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Full length article 

Greenness and excess deaths from heat in 323 Latin American cities: Do 
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A B S T R A C T   

Green vegetation may protect against heat-related death by improving thermal comfort. Few studies have 
investigated associations of green vegetation with heat-related mortality in Latin America or whether associa
tions are modified by the spatial configuration of green vegetation. We used data from 323 Latin American cities 
and meta-regression models to estimate associations between city-level greenness, quantified using population- 
weighted normalized difference vegetation index values and modeled as three-level categorical terms, and excess 
deaths from heat (heat excess death fractions [heat EDFs]). Models were adjusted for city-level fine particulate 
matter concentration (PM2.5), social environment, and country group. In addition to estimating overall associ
ations, we derived estimates of association stratified by green space clustering by including an interaction term 
between a green space clustering measure (dichotomized at the median of the distribution) and the three-level 
greenness variable. We stratified analyses by climate zone (arid vs. temperate and tropical combined). Among 
the 79 arid climate zone cities, those with moderate and high greenness levels had modestly lower heat EDFs 
compared to cities with the lowest greenness, although protective associations were more substantial in cities 
with moderate versus high greenness levels and confidence intervals (CI) crossed the null (Beta: − 0.41, 95% CI: 
− 1.06, 0.25; Beta − 0.23, 95% CI: − 0.95, 0.49, respectively). In 244 non-arid climate zone cities, associations 
were approximately null. We did not observe evidence of effect modification by green space clustering. Our 
results suggest that greenness may offer modest protection against heat-related mortality in arid climate zone 
Latin American cities.   

1. Introduction 

Sometimes touted as a sign of progress and growth, urbanization 
processes have profound effects on the natural environment and energy 
balance within cities. This is exemplified by the urban heat island effect, 

which refers to the observation that urban areas are hotter than adjacent 
suburban or rural areas. The urban heat island effect is explained by 
various characteristics in the urban environment, including low 
amounts of green space, high amounts of heat-absorbing impervious 
surfaces including concrete and asphalt, tall buildings contributing to 
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trapping of direct solar radiation, and anthropogenic heat production 
(Oke, 1982; Kalnay and Cai, 2003). Urbanization processes have also 
contributed to green space fragmentation (Li et al., 2019), which has 
implications for energy flow and exchange, and thus, heat intensity 
within cities (Masoudi and Tan, 2019). Taken together, the environ
mental impacts of urbanization combined with globally rising temper
atures represents a critical human health concern. Indeed, over 50% of 
the human population now lives in cities (Grimm et al., 2008; UN, 
Department of Economic and Social A airs, 2018), and there is strong 
empirical evidence that extreme heat contributes to excess premature 
death (Gasparrini et al., 2015; Laaidi et al., 2012). There is a critical 
need to identify and design optimal city-level interventions to reduce 
heat vulnerability, which is “…the propensity or predisposition to be 
adversely affected…” (Pörtner et al., 2022). 

Increasingly, municipalities are establishing goals to enhance the 
presence of green spaces in urban environments (O’Neill et al., 2009). 
These goals are supported by evidence that vegetation may mitigate heat 
intensity at the neighborhood or city level (Stone et al., 2014). Green 
spaces reduce surface and air temperatures through evapotranspiration, 
by providing shade, by reducing the need for mechanical cooling (which 
contributes to urban heat emissions), by reflecting short-wave solar ra
diation into the atmosphere (Gunawardena et al., 2017), and/or by 
affecting air movement (Bowler et al., 2010). A simulation study of three 
U.S. cities showed that increasing both vegetation and albedo (i.e., solar 
reflectance of surfaces) (Akbari et al., 2012) would offset projected in
creases in heat related mortality by 40–99%. (Stone et al., 2014) A study 
in Glasgow, UK suggested that increasing green space by 20% could 
eliminate between a third to a half of the city’s urban heat island effect 
by year 2050 (Emmanuel and Loconsole, 2015). From a public health 
perspective, urban greening interventions are also attractive because of 
potential co-benefits: exposure and/or access to green spaces has been 
associated with lower rates of overall and cause-specific mortality, 
improved mental health, uptake of physical activity, and greater social 
cohesion, among other population health and well-being benefits 
(Markevych et al., 2017). 

Epidemiologic research exploring links between green space and 
excess deaths from heat has suggested that higher amounts of green 
space are associated with modest decreases in heat-related death or 
illness (Markevych et al., 2017; Schinasi et al., 2018; Sera et al., 2019; 
Choi et al., 2022 ; Choi et al., 2022). Yet, little is known about whether 
associations between green space and heat-related mortality vary ac
cording to the spatial configuration of vegetation. Exposure studies have 
shown that, holding constant the same amount of vegetation, the cooling 
potential of green space at localized or regional levels varies according 
to how it is configured (Zhou et al., 2011; Li et al., 2012). This work 
suggests that it is not just the presence of vegetated landscape elements, 
but also its configuration, which impacts urban environmental cooling 
(Monteiro et al., 2016; Kong et al., 2014). However, in the exposure 
literature, the direction of the association of green space configuration 
with land surface temperatures has been inconsistent. For example, 
some studies have observed greater cooling effects when vegetation is 
more clustered Monteiro et al., 2016; Kong et al., 2014, while others 
have found that greater distribution of green space and less clustering 
was associated with cooler land surface temperatures (Zhou et al., 
2011). 

