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Abstract

The correlation method from brain imaging has been used to estimate functional connectivity in 

the human brain. However, brain regions might show very high correlation even when the two 

regions are not directly connected due to the strong interaction of the two regions with common 
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input from a third region. One previously proposed solution to this problem is to use a sparse 

regularized inverse covariance matrix or precision matrix (SRPM) assuming that the connectivity 

structure is sparse. This method yields partial correlations to measure strong direct interactions 

between pairs of regions while simultaneously removing the influence of the rest of the regions, 

thus identifying regions that are conditionally independent. To test our methods, we first 

demonstrated conditions under which the SRPM method could indeed find the true physical 

connection between a pair of nodes for a spring-mass example and an RC circuit example. The 

recovery of the connectivity structure using the SRPM method can be explained by energy models 

using the Boltzmann distribution. We then demonstrated the application of the SRPM method for 

estimating brain connectivity during stage 2 sleep spindles from human electrocorticography 

(ECoG) recordings using an 8 × 8 electrode array. The ECoG recordings that we analyzed were 

from a 32-year-old male patient with long-standing pharmaco-resistant left temporal lobe complex 

partial epilepsy. Sleep spindles were automatically detected using delay differential analysis and 

then analyzed with SRPM and the Louvain method for community detection. We found spatially 

localized brain networks within and between neighboring cortical areas during spindles, in 

contrast to the case when sleep spindles were not present.

1 Introduction

1.1 The Caveat in the Correlation Method

The correlation method is one of the most commonly used methods for estimating brain 

functional connectivity (Anand et al., 2005; Biswal, Yetkin, Haughton, & Hyde, 1995; 

Rubinov & Sporns, 2010; Siegle, Thompson, Carter, Steinhauer, & Thase, 2007; Smith et 

al., 2011; Uddin, Kelly, Biswal, Castellanos, & Milham, 2009; Vertes et al., 2012; Zhou, 

Thompson, & Siegle, 2009; Bullmore & Bassett, 2011; McIntosh, Rajah, & Lobaugh, 2003; 

Laufs et al., 2003). Biswal et al. (1995) analyzed the functional connectivity of the resting 

state human brain from fMRI data using the correlation method and reported that the regions 

of the primary sensory motor cortex that were activated secondary to hand movement were 

functionally connected. They also found that time courses of low-frequency (< 0.1 Hz) 

fluctuations in the resting brain had a high degree of correlation within these regions and 

also with time courses in several other regions associated with motor function. Other 

researchers (Cordes et al., 2000; Xiong, Parsons, Gao, and Fox, 1999) repeated this 

experiment by Biswal et al. (1995) and found similar results.

In another study of the resting state, Greicius, Krasnow, Reiss, and Menon (2003) found the 

posterior cingulate cortex (PCC) and ventral anterior cingulate cortex (vACC), via the 

correlation method, to be functionally connected within themselves and also with each other. 

The authors observed very high correlation in these regions under three specific conditions 

during a working memory task, a visual processing task, and at rest. They identified these 

regions with the default mode network of the brain. Fox, Corbetta, Snyder, Vincent, and 

Raichle (2006) and Fox et al. (2005) found similar results.

Uddin et al. (2009) also analyzed the functional connectivity of the default mode network 

with the correlation method on resting state data to find differences in functional 

connectivity between PCC and vACC and networks that are positively corrrelated and 
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anticorrelated with these two regions. They observed that the positively correlated networks 

were the same for PCC and vACC; however, the anticorrelated networks were different. 

Activity in vACC negatively predicted activity in parietal visual spatial and temporal 

attention networks, whereas activity in PCC negatively predicted activity in prefrontal-based 

motor control circuits. Since the two major brain regions comprising the default mode 

network showed different behavior when correlated with other networks in the brain, the 

authors concluded that there is significant heterogeneity within the default mode network.

Anand et al. (2005) studied the effect of antidepressants on the functional connectivity of the 

human brain from fMRI data via the correlation method in depressed and healthy control 

subjects. They measured the connectivity between cortical and limbic regions during 

continuous exposure to neutral, positive, and negative pictures. Depressed patients showed 

decreased corticolimbic functional connectivity compared to healthy subjects during the 

resting state and on exposure to emotionally valenced pictures. At rest and on exposure to 

neutral and positive pictures, the functional connectivity between the anterior cingulate 

cortex and limbic regions was significantly increased in patients after treatment. However, 

on exposure to negative pictures, corticolimbic functional connectivity remained decreased 

in depressed patients. The authors concluded that antidepressant treatment increases 

corticolimbic connectivity in depressed patients.

Hampson, Peterson, Skudlarski, Gatenby, and Gore (2002) have found functional 

connectivity in low frequency using the correlation method. They found a functional 

connection between the Brocas and Wernickes areas in healthy subjects at rest. The 

functional connection increased when subjects started continuously listening to narrative 

text. Furthermore, significant correlation between the Brocas area and a region in the left 

premotor cortex was found at rest, and it increased during continuous listening.

