0.14 eV were
obtained for the BLYP and B3LYP relaxed geometries [237].

For the Cy4 isomers, DMC calculations predict the graphitic sheet to be more
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stable than the ring and cage structures. The stability of the sheet is primarily
due to the low strain of the hexagonal rings. Of the Cag, Cag, and Css isomers,
the fullerene Co¢ was determined to be the most stable structure, indicating
that it is the smallest stable fullerene. The results for C3o are consistent with
cluster experiments that indicate a large abundance of Cs3, fullerenes.

Reduction of ring strain causes the binding energies per atom of the ring
and fullerene structures to gradually increase with cluster size. However, the
presence of ring strain in the fullerene structures cause the binding energy to
increase more steeply for these structures than for rings. The large number of
high-energy pentagonal rings and the compactness of the sheet/bowl structures
causes the binding energies to vary less smoothly with system size than for the
other structures. Energies of the fullerene and ring structures cross at Coag,
indicating that below this size rings are more stable, and above it, fullerenes are
more stable.

Results for Co4 isomers indicate that the graphitic sheet is most stable, in
comparison with Cyy calculations by Grossman et al. [228] and Sokolova et al.
[235] that indicate that a bowl structure is the most stable. This means that
a range exists in which the sheet/bowl structures are energetically more stable.
Neither the sheet or bowl structure has been identified in experimental studies.
The DMC calculations of the Cog and Cag fullerenes are several eV per cluster
lower in energy than the other isomers.

6.3 Hydrogenated silicon clusters

The absorption and emission of light in Si quantum dots and porous Si can be
modeled using hydrogenated Si clusters. Optical properties of Si clusters are in-
fluenced by electron-hole interactions. Theoretical studies have been carried out
using empirical tight-biding DFT, and perturbation theory techniques. Greeff
and Lester computed DMC bond and atomization energies of SiH,, (n =1 —4),
SigHg, and SizHg, SiH3 [238]. The calculated atomization energies for SiHy,
SioHg, and SigHg showed that no subsequent corrections were needed that as-
sumed that the final state of Si is amorphous. Grossman et al. have reported
IPs and EAs,and first excited singlet and triplet energies of SiH, [239]. Needs et
al. and Porter et al. determined the excitation energies of the lowest triplet and
bright, dipole allowed, singlet transitions of SiHy, SizHg, SisHj2, and Si;gHig
clusters at the CIS and DMC levels of theory [240-242]. A more in-depth dis-
cussion of the optical properties of quantum dots and QMC calculations of these
systems are discussed below.

In the DMC study by Greeff and Lester the geometries for SiH, SiH, and
SiH; were obtained from Allen and Schaefer [243]; the geometry for Si;Hgwas
obtained from that of Leszczynski et al. [244] and the SiH3 and SizHg geome-
tries were calculated at the HF level. The wave functions used in this study
consisted of single HF Slater determinants multiplied by a 9-parameter SMBH
correlation function; the core electrons were described by SBK ECPs. The cal-
culated DMC atomization energies for SiH,, (n = 1 —4) were in agreement with
large basis set CCSD(T) calculations of Grev et al. [245]. The DMC atom-
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ization energy for SiHy was found to be in accord with experiment. For SiH,
SiHj, and SiHy the atomization energies were found to be ~1.5 kcal/mol above
the experimental values; for the SioHg and SizHg hydrides the DMC results are
within 2.5 kcal/mol of experiment. The VMC and DMC results for the Si-H
bond energies for SiH4, SiHj, SiHy, SiH are within 2 kcal/mol of experiment
while the Si-Si bond energies of the Si;Hg and SigHg hydrides are within 3-4
kcal/mol of experiment.

Porter et al. performed DMC calculations for SiH4 using CIS and time-
dependent (TD-LDA) wave functions[241]. In this study, the ground and excited
state energies and the vertical ionization potentials were calculated. The Si core
electrons were replaced with a HF ECP.

For the ground state of SiH4 the LDA optimized structure was used. The
DMC atomization energy of 13.38(2) €V is close to the value of 13.82(2) eV
obtained by Greeff and Lester [238]. These results are in close agreement with
CCSD(T) CBS results of Dixon and Feller [246]. The DMC vertical IP of
12.6(1) eV is in close agreement with the experimental values of 12.36 and 12.85
eV [241].

The first few dipole-allowed singlet excited states of silane were examined
by Porter et al.; these include the 2t — 4s, 2t2 — 4p, 2t> — 5s, and 2t? — 4d
excited states. Note no experimental data are available for the 2¢> — 4p and
2% — 4d transitions [240, 242]. DMC calculations were performed on the excited
states using CIS trial functions and compared to CIS, MRCI and experimental
results. For the 2¢> — 4s and 2t*> — 5s transitions, the CIS results are in close
agreement with the experimental value of 9.7 eV while the DMC calculations
using a CIS trial function and MRCI results are found to be ~0.2 and ~-0.3 eV
below experiment, respectively.

To gauge the quality of the CIS trial function DMC calculations were carried
out on the ground and lowest singlet and triplet excited states using HF, TD-
LDA and CASSCEF trial functions. The HF trial function was obtained by
promoting an electron from the highest occupied molecular orbital (HOMO)
to the lowest-unoccupied molecular orbital (LUMO). The DMC results for the
singlet transition with CIS, TD-LDA, and CASSCF trial wave functions are
the same, ~ 0.3 eV below the experimental value of 9.7 eV, while the HF
trial function overestimates the energy splitting by ~0.9 eV. For the triplet
energy splitting the HF trial function overestimates by 0.5 eV while the CIS
and CASSCEF trial wave functions overestimate the triplet transition by ~0.1
eV. The LDA trial functions yields results in agreement with the experimental
results of 8.7 eV.

Porter et al. also examined the lowest-triplet, lowest-bright (dipole allowed)-
singlet and lowest-dark (dipole-forbidden singlet transitions of SiH4, SiaHg,
SisHi2, and SioHie clusters[242]. DMC calculations were carried out using
CIS and LDA trial functions. The DMC results were compared to CIS and
TD-LDA results as well as experiment where available.

For the lowest singlet and lowest triplet state, excitation energies decrease
with increasing cluster size. CIS overestimates singlet excitation energies due
to a poorer description of the correlation energy in the excited state than in the
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ground state energies. The DMC results are lower in energy than the CIS results
and underestimate the experimental results. The discrepancy with experiment is
due to the role of vibrational and Jahn-Teller effects in these systems, which tend
to lower the excitation energies and were not included in the DMC calculations.
For the lowest singlet and triplet states, the TD-LDA results are lower than
experiment, while for the dark singlet excited state, the TD-LDA results are
lower than the DMC results.

7 Transition metal systems

The pursuit of accurate electronic structure calculations of transition metals is
complicated by several factors including relativistic effects, near degeneracy of
3d, 4s, and 4p levels, compactness and double occupancy of d shells, and semi-
core character of 3s and 3p shells. The latter two effects are significant and
are responsible for atypically large correlation energies of 20 eV or more. The
core electrons of transition metals are very tightly bound due to large Z and
relativistic effects. For these reasons, it is not possible to carry out all-electron
calculations for transition metal systems and achieve desireable variance.

Wave functions from independent particle theories such as HF used in the
DMC calculations can provide excellent estimation of transition energies, how-
ever, large discrepancies with experiment are observed for atomization energies.
This suggests that electron-electron correlation has an important effect on the
nodes of the trial wave functions.

The largest part of 3d, 3p, and 3d correlation energy arises from the repulsive
electron-electron cusp the wave function. The electron-electron cusp is not well
described by most correlated methods, which exhibit slow convergence in recov-
ering the cusp. The QMC method explicitly accounts for the cusp and offers
an attractive alternative for treating molecular systems containing transition
metals.

To date, there are several QMC studies of transition metals systems. For
atoms and dimers, recent QMC applications include the Fe atom by Mitas who
calculated IPs and EAs and the 5D — 3F and 5D — 4F transitions [247];
the Sc and Y ionization potentials computed by Christiansen [248]; the 5F-3F
splitting in Ti and the singlet-triplet splitting of TiC by Sokolova and Luchow
[249]; the d®s?® — d®s transition in Mn and the binding energies of TiO and
MnO by Wagner and Mitas [250]; the ground state properties of Hg, by Flad
and Dolg [251]; and the group 12 dimers of Zn, Cd, and Hg by Schautz and
Dolg [252,253]. The number of QMC studies of TM clusters is small. Dolg and
Flad explored size dependent properties of Hg clusters [254], Ovcharenko et al.
examined small Cu-doped silicon clusters [255] and El Akramine et al. studied
the interaction of CO with a model Cr (110) surface [256].
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7.1 Fe atom

Mitas studied Fe-atom transitions using Ne-core ECPs [247]. The orbitals for
Slater determinants were obtained by the numerical HF method. The trial
function included excitations to account for near-degeneracy effects.