The variation in findings across studies may be explained, at least in 
part, by differences in climate region. Some research has suggested that 
green space may have a less substantial cooling effect in arid climate 
areas, potentially because of low soil moisture and limited tree canopy 
coverage in those areas (Wang et al., 2022; Zhou et al., 2017). Other 
studies have found that urban vegetation cools more effectively in drier 
climates (Tayyebi and Jenerette, 2016). Because human thermal com
fort is determined by a combination of surface and radiant temperatures, 
air humidity, and wind speed, relationships of green space configuration 
and composition with human heat vulnerability may also vary according 
to the climate region and local landscaping. For example, in hot tropical 

climate regions, vegetation may increase humidity levels and thus 
reduce rather than improve thermal comfort (although it can offer 
localized comfort through shading) (Jendritzky et al., 2012). 

Here, we leveraged a database of 323 large Latin American cities to 
quantify associations between city-level greenness and excess deaths 
from heat and investigate if green space clustering (i.e., spatial aggre
gation) modifies associations. We also investigated whether these re
lationships vary according to climate zone. First, we hypothesized that 
we would observe protective associations between greenness and excess 
deaths from heat. Second, we hypothesized that green space clustering 
would modify the association of greenness with excess deaths from heat. 
We also hypothesized that associations between green space and excess 
deaths from heat would vary according to climate zone. The predomi
nant focus of research on heat vulnerability has been in European, 
Chinese, or North American cities; however, physiologic and/or 
behavioral heat adaptation may vary from place to place (Thai et al., 
2019). Thus, an innovation of our work is that we quantified these as
sociations in many lower- and middle- income countries of Latin 
America. Given the impact of climate change in lower and middle in
come countries of the global South, it is imperative to document the 
health consequences of increasing temperatures, and the potential 
modifiers of this impact, in these understudied settings. 

2. Methods 

2.1. Time series of ambient temperature and mortality 

The data, assembled as a part of the Salud Urbana en América Latina 
(SALURBAL) project (Masoudi and Tan, 2019), were initially restricted 
to 326 cities in Argentina, Brazil, Chile, Mexico, Peru and Central 
America (Costa Rica, El Salvador, Guatemala, and Panama) with daily 
mortality information available. Individual-level mortality data were 
compiled from vital registration systems in each country. We con
structed city-specific time series of daily all-cause mortality counts 
(World Health Organization Global Health Estimate 2015 classification 
grouping I., II., and III.) (World Health Organization, 2020) linked with 
mean daily temperatures in periods ranging from 2002 to 2015. SAL
URBAL defines cities as urban agglomerations with more than 100,000 
residents in year 2010 (Grimm et al., 2008). Causes of death were 
ascertained from mortality records, coded using the International Clas
sification of Diseases 10th revisions. Mean daily temperatures were 
estimated as averages of the temperature at two-meters above land 
surface from the European ReAnalysis 5 (ERA5)-Land climate reanalysis 
(native ~ 9 km horizontal resolution). ERA5 is the fifth atmospheric 
reanalysis that the European Center for medium-range weather forecasts 
(ECMWF) has produced (Muñoz-Sabater et al., 2021; Hersbach et al., 
2020). We calculated daily average temperatures using hourly rean
alysis estimates of air temperature at 2 m above the land surface. The 
ERA5-Land data excludes grid cells containing > 50% water. Because 99 
of the 326 cities had at least 1 grid cell missing temperature data, we 
imputed missing temperatures using a random forest regression model 
that included resampled ERA5 temperature (31 km resolution), eleva
tion, and aspect. Kriging spatial interpolation was used to perform 
additional modeling of the residuals. The temperature values were 
spatially weighted to create a city-level average using 2010 estimates of 
the population distribution from WorldPop (Argentina, Brazil, Chile, 
Costa Rica, El Salvador, Guatemala, Mexico, https://www.worldpop.or 
g) (Tatem, 2017) or urban footprint (Global Urban Footprint, Panama 
and Peru, https://www.un-spider.org/node/11424) (Esch et al., 2017). 
Further details on temperature derivation and imputation are given 
elsewhere (Kephart et al., 2022). City level data representing total 
population and population age composition came from Census Bureaus, 
National Institutes of Statistics or similar sources for each country. More 
information on this data compilation has been published previously 
(Grimm et al., 2008). 
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https://www.worldpop.org
https://www.worldpop.org
https://www.un-spider.org/node/11424