Although the research on functional connectivity estimation using the correlation method is 

promising and exciting, the conclusions drawn from the experimental analysis can be 

misleading or wrong since the regions might show high correlation (i.e., they are 

functionally connected) due to a common input and not to strong physical connections 

between themselves (Wang, Kang, Kemmer, & Guo, 2016). Recently Glasser et al. (2016), 

in a study of multimodal magnetic resonance images from the Human Connectome Project 

(HCP), identified many new areas in the human cortex using a machine learning classifier. 

Pairs of these areas with a high degree of functional connectivity also received common 

input from other areas.

1.2 Solution: The Sparse Regularized Precision Matrix Method

Due to the shortcomings of the correlation method that we have outlined, some researchers 

have used partial correlations to measure strong direct interactions between pairs of regions 

while simultaneously removing the influence of the rest of the regions (Dempster, 1972; 

Lauritzen, 1996; Whittaker, 1990). Thus, partial correlations help identify pairwise brain 

regions that are conditionally independent given all other brain regions. When the output of 

the brain regions follows a multivariate gaussian distribution, the inverse of the covariance 

matrix (also known as the precision matrix, concentration matrix, or information matrix) can 

be used to calculate the pairwise partial correlations. A value of zero or very close to zero in 
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the precision matrix indicates that the two brain regions are conditionally independent given 

the rest of the brain regions. In practice, the precision matrix can be estimated by simply 

inverting the sample covariance matrix provided a sufficiently large number of samples is 

available.

But when the number of samples is relatively small, the sample covariance matrix is a poor 

estimator of the eigenvalues of the covariance matrix, and thus the estimated precision 

matrix might produce a large number of false-positive and false-negative connections in a 

given brain network. If we assume that the number of connections between the regions in a 

given brain network is small (i.e., the precision matrix is sparse), then the sparse regularized 

precision matrix (SRPM) X can be estimated by solving the following Lq regularized 

optimization problem:

(1.1)

where λ is the regularization parameter balancing the error in the maximum likelihood 

estimate (MLE) of the precision matrix and the sparsity (The MLE of the precision matrix is 

the inverse of the sample covariance matrix according to the invariance principle), S is the 

sample covariance matrix and 0 ≤ q ≤ 1. Several algorithms (Banerjee, El Ghaoui, & 

d’Aspremont, 2008; Friedman, Hastie, & Tibshirani, 2008; Hsieh, Sustik, Dhillon, & 

Ravikumar, 2011; Hsieh, Sustik, Dhillon, Ravikumar, & Poldrack, 2013; Oztoprak, Nocedal, 

Rennie, & Olsen, 2012; Rothman, Bickel, Levina, & Zhu, 2008; Scheinberg, Ma, & 

Goldfarb, 2010; Yuan & Lin, 2007) have been proposed for the q = 1 case. For the q = 0 

case, algorithms proposed in Marjanovic and Hero (2015) and Marjanovic and Solo (2014) 

can be used to estimate the SRPM. Marjanovic and Solo (2014) proposed an algorithm to 

solve the optimization problem in equation 1.1 for the general 0 ≤ q < 1 case.

Note that when q = 1, the optimization problem in equation 1.1 is a convex optimization 

problem. We use the QUIC algorithm (Hsieh et al., 2011, 2013) to estimate the SRPM for 

the simulations and experimental data analysis throughout this letter.

1.3 Prior Research for Human Brain Functional Connectivity Estimation Using the SRPM 
Method

The SRPM algorithm has been applied to obtain brain networks from voxels data in (Hsieh 

et al., 2011, 2013) using q = 1. Strong functionally connected regions were primarily found 

in gray matter regions in the human brain. Modularity-based clustering (Blondel, Guillaume, 

Lambiotte, & Lefebvre, 2008; Brandes et al., 2008; Newman & Girvan, 2004; Newman, 

2006; Reichardt & Bornholdt, 2006; Ronhovde & Nussinov, 2009; Sporns, 2010; Sun, 

Danila, Josić, & Bassler, 2009) was then applied to the regularized precision matrix obtained 

from the algorithm. A number of resting state networks were identified, including default 

mode and sensorimotor networks. In addition, the method identified a number of structured 

coherent noise sources in the data set. The modules detected by the QUIC algorithm were 

similar to those identified using independent component analysis on the same data set 
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without the need for the extensive dimensionality reduction (without statistical guarantees) 

inherent in such techniques.

Ryali, Chen, Supekar, and Menon (2012) applied the SRPM method with q = 1 to resting 

state fMRI data and found a modular architecture characterized by strong interhemispheric 

links, distinct ventral and dorsal stream pathways, and a major hub in the posterior medial 

cortex.

Varoquaux, Gramfort, Jean-Baptiste, and Thirion (2010) analyzed human brain functional 

connectivity using the SRPM method with q = 1 and after clustering found regions 

corresponding to important brain areas such as the primary visual system (medial visual 

areas), the dorsal visual pathway, the occipital pole, and the intraparietal areas comprising 

the default mode network, the fronto-parietal networks, the ventral visual pathway, the 

lateral visual areas, and the inferior temporal lobe. The default mode and the fronto-parietal 

networks appeared as hubs, connecting different networks with different functions, such as 

the visual streams, but also the motor areas, as well as the frontal regions.