The VMC method yielded a small variational bias for the IP and the 5D —
5F excitation energy, while a large bias was found for the 5D — 3F excitation
energy and the EA. This discrepancy is believed due to a less accurate trial
function for the negative ion and the 3F state. Errors arsing from using a ECP
were determined to be ~0.1 eV. Other possible sources of error include non-
rigorous treatment of relativistic effects and the fixed node error. Further DMC
calculations determined that ECP localization error was small.

7.2 TiC

There have been many theoretical and experimental studies of the titanium
carbon cluster, TigCio discovered by Guo et al. [257]. An entire family of
titanium-carbon clusters has been created, called metallo-carbohedrenes, which
have unusual stability. There are two possible structures for the T;5C;5 clus-
ter; a cage-like pentagonal dodecahedron (7}, symmetry) and a tetra-capped
tetrahedral cage structure (T symmetry).

Diatomic TiC has been investigated at the CCSD(T) and MRCI levels of
theory. To date, no experimental data exists for TiC, and comparisons are
restricted to other ab initio calculations. For Ti, Ne core ECP constructed by
Hay and Wadt [258,259] was used, which leaves the 3s and 3p as well as 3d
and 4s electrons in the valence space. For C, the SBK ECP was used. The
5F-3F splitting of Ti and the energy splitting of TiC were computed [260].
The DMC results for the Ti 5F-3F splittings are in good agreement with non-
relativistic limit estimate. However, for the DFT methods, only the hybrid
B3LYP functional gives the correct order of states. The MRCI and CCSD(T)
methods over-estimate the energy splitting of the states [261].

For the lowest triplet state of TiC, a ROHF trial function was used for
the DMC calculations with an optimized geometry obtained at the MP2 level
of theory. The singlet excited state is low-lying and has significant dynamic
and non-dynamic contributions to the correlation energy. For this state, the
geometry was obtained using s 55-term MR-SDCI calculation; the DMC trial
function was constructed by retaining only the 4 dominant CSFs of the MR-
SDCI calculation.

The calculated energy splitting of TiC varies with method. Both the MR-CI
and CCI calculations give a single-triplet splitting ~0.4 €V smaller than the
DMC result. The DMC values of the binding energy are 0.5 eV larger than the
MR-CI and CCI values.
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7.3 Transition metal oxides

Wagner and Mitas calculated Mn atom s — d promotion energies as well as
the TiO and MnO binding energies. The trial function consisted of orbitals
obtained from HF, MCSCF and DFT calculations [250]. Core electrons were
replaced by ECPs, and for Mn and Ti, the ECPs were generated from Dirac-
Fock calculations with a Ne-core, i.e., 3s 3p electrons were in the valence space
and a soft ECP was used for O.

In the MCSCF calculations, the transition metal 3s and 3p states were frozen
and single and double excitations from higher orbitals carried out to obtain an
improved trial function. The natural orbitals (NOs) of the MCSCF calculation
were used in a subsequent CI calculation. For the DMC calculations, determi-
nants with a weight above 0.05 for MnO and 0.01 for TiO were retained. These
cutoffs in the CI weights reduced the number of trial function determinants to
approximately 20. For MnO, calculations involving active spaces of 10, 12, and
17 orbitals were performed in both the MCSCF and DMC methods. The larger
active space improved the MCSCF energy, but had little effect on the DMC
energy.

The s — d excitation was examined with HF, DFT, and DMC methods.
The HF method overestimates the excitation energies by 1.3 eV while LDA
underestimates it by 0.62 eV. The GGA functionals do not show consistent
improvement over LDA energies. DMC energies obtained using either HF or
B3LYP trial functions yield excitations energies in accord with experiment.

Using HF trial functions, DMC calculations the TiO binding energy is un-
derestimated by 0.6 eV and that MnO by 0.8 eV relative to experiment. It
is anticipated that these discrepancies can be reduced with multi-determinant
MCSCEF trial functions. For TiO, the DMC binding energy obtained using a
B3LYP trial function is improved over the value obtained with the MCSCF
trial function. For MnQO, no improvement in binding energy is achieved; both
the B3LYP and MCSCEF trial function yields results that are in agreement with
experiment.

8 Benchmark studies

8.1 Gaussian-1 set

The Gaussian-1 (G1) set initally was comprised of 31 neutral molecules that
served as the test set for the G1 method [262]. Later, a set of 24 molecules was
added to represent a wider variety of chemical species [263]. The G1 method
has a mean absolute deviation (£,,44) from experiment of 1.6 kcal/mol and a
maximum deviation of 7.4 kcal/mol on the G1 set. The experimental uncertainty
for much of the experimental data such as atomization energies and heats of
formation is less than 0.5 kcal/mol.

Recently, in order to gauge the accuracy and predictive capability of QMC,
Grossman calculated the atomization energies of the G1 set using single determi-
nant DMC [264]. The core electrons were replaced by the SBK ECPs and a basis
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set of 6-311++G(2d,2p) quality was used for the valence electrons [157]. The
average absolute deviation of the DMC results is 2.9 kcal/mol with a maximum
deviation from experiment of 14 kcal/mol. Systems found to have the greatest
deviation from experiment in descending order are: SOz, NOo, C10, CN, LiF,
and NO. The 27 poorest results underbind, on average, by 2.7 kcal/mol while
the 27 best cases overbind by just 0.2 kcal/mol. Possible sources of discrep-
ancy between theory and experiment are: fixed-node errors, experimental zero
point energies, geometry specifications, and experimental atomization energies.
Grossman’s G1 set results are also presented in Table 4.

Comparing to other theoretical methods, the &,,,4 for LDA heat of formation
is &40 kcal/mol and 2.5 kcal /mol for DFT using either the BSLYP or B3PW91
generalized gradient approximation (GGAs). The &;,4q for CCSD(T)/aug-cc-
pVQZ is 2.8 kcal/mol which is reduced to 1.3 kcal/mol by extrapolating to the
complete basis set (CBS) limit. Feller and Peterson’s CCSD(T) calculations at
the CBS limit yielded €yqq of 0.7 - 0.8 kcal./mol for 73 molecules chosen from
the G2 set of 155 molecules [265,266]. The largest deviations were 2-3 kcal /mol
above experiment. The largest available correlation consistent basis sets were
used in this study (up to aug-cc-pV6Z for some systems). These CBS results
for the G1 set are presented in Table 1.

In several recent studies, Lu determined the atomization energy for a num-
ber of first-row polyatomics using the OUDQMC (Ornstein-Uhlenbeck diffusion
Monte Carlo) method [189,267,268]. The results of this study can be com-
pared to experimental atomization energies and with Feller and Peterson’s CBS
results and Grossman’s results by correcting for zero point energy [265]. The
OUDQMC results were obtained with ZPEs estimated following the procedure
of Grev et al.[269)].

Because only 14 systems of the G1 set are found in the OUDQMC study, it
is difficult to draw generalizations. Agreement is found among these approaches
for HoO, NH3, HF, and HoCO to within statistical uncertainty. The OUDQMC
atomization energies for Fao, LiF, Ny, CO2 and CH,4 are in better agreement
with experiment than Grossman’s values and reflect improved nodes of the vari-
ationally more flexible trial functions of the OUDQMC approach. Atomization
energies obtained by the various methods are listed in Table 1.

8.2 Reactions

Manten and Luchow performed all-electron DMC calculations on a set of 20
molecules and 17 reactions selected by Klopper et al. as tests of the accuracy
of the CCSD(T) method [65,270]. The DMC calculations were carried out with
HF trial wave functions. The 1Is and 2s basis set functions of the cc-pVTZ basis
set were adjusted to satisfy the electron-nucleus cusp condition using a fitting
function:

fr)y=ae " +br+c (155)

where the parameters a, a, b, and ¢ were obtained by numerically fitting
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Eq. 155 to the basis set. In the region near the basis function origin, the fitted
function was smoothly connected to the basis set by enforcing continuity of first
and second derivatives. The variance of the DMC calculations is reduced be-
cause the Laplacian near the nucleus is smooth, which improves the local energy
during the random walk. In addition, the time step error of the calculation is
drastically reduced [65].

Geometries for the DMC calculations were obtained at the MP2/cc-pVTZ
level of theory. The DMC total energies for the 20 molecules are lower than
the CCSD(T)/cc-pVXZ (X=D,T) and CBS energies in part owing to the frozen
core approximation of the CCSD(T) calculations. The DMC and CCSD(T)/cc-
pVXZ (X=D,T) total energies for the molecules studied are presented in Table
5. The DMC total energies are on average 16 kcal/mol above the CBS ener-
gies obtained with the quadratic CI atomic pair natural orbital (QCI/APNO)
method; the largest difference is for O3 and the smallest is for Hs.