Environment International 180 (2023) 108230

3

2.2. Green space measures 

2.2.1. Greenness 
We measured greenness as the population weighted mean of the 

annual maximum normalized difference vegetation index (NDVI). NDVI 
was calculated using remotely sensed images of Moderate Resolution 
Imaging Spectroradiometer (MODIS) product MOD13Q1.006, supplied 
at 250 m resolution every 16 days (Pekel et al., 2016; Didan, 2015). 
MODIS products compute vegetation indices from atmospherically 
corrected bi-directional surface reflectance, masked for water, clouds, 
heavy aerosols, and cloud shadows. Permanent and seasonal water was 
further removed from the NDVI dataset using the European Joint 
Research Council (JRC) Yearly Water Classification History dataset 
(High-resolution, 2016). First, the annual maximum NDVI value for 
every 250 m pixel was identified for each year of the study period; we 
used the maximum value in order to capture peak vegetation growth 
(Tucker, 1979). Then, a population weighted area mean of annual 
maximum NDVI values was calculated using 2010 estimates of the 
population distribution from WorldPop (https://www.worldpop.org) 
(Tatem, 2017). Finally, to derive a single value for each city, we 
calculated the average of the yearly population-weighted mean of 
annual maximum NDVI values. 

2.2.2. Spatial configuration of green space 
Green space patches, which are defined as contiguous areas of green 

area, were delineated using the Moore neighborhood rule wherein a 
target green space pixel and the eight green space pixels surrounding it 
were merged into a single green patch. Green space was defined as green 
grass, shrub, forest, and farmland, and excluded buildings, pavement, 
roads, barren land, and dry vegetation. Water bodies and limited no 
observation areas in remote sensing images (due to cloud or shadow) 
were excluded. The green patches were identified using a green space 
map that was developed using supervised binary classification of single, 
wall-to-wall, cloud free median composite of 10 m resolution Sentinel-2 
Top of Atmosphere (TOA) reflectance images from year 2017 (Ju et al., 
2022). Using images from Sentinel-2, rather than MODIS, was preferable 
due to Sentinel-2′s higher spatial resolution, which allows for improved 
characterization and identification of individual patches. 

Green space configuration metrics were developed using the FRAG
STATS 4.2 program (McGarigal and Marks, 1995), which is a spatial 
pattern analysis program that quantifies the spatial distribution of green 
space patches. Numerous green space configuration metrics are avail
able. We first explored correlations between the following configuration 
metrics and quantified their predictiveness of excess death fractions 
from heat (heat-EDFs, described in detail below): mean nearest neighbor 
distance of green space patches (meters), clumpiness (unitless), and 
patch density (# patches/hectare). These metrics represent green space 
patch isolation, aggregation, and fragmentation, respectively (detailed 
definitions are presented in Appendix 1). Our preliminary analyses 
indicated high levels of correlation between the isolation and aggrega
tion metrics in temperate and tropical climate zone cities (Pearson 
Correlation Coefficients = 0.78 and 0.86, respectively), and between 
fragmentation and NDVI in temperate zone cities (Pearson Correlation 
Coefficient = 0.58, Appendix 2). Also, of all the configuration metrics, 
aggregation was most predictive of the heat EDFs. Based on these ob
servations, and to simplify translation of our analyses and results, we 
focused on green space aggregation using the clumpiness metric 
(McGarigal and Marks, 1995). Clumpiness, to which we refer hereafter 
as clustering, is computed based on the spatial adjacency matrix of green 
patches, which shows the frequency with which different pairs of 
patches appear side by side in space. This variable ranges between − 1 
and 1; − 1 indicates maximum disaggregation, 0 indicates random dis
tribution, and 1 indicates maximum clustering. In an urban landscape, 
lower values of clumpiness could be interpreted as landscape filled with 
a large number of small patches of greenery, whereas values close to 1, 
the maximum value, would indicate an urban landscape filled with a 

small number of large green patches (Ha et al., 2022). A map showing 
green space clustering in Teresopolis, Brazil, which has a relatively high 
clumpiness index (0.84), and in Catamarca, Argentina, which has a 
relatively low clumpiness index (0.58), is given in Appendix 3. 

2.3. Covariates 

Averages of city-level annual fine particulate matter concentrations 
(PM2.5, µg/m (Li et al., 2019) corresponding to the same years for which 
mortality data were available from each city, were calculated using 
Washington University Atmospheric Composition Analysis Group data 
(version V5.GL.02) (van Donkelaar et al., 2021; Hammer et al., 2020). A 
time-invariant social environment index was calculated by first z-score 
standardizing and then computing the sum of the following four vari
ables: % of the population age 25 and older with at least a primary 
education; % of households with access to a municipal sewage network; 
% of households with access to piped water; and % of households with 
more than three people per room (Bilal et al., 2021). The variable rep
resenting crowding was reverse coded so that lower values of the index 
represent greater social deprivation. The variables for the social envi
ronment index were derived from census data of each city. Because we 
were interested in stratifying analyses by climate zone, we identified the 
climate zone to which each city belonged using the 1986–2010 version 
of the Köppen climate classification system (Kottek et al., 2006), and 
assigned each city to the major two-level category to which the majority 
of a city’s area belonged. 