Monti et al. (2014) analyzed the change in functional connectivity in the human brain with 

respect to time using the SRPM method with q = 1. Healthy patients were asked to perform 

a simple but attentionally demanding cognitive task. They observed that the activity of the 

right inferior frontal gyrus and the right inferior parietal lobe dynamically (with respect to 

time) changed with the task. The authors concluded that both regions play a key role in the 

attention and executive function during cognitively demanding tasks and may be 

fundamental in regulating the balance between other brain regions.

Rosa et al. (2015) applied the SRPM method with q = 1 for patient classification by 

analyzing brain functional connectivity from fMRI data. They were able to distinguish 

patients with major depressive disorder from healthy control subjects while the participants 

performed gender discrimination and emotional tasks during the visualization of emotionally 

valent faces.

Allen et al. (2012) estimated whole-brain functional connectivity dynamics using the SRPM 

method with q = 1 and clustering algorithms. They analyzed resting state data from a large 

sample of young adults and found connections between regions in the lateral parietal and 

cingulate cortex. This result was in contrast to other studies, which characterized such 

regions as separate entities. They also found that the dynamic functional connectivity of the 

human brain was markedly different from the stationary brain connectivity. The authors 

concluded that the study of time-varying connectivity patterns of the human brain will widen 

our understanding of cognitive and behavioral dynamics.

The SRPM method with q = 1 also has been used to estimate brain functional connectivity at 

a neuronal level in Yatsenko et al. (2015), where it was claimed that the SRPM method 

found more biologically plausible brain networks than the correlation method.

Wang et al. (2016) applied the SRPM method with q = 1 for human brain functional 

connectivity estimation from fMRI data and compared it with the functional connectivity 

estimated by the correlation method. They found that the SRPM method was able to remove 
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considerable between-module connections, which were identified by the correlation method. 

When they applied the correlation method, the majority of the connections found were 

within-module connections. In addition, the authors found between-module connections, in 

particular between the three visual networks (Med Vis, Op Vis, Lat Vis) and between the 

auditory network and the sensori-motor network. But when they analyzed the partial 

correlations obtained from the SRPM method, they found relatively stronger within-module 

connections and very few between-module connections in comparison to the correlation 

method, indicating that the significant direct connections in the human brain are within-

module connections. In particular, 34% of the significant connections found in the 

correlation method became insignificant after calculating the partial correlations from the 

SRPM method. This suggested that the between-module connections are mainly due to 

common inputs and not due to direct interactions between modules.

Although the SRPM method and the inverse covariance method have been previously 

applied in brain research to identify functionally connected networks in the human brain and 

conclusions have been drawn regarding how the brain processes information, more 

experimental analysis is necessary to verify these claims.

1.4 First Contribution: Demonstrating That SRPM Can Truly Find the Physical Connection 
in a Network

In this letter, we generate artificial networks by simulation and demonstrate that the SRPM 

method can indeed find a true physical connection between a pair of nodes in contrast to the 

correlation method and the inverse covariance method. This is the first contribution of the 

letter. To evaluate the performance of the SRPM method, we generate synthetic data from 

two physical models: (1) a mechanical model that considers a cascade connection of a 

number of springs and masses and (2) an electrical circuit model that consists of resistors 

(R) and capacitors (C). The purpose is to demonstrate that the connectivity pattern of the 

spring-mass model can be obtained from the SRPM associated with the displacements of the 

masses and the connectivity pattern of the RC circuit model can be obtained from the SRPM 

associated with the voltages measured at the nodes. The SRPM method is shown to give 

superior performance compared with the correlation method and the inverse covariance 

method and is also able to find the ground-truth connection. In other words, it is shown that 

the correlation method and the inverse covariance method may not be able to recover the 

true connectivity of the associated network in the simulated models in contrast to the SRPM 

method. Note that the inverse covariance matrix and the SRPM have to be normalized to 

obtain the partial correlations (Whittaker, 1990).

1.5 Second Contribution: Theoretical Analysis of the SRPM Method

Furthermore, we give interpretations for the recovery of the connectivity structure via the 

SRPM method by energy models using the Boltzmann distribution (MacKay, 2002). This is 

the second contribution of the letter. This shows that theoretically, if the inverse covariance 

matrix can estimate the connectivity structure between regions under consideration, then the 

SRPM method should be used to estimate the regularized version of the inverse covariance 

matrix to avoid false-positive and false-negative connections when a finite number of 

samples is available.
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1.6 Third Contribution: Application of SRPM in Analyzing Brain Connectivity in the 
Presence and Absence of Sleep Spindles

During sleep, our brains are highly active. The low-amplitude, high-frequency activity in the 

neocortex characteristic of the awake state is replaced with a sequence of distinct phases 

with generally high-amplitude, low-frequency activity. Soon after the onset of sleep, brief 

episodes of 10 Hz to 14 Hz, synchronized spindling occur in the thalamus and cortex, 

producing large-scale spatiotemporal coherence throughout the forebrain. Throughout the 

night, the cortex alternates between periods of slow-wave sleep in the range of 2 Hz to 4 Hz 

and episodes of rapid eye movement sleep (REM), characterized by sharp waves of activity 

in the pons, the thalamus, and the occipital cortex, while also passing through intermediate 

non-REM sleep stages (Sejnowski, 1995; Sejnowski & Destexhe, 2000).