For the 17 reactions, the all-electron DMC energies differ from experiment
less than the CCSD(T)/cc-pVDZ results and more than those of the CCSD(T) /cc-
pVTZ method. The CC methods are strongly basis set dependent as shown by
the slow convergence of correlation energy with basis set [271]. Only for the
largest basis sets, such as cc-pVQZ and cc-pV5Z, do errors of the CC methods
appear [271].

Compared to experiment, the DMC method underestimates the heat of reac-
tion for all but one reaction, while CCSD(T) overestimates the majority of the
reactions using the cc-pVDZ and cc-pVTZ basis sets; see Table 6. For the three
levels of theory, O3 reaction differs the most from experiment. To accurately
describe this reaction a multi-configuration approach is likely needed; both the
CCSD(T) and DMC calculations are single reference.

The DMC g4 is 5.9 kecal/mol which is to be compared with 8.2 kcal/mol
for CCSD(T)/cc-pVDZ, 2.4 kecal/mol for CCSD(T)/cc-pVTZ, and 0.6 kcal/mol
at the CCSD(T)/CBS limit. The €44 for QCI/APNO CBS is 0.8 kcal/mol
[270]. For the G2 and B3LYP methods, €44 is 2.6 kcal/mol [266].

Omitting the reaction involving ozone and formation of HOF+HF, the €,,,44
for DMC and for CCSD(T)/cc-pVTZ decreases by ~1 kcal/mol while for the G2
and B3LYP, the improvement is ~0.5 kcal/mol. The maximum absolute error
(MAE) for CCSD(T)/cc-pvTIZ is 0.7 kecal/mol and 13.1 keal/mol for DMC. The
DFT, G2, and CBS results have a smaller MAE range of 7.9 - 1.4 kcal/mol. The
HOF+HF reaction is significantly underestimated by DMC. In part, this is due
to Fo for which the DMC atomization energy has been shown to be significantly
understimated in calculations[264].

8.3 Excited states

Excitation energies are labeled as ”1/N” effects because the change in energy
is inversely proportional to the number of electrons in the system, i.e., as the
number of electrons increases, the spacing of the energy levels decreases as 1/N.
Therefore, precise calculations are required to determine the change in energy
from the ground state within the statistical uncertainty encountered in QMC
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calculations. Single determinant trial HF wave functions can be used to describe
open-shell triplet states. Other excited states such as open-shell singlet states,
require multi-configuration trial functions. For example, DMC calculations by
Grimes et al. [167] examined the excited states of Hy using a simple MCSCF
trial function and obtained results for the B ! XFand E 1E;states that are in ex-
cellent agreement with the exact energies of Kolos and Wolniewicz [272]. There
are several other examples of excited-state QMC calculations in the literature,
including the excited triplet states of silane, and hydrogenated silicon clusters,
discussed in Sec. 6.3. More recently, calculation of excited states of free-base
Porphyrin agree with experiment within statistical error [?].

9 Nano-systems - introduction

As atomic and molecular systems become smaller in size, interesting changes
in physical properties occur. The volume to surface area ratio decreases which
makes surface properties have an increasingly important role in the behavior of
the system. Further, quantum effects start to appear owing to the diminished
space and one has quantum confinement. Nano materials constitute physically
interesting systems for study as their size lies between the macroscopic and the
microscopic world making them ideal objects for study of this transition region.
Nano materials are also being widely studied because of their potential use in
different fields as diverse as biology, laser technology and optoelectronics.

Because of their size, typical lack of symmetry and unusually large electronic
correlation interactions, nano materials present difficulties for most quantum
chemical methods. A wide range of electronic structure approaches have been
used to study nano systems and include the familiar ab initio methods of HF,
DFT and time-dependent DFT (TD-DFT) as well as semiempirical approaches.
While these methods have provided considerable insight, the accuracy has not al-
ways been adequate for the purpose. DFT methods are the most widely applied
to these systems, however, there is presently no way of systematically improving
the results obtained, nor is there a satisfactory approach for describing exited
states, which limits their use. As noted above, QMC methods are a proven ap-
proach for recovering correlation energy and furthermore, these methods scale,
in general, as O(N?3) with system size.

9.1 Silicon nano-clusters

Nano semiconductors have been widely studied in the past few years. As elec-
tronic devices have become smaller, the need for understanding the behavior of
these materials has become crucial. As semiconductors are reduced in size, the
optical band gap increases. Semiconductor nano-clusters, commonly known as
quantum dots, usually emit light in the visible region of the spectrum. Since
the surface to volume ratio is large for these systems, surface reconstruction has
important implications for their properties. Nano-clusters formed of atoms from
the IT and IV groups of the periodic table such as CdSe, have been widely stud-
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ied experimentally [273-275]. These materials are easily synthesized with small
size dispersion and with well passivated surfaces. For quantum dots, the main
property affecting the behavior of the system is thought to be quantum confine-
ment, which arises from the smallness of the spatial region in which electrons are
restricted. As the system size decreases, the optical gap increases and the emis-
sion spectrum narrows relative to bulk values. Surface reconstruction has not
been studied in detail in these systems, but it is thought to have a much smaller
impact than quantum confinement [276]. On the other hand, group IV semicon-
ductors such as Si clusters are more difficult to produce with a specific size, and
passivator effects are crucial in controling their optical properties. The potential
uses of Si nano-clusters are considerable, especially in silicon-based electronics
and biological imaging. For Si nano-clusters, the specific surface chemistry, in
addition to quantum confinement, must be taken into account in order to be
able to interpret and to predict phenomena correctly.

9.1.1 Optical gaps and size dependence

Silicon quantum dots can be manufactured in different sizes ranging from a few
atoms to large clusters. Small clusters have been frequently studied because
of their large luminescence. It has been observed that different clusters emit
light at different wavelengths, opening the possibility of several optical applica-
tions. This behavior is also interesting theoretically because of the transition
from atomic-like properties to those of the bulk. Silicon-based technological
applications are varied is size requirement , but the need for smaller materials
has increased with the technological demand for size reduction of various types
of components. As a result, understanding the behavior of such materials and
the connection of that behavior with the electronic structure as clusters grow is
crucial to further understanding and prediction.

To study optical gaps requires the use of methods that make possible calcu-
lations with consistency over a range of system sizes for the particular transition
of interest. A typical model for the study of bulk Si is that of an Si cluster with
dangling bonds capped with H atoms.

Optical gaps have usually been calculated in QMC as the energy difference
between the first singlet exited state and the ground state energy.

Eopt = E* — Egs (156)

This is done by promoting an electron from the HOMO to the LUMO orbital
to calculate the dot in its first exited singlet state.

Calculations of the optical gap of silicon nano-clusters, Eq. 156, with sizes
ranging from 0 to 3.0nm capped with H and with no reconstructed surfaces by
Williamson et al. [277], show that the optical gap decreases as the size of the
cluster increases and quantum confinement is reduced; see Fig. 1 of ref. [277].
All levels of theory show the same trend. In general, semi-empirical and LDA
approaches, even in the time dependent TD-LDA formulation, yield gaps that
are too low, with an error of 1-2 eV compared to DMC. The GW approximation
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does significantly better than the other methods; however, it scales poorly with
system size, which limits its applicability.

Optical gaps obtained with DFT using B3LYP demonstrate that this method
has smaller errors than LDA but, at low electronic densities, it overestimates
optical gaps while for big clusters it underestimates this property, as shown in
Fig. 2 of ref. [277]. It is probably not surprising that B3LYP gives better results
than LDA for these systems because silane (SiH4) was one of the molecules used
to parametrize the functional.

Calculations by Mitas et al. [278] show that silicon dots of different sizes
have different gap sizes and can emit at different wavelengths. For example, dots
of 1.0 (Siag), 1.67 (Si123), 2.15 and 2.9 nm size can emit light in the UV/blue,
green, yellow and red respectively. This can have great applicability in computer
monitor displays, biomedical tagging and flash memory.

9.1.2 Optical gaps and surface reconstruction dependence

Surface reconstruction can dramatically change the absorption spectrum of Si
dots and it has been proposed as a source of optical activity in ultra-small
particles. A reconstructed surface H-Si-Si-H dimer is generated each time two
H atoms are eliminated from the surface. Based on experiments and theoretical
calculations of reconstructed Si surfaces, there exist two possible geometries for
the H-Si-Si-H dimer, buckled and symmetric [279]. Despite the many studies
carried out on this system, controversy remains over which of the structures
constitutes the ground state. A DMC calculation has been carried out on a
small model of the system to represent the relevant part of the surface. In this
calculation a spin DFT (SDFT) [280] wave function was used as the trial wave
function and gives the buckled dimer as the ground state.

Mitas et al. [273] have reported calculations of a silicon nano-cluster with
reconstructed surfaces. Calculations for the absorption spectrum, absorption
edge and some other properties for SizgHy nano-clusters prototypes, where x
corresponds to the number of H atoms used to terminate the surface on each
structure are presented in [273].

