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Spin-transfer torque magnetic tunneling junction devices capable of a multilevel three-dimensional

(3D) information processing are studied in the sub-20-nm size range. The devices are built using

Heþ and Neþ focused ion beam etching. It has been demonstrated that due to their extreme scal-

ability and energy efficiency, these devices can significantly reduce the device footprint compared

to the modern CMOS approaches and add advanced features in a 3D stack with a sub-20-nm size

using a spin polarized current. Published by AIP Publishing. https://doi.org/10.1063/1.5021336

The need for energy-efficient computing nowadays is

more urgent than ever before, covering various domains such

as large-scale sensor networks,1 Internet of Things (IoT),2

bioelectronics,3 and neuromorphic/neuro-inspired comput-

ing.4 With the dramatic increase in device counts to meet the

modern system requirements,1,4,5 it is critical to develop a

building block with fundamentally different computing and

storage mechanisms.6 Non-volatile switches with novel com-

puting mechanisms are considered as the most promising

solution to overcome the energy brick wall.7–11 Among them,

spin-based technologies have advantages of non-volatile

memory and logic owing to their supreme features of low-

voltage (sub-1 V), high-speed operation (sub-ns), and high

endurance (over 1012 cycles).12–14 Spintronic devices consist

of reading and writing nanomagnets. The information is read

back through the tunneling magnetoresistance (TMR) while it

is written by any of these methods, including application of a

magnetic field, a spin-transfer torque (STT), a spin-orbit tor-

que (SOT), a current induced magnetic domain wall motion

(DWM), or an electric field-controlled magnetic anisotropy

(VCMA) effect.15–18 Amongst existing demonstrations, a tri-

layer magnetic tunneling junction (MTJ) using the STT effect

to switch its magnetic configuration between parallel (P) and

anti-parallel (AP) states could achieve multi-level signal proc-

essing with relatively high energy efficiency. Some of the most

advanced studies in the field have reported STT-MTJ devices

with a characteristic size in the sub-20-nm range.19–22 First

commercial products based on the STT technology and known

as STT-MRAM in low-power platforms have appeared as a

replacement to S/DRAM-based cache.23 Recently, integration

of the spintronic non-volatility with process-in-memory (PIM)

has also been suggested as a promising solution to resolve the

“von Neumann bottleneck” issues.24–27

Another significant opportunity for the STT technology

would be to exploit the “multi-level per bit” capability, also

known as “multiple level per cell” (SLC or MLC).28 From

this motivation, we investigate a dual-MTJ-in-series struc-

ture using variable sized sub-20-nm single-domain magnets

with perpendicular magnetic anisotropy (PMA).

In this study, we fabricated all-free layered magnetic junc-

tions in which each layer switches either “up” or “down” in the

perpendicular direction. The all-free layer configuration is not

only relatively easy to fabricate but has an advantage of a

straightforward operation. To induce perpendicular magnetic

anisotropy (PMA), well-established Ta/CoFeB/MgO stacks were

used.19,29 For increasing the interface anisotropy of the second

magnetic layer, dual stacks of MgO were deposited.30–32 For the

programming of the device structures, the purely clean structures

were fabricated with identical island stacks. To program such

memory devices, the STT switching was implemented to switch

magnets one by one, as described below in more detail. The

coercivity values of the three magnets were varied through the

deposition conditions for the three layers, respectively.

Figure 1(a) shows a schematic of the three-layer magnetic

tunneling junction. The net resistance of this device is defined

by two junctions in series, with the resistance of each junction

defined by the TMR effect, i.e., by the relative orientation of

the magnetization in the two adjacent layers. In this configura-

tion, each of the three magnetic layers effectively acts as a free

layer with a magnetization directed up or down. The relative

switching is produced through the STT effect. As a result, the

two junctions placed in series should produce at least ternary

information processing, as described below in more detail.