Activity in the sleeping brain is largely hidden from us because very little content of the 

brain activity that occurs during sleep directly enters consciousness. Hence, it becomes 

important to understand the patterns of electrical activity of neurons that occur in the brain 

during sleep. It has been suggested that the important functions of sleep are adaptive 

strategies, physical recovery, energy conservation, and information processing, among 

others. There is also evidence supporting the role of sleep in learning and memory 

consolidation, and neuronal plasticity (Sejnowski, 1995; Sejnowski & Destexhe, 2000; 

Stickgold & Walker, 2005, 2007; Martin et al., 2013).

Fogel, Nader, Cote, and Smith (2007) investigated the functional significance of the 

considerable interindividual differences in sleep spindles. The pattern of the sleep spindles 

within individuals is quite stable and varies little from night to night. Because of the 

remarkable intra-individual stability in sleep spindles from night to night, it was 

hypothesized that sleep spindles may serve as a “fingerprint” to account for interindividual 

differences.

Three separate studies were performed to broadly examine the relationship between spindles 

and learning potential as measured by an IQ test. In all three studies, it was found that the 

number of sleep spindles was positively correlated with performance IQ. Power in the 12–18 

Hz frequency band, a more objective indicator of the level of stage 2 spindle activity, 

displayed even stronger correlations with performance IQ. These results indicated that 

performance IQ can be predicted simply by knowing the number of spindles and sigma 

power. This suggested that sleep spindles and sigma power may be biological markers for 

the specific abilities assessed by performance IQ. This relationship might reflect the 

efficiency of information processing that is dependent on thalamocortical communication. In 

other words, richer cortical representations would require more thalamocortical 

interconnectedness. Maintenance and encoding of new information in a more complex 

system may require more thalamocortical activity or a more efficient thalamocortical 

system. This efficiency or added complexity may be reflected in the higher number of sleep 

spindles in the cortical areas underlying perceptual or analytical abilities in individuals with 

a higher performance IQ.

Fogel and Smith (2006) examined the learning-dependent changes in sleep, including stage 

2 sleep spindles, where subjects went through an intense period of simple motor procedural 
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learning. Overall, the results from the study supported the hypothesis that sleep spindles are 

intimately involved with the consolidation of simple motor procedural memory and may be 

important for the offline reprocessing of recently acquired simple procedural tasks. They 

found an increase in the density of sleep spindles. Furthermore, they found that the overall 

improvement on motor tasks was positively correlated with the increase in sleep spindle 

density. In addition, there was an increase in the duration of stage 2 sleep following new 

learning. The magnitude of this change was very large: overall, there was a 15.8% increase 

in stage 2 sleep. The increase in the duration of stage 2 sleep would be expected to increase 

the total number of sleep spindles alone. In addition to the increased duration of stage 2 

sleep, there was an increase in spindle density. This suggested that motor learning–

dependent changes in sleep spindles are independent of the time spent in stage 2 sleep. To 

determine if the changes to sleep following simple procedural memory were limited to stage 

2 sleep and sleep spindles, REM density was also considered in this experiment. The 

researchers found that neither the duration of REM sleep nor the density of REM changed 

following new learning, which suggested that the changes to sleep following new simple 

procedural learning affected only stage 2 sleep and is specific to sleep spindles.

Schabus et al. (2004) studied the functional significance of stage 2 sleep spindle activity for 

declarative memory consolidation. This study measured spindle activity during stage 2 sleep 

following a (declarative) word-pair association task as compared to a control task. 

Participants performed a cued recall in the evening after learning (160 word pairs), as well 

as in the subsequent morning after 8 hours of undisturbed sleep with full polysomnography. 

Overnight change in the number of recalled words correlated significantly with increased 

spindle activity during the experimental night. The results also suggested that the increase in 

spindle activity cannot simply be accounted for by changes in (stage 2) sleep architecture or 

subjects’ fatigue. They found that the relationship between memory performance and spindle 

activity was not an indirect effect of sleep-stage durations. Even when all sleep stages were 

controlled, the correlation between memory performance and spindle activity changes 

remained significant. Thus, their findings provided evidence for the involvement of sleep 

spindle activity in memory consolidation as measured by the declarative memory task 

performed before and after the experimental night. The fact that spindle activity was related 

only to changes in memory performance (increase or decrease over the night) was consistent 

with the hypothesis that spindle activity is specifically related to the consolidation of 

recently established memory traces. In other words, the findings of the study were in good 

agreement with the role of sleep spindles for memory consolidation. Several other 

researchers (Gais & Born, 2004; Gais, Mölle, Helms, & Born, 2002; Marshall & Born, 

2007) also have reported similar results.