The absorption spectra were calculated using DFT, CIS and DMC. The
latter approach was used to calculate the absorption edge which is used as a shift
correction to CIS generated spectra. The CIS spectra are known to correctly
reproduce the number and relative positions of bands, but not the exact values of
the positions due to incomplete treatment of electron correlation. The spectrum
obtained was broadened with a Gaussian function to account for temperature
effects.

The spectra shown in ref. [273] agree well with experimental data. The
overall spectra and the band strengths are in good agreement. However, there
are some differences in structural details. As the number of reconstruction sites
increases, the absorption edge of the dot is shifted to lower energies. For exam-
ple, SiagHsg, which has all superficial Si bonds terminated in H, the absorption
edge is found at 4.8eV, while for SiggHa4, which contains six reconstructed sites,
and SizgH;js, which contains twelve reconstructed sites, the absorption edges are
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found at 3.5 and 0.1 eV, respectively. With the loss of more than 24 H atoms,
the gap for this system drops sharply due to a change from a sp® to a sp?
network. Absorption spectra for each of these clusters show highly molecular
(discrete) band patterns, with SizgHio being the most complicated.

Steps are another way of reducing H coverage of the surface. A step is
created when a Si-Si bond is formed from neighboring Si atoms - one Si bonds
to two H atoms and the other bonds to a H atom and another Si. The effect
of surface dimers appears to be important for small clusters. Studies of larger
clusters, ranging in size from 53 to 331 silicon atoms, show that the presence of
steps in the surface is more important than dimers for optical properties such as
the optical gap. The presence of dimers in the surface helps to lower the optical
gap and steps in the surface enhance this effect. These structures cannot be
formed in very small dots. Therefore, the main defect determining the size of
the optical gap in these H terminated silicon clusters is the number of surface
dimers.

9.1.3 Optical gaps and passivant effect

Passivants are substances that are added during cluster fabrication to terminate
their growth. Computational results by Puzder et al. [276,281-283] and Belo-
moin et al. [284] indicate a close connection between the type of passivant used
to terminate Si bonds in a quantum dot and the optical properties observed for
the system. Table 7 shows results for the optical gap obtained for SigsHsg and
similar dots when one H atom is replaced by another element or molecule, or
substituting two H atoms if the passivant generates a double bond when it links
to the surface.

The results in Table 7 indicate that singly bonded passivants do not appre-
ciatively contribute to optical transitions even when they are highly electronega-
tive. Doubly-bonded passivants, however, do affect the optical gap. The reason
is attributed to the distortion in the sp® network at the surface.

Contaminants in the synthesis of these materials can lead to dots with very
different behaviors than those anticipated. Such behavior opens the possibility
of constructing Si-based dots with desired properties.

Results by Puzder et al. [276,281-283] show that increasing the dot size
with oxygen as a contaminant also reduces the optical gap, due to the reduction
of quantum confinement. The rate of decrease of the optical gap with oxygen is,
however, much slower than that observed for dots containing only H termination.
This can be appreciated in Fig. 1 of ref. [276].

Increasing the amount of oxygen in a dot decreases the gap even further.
Oxygen can bond with Si atoms in a dot in different ways. It can form a double
bond with a single Si atom or bond with adjacent Si atoms to form a bridge
or it can occupy an interstitial site. A gap reduction is found again related to
the extent to which these bonds distort the sp® network. The biggest effect is
observed with oxygen doubled bonded to a Si atom. The bridged bond also
reduces the gap to a large extent, while the interstitial oxygen does not seem
to affect the gap significantly. However, if no SiHz termination exists, as in
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the interstitial case, the lattice distortion might be larger than that discussed,
which would produce a bigger effect in the gap.

All the calculations referred to in this section were performed at geometries
that are modifications of a bulk Si diamond-like cluster. The changes arise from
reconstruction of the surface owing to passivant termination. Depending on the
passivant, the surface follows either a tetrahedral sp® network or an sp? network.
The distances used for the passivant-Si bonds were taken from smaller molecules;
for example, the Si-H distance was taken to be that in SiH4. Structures were
then relaxed to zero temperature using molecular dynamics simulations [196].

9.1.4 Synthesis dynamics effects

The previous two sections were concerned with properties observed in Si nano-
clusters having all Si atoms situated in a diamond-like structure throughout
the dot. All effects discussed above are related to changes arising from mod-
ifications in the structure of the surface. Although these studies are of great
value for understanding the importance surface chemistry can have in dictating
the behavior of materials in this size range, they do not always fully explain
experimental results.

Synthetic procedures can have a large effect on the properties of Si dots.
Small Si nano-clusters produced at high temperatures by methods such as vapor
deposition tend to develop a non-crystalline core structure. Crystalline struc-
tures of these clusters do not seem to be dynamically favored unless the process
involves starting from a crystalline structure, such as etching or sonification,
done at low temperatures or with rapid passivation.

For nano-particles larger than 3nm, describing the core as a tetrahedral net-
work is a good description; for smaller dots this is not always the case [285-289].
There is a large difference in the optical gap observed for a Si dot depending on
the way it was fabricated. The Si dots obtained by chemical vapor deposition
have optical gaps that are several eV lower than fabricated using inverse micelles
[290,291]. The significant point is that alternative fabrication techniques lead
to different structures in the dot core and therefore different physical properties.

In Fig. 1, Draeger et al. [290,292] show that different molecular structures,
generated for an amorphous cluster of 29-30 Si atoms using a first-principles
molecular dynamics approach (FPMD) [196], have different optical gaps. Struc-
tures presented in Fig. 1 were obtained starting from an amorphous Si cluster
generated by running FPMD calculation of bare Si a cluster at high temperature,
and later adding H atoms to passivate the surface. As shown in Fig. 1, struc-
tures (a) and (c) correspond to atomic arrangements that would be obtained
at low temperatures, and therefore have a crystal-like structure. Two different
structures are shown; (a) SizgHas having a single Si as a core, or (¢) SizgHaz
with two tetrahedral Si atoms, double-core, structure. Structures (b) and (d)
correspond to dots of 29 and 30 Si atoms, respectively, obtained by FPMD as
explained above. While the Sigzg structure does produce a double-core structure
as the ideal case, the Sizg structure also forms a double-core unlike the ideal
case. At high temperature, structures with larger numbers of core atoms are

62



more favorable (double-core), and therefore, in this case, a core of 30 atoms
is more favorable, by symmetry arguments, than the regular 29-atom core, see
Fig. 1 (b) and (d). Structures with a double core formed easily in all FPMD
simulations [290]. During the formation of the cluster at high temperature, bare
Si dots become amorphous. In an attempt to saturate as many dangling sur-
face bonds as possible, a double-core structure is formed. Transitions between
double- and single-core structures are highly unfavorable, even when enough H
atoms exist to generate a single-core dot, since the global surface reconstruc-
tion would involve the breaking of several bonds with resultant high activation
energy. The energy of the cluster formed when the geometry is relaxed at high
temperature is considerably different from that of a cluster with an ordered core.

DMC and LDA calculations by Draeger et al. [290] on Si clusters are pre-
sented in Table 7. The results for two geometries, the crystal-like structure and
one obtained by FPMD, using for the latter the geometry corresponding to the
cluster that gave the largest gap in relaxation, show that optical gaps obtained
in double-core structures are smaller than those from single-core dots and agree
well with experiment [293,294].

Energies of relaxed double-core clusters show good agreement with experi-
mental data for small dots. Small dots favor the formation of amorphous cores
and usually resulting in a double tetrahedral core. Calculations of crystalline
structures show a significantly larger gap. For large clusters, a single, ordered
core obtained by FPMD (at low temperature) or by taking the diamond-like
structure of bulk Si show good agreement with experiment. Large clusters tend
to favor the crystal tetrahedral unique core structure.

9.2 Two-dimensional quantum dots - introduction

Two-dimensional quantum dot can be constructed by bringing together two
thin semiconductor layers, generally GaAs, and generating a two dimensional
electron gas (2DEG) between those layers. Electrons are restricted to move
in only two dimensions, which is the reason these dots are referred to as two-
dimensional quantum dots (2DQD). The electrons are free to move in the plane
and can be modeled as free particles. These electrons can be further confined
by applying voltages, gates, and similar constraints. Depending on the type of
confinement, the dot dimensionality can be reduced to one or zero dimensions,
and the geometry of the system can be defined. For example, a one-dimensional
electron gas (1DEG) also known as a quantum wire can be generated. The most
common type of confinement studied is a harmonic potential. This confinement
reduces the dimensionality to zero (0DEG). In this circumstance, electrons are
confined to a well, similar to the situation in an atom. For this reason, such dots
are usually referred to as artificial atoms. Properties such as addition energy,
shell structure and spin configuration can be determined experimentally. For
quantum compting applications, these devices must be small and be kept at low
temperatures to avoid vibrations and possible destruction of quantum coherence.