2.4. Analysis 

Consistent with previous city-level analyses (Sera et al., 2019), we 
conducted this as a two-step analysis. We describe these stages below. 

2.5. Stage 1: Estimating city-specific heat EDFs and relative risk 

We have presented details on the methods used to derive city-specific 
EDFs elsewhere (Kephart et al., 2022). Briefly, we used distributed lag 
nonlinear models (Gasparrini et al., 2010), fitted within a conditional 
Poisson regression framework (Armstrong et al., 2014), to estimate the 
lagged associations between mean daily temperature and all-cause 
mortality for each city. This was accomplished using a crossbasis func
tion that takes as input the mean daily temperature and the lag day when 
it occurred, up to 21 lag days. Within the crossbasis function, temper
ature was modeled as a non-linear term using natural cubic spline 
functions with knots placed at the minimum, maximum, and 10th, 75th, 
and 90th percentiles of the city-specific distribution of average daily 
temperatures. The lag function was modeled as a natural cubic B spline 
with three internal knots, placed at intervals spaced at equivalent dis
tances from one another on the log scale. The models controlled for 
seasonality by conditioning on strata defined by day of the week, month 
and year (Appendix 4). We used the model results to derive city-specific 
cumulative estimates of associations between temperature and mortal
ity, summed across the 21 lag days (Gasparrini et al., 2010). We used the 
resulting city-specific non-linear estimates of temperature-mortality 
associations to identify the daily mean temperature within each city at 
which the mortality risk was lowest (i.e., the optimal temperature from a 
health perspective) (Gasparrini et al., 2010). Following existing work, 
and to not base the reference risk off of the minimum or maximum 
temperatures, we forced the “optimal temperature” to be between the 
first and ninety-ninth percentiles of the city-specific temperature dis
tributions. Note that the temperature-mortality association may not 
follow the typical U- or J-shaped curve among cities that are generally 
very cold or have a very limited temperature range. For some of those 
cities, the mortality-temperature association curve may be flat or 
continue to decrease after the 99th temperature percentile. 

We obtained two summary measures to summarize the impact of 
heat on mortality. First, we used methods developed by others to 
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calculate the fraction of deaths that occurred when temperatures were 
above the optimal temperature (denoted excess death fractions [EDF] 
from heat) (Gasparrini and Leone, 2014). Note that in cases where the 
temperature-mortality curve does not follow the typical U or J-shaped 
curve but instead continues to decrease after the 99th temperature 
percentile, the EDF values were, counterintuitively, negative. Second, 
for each city, we also derived a quantitative estimate of the steepness of 
the slope of the non-linear temperature-mortality curve between the 
95th percentile and the 99th percentiles of the city-specific temperature 
distributions (denoted the relative risk [RR] of heat related mortality for 
every 1 ◦C above hot temperatures). We performed this calculation for 
the 95th to 99th percentile portions of the curve in order to isolate the 
steepness of the slope at the highest temperatures for each city. To do 
this, we used the estimated non-linear temperature-mortality associa
tion curve, in the log scale, to compare the log RR when temperatures 
were at the 99th percentile of the city-level distribution to the log RR 
when temperatures were at the 95th percentile of the distribution. We 
then divided this value by the difference (in ◦C) between the 99th and 
the 95th percentiles of the temperature distribution in each city 
(Kephart et al., 2022). 

2.6. Stage 2: Conducting the meta-regression 

We excluded one city from the analysis because it was in a polar 
climate zone. We excluded two additional cities (from non-arid climate 
zones) with outlier heat-excess death fraction [EDF] values (i.e., heat 
EDFs > 10), which we identified based on visual examination of scatter 
plots. This left 323 cities in the final analysis, all of which were located 
in climates that were tropical, temperate, or arid (Appendix 5). 

We used multivariable random effects linear meta-regression models 
to estimate associations between greenness and the heat EDFs. (Gas
parrini et al., 2012) We selected greenness, measured using the NDVI, 
rather than percent of land area covered by green space (calculated from 
the green space map described above) as the primary independent 
variable because based on minimization of Akaike Information Criterion 
(AIC) statistics in preliminary analyses, NDVI was more predictive of the 
heat EDFs than percent green. Further, use of NDVI as the primary in
dependent variable allowed direct comparison with previously con
ducted research on effect modification of associations between ambient 
temperature and mortality by green space (Sera et al., 2019; Choi et al., 
2022). Because, in preliminary analyses, we found evidence of non- 
linear associations between NDVI and the heat EDFs, we modeled 
greenness as a three-level categorical term, with categories based on 
tertiles of the climate-zone (arid vs. tropical/temperate) specific distri
butions. The climate zone-specific tertiles are presented in Appendix 6. 
We included the following variables in models to adjust for potential 
confounding: average PM2.5 concentration across all years, social envi
ronment index and country. Cities in Central American countries were 
grouped together; thus, the variable for country had the following cat
egories: Brazil, Chile, Argentina, Mexico, Peru, and Central America. We 
also adjusted the main meta-regression model for clustering of green 
space, modeled as a two-level categorical term with categories based on 
the median of the climate-zone specific distribution (the medians are 
reported in Table 1). This two-level parameterization was chosen 
because it represented different amounts of clustering and allowed 
sufficient number of cities within each category. PM2.5 and the social 
environment index were modeled as continuous terms. We selected 
these covariates based on a priori hypotheses that they might confound 
associations and based on the development of a Directed Acyclic Graph 
(DAG, Appendix 7). Although percent built-up area was identified as a 
potential confounder of associations based on the DAG, we did not 
include this covariate in our analyses because it was highly correlated 
with city-level NDVI, especially in the temperate and arid climate zones 
(Appendix 2). We included the green space clustering measure (coded as 
a two-level categorical term) as a covariate in all models to ensure that 
the main model was nested in the interaction term models. We 