Particularly, due to the recent progress of e-beam lithog-

raphy (EBL) of magnetic thin film stacks, magnetic devices

could be patterned down to sub-10-nm range for mass pro-

duction of next generation spintronic devices.33 However,

for the sake of demonstration, focused ion beam (FIB) is an

appropriate fabrication tool. Although challenging for mass

production, FIB is an ideal tool for fabrication of sub-10-nm

individual prototype devices. Thanks to the recent develop-

ment of multi-beam FIB using Heþ and Neþ ions, besides

the traditional Gaþ ions, FIB has become a viable prototyp-

ing approach.34,35
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The layer composition of the dual MTJ structure

starting from the substrate is Ta/Ru/Ta/CoFeB(M1)/MgO/

CoFeB(M2)/MgO/CoFeB(M3)/Ta. Figure 1(b) presents a

high-resolution transmission electron microscopy (TEM)

image of a cross-section of the dual-junction MTJ device

with a sub-20-nm planar elliptical side fabricated with the

Heþ beam. The TEM image shows the three magnets and

the two insulating layers to be in the sub-1-nm size range. In

Fig. 1(c), an atomic force microscopy (AFM) image shows

the device to have an elliptical shape with a characteristic

diameter of 17 6 2 nm. The scale bar is 10 nm. The errors of

the size variation from imaging measurement tools have

been found in the literature.7

Ultra-high sensitive MOKE measurements were per-

formed to characterize the dual junction stack, as shown in

Fig. 2(a).7 According to the m-H loop measurements, the

magnetization in the three magnetic layers switches sequen-

tially through the application of a magnetic field. The varia-

tion in the coercivity, HC, between three layers was achieved

by a variation in the thickness by approximately 50% between

the layers. The values were defined by the thickness of each

layer, 1, 1.3, and 1.6 nm, respectively. The measured coerciv-

ity of the three layers was approximately 20, 40, and 50 Oe

from the top magnet, respectively. The characteristic planar

size of the multilevel bit was on the order of 17 6 2 nm as

shown in Fig. 2(b). The saturation magnetization, MS, for the

magnetic layers was on the order of 500 emu/cc, the anisot-

ropy energy, KU, was on the order of 1.1. MJ/m3, and the

thickness of the insulating MgO layer was on the order of

1 nm.

We performed field-applied magnetic force microscopy

(FA-MFM) measurements to probe the sub-20-nm structures,

as shown in Fig. 2(b). Four distinct MFM signal levels can

be detected through FA-MFM. The magnetic fields are care-

fully applied in the perpendicular direction to trace magneti-

zation switching in each magnet. It could be noted that the

three layers of the dual-MTJs could switch one by one.

The model structure for I-V measurements is shown in

Fig. 3(a). It can be represented as two junction resistances,

R1 and R2, respectively, in series. Here, R1 is the resistance

of the interface between magnets M1 and M2, while R2 is the

resistance of the interface between magnets M2 and M3.

Figure 3(b) shows an illustration of 8 possible spin configu-

rations that correspond to three distinct relative spin orienta-

tions at the two junctions: (1) the lowest resistance value

when both junctions have parallel orientations (P/P), (2) the

middle resistance value when the two junctions have parallel

and antiparallel relative orientations (P/AP or AP/P combi-

nations), and (3) the highest resistance value when both junc-

tions have antiparallel orientations (AP/AP).

Indeed, as shown in Fig. 3(c), the I-V curve clearly

shows three resistance values, 46, 52, and 82 kX, respec-

tively. This I-V curve was obtained by using voltage as the

driving source.18,36 Figure 3(d) shows a control sequence of

voltage applications to move the spin configuration from one

state to another within a closed loop by sweeping voltage,

starting from zero to þ100 mV, then reversing from þ100 to

�100 mV, and then increasing from �100 mV back to zero.

The “up” and “down” spin orientations are coded as red and

blue, respectively. The experiment shows a straightforward

sequence of voltages/currents to switch between the three

resistance values. The sequence is very straightforward and

based on the symmetry consideration.