Both 2DQD and 0DQD have recently grown in interest because of their
potential use in the construction of quantum computers and nano electronic
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devices. Understanding the electronic properties of these systems as well as their
interaction with electric currents and magnetic fields is of great importance to
the development of these applications. Owing to its size, a QD requires quantum
mechanics to be understood, however, the electronic structure can only be solved
exactly for dots containing a small number of electrons. Theoretical methods
able to describe electron correlation accurately are needed to describe and to
predict experimental results. As with many other fields, the methods of choice
for studying these systems are HF, DFT in the LDA approximation, SDFT [280],
current SDFT (CSDFT) [295], exact diagonalization methods where possible,
and QMC.

Although LDA offers a fast and efficient method of calculation, the approach
contains uncontrolled approximations and the results obtained are not eigen-
functions of the square of the total spin operator S2. HF theory has the HF
exchange energy, but by definition no correlation energy. Correlation effects are
essential for describing these systems correctly. LDA includes an approximation
to both exchange and correlation. Exact diagonalization methods offer a way
of obtaining exact results, but these procedures are available only for highly
symmetric systems with a small number of electrons (n <~ 7). The QMC
method is a good alternative for treating these problems because correlation
can be readily included and large systems can be examined with high accuracy
within reasonable computational resources. In addition, the computational cost
of VMC is comparable to the cost of CDFT or other mean field methods.

The total energy of these systems can be written as a sum of the contribu-
tions arising from the kinetic energy, the Coulomb interaction with the external
potential (usually considered to be parabolic) and the interaction with the mag-
netic field, B, if existent, which is also usually given as a parabolic function.

Quantum dots are about 100 times larger than atoms; therefore the inter-
action with a magnetic field is strong, which gives rise to large gaps between
high- and low-spin configurations. It is observed that at low magnetic field,
Hunds rule applies in the orbital filling, giving rise to high spin states. For high
magnetic fields, however, all spins align obtaining what is called the maximum
spin density droplet state. At even higher magnetic field values, lower states are
emptied to populate higher ones. As the magnetic field increases, transitions to
higher spin states are encountered.

9.2.1 Quantum dots in vacuum

Harju, et al. [296] have reported a series of studies that lend validity to the
applicability of VMC to describe accurately QD systems. In this work they
test the applicability of VMC with calculations on a very simplified version of a
2DQD, namely, two interacting electrons in the confining potential created by
the quantum dot. This system has been studied extensively by other methods
[296-303]. The Hamiltonian of the system is

2 2 * ()2
A We m* (2,
H= Z(_ 5 VZ+ =L+ 5 92 (157)

i=1
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where m* and e are the effective electron mass and charge, respectively. In a
center-of-mass representation Eq. 157 is separated into an harmonic-like equa-
tion, dependent on the center-of-mass coordinates and an equation dependent
on the relative coordinates of the electrons.

R2

Uop = ea:p(—l—Q) (158)

Equation 158 conserves the angular momentum of the electron pair so that
the solution can be written as a product of radial and angular factors. The
radial factor can be interpreted as the two-body Jastrow correlation factor of
QMC trial functions [296].

Harju et al. show that VMC results obtained in this way are in excellent
agreement with exact numerical results; see Fig. 2 of ref. [296]. This finding
calls attention to VMC as an effective alternative method for studying large
quantum dots. The authors followed with a study of a 2DQD interacting with
weak magnetic fields [304]. The latter case is discussed in the following section
9.2.2.

As mentioned, a confining potential generates atom-like energy levels. Harju
et al. performed calculations in the weak-confinement limit to show that as
this limit is approached, quantum effects disappear and the system description
becomes the classical solution of point charges in an external magnetic field.
This state is referred to as the Wigner molecule. In this work they compare the
VMUC results along this transition with the most accurate energies available. As
the confinement gets weaker the system spin becomes polarized before electrons
attain classical positions; see Fig. 1 of ref. [305]. The transition to the Wigner
molecule occurs roughly at the same density as in the 2DEG, however, it does
not go through a polarization before the transition.

Calculations for systems containing more than two electrons have been car-
ried out demonstrating good agreement between VMC and exact methods [305,
306]. Pederiva et al. [307,308] also present comparisons between VMC and
DMC calculations for systems containing various numbers of electrons using a
model similar to that of Harju. Reference contains corrected results obtained
using a trial wave function with an improved Jastrow factor. The results in
each of these studies show good agreement between both methods except for
the three-electron 2DQD calculation in the first paper by Pederiva et al. Harju
et al. also show VMC results for the same systems treated by Pederiva et al.
using an optimized independent-particle function a trial function with a two-
body jastrow correlation function and obtaining good agreement with DMC.
The total energy of the three-electron dot is presented in Table 8. Thee results
confirms the importance of the trial function for accurate VMC results.

The results shown in Table 8 were obtained using an optimized wave function
and agree almost completely with the ones obtained using DMC. The errors
presented in VMC calculations are usually much smaller than the SDFT error
[305,307, 308].

Harju et al. also present VMC energies for a six-electron QD and compare
results with those obtained using an exact diagonalization method; see Table 9.
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As in the previous case, VMC and exact diagonalization are in good agreement.
The VMC energies are lower than those of the exact diagonalization method.
This difference is ascribed to the inability of the exact diagonalization approach
to describe the many body wave function with a limited basis set [305]. Cal-
culations of the radial pair distribution show that as the confinement potential
weakens, the peaks that represent the positions of the two electrons narrow
and grow higher, showing that the electrons become localized as confinement is
reduced and approach the classical description.

With different confining procedures, it is possible to obtain quantum dots
with different geometries. By applying an infinite hard-wall potential, for ex-
ample, one can generate a good model for real rectangular dots. The latter case
has been studied by several authors [309-313]. The simplest model for this case
corresponds to the particle in a box. In this case, it is a rectangular box of
dimension L by 8 L, where § is a deformation parameter that gives the ratio of
the lengths of the two-dimensional box. In this model, electrons are considered
to be noninteracting. The solution of this problem takes the form of an energy
dependent on the deformation parameter and the two quantum numbers of a
particle in a 2D box.

B _1,n? 9 .
Mg Ny — 5(? +,B’l’ly) ( 59)

For a square quantum dot, the deformation parameter is unity and the en-
ergy equation described before Eq.159 predicts degenerancies for each energy
state. This degenerancy leads to the introduction of magic electron numbers
corresponding to occupations of closed shell configurations, which for a square
dot are N = 2, 6, 8, 12, etc. As one deforms the geometry by making one
side shorter than the other, the degenerancy is lifted in a manner similar to
that encountered for an anisotropic harmonic potential (elliptical potential),
but without the regularly spaced junctions of the eigenstates. As the deforma-
tion is increased, the system geometry approaches that of a one-dimensional
system. This makes quantization in the longer direction the determining factor
for energy level occupation.

In Fig. 4 of ref. [314], Rasanen et al. show spectra for the addition energy
obtained for a rectangular dot that contains up to 16 electrons with various
deformation coefficients. The addition energy is defined as the energy involved
in adding an electron to an N electron dot. The agreement among SDFT and
VMC is generally quite good for these calculations. For the square quantum
dot the magic numbers can be easily observed as peaks in the plot. The large
energy that is occasionally observed for N=4, even though it is not a magic
number, is a consequence of being a half-filled shell. It is also clear that the
shape of the spectrum varies strongly with deformation. At high deformation,
B > 2, the trend corresponds to an effective one-dimensional system.

Discussion to this point has been on systems composed of non-interacting
particles. We now turn to systems of interacting particles. Rasanen et.al. [314]
have compared the energy of a system containing N non-interacting particles
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with the ground state of the corresponding system of interacting electrons; see
Fig. 5 of ref. [314]. For § = 1, the system has a square shape and the S =1
ground state, which corresponds to a partially spin polarized configuration, is
found at N = 4, 10, and 14, corresponding to half-filled shells. As the dot is
deformed, the system changes to an S = 0 state. In general, polarization occurs
at larger values of the deformation parameter for the interacting case than for
the non-interacting case. This behavior suggests that for these systems, the
effective deformation of the rectangle is smaller than the external potential,
which can be explained by the fact that in a rectangular box, the electron
density is increased toward the shorter side. In the case of elliptical dots, the
observed behavior is the opposite since the deformation of the system causes
the electronic density to concentrate at the center of the ellipse.

Comparisons of the energetic results of this type of systems with experiment
is not always straightforward. There may be irregularities in the experimental
dot that lead to unexpected behavior. Nevertheless, the calculated spectra
obtained in this way are quite similar to experimental spectra.