quantified heterogeneity across cities by computing the Cochran Q test 
statistic. 

We stratified the meta-regression analyses by arid climate zone (arid 
vs. non-arid). We decided to stratify the analyses by climate zone for 
several reasons. First, the distribution of greenness varies substantially 
in the different regions, which creates obstacles, from a statistical 
perspective, when running analyses for all cities combined. For example, 
the median (interquartile range [IQR]) of NDVI in the arid climate zone 
cities was 31 (IQR: 0.23, 0.38) and 49 (IQR: 0.46, 0.53) in non-arid cities 
(Table 1). Second, the height and other features of vegetation vary ac
cording to climate zone, with dry climate zones having shorter vegeta
tion with less expansive canopies (e.g., cacti and succulents) compared 
to more humid areas. This has implications for the cooling mechanisms 
of the different green spaces and for urban–rural temperature differen
tials (i.e., urban heat island effect). (Manickathan et al., 2018). Third, 
prior evidence shows different impacts of green space on thermal 
comfort in arid vs. non-arid climate zones (Jendritzky et al., 2012). We 
combined temperate and tropical zone cities for the following reasons: 
(1) to improve statistical power, (2) because in our data, the distribution 
of greenness was similar in both climate zones (Appendix 6), and (3) 
because in preliminary analyses, estimates of association of heat EDFs 
with greenness were similar in temperate and tropical climate zones. 

2.6.1. Interaction 
To estimate effect modification of associations between greenness 

and green space clustering, we included an interaction term between the 
three-level categorical greenness variable and the dichotomous clus
tering term. We assessed statistical evidence of effect modification on 
the multiplicative scale by conducting likelihood ratio tests (LRT, two 
degrees of freedom). 

Table 1 
Description of the 323 cities included in the analysis.   

Arid climate 
zone 
(N = 79) 

Non-arid 
climate zone 
(N = 244)  

Median [Interquartile Range] or 
N (%) 

Heat excess death fraction2 0.68% [-0.06, 
1.67] 

0.56% [-0.06, 
1.58] 

Number (%) of cities with Heat excess death 
fractions < 0 

26 (30%) 74 (30%) 

Average daily mean temperature(Degrees 
Celsius) 

18.67 [16.49, 
22.03] 

21.36 [18.65, 
23.88] 

Optimal mortality temperature (Degrees 
Celsius)1 

22.38 [20.74, 
25.14] 

23.89 [22.33, 
25.16] 

Annual Average PM2.5 concentration (µg/m3) 12.55 [8.04, 
15.14] 

10.35 [7.60, 
12.95] 

Social environment (unitless)3 0.27 [-0.15, 
0.60] 

0.04 [-0.36, 
0.44] 

Population weighted greenness (NDVI, 
unitless)4 

0.31 [0.23, 
0.38] 

0.49 [0.46, 
0.53] 

Green space clustering5 0.80 [0.78, 
0.84] 

0.84 [0.80, 
0.86] 

Pearson correlation coefficient representing 
relationship between NDVI and clustering 

− 0.09 (p =
0.4) 

− 0.01 (p =
0.9) 

Abbreviations: NDVI, normalized difference vegetation index; PM2.5, Particulate 
matter < 2.5 ug/m3. 

1 The city-specific optimal mortality temperature was derived from distrib
uted lag non-linear models of city-specific associations between daily ambient 
temperature and all-cause mortality counts. The optimal temperature was 
identified as the temperature (Degrees Celsius) at which heat-mortality risk was 
lowest. 

2 Defined as the total deaths attributable to temperatures higher than optimal; 
expressed as a percentage. 

3 Lower values of the index represent greater levels of social deprivation. 
4 Higher values represent higher levels of greenness. 
5 Higher values represent higher clustering and lower values represent lower 

clustering. 
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2.6.2. Additional analyses 
As a complementary strategy to estimating associations with heat 

EDFs and to explore how greenness is associated with the relative risk in 
mortality associated with higher temperatures, we repeated all the an
alyses, replacing heat EDF with heat RR as the dependent variables. In 
addition, because population density may confound estimates of the 
association between green space and the heat-EDFs, as a sensitivity 
analysis, we adjusted the main analysis models for population density 
(entered into models as a continuous term). Finally, as an additional 
sensitivity analysis, we repeated the main analyses after excluding cities 
with negative heat EDFs. 