Using an example of a two-junction MTJ device, this

study clearly demonstrated that the STT effect could be used

to switch relative spin orientations in a MTJ device with

more than one junction. The STT switching current density

on the order of 3 MA/cm2 was comparable to the values in

typical sub-20-nm single-junction MTJs as reported else-

where.19,37–39 It can be noted that for this particular geome-

try and parameters’ setup, the states in which both junctions

have antiparallel spins (AP/AP) exist only in a relatively nar-

row voltage range (�3 mV) or, in other words, these states

FIG. 1. Schematics of the geometry of (a) 3D multilevel MTJs. (b) Atomic

force microscopy (AFM) image of the 3D MTJs. The scale bar is 10 nm. (c)

Helium ion beam micrograph (HIM) and transmission electron micrograph

(TEM) image of the sub-20-nm island stack. The scale bars are 10 nm.

FIG. 2. Magnetic properties of MTJ

structures. (a) m-H loops of the struc-

tures. (b) Field-applied MFM (mag-

netic force microscopy) measurement

of the sub-20-nm (�17 6 2 nm) of dual

magnetic tunneling junction structures.
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are not relatively stable for this particular set of coercivity

fields. However, it should be understood that if necessary,

this state can be made as stable as the other layers by increas-

ing its coercivity, as explained below in more detail. These

states are denoted as E, H, and N in Figs. 3(c) and 3(d). This

could be explained by the fact that for these states, the mid-

dle layer must have the spin orientation opposite to the spin

orientations in the two side layers. Therefore, in these cases,

the demagnetization field in the middle layer reaches its

highest possible value compared to all the other spin states

(with only one or no AP junction). Given the saturation mag-

netization of 500 emu/cc, the demagnetization field in these

AP/AP states would be on the order of 500 Oe. Therefore, to

make these AP/AP states more stable, the magnetocrystalline

anisotropy energy could be further increased either by depo-

sition conditions or using different materials. Also, it is note-

worthy that the “voltage” was always applied in the direction

to switch one layer at a time, as shown in the control

sequence loop diagram in Fig. 3(d). It would be possible to

extend this approach to switch even more than three mag-

netic layers by the STT effect through a multi-junction MTJ

structure with more than two junctions.

In summary, 3D multilevel operation of a MTJ with

low switching energy has been clearly proposed and per-

formed using dual MTJ stacks switched through the STT

effect. This type of nanomagnetic junction with multilevel

signal processing could be immediately used for future 3D

electronics, memristors, and PIM applications. Also, it could

be programmable and compatible with the current CMOS

technology. The results could pave the way for future spin

devices.

CoFeB magnets and MgO insulation layers are deposited

through a Pateo series 7-guns sputtering system manufactured

from K-Lab Co., Ltd. (S. Korea). The base pressure was as

low as 2.0� 10�8 Torr, and the process pressure range was

varied between 0.5 mTorr and 5 mTorr. The annealing tem-

perature has been increased up to 800 K. A high-quality and

high-density MgO target was provided by Ube Industries Co.,

Ltd. (Japan). The process pressure, gas flow, power, and time

have been optimized for the deposition of the ideal structures.

Scanning probe microscopy (SPM) was performed in

the non-contact mode using a Bruker-Nano AFM system.

The MFM measurements were conducted in a dynamic lift

mode with a lift distance of 20 and 30 nm. The ultra-high

sensitivity magnetic tip was fabricated. The dynamics were

measured under the presence of a magnetic field by sweeping

the magnetic field range in the perpendicular direction.

The high sensitive MOKE measurement was performed

using a home-made focused MOKE system. A 635-nm diode

laser was directed toward the sample, which was located

between the poles of a vector magnet. The magnetic field at

the probe spot was calibrated using a three-axis Hall probe

sensor (C-H3A-2m Three Axis Magnetic Field Transducer,

SENIS GmbH Z€urich, Switzerland). The accuracy of the

magnetic field measurement is estimated to be �1%. The

time to sweep full hysteresis loops was 20 min (5 Oe/s).

The programmable transport measurement was per-

formed using a home-made measurement setup which could

perform high sensitivity transport measurements such as

delta-mode experiment. The sample was mounted on a chip

carrier after being carefully wire bonded and inside a Faraday

cage to reduce the possible noises during the measurement.
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