9.2.2 Quantum dots in magnetic fields

The interaction of QD’s with magnetic fields is important for ascertaining the
possible uses of these systems in nano-electronics. Many papers have been
published on quantum dots in magntic fields. The most desirable method is one
that gives exact results, which makes exact diagonalization compelling. This
method is limited, however, by its scaling with system size and finite-basis
errors. QMC has proved to offer advantages for this problem because its high
accuracy has been found comparable to the exact method and it scales better
with system size.

The VMC method can be used to address these systems for a wide range
of magnetic strengths. Simple wave functions can be constructed that not only
give accuracies comparable to exact methods, but are also easier to interpret.

As mentioned above, the interaction of a QD with a magnetic field is usu-
ally strong. The effect of an external magnetic field and the electron-electron
interaction energy are usually of comparable strength in a typical QD [315]. As
the field strength increases, the system typically undergoes several transitions
to higher spin states. The state where all electrons that compose the dot align
with the magnetic field is called a maximum-density droplet; it is a state of full
spin polarization and occupation of the lowest Landau levels (LLL).

In Fig. 5 of ref. [315], Saarikoski et al. compare the energy of a six-
electron dot using VMC, SDFT and CSDFT as a function of magnetic field
strength. The transitions between different spin states are evident. However,
it can be seen that the DFT methods and QMC are not always in agreement.
In SDFT and CSDFT, the transition from the maximum-density droplet state
to the L, = 21, S, = 3 state occurs at a magnetic field of 10T, while for VMC
the transition occurs at 9T. It can also be seen that VMC and SDFT give a
transition at roughly 4T to a state with L, = 7, S, = 1 that is absent in the
CSDFT calculation. These differences reflect the difficulty in constructing an
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exchange-correlation functional that remains valid over the full range of field
strength. According to Saarikoski et al. [315], beyond the maximum-density
droplet state, it is hard to converge the CSDFT method.

For an arbitrary system, the confining potential landscape can play an im-
portant role in determining the properties of a quantum dot. The presence of
impurities can alter the behavior of the given system. Analysis done to ascertain
the effect of random disorder, chaotic dots and impurities can be found in refs.
[316-326].

In Fig. 2 of ref. [327], Guclu et al. plot the ground state energy dependence
with respect to magnetic field strength for ordered (pure) and disordered dots
containing 4, 6, 9 and 10 electrons. For these calculations, the dot was sim-
ulated as a standard QD in a symmetric parabolic potential. The disordered
dots were simulated by introducing impurities represented by randomly posi-
tioned Gaussian-like potentials using unrestricted HF (UHF) and DMC. The
latter method gives a much better result than UHF. In addition, calculations
for N=4 (not shown) were performed by exact diagonalization [327] show ex-
cellent agreement with DMC results. The vertical lines shown on the graphs
represent the transition to different spin states obtained by DMC in the stan-
dard dot. The total spin in the z direction is indicated in each graph by an
integer placed between the spin transition lines corresponding to the particular
state. For large magnetic field, close to the maximum density droplet region,
UHF results become much better than at weak fields where they do not give
accurate energies or correct spin states. This can be understood by the fact
that the maximum density droplet state has very small correlation energy and
can be described reasonably well by a single Slater determinant. The effect of
disorder in these systems is evident in all plots. The energy trends shown by
the disordered dots are not as clear as those for pure dots, i.e., the transitions
between different spin states nearly disappear. This effect can make the ob-
servation of these transitions hard to observe experimentally. The value of the
magnetic field at which a transition takes place is also changed and in some
cases even new transitions that did not take place in the pure dot appear.

In Fig. 4 of ref. [327] the dependence of the addition energy on the number
of electrons is calculated for different disordered states and compared to the
corresponding pure quantum dot shown in the bottom line. It is evident from
these results that, for closed shells, i.e. for magic n umbers N = 2, 6, 12, Hunds
rule applies even for highly disordered dots. This behavior is indicated in the
figure mentioned as a persistent peak at those positions that have S = 0, which
indicates the existence of the closed shell. For open shells, the rule is not always
obeyed. For systems with a small number of electrons, i.e., for systems that
have only low shells populated, they seem to be less affected by disorder than
systems with higher shells populated. These results are significant because they
provide important information for experimentalists because these effects have
implications for interpreting spectroscopy data, since electronic transitions are
less clear and the magnetic field needed for promoting those transitions does
not correspond to the one predicted in non-disordered dots.
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9.2.3 Interacting quantum dots

The system of two quantum dots containing one electron each, similar to the Ha
molecule, has been proposed as a basic elementary gate in quantum computers.
This idea can be generalized to different arrangements of QD, e.g. linear chains,
etc. [328-330] There are a variety of materials and tunable parameters including
the confining potential that can be used to generate different behaviors. These
systems are referred to as quantum dot molecules.

The most studied geometry is one with two QDs laterally coupled at the
interface of GaAs/AlGaAs plates, each QD containing one electron. The dots
must be sufficiently close that electron tunneling between these dots can occur.

Figure. 7 of ref. [315] shows the dependence of the energy of the coupled
dot system with S = 0 and S = 1 with respect to dot separation. One sees
that as the distance increases, the energy is reduced. The DFT values are in
good quantitative agreement with VMC results at small inter-dot distances for
the singlet-triplet gap. At large distances, the agreement is not as good, SDFT
leads to a symmetry breaking. There is only a qualitative agreement between
SDFT and VMC in this regime.

Because of their potential use in nano electronics, the effect of a magnetic
field on interacting QDs holds considerable interest. Results for the dependence
of the energy difference of the triplet and singlet states of the dot with respect
to magnetic field strength calculated with CSDFT are presented in Fig. 8 of
ref. [315] for two dots separated by 2.73 bohr. As shown, CSDFT predicts a
singlet to triplet transition at 1.5T. At low magnetic fields, the CSDFT results
are in accord with QMC, but as the magnetic field is increased, the CSDFT and
DMC results begin to deviate from each other. The singlet to triplet transition
holds high interest because it opens the possibility of using QDs as qubits in
the construction of quantum computers. The CSDFT and QMC results are
in reasonable agreement at the value of the magnetic field needed for such a
singlet-triplet transition. In general, CSDFT is in good agreement with QMC
in regimes of finite magnetic fields; however, the results depend on the choice
of exchange-correlation functional.

9.2.4 Quantum dot excitonic complexes

Another aspect of QDs that has generated high interest recently, both exper-
imentally and theoretically, is excitonic complexes. These systems have con-
siderable importance in semiconductor physics and spectroscopy. An exciton
corresponds to the bound state formed by an electron with an effective mass
m. and a positively charged hole of mass my, left behind when the electron is
excited to a higher level. The ratio of m. to my characterizes the system. The
limit where this ratio goes to zero is designated the hydrogenic limit, while the
limit where the ratio goes to one is labeled the positronic limit. The ratio for
a given exciton depends on the material and other factors. Also, bound states
can be formed consisting of n. electrons and nj, holes, similar to the case of
an electron-proton system in which one has bound systems such as H, Hy, HJ,
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H—, Hi. An important feature of excitonic complexes is that the emission in
QD lasers arises from exciton recombination. Single-dot spectroscopy has been
used to resolve the energy of excitons. One of the most intriguing properties
is binding energy enhancement that arises from excitons in a two-dimensional
QD compared to a three-dimensional system, are much larger than bulk values.
This behavior is due to confinement of the hole and the electron in the same
quantum well.

There are a number of different energy values that are important to calculate
for an excitonic complex. For example, one value of interest for a single exciton
system is the exciton transition energy, i.e.,

Ex = Ey1(el, hy) — Eoyo (160)

Here the notation for energy levels is F¢, p,. This is defined as the difference
between the energy of a dot having an electron in level eg and a hole in level hyg,
and a hole in its ground state. Typical values for this quantity for group III-V
or II-IV dots are 1-3 eV.

Another important property is the exciton binding energy AX, which is
defined as the difference between the total energy of a system composed of two
dots infinitely separated, one having an electron in level ey and the other having
a hole in level hg, and the energy of a quantum dot containing an exciton,

AX = Eio+Ep1 —Ei1—Eop (161)

Typical energy values are in the range 10-200 meV. Similar properties can be
defined for systems containing more than one exciton beginning with biexcitons.
For example, the biexciton binding energy AX X is defined as the difference be-
tween twice the exciton energy and the biexciton energy Es o, i.e., the difference
in energy of having two excitons in a single dot compared to the energy of hav-
ing two dots each with a single exciton. This energy is typically of the order of
1-6meV. The presence of biexcitons has been observed experimentally in single
dot spectroscopy as a red shift on exciton luminescence. For multiple excitons
there are two other quantities of interest. One is the charging energy, which is
defined as the minimum energy required to add an extra electron-hole pair to
an N-1 exciton system. The other is the addition energy, which in this context
is defined as the difference in energy between successive multi-electron charging
energies. QMC has been proved to be useful in calculating accurate cuantities,
such as the ones mentioned before, for these systems.