All analyses were performed in R (version 3.6.0). (R Core Team, 
2021) Modeling was performed using the mvmeta and dlmn packages 
(Gasparrini, 2011; Gasparrini et al., 2012). 

3. Results 

Table 1 presents descriptive statistics on the cities included in the 
analysis, stratified by climate zone. The city-specific heat-mortality 
curves, EDFs and RRs have been published previously (Kephart et al., 
2022) and are viewable through a web-based application (https:// 
drexel-uhc.shinyapps.io/MS85). Heat EDFs were higher in arid climate 
zones (Median: 0.68% in arid cities vs. 0.56% in non-arid cities). 
Approximately 30% of cities in both arid and non-arid climate zones had 
EDFs < 0. Cities in arid and non-arid climate zones were similar with 
respect to average daily mean temperature, “optimal” temperature, and 
greenspace clustering levels. Median PM2.5 concentrations were 
modestly higher in arid than non-arid climate zone cities (Median: 
12.55 µg/m3 in arid cities and 10.35 µg/m3 in non-arid cities). Popu
lation weighted greenness was higher in temperate and tropical cities 
than arid ones (Median: 0.49 in non-arid cities and 0.31 in arid cities, 
map shown in Appendix 8). The social environment index variable was 
smaller in non-arid cities, suggesting greater social deprivation as 
compared to arid cities (Median: 0.04 in non-arid cities, and 0.27 in arid 
cities). Green space clustering was not correlated with overall greenness, 
based on relatively small correlation coefficients in non-arid and arid 
climate zone cities (Pearson correlation coefficient: − 0.09 [p = 0.4] and 
− 0.01 [p = 0.9], respectively). 

3.1. Meta regression estimates of association between greenness and EDFs 
from heat 

In cities located in arid climate zones, heat EDFs were smaller in 
association with incrementally moderate and high greenness levels, 
although the confidence intervals associated with the meta-estimates 
were wide and crossed the null, and we did not observe a dos
e–response relationship (Table 2). For example, compared to cities with 
the lowest levels of greenness, cities with moderate and high greenness 
levels had 0.41 (Beta: − 0.41, 95% CI: − 1.06, 0.25) and 0.23 (Beta: 

− 0.23, 95% CI: − 0.95, 0.49) percentage point lower heat EDFs in as
sociation with non-optimally high ambient temperatures, respectively. 
In non-arid climate zone cities, associations between greenness and the 
heat-EDFs were approximately null. We observed evidence of hetero
geneity in the estimates of association across the cities, in both non arid 
and arid climate zones (p value associated with the Cochran’s Q test 
statistic < 0.01). 

When we repeated analyses using the heat-RR as the dependent 
variable, all estimates were approximately null (Appendix 9). Additional 
adjustment for population density did not markedly change the esti
mates of association (Appendix 10). Also, rerunning analyses after 
excluding cities with EDFs < 0 did not markedly change the results 
(Appendix 11). 

3.2. Interaction with clustering 

We did not observe strong evidence of effect modification by clus
tering in arid or non-arid climate zones (p-values associated with the 
LRT > 0.10). However, based on the magnitude of the stratified esti
mates of association, in arid climate zones, the modest protective asso
ciations between higher greenness and the heat EDFs were restricted, 
primarily, to cities where green space clustering was low. For example, 
among arid cities with lower levels of green space clustering, those with 
the highest greenness levels had 0.67 percentage point lower heat-EDFs 
compared to cities with the lowest greenness levels, although the asso
ciated CI was wide and crossed the null (Beta: − 0.67, 95% CI: − 1.66, 
0.33, Table 3). 

By contrast, among arid cities with higher levels of green space 
clustering, the association between high greenness and heat-EDFs and 
on the opposite side of the null (Beta: 0.27, 95% CI: − 0.74, 1,27). In 
cities located in non-arid climate zones, associations between greenness 
and the heat EDFs were close to the null, regardless of the level of green 
space clustering. 

4. Discussion 

Cities across the world are investing in green infrastructure for heat 
mitigation and adaptation purposes. Little is known about whether 
higher greenness levels protect against heat-related death in Latin 
American cities, and whether associations vary according to climate 
zone or green space configuration. Results from this analysis of 323 
Latin American cities suggest that higher city-level greenness may be 
associated with modest protection against heat-related deaths in arid 
climate zones, although the strength of evidence was weakened by the 
lack of a dose–response relationship and because estimates of associa
tion were imprecise and crossed the null. 

Results from previous research on associations between greenness 
and heat-related mortality are inconsistent, though, overall, they sug
gest that higher amounts of green vegetation provides modest protection 

Table 2 
Estimates of association between greenness, measured using the normalized difference vegetation index (NDVI), and heat excess death fractions, stratified by climate 
zone.   