Walker, Brakefield, Morgan, Hobson, and Stickgold (2002) found that improvement in 

motor skill performance in humans was due to sleep. They found evidence that continued 

improvement on a motor skill task occurs only across a night of sleep, while an equivalent 

period of wake offers no significant benefit to performance. Furthermore, more than half the 

variance in overnight improvement was explained by the amount of stage 2 sleep obtained 

during night. The authors speculated that the enhancement in motor skill was due to the 

sleep spindles, which are thought to cause massive calcium entry into pyramidal cells of the 

cerebral cortex, triggering intracellular calcium-dependent mechanisms required for synaptic 
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plasticity (Sejnowski & Destexhe, 2000) and have been shown to increase following training 

on a motor task (Fogel et al., 2007; Fogel & Smith, 2006) as described previously. These 

implications become most significant in the broader context of acquiring real-life skillful 

actions such as learning motor patterns required for movement-based sports, learning a 

musical instrument, or developing artistic movement control. All such learning of new 

actions may require sleep before the maximum benefit of practice is expressed.

Smith and Macneill (1994) found impaired motor memory for a pursuit rotor task following 

stage 2 sleep loss in college students. Among the subjects considered, one group was 

subjected to REM sleep deprivation and the other group to non-REM sleep deprivation 

following acquisition of a pure motor task, the pursuit rotor. Results showed that the REM 

sleep deprivation group had excellent memory for the task, whereas the non-REM sleep 

deprivation group had a deficit in memory for the task. It was concluded that stage 2 sleep 

(where sleep spindles occur) rather than REM sleep was the important stage of sleep for 

efficient memory processing of the pursuit motor task. In other words, the newly acquired 

pure motor skill was most efficient when posttraining stage 2 sleep was allowed and was 

impaired when this stage of sleep was reduced or interrupted in the sleep night following the 

training session.

Meier-Koll, Bussmann, Schmidt, and Neuschwander (1999) tried to link the storing of 

spatial information and episodic memory to sleep stages. Two city mazes, a simple and a 

complex one, were created by means of a computer program and were presented to the 

subjects on a TV screen. The task was to find various end points and the way back to the 

starting point with the help of a PC mouse. After the task, the subjects slept, and the sleep 

stages were measured polygraphically. The subjects exposed to this experiment had 

significantly enhanced sleep spindle activities in comparison to subjects who had 

experienced neither maze. The researchers concluded that there is a functional linkage 

between stage 2 sleep spindles and learning or information processing in cortical areas.

Furthermore, because of its well-organized and consistent structure, sleep can be a valuable 

instrument for investigating neurological disorders such as Alzheimer’s disease, progressive 

supranuclear palsy, REM sleep behavior disorder, Parkinson’s disease, dementia with Lewy 

bodies, multiple system atrophy (MSA), Huntington’s disease and Creutzfeldt-Jakob disease 

(Petit, Gagnon, Fantini, Ferini-Strambi, & Montplaisir, 2004). Ferrarelli et al. (2007) 

investigated whether sleep spindles differ between subjects with schizophrenia, healthy 

individuals, and a psychiatric control group with a history of depression. The authors found 

a decrease in sleep spindle number, amplitude, duration, and integrated spindle activity in 

patients with schizophrenia. Furthermore, integrated spindle activity had an effect size 

corresponding to 93.0% or 90.2% separation of the schizophrenia from the comparison or 

depression group. Since sleep spindles are generated by the thalamic reticular nucleus in 

conjunction with specific thalamic nuclei and are modulated by corticothalamic and 

thalamocortical connections, it was concluded that the deficit in sleep spindles in 

schizophrenia subjects may reflect dysfunction in thalamic-reticular and thalamocortical 

mechanisms and could represent a biological marker of illness. Hence, finding the functional 

pattern in the brain during sleep spindles can provide valuable information for understanding 

the pathophysiology and for assisting the diagnosis of neurodegenerative diseases.
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From these studies, it is quite clear that sleep and sleep spindles play a vital role in memory 

and learning and in investigation of neurological disorders in the human brain. Thus, finding 

connectivity during sleep will surely give us insight into the strong activity regions in the 

brain areas and how they are organized, which may be responsible for information 

processing. Unfortunately, there has been very little research regarding the brain 

connectivity pattern during sleep. Moreover, researchers have termed the correlation of brain 

activity between brain regions as “functional connectivity” and have drawn conclusions 

based on that. These conclusions are flawed since the correlation method fails to identify the 

true connectivity pattern of a physical network, as we will show via extensive simulations 

using artificial networks.

Spoormaker et al. (2010) characterized the human functional brain network during non-

REM sleep by using the correlation method on fMRI recordings. In this study, the authors 

used the correlation method to explore how physiological changes during sleep are reflected 

in functional connectivity and small-world network properties of a large-scale, low-

frequency functional brain network. They observed that in the transition from wakefulness to 

light sleep, thalamocortical connectivity was sharply reduced, whereas corticocortical 

connectivity increased; corticocortical connectivity subsequently broke down in slow-wave 

sleep. Local clustering values were closest to random values in light sleep, whereas slow-

wave sleep was characterized by the highest clustering ratio (gamma). The authors claimed 

that the changes in consciousness in the descent to sleep are subserved by reduced 

thalamocortical connectivity at sleep onset and a breakdown of general connectivity in slow-

wave sleep, with both processes limiting the capacity of the brain to integrate information 

across functional modules.

Larson-Prior et al. (2009) studied cortical network functional connectivity during sleep using 

the correlation method. They examined functional connectivity using conventional seed-

based analyses in three primary sensory and three association networks as normal young 

adults transitioned from wakefulness to light sleep. They found that functional connectivity 

in non-REM sleep was maintained in each network throughout all examined states of 

arousal. Further, these networks were consistent across subjects. The authors were surprised 

that they did not find any evidence of change in functional connectivity in the sensory 

(visual, auditory, and somatomotor) or cognitive (dorsal attention, default and executive 

control) networks examined.

Andrade et al. (2011) also investigated the functional connectivity between the hippocampal 

and neocortical regions of the human brain in non-REM sleep using the correlation method. 

They found increased connectivity between hippocampal and neocortical regions of the 

brain during stage 2 sleep spindles, suggesting increased capacity for global information 

transfer during sleep spindles.

Though the results of these studies are interesting, further experimental validation is 

necessary to support their claims and derive a more thorough physiological interpretation. A 

flaw in these analyses is the use of the correlation method to characterize the brain 

functional connectivity pattern during sleep since two brain regions might show very high 

correlation even if there is no strong physical connection between them; rather, the 
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correlation could be due to a common input. Hence, this is the motivation for the application 

of the sparse regularized precision matrix (SRPM) method in connectivity estimation during 

sleep.

In our third contribution, we demonstrate the application of the SRPM method for estimating 

brain connectivity during sleep spindles from human electrocorticography (ECoG) data 

using an 8 × 8 electrode array. The ECoG recordings that we analyzed were from a 32-year-

old male patient with longstanding pharmaco-resistant left temporal lobe complex partial 

epilepsy. Sleep spindles have a major role in learning and memory consolidation. Our 

purpose in this letter is to find and understand the functional organization of brain areas in 

the presence and absence of sleep spindles. We find that brain connectivity during the 

spindles is highly spatially localized in contrast to the case when sleep spindles are not 

present. We believe that this can give us further insight into the functioning of brain areas 

during spindles in stage 2 sleep. We can find the connectivity pattern in the presence and 

absence of sleep spindles by the SRPM method.

1.7 Fourth Contribution: Detection of Sleep Spindles Using Delay Differential Analysis 
(DDA)

For the detection of sleep spindles, we employ a novel method called DDA (Kremliovsky & 

Kadtke, 1997; Lainscsek, Hernandez, Weyhenmeyer, Sejnowski, & Poizner, 2013; Lainscsek 

& Sejnowski, 2015; Lainscsek, Weyhenmeyer, Hernandez, Poizner, & Sejnowski, 2013; 

Sampson, Lainscsek, Cash, Halgren, & Sejnowski, 2015). This is the fourth contribution of 

the letter. DDA is a time domain classification framework based on embedding theory in 

nonlinear dynamics. Given a recording (here, ECoG data) from some unknown dynamical 

system (here, the brain), an embedding will reveal the nonlinear invariant properties of the 

system, even from a single time series. The embedding in DDA provides a low-dimensional 

nonlinear functional basis onto which the data are mapped. Since this basis is built on the 

dynamical structure of the data, preprocessing of the data (such as filtering) is not necessary. 

DDA yields a low number of features (around four), as compared with traditional spectral 

techniques, which greatly reduces the risk of overfitting. Frequency-based approaches that 

have often been used for detecting spindles are sensitive to certain artifacts involving 

transient increases in spectral power in the band of interest; with DDA, we train on the real 

data to find the relevant dynamical features for spindle identification.

For clustering of similar brain regions, we use the Louvain method for community detection 

(LMCD) (Blondel et al., 2008; Brandes et al., 2008; Newman & Girvan, 2004; Newman, 

2006; Reichardt & Bornholdt, 2006; Ronhovde & Nussinov, 2009; Sporns, 2010; Sun et al., 

2009) on the SRPM. LMCD is a widely used method for clustering in human brain imaging 

data analysis (Bassett et al., 2010, 2011; Cole, Bassett, Power, Braver, & Petersen, 2014; 

Meunier, Lambiotte, & Bullmore, 2010; Rubinov & Sporns, 2010, 2011; Sporns, 2011; Zuo 

et al., 2012).

1.8 Organization of the Letter

The rest of the letter is organized as follows. In section 2, we describe the spring-mass 

model and show how the connectivity of the springs and masses can be recovered by the 
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SRPM method. In section 3, we describe the RC circuit model and describe how to estimate 

the connectivity pattern of the nodes by using the SRPM method. In the RC circuit model, 

we consider two network topologies: the tree topology and the mesh topology. In section 4, 

we first describe the DDA method for automatically detecting sleep spindles from human 

ECoG data and then proceed to the application of SRPM to recover the connectivity among 

the brain regions during the sleep spindles. We draw conclusions in section 5.

2 The Spring-Mass Model

The spring-mass model that we use in our simulation is shown in Figure 1. We assume that 

we can measure the displacements of the masses in the model. There are 50 equal masses m 
connected in cascade via springs, each with a spring constant k. The left-most and the right-

most springs are connected to a rigid wall. For our simulation (hereafter all units are in mks), 

we use m = 0.1 and k = 1. We assume that this spring-mass model is subject to thermal 

perturbation. In addition, we also assume that each spring is subjected to external force, and 

we model this external force as a white noise process with variance σ2. For our simulation, 

we use σ2 = 0.000025. We denote the displacements of the masses as x1, x2, …, x50 and the 

external forces associated with each of them as w1, w2, …, w50, respectively. Using 

Newton’s second law of motion and Hooke’s law, we can write the displacement equations 

of the masses as

(2.1)

In matrix-vector form, the above set of equations can be written as

(2.2)

In compact form, equation 2.2 can be represented as

(2.3)

where x is the displacement vector, w is the white noise vector, and C is the connectivity (or 

ground-truth) matrix and is shown in Figure 2. Using a second-order approximation of the 

double derivative on the left-hand side in equation 2.3, we have
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(2.4)

where h is the step size and t denotes the time instant. We use a random initialization of x 

with variance . We then solve equation 2.4 repeatedly to generate N samples of 

the displacement vector x corresponding to N consecutive time points. For our simulation, 

we choose h = 0.007 and N = 50,000. We use these N samples to form the sample covariance 

matrix.

We next apply the correlation method, the inverse covariance method, and the SRPM 

method to recover the connectivity pattern of the spring-mass system. The value of λ for the 

SRPM method is chosen to be 0.0009. The results are shown in Figure 3. Note that the 

ground-truth matrix in Figure 3 is binarized such that a one denotes either a diagonal 

element or a connectivity between two masses via a spring and a zero denotes no 

connectivity. For all three methods, we first estimate the connection matrix and choose the 

M largest elements (in absolute value) in the estimated connection matrix, where M is the 

number of nonzero elements in the ground-truth matrix. In Figure 3, for each method, we 

denote these M largest elements as ones and the rest as zeros. The binarization is done for 

clarity and better visualization. The error percentage in the figures for a particular method is 

calculated as the fraction of false-positive and false-negative connections between the 

binarized ground-truth matrix and the binarized estimated connection matrix for that 

method.

From Figure 3b, we note that the correlation method is not able to fully recover the true 

connectivity structure of the spring-mass system. Since the sample covariance matrix is a 

poor estimator of the true covariance matrix, the inverse covariance method is even worse 

than the correlation method and results in a large number of false-positive and false-negative 

connections. The SRPM method is able to recover successfully the true connectivity pattern 

of the spring-mass model.

2.1 Explanation for the Recovery of the Connectivity Structure via the SRPM Method in the 
Spring-Mass Model

Assuming that the spring-mass model is subject only to thermal perturbation (i.e., if we 

assume w = 0 in equation 2.3), then the probability distribution of the displacement vector x 
can be given by the Boltzmann distribution (MacKay, 2002) as

(2.5)

where β = 1/(kT), k is the Boltzmann constant, T is the temperature, and Z is a 

normalization factor. In equation 2.5, E(x) is the energy of the spring-mass system. For the 

model in Figure 1, the energy E(x) can be written as
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(2.6)

where xT denotes the transpose of x and . Hence, we have

(2.7)

We note that P(x) in equation 2.7 is a multivariate gaussian distribution in x whose inverse 

covariance matrix differs from  only by a scalar multiple, implying that the inverse 

covariance matrix in equation 2.7 is just a scaled version of the connectivity matrix C in 

equation 2.3. Hence, the inverse covariance matrix can recover the connectivity structure of 

the cascade connection of springs and masses given in Figure 1.

Since the sample covariance matrix is a poor estimator of the eigenvalues of the covariance 

matrix, the inverse of the covariance matrix produces a large number of false-positive and 

false-negative connections as shown in Figure 3c. In contrast, since the connectivity 

structure is sparse, we can use the SRPM method to recover the connectivity pattern of the 

spring-mass system.

Remark 1—The performance (in terms of error percentage) of the correlation method, the 

inverse covariance method, and the SRPM method in the spring-mass model does not 

change under different types of noise distributions. We have tested the performance of these 

methods under gaussian, Poisson, and uniform distributions and have obtained similar 

performance to that given in Figure 3 for the three methods.

Remark 2—The performance (in terms of error percentage) of the three methods in the 

spring-mass model does not change for signal-to-noise ratio up to 30 dB, and the 

performance is very similar to that given in Figure 3 for the three methods.

These results are not surprising. Note that in the spring-mass model, we model the noise as 

an external force. So no matter how “forcefully” (noise variance) or in what way (noise 

distribution) we wobble the spring-mass system, the connectivity pattern will not change. 

Noise is not responsible for the connectivity pattern, and the connectivity patterns for 

different methods shown in Figure 3 are due to the methods themselves.

3 The RC Circuit Model

The RC circuit model is taken from Sojoudi and Doyle (2014), who applied an SRPM 

method with q = 1 (graphical LASSO). We consider two network topologies: the tree 

network and the mesh network. We assume that the voltages at the nodes are available for 

measurement and estimate the connectivity by the three methods from these measured 

voltages. An edge between a pair of nodes denotes a parallel resistor-capacitor (RC) circuit 

as shown in Figure 4a. We assume that the circuit is activated only by the thermal current 
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(i.e., there is no supply of external current) and each node is subject to thermal current as 

shown in Figure 4b. We model this thermal current as white noise known as the Johnson-

Nyquist noise. These stochastic currents produce stochastic voltages at the nodes, which in 

turn cause the charging and discharging of the capacitors in the network.

3.1 The Tree Network

This network is shown in Figure 5, where the nodes are denoted as numbers and each edge 

represents a parallel RC circuit as in Figure 4a. We consider 10 nodes in this example. Let v 
denote the vector of voltages at the nodes and i denote the vector of stochastic currents 

injected to the nodes by some external device. Using Kirchoff’s law, we have

(3.1)

where A is the capacitance matrix and G is the conductance matrix (see Sojoudi & Doyle, 

2014, regarding how to construct the matrices A and G). For our simulation, we assume that 

each of the values of the capacitances and conductances denoted as edges in Figure 5 has a 

value of 1. Moreover, node 5 of the circuit is grounded through a parallel RC circuit, and for 

this, the values of both the capacitance and the conductance are taken to be 4. Hence, in this 

case, A ≡ G, and we call A or G the connectivity matrix or the ground-truth matrix of the 

RC circuit. Note that the values of the capacitances and conductances in the tree network are 

chosen such that the connectivity matrix A (≡ G) is positive definite. The connectivity 

matrix for the given tree network is shown in Figure 6. Assuming that the current vector i is 

due to the stochastic currents from the white thermal noise, we can write equation 3.1 as 

(Sojoudi & Doyle, 2014)

(3.2)

where  is the square root (not the elementwise square root) of the matrix G. For our 

simulation, we choose variance σ2 = 4 for the white noise process w in equation 3.2. Using a 

first-order approximation of the derivative on the left-hand side in equation 3.2, we have

(3.3)

where h is the step size and t denotes the time instant. For our simulation, we choose h = 0.5. 

We use a random initialization of v with variance . As done in the spring-mass 

example, we solve equation 3.3 iteratively to generate N samples for the voltages. For our 

simulation, we choose N = 282.

We next apply the correlation method, the inverse covariance method, and the SRPM 

method to recover the connectivity pattern of the tree network. The value of λ for the SRPM 

method is chosen to be 0.01. The results are shown in Figure 7. As done in the spring-mass 

example, we show only the binarized results for better visualization.
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We note that the correlation method and the inverse covariance method are not able to 

recover the true connectivity pattern of the tree network. The correlation method in 

particular has a large percentage of false-positive and false-negative connections. This is due 

to the fact that node 5 is connected to ground via a parallel RC circuit with relatively high 

conductance and capacitance. Thus, the grounded node and its neighbors will have low 

correlation and the ungrounded nodes and their neighbors will have high correlation even 

though they are not connected (Sojoudi & Doyle, 2014). In contrast, the SRPM method is 

able to recover successfully the ground truth of the tree network.

3.1.1 Explanation for the Recovery of the Connectivity Structure via the SRPM 
Method in the Tree Network—Since we have assumed that the tree network is only 

subject to thermal perturbation, the probability distribution of the voltage vector v can be 

given by the Boltzmann distribution as

(3.4)

where E(v) is the energy of the capacitors in the tree network and Z is the corresponding 

normalization factor. For the given tree network in Figure 5, the energy E(v) can be written 

as

(3.5)

where υi denotes the voltage at the ith node, i = 1, 2, …, 10 and A is the connectivity matrix 

of the tree network given in equation 3.2. Hence, we have

(3.6)

which is a multivariate gaussian distribution in v whose inverse covariance matrix differs 

from A only by a scalar multiple. Hence, the inverse covariance matrix can recover the 

connectivity pattern of the tree network given in Figure 5. But since the sample covariance 

matrix is a poor estimator of the eigenvalues of the covariance matrix, the inverse of the 

covariance matrix produces false-positive and false-negative connections, as shown in Figure 

7c. In contrast, since the connectivity structure is sparse, the SRPM method is able to 

recover successfully the connectivity pattern of the tree network.

3.2 The Mesh Network

This network is shown in Figure 8, where the nodes are denoted as numbers and each edge 

represents a parallel RC circuit as in the tree network. We consider 24 nodes in this example. 

Das et al. Page 16

Neural Comput. Author manuscript; available in PMC 2017 May 10.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Equations 3.2 and 3.3 remain the same for this network with the corresponding A, G, and v. 

For our simulation, we assume that each of the values of the capacitances and conductances 

denoted as edges in Figure 8 has a value of 1. Moreover, all the nodes indexed from 1 to 18 

of the circuit are grounded through parallel RC circuits, as is done for node 5 in the tree 

network, and the value of both the capacitance and the conductance are taken to be 5 for 

each parallel RC circuit connected to ground. Hence, in this case A ≡ G, and this is the 

connectivity