In Table 1 of ref. [331], results are presented for a simplified model of a
spherical dot. The column labelled as magnitude corresponds to the QMC
value. As can be seen QMC is able to give excellent results for a variety of
properties involving excitons.

The dependence of these quantities on dot size has also been investigated.
Figure 2 of ref. [331] shows the behavior of the energy of an electron, a hole
and the exciton and biexciton binding energies as a function of the size of the
dot. The geometry used for the system is the one shown in the panel on the
binding energy plot. It can see that as the radius of the dot increases, the
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material has a drastic change in its behavior around 2nm; see the first two
plots from the figure mentioned previously. For these systems, Table 2 and the
last two plots of Fig. 2 of ref. [331] show that the correlation energy is of
order 1% of the total energy. There are other quantities, however, including
like exciton addition energies which have large correlation energy contributions.
While for exciton binding energies CI recovers nearly 98% of the QMC energy,
for biexcitonic binding energies CI calculations are relatively poor compared to
QMC, recovering in some cases only 65% of the energy.

Charged excitons are also an important field of study. The description of
these systems is important because luminescence lines due to charged excitons
have sometimes been wrongly identified as biexcitons. For more information on
these systems, please refer to the following references [332-334].

List of symbols
We denote:
Z; Atomic nuclear charge,

R Set of coordinates of clamped particles (under the Born—Oppenheimer
approximation): R = {R1,...,Rm},

r; Electronic coordinate in a Cartesian frame r; = {z;...xz4}, where the
number of dimensions, d is 3 for most chemical applications,

R Set of coordinates of all n particles treated by QMC, R = {r1,...,70},

o; Spin coordinate for an electron, o4 is spin-up and o} for spin-down parti-
cles,

X' Set of spin coordinates for particles, ¥ = {01,...,0n},
¥, Exact ground state wave function,
¥; ith exact wave function,
¥ ; Approximate trial wave function for state i,
¢ Single particle molecular orbital (MO),
D(¢y) Slater determinant of k MOs: D = \/% det |¢1,- .., dn],

D¢(¢t), Spin factored Slater determinants for spin up (1) and spin down (]) elec-

trons,

~

H Hamiltonian operator: H = T + ‘7,

T Kinetic energy operator —1V% = -1V



<D

P(R)

P(R—- R
B(R,R)
GR,R;7—1')
Gst(R,R';071)

Potential energy operator, for atomic and molecular systems: V== >

2icj % + X<y Z’rfj’

Imaginary time, 7 = it,

Electronic density,

Local Energy, HU7(R) /7 (R),

Uniform random variate in the interval [a, b],
Gaussian random variate of variance o,

Monte Carlo variance for observable 5,
Ensemble of random walkers, W = {R1,Ra,..., Ry},
Monte Carlo probability density function,

Monte Carlo transition probability,

Branching factor for Population Monte Carlo algorithms,

Time dependent Green’s function,

Z;
iJ Tij

Time dependent short time Green’s function for the Schrédinger equation,

Fq Quantum force, Fq = V1n [ (R)?|,
. . . _ - Nw¢r(Bf) ¥r(R])
D Denominator in fermion Monte Carlo, D = 3,7 [ VE(RD) U5 (RO
M7 Ionic mass,
Mo Fictitious parameter mass.
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Table 1 VMC energies (hartrees) for first-row atoms and percentages of cor-
relation energy recovered (%FE o). for SMBH correlation functions of 7,9,17,
and 42 terms. VMC uncertainties given in parenthesis.

i B§ Efy BY; B3,
Atoms Energy P Ecorr Energy P Ecorr Energy PDEcorr Energy P Ecorr Energy
He -2.8997(2) 90 -2.9029(1) 98 -2.9086(1) 100 -2.903660(5) 99 -2.903717(8)
Li -7.4746(6) 92 -7.4731(6) 89 -7.4768(3) 97 -7.4770(1) 97 -7.47722(4)
Be -14.6259(7) 56 -14.6332(8) 64 -14.6370(6) 68 -14.6647(1) 97.2 -14.6659(2)
B -24.5946(7) 52 -24.6113(8) 66 -14.6165(6) 69 -24.6383(6) 87 -24.6403(5)
[¢] -87.7721(7) 53 -37.7956(7) 68 -37.8017(6) 72 -37.8192(4) 83 -37.8225(4)
N -54.5019(7) 54 -54.5390(6) 78 -54.5456(6) 7 -54.5525(7) 80.4 -54.5563(2)
o -74.9469(6) 53 -75.0109(4) 78 -75.0146(7) 80 -75.0226(3) 82 -75.0270(1)
F -99.5746(9) 51 -99.6685(5) 80 -99.6736(7) 82 -99.6881(7) 86 -99.6912(2)
Ne -128.7689(8) 57 -128.8771(5) 85 -128.8796(6) 85 -128.89307(7) 88.7 -128.8910(2)

@HF trial function multiplied by 7- (E7),9- (Eg), or 17- (E17)term SMBH correlation function, from ref. [72]

bTwo determinant MCHF trial function multiplied by 17- (Ej7)or 42- (E42) term SMBH correlation function,
from ref. [211]
“Estimated exact total non-relativistic energies, from ref. [212]
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Table 2 VMC energies (hartrees) for first-row positive and negative ions
and percentage of correlation energy recovered (%E.o-) for SMBH correlation
functions of 9, 17, and 42 terms. VMC uncertainties given in parenthesis.

B8 B Bhy B
Atoms Energy % Ecorr Energy KEcorr Energy KEcorr Energy % Ecorr Es
Lit -7.2795(1) 88 - - -7.279889(7) 100 -7.279911(5) 100 -7.270013
Bet  -14.3101(2) 88 - - -14.3238(2) 97.9 -14.3241(1) 98.5 -14.3248
Bt -24.3040(7) 60 - - -24.3455(3) o7 -24.3468(4) 98.1 -24.34083
ct -87.3807(7) 64 - - -87.4132(3) 87 -37.4144(8) 88.0 -37.43108
N+ -54.0071(2) el - - -54.0258(8) 83 -54.0286(5) 84.4 -54.0546
o+ -74.5211(4) 77 - - -74.5304(10) 81.3 -74.5332(12) 82.7 -74.5668
Ft -99.0202(9) 76 - - -99.047(3) 82.5 -99.054(1) 85.1 -99.0028
Net  -128.0704(3) 81 - - -128.097(2) 85.8 ~1208.100(1) 86.7 -128.1431
Li~ - - - - -7.4982(1) 96.5 -7.4989(3) 97.4 -7.5008
B -24.6148(5) 66 -24.6243(4) 73 -24.6374(5) 82 -24.6411(8) 84.1 -24.6642
c- -87.8375(7) 70 -37.8433(6) 76 -54.8575(9) 81.4 -37.8617(9) 83.7 -37.80138
o~ -75.0479(4) 78 -75.0612(4) 82 -75.072(3) 85.2 -75.079(1) 87.3 -75.121
F- -99.7840(6) 81 -99.8006(3) 85 -99.8136(10) 88.6 -99.8210(10) 90.5 -99.85880

@HF trial function multiplied by 7- (E7),9- (Eg), or 17- (E17)term SMBH correlation function, from ref. [335].

bTwo determinant MCHF trial function multiplied by 17- (E17)or 42- (E42) term SMBH correlation function,
from ref. [211].
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Table 3 VMC ionization potentials (IP) and electron affinities (EA) of first-
row atoms for SMBH correlation functions of 9 and 42 terms (eV).