Arid climate zone cities 
(N ¼ 79) 

Temperate and tropical climate zone cities 
(N ¼ 244) 

Greenness (NDVI) Beta 95% CI AIC Cochran’s Q (p - value) Beta 95% CI AIC Cochran’s Q  
(p -value) 

Low REF    REF    

Moderate − 0.41 − 1.06, 0.25 269.8 165.4 (<0.01) − 0.04 − 0.25, 0.17 769.3 565.1 (<0.01) 
High − 0.23 − 0.95, 0.49   0.02 − 0.22, 0.27   

Abbreviations: AIC, Akaike Information criterion; CI, confidence interval; EDF, excess death fractions; NDVI, normalized difference vegetation index. 
1The reference category is cities in the lowest tertile of the climate-zone specific distribution of greenness, as measured by NDVI. Moderate and high levels of greenness 
refer to the second and third tertiles of the climate zone specific distribution of greenness, measured by the NDVI. The results were derived from random effects meta- 
regression models that were adjusted for particulate matter < 2.5 µg/m3, social environment index, country group, and a green space clustering metric. Models were 
run separately for arid and non-arid climate zone cities. 
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against heat-related mortality. (Schinasi et al., 2018); (Denpetkul and 
Phosri, 2021); (Son et al., 2016); (Sera et al., 2019) To date, the largest 
study of associations between green vegetation and heat-related mor
tality associations was an analysis of 452 locations (metropolitan areas, 
provinces, larger areas) in 24 countries including Europe, North Amer
ica, Central America, and East Asia. (Sera et al., 2019) The analysis 
found that one interquartile range increase in NDVI was associated with 
6.6% (95% CI: 0.1%, 12.6%) lower heat-mortality relative risk. (Choi 
et al., 2022) This evidence is somewhat consistent with our finding of a 
protective association with greenness in cities located in arid climate 
zones, although the protective estimate of associations that we observed 
was closer to the null and not statistically significant. We did not observe 
similar protective associations in cities located in tropical and temperate 
climate zones. 

To our knowledge, ours is the first multi-city analysis of associations 
between greenness and heat-mortality outcomes to stratify by climate 
zone. Our results suggested that greenness could be associated with 
protection against excess deaths from heat in arid climate zones. This 
finding is consistent with evidence from exposure studies, which have 
suggested that vegetation has greater cooling capacity in hot and dry 
climates as compared with humid climate zones. (Zhou et al., 2017) This 
may be explained by negative correlations between relative humidity 
and evapotranspiration (i.e., transfer of water from land surfaces to the 
atmosphere) (Evapotranspiration, 2011; Farhat, 2018; Water Science 
School. Evapotranspiration and the water cycle., 2018), and thus, urban 
green vegetation cooling capacity. However, the estimates of association 
in our analysis were fairly modest and we did not find greater protective 
associations in association with higher greenness levels. Furthermore, 
the associated CIs crossed the null. As a result, results from our study 
should be interpreted with caution. 

In addition to stratifying by arid climate zone, we explored modifi
cation of associations between greenness and heat EDFs by green space 
clustering. We did not observe statistical evidence of effect modification 
by clustering, although the magnitude of the estimates suggested that 
greenness may have stronger protective associations with heat related 
death in arid cities where green spaces are less clustered. Consistent with 
this finding, some (but not all) exposure studies have found that higher 
clustering of vegetation is associated with hotter land surface tempera
tures (Zhou et al., 2011; Kim et al., 2016). For example, in Phoenix, 
Arizona, more dispersed (and less clustered) green patches had greater 
regional cooling effects, while more clustered green patches were 
associated with enhanced cooling at a highly localized level; this 

suggests that the implications of configuration for cooling may vary 
according to spatial scale (Zhang et al., 2017). Results from other 
exposure studies do not support our findings, because they found that 
higher levels of clustering were associated with cooler land surface 
temperatures (Masoudi and Tan, 2019; Kim et al., 2016; Zhibin et al., 
2015). In Singapore, larger green patches that were more connected and 
less fragmented were associated with lower land surface temperatures 
(Masoudi and Tan, 2019). In Changchun, China, greater aggregation and 
cohesion of green patches was associated with lower land surface tem
peratures (Zhibin et al., 2015). The associations observed in our analysis 
may be explained not just by greater overall cooling, but also by human 
interaction with green spaces. For examples, lower levels of green space 
clustering may correspond to more evenly distributed vegetation 
throughout a city, and thus to more even distribution of the associated 
cooling effects (Zhou et al., 2011). More uniform distribution of green 
spaces within a city may be important within a human context, because 
this may enhance opportunities for human interaction with green spaces 
(Zhou et al., 2011). 

Our analysis has several strengths, including the use of a state-of-the- 
art green space configuration metric, application of robust statistical 
methods, inclusion of a large sample of cities from an understudied re
gion, and adjustment for a variety of city-level covariates that might 
confound associations. Despite these strengths, we acknowledge several 
limitations. We lacked detailed information on green space type (e.g., 
trees vs. shrubs). Although we used population-weighted greenness 
measures, we lacked data on proximity of green space measures to 
peoples’ homes, which may influence the extent to which residents 
benefit from the cooling effects of green spaces. We used satellite im
agery data from year 2017 to identify green patches and quantify green 
space spatial configuration. We used satellite images from this year 
because they allowed identification of high spatial resolution green 
patches. Nevertheless, there is a temporal mismatch between the mor
tality and green space configuration data, which could have resulted in 
misclassification of the clustering variable. In addition, because there is 
substantial variation across cities in terms of the timing and length of the 
“hot” season, we used the maximum NDVI value (within each pixel) to 
ascertain the greenest values. However, the greenest pixel level values 
may not always correspond to the hottest months. In addition, it is 
possible that our temperature data may already be capturing the cooling 
effect of green spaces, even at the 9 km horizontal resolution. This 
concern may be most pronounced for very large green spaces, which are 
more likely to alter measured temperature at such a coarse resolution 

Table 3 
Estimates of association between greenness, measured using the normalized difference vegetation index (NDVI), and heat excess death fractions, stratified by climate 
zone and level of green space clustering.1   

Low Green Space Clustering High Green Space Clustering    

Arid climate zone cities (N ¼ 79) 

Greenness Beta 95% CI Beta 95% CI AIC p for LRT2 Cochran’s Q 

Moderate − 0.40 − 1.53 0.73 − 0.33 − 1.11 0.46 269.8 0.13 161.7 
High − 0.67 − 1.66 0.33 0.27 − 0.74 1.27     

Temperate and tropical climate zone cities (N ¼ 244) 
Greenness Beta 95% CI Beta 95% CI AIC p for LRT2 Cochran’s Q 
Moderate − 0.12 − 0.46 0.23 0.00 − 0.27 0.27 775.5 0.34 550.1 (<0.01) 
High 0.02 − 0.37 0.40 0.02 − 0.28 0.33    

Abbreviations: AIC, Akaike Information criterion; CI; confidence interval’; NDVI, normalized difference vegetation index. 
1 The reference category is cities in the lowest tertile of the climate-zone specific distribution of greenness, as measured by NDVI. Moderate and high levels of 

greenness refer to the second and third tertiles of the climate zone specific distribution of greenness, measured by the NDVI. The results were derived from random 
effects meta-regression models that were adjusted for particulate matter < 2.5 µg/m3, social environment index, country group, and a measure of green space clus
tering. Models were run separately for arid and non-arid climate zones. Effect modification by green space clustering was assessed by including an interaction term 
between the three-level categorical greenness variable (NDVI) and a term representing clustering, dichotomized at the median of the climate-zone specific distribution. 
Clustering was measured using the FRAGSTATS 4.2 program, (McGarigal and Marks, 1995) and computed based on the spatial adjacency matrix of green patches. The 
clustering metric ranges between − 1 and 1, where − 1 indicates maximum disaggregation, 0 indicates random distribution, and 1 indicates maximum clustering. 

2 The p-value for a likelihood ratio test (LRT) derives from a two-degree of freedom chi-square distributed test of improvement in model fit following inclusion of an 
interaction term between the three-level NDVI term and the two-level clustering term. 
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(Aram et al., 2019). Further, despite adjusting for a number of city-level 
characteristics that might confound the meta-regression estimates, we 
lacked sufficient data to account for adaptive behaviors, resources, and/ 
or biologic variables which may impact heat vulnerability, such as air 
conditioning access or use, housing conditions (e.g., building height, 
position, insulation, and construction materials); and underlying 
chronic conditions within the population (Samuelson et al., 2020; Reid 
et al., 2009). Also, in this city-level analysis, we did not account for 
intra-urban differences in temperatures and micro-urban heat islands, 
which are known to exist (Harlan et al., 2006). We also lacked data on 
wind speed and humidity levels, which may contribute to human ther
mal comfort (Yin et al., 2012). We were therefore unable to adjust for 
these factors at either the first- or second- stages of the analysis. Another 
limitation is that our results may not generalize to some other cities in 
Latin America, which may differ from the ones included in this study in 
terms of level of greenness or other urban characteristics that may 
impact heat vulnerability. 

Despite these limitations, our work represents a critical contribution 
to the knowledge base about green space as an urban heat mitigation 
and adaptation strategy. There is a need for further research on the 
impact of land cover configuration on heat vulnerability in different 
study settings, especially in LMIC, and to explore these impacts and 
relationships at the micro-urban neighborhood level. There is also a 
critical need for further research on the types of green space that may be 
most important for reducing heat vulnerability. 

5. Conclusions 

Within the context of the earth’s rapidly and dangerously warming 
climate, urban greening is a promising and attractive intervention 
strategy for heat mitigation and adaptation. Results from our work 
provide preliminary evidence to suggest that green interventions may be 
useful as a heat adaptation strategy, particularly in arid climate zone 
Latin American cities. Our results also suggest that the configuration of 
green spaces within cities may be important. However, given that any 
estimates of association observed in this study were modest in magni
tude and had wide CIs, this work should be replicated in other settings. 
Further research is also needed to explore the extent to which re
lationships vary according to different types of green space cover, green 
space configuration, and/or across climate zones. 
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