P EA

Atom Bg EBY, Exp® B, BY, Exp?
Li 5.27(2) 5.38(1) 5.3806 - 0.60(1) 0.62
B 8.55(2) 7.99(3) 8.3 0.24(2)  0.02(2) 0.28
C 11.29(3)  11.10(3) 11.26 1.27(2)  1.07(4) 1.26
N 14.7(2) 14.35(2) 14.55 - - -
o 13.33(2)  13.44(4) 13.62 1.30(2)  1.42(3) 1.46
F 17.40(2)  17.34(3) 17.45 3.06(4)  3.53(3) 3.3
Ne 21.71(2)  21.52(3) 21.62 - R R

@HF trial function multiplied by a 9- (Eg) or 17- (Ej7)term SMBH correlation function, from ref. [335]

PMCHF trial function multiples by 42-term (E4o) SMBH correlation function, from ref [211]
©Experimental ionization potentials, from ref. [336]

dExperimental electron affinities, from ref. [337]
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Table 4 Atomization energies of the G1 set of molecules (kcal/mol)
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Molecule CCSD(T)® DMC? Exp.¢
LiH 56.0 55.3(2) 56.00(1)
56.72(3)¢
BeH 47.6 43.0(2) 46.90(1)
54.5(4.0)¢
CH 80.0 79.5(2) 79.90(2)
79.3(3)°
CH, (®°By) 179.5 181.9(4) 179.6(4)
CH: (*Ay) 170.4 169.7(4) 170.6(4)
CH; 289.0 290.0(2)  289.3(2)
CH,4 392.2 395.0(2)  392.5(1)
392.67(4)%
NH 78.2 78.2(4) 79.0(4)
NH, 169.4 169.2(4) 170.0(3)
NH;3 276.2 276.5(2)  276.7(1)
276.87(7)¢
OH 101.7 101.2(3) 101.4(3)
H,0 218.9 219.4(2)  219.35(1)
219.49(5)
HF 135.1 135.9(2) 135.2(2)
135.3(9)¢
135.62(6)?
SiHy(*A;) 145.9 145.5(2) 144.4(2)
SiHs (°B1) 124.6 125.8(2) 123.4(2)
SiH; 214.6 215.1(2) 214(1)
SiH,4 304.6 305.8(2)  302.6(5)
PH, 145.9 143.7(2) 144.7(6)
PH; 227.0 224.8(2)  228.6(4)
H,S 173.8 172.1(4) 173.1(2)
HCL 102.3 103.4(4) 102.2(5)
Liy 23.9 23.5(2) 23.9(7)
24.16(4)¢
LiF 137.1 145.1(4) 138(2)
137.02(17)¢
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CoHs 388.9 390.0(4)  386.9(2)
388.93(33)¢
380.7(5)¢
C,H,4 531.6 533.5(4)  531.9(1)
C,Hg 665.9 669.3(4) 666.3
CN 175.9 170.5(4) 178(2)
HCN 303.0 302.0(8) 301(2)
303.12(55)¢
CcO 255.7 253.2(3)  256.2(2)



@*CBS CCSD(T) results obtained from ref. [265].

"DMC results obtained from ref. [264] unless noted otherwise.

¢Experimental atomization results obtained from ref. [338].

40Obtained from Shih-Lu [268, 339, 340] and corrected form zero point ener-
gies as given by Grev et al.[269]

¢Obtained from Barnett et al.[96]
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Table 5 Total DMC and CCSD(T) energies for 20 molecules (hartrees)

CCSD(T)?

Molecules QCI/APNO® c¢c-pVDZ cc-pVTZ CBS DMCs¢
H, 1.1745 1.1634 1.1723 1.175 1.1739(1)
CH, 39.0774 39.022 39.0614 39.1304  39.1165(3)
CH, 40.4574 40.3868  40.4381 40.5125  40.5005(3)
NH; 56.5039 56.402 56.4732  56.5598  56.5485(4)
H,O 76.3757 76.241 76.3322  76.432  76.4207(2)
CoH, 77.2211 771092  77.1876  77.3287  77.3110(4)
CoHy 78.4744 78.3544  78.4388  78.5823  78.5644(3)
HNC 93.3159 93.1632  93.2513  93.4253  93.3737(3)
HCN 93.2921 93.1884  93.2751  93.4017 93.3987(4)
HF 100.394 100.2275 100.3379 100.451 100.4466(3)
No 109.422 109.2753  109.3739 109.533 109.5046(3)
N,H, 110.531 110.367  110.478 110.642 110.6054(5)
CO 113.207 113.0544 113.1555 113.317 113.2877(4)
H,CO 114.389 114.2183 114.3338 114.5  114.4739(4)
HNO 130.362 130.171  130.2984 130.474 130.4371(4)
H,0, 151.44 151.1937 151.3586 151.551 151.5213(3)
HOF 175.426 175.1519 175.3343  175.54 175.5120(4)
COq 188.418 188.1475 188.3271 188.586 188.5429(4)
Fo 199.398 199.0975 199.2961 199.515 199.4841(4)
O3 225.245 224.9091 225.1326 225418 225.3410(4)

2CBS-quadratic-CI atomic-pair natural orbital (QCI/APNO) energies, from

ref. [270]

®CCSD(T) valence energies from ref. [270].
¢DM Cenergies from ref. [65]
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Table 6 Deviation from experiment of calculated heats for

reactions (kcal/mol)

reaction for 17

Other CCsD(T)

Reaction DFT® Gab CBS®© cc-pVDZ  cc-pVTZ cod DMCe Exp.f
CHg + Ho — CH4 0.24 2.39 0.00 2.87 0.96 0.24 -1.91 -130.02(48)
CoHg 4+ Hp — CoHy -1.20 0.24 -0.96 -2.39 -0.72 -0.72 -1.43 -48.52(48)
CoHg + 3Hg — 2CHy -0.96 1.43 -0.96 -2.63 -1.20 -0.24 0.96 -106.60(48)
NoHy — Ng + Hg 2.87 -0.72 0.00 -3.59 -1.20 0.24 -4.30 -41.59
CO +Hg — H3CO -3.11 0.96 -0.24 4.30 0.96 -0.48 -2.63 -5.02(24)
Ng + 3Hg — 2NHg -0.48 4.06 0.72 14.58 3.82 -0.24 -5.26 -39.20(24)
Fg + Hg — 2HF 5.50 -0.24 1.20 12.43 4.06 -0.48 -13.14 -134.56(24)
O3 + Hg — 3H0 5.74 5.02 1.20 18.88 4.06 -3.11 -27.96 -222.9(48)
HyCO + 2Hg — HoO + CHy 4.06 3.82 0.72 7.89 2.15 0.24 -2.63 -59.99(24)
HoOg + Hy — 2HoO 4.54 1.20 0.72 8.60 3.11 0.72 -4.54 -87.24(48)
CO + 3Hy — CHy4 + NH3 0.96 5.02 0.48 12.19 3.11 -0.24 -5.26 -65.01(24)
HNC + 3Hg — CH4 + NHg 0.00 3.59 -0.24 7.17 1.43 -0.24 -4.30 -76.48(72)
HNO + 2Hg — HoO + NH3 3.59 4.30 0.96 14.34 3.59 -0.48 -9.80 -106.12(24)
HNC — HCN 1.43 0.24 0.48 -0.72 0.24 0.24 -0.48 -15.30
H90O 4+ F9 — HOF + HF 2.39 1.43 2.87 5.26 3.35 2.63 -2.87 -30.83(96)
COgq +4H9 — 2H50 + CHg 7.89 6.69 1.43 15.77 4.06 0.00 -6.69 -58.32(24)
2CHy — CoHgy -0.24 3.59 0.00 5.74 2.15 -0.24 -6.45 -201.72(72)
Mean error 1.95 2.53 0.49 7.10 2.00 -0.13 -5.81

Absolute error 2.66 2.64 0.77 8.20 2.36 0.63 5.92
Root-mean-square-error 3.47 3.28 1.03 9.78 2.70 1.05 6.34

Maximum absolute error 7.89 6.69 1.43 15.77 3.82 0.72 13.14

@Resuls obtained using the BSLYP/6-311+4+G(2df,p) approach

b Gaussian-2 model as implemented in the Gaussian program[341]; Core correlation is not inlcuded.

©CBS-QCI/APNO method as implemented in the Gaussian program[341]; Core correlation in not included.

dExtrapolation to the limit of a complete basis.
€DMC results obtained from ref.[65]

fExperimental heats of reaction obtained from ref. [270]
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Table 7 Effect of pasivants on the optical gap of Si nano-clusters

Passivant Bond type Property Optical gap (eV) Effect
H® single low electronegativity 3.4 no effect
0oe double high electronegativity 2.2 reduction
OH? single lone pair 3.3 small effect
Fe single high electronegativity 3.2 small effect
Cle single high electronegativity 3.3 small effect
CH»® double low electronegativity 2.5 reduction
Se double medium electronegativity 1.8 reduction
Butylamine(N)? single Lewis base 3.25 small effect
Pentane(C)® single not a Lewis base 3.55 small effect

@ Ref. [276,281-283] ® Ref. [284]
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Table 8 Energy gaps (in eV) for silicon nano-clusters using both LDA and
QMC. For strucutres created with FPMD, a range of LDA gap energies is
given, with QMC gaps claculations only for the structure with the largest

LDA gap.
Cluster EIDA ESNC

SiggHE, MP 2223 3.3(1)
Sigg Hygm02 2.9 4.1(1)

SizoHideal 2.2 3.2(1)
SigoHEPMP 2224 3.4(1)
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Table 9 Comprison of the results obtained for a three electron quantum dot

(meV).
Author VMC DMC
Pederiva et al®  29.669(3) 26.488(3)
Harju et al.b 26.563(1) NA

Harju et al.c 26.5406(8) NA

@ Ref. [307] Results obtained using a wave function without optimizing the
exponential parameters.

b Ref. [304] Results obtained using a wave function optimizing the exponen-
tial parameters.
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Figure 1: Results of FPMD synthesis for Si29 and Si30, compared with low-
energy ideal structures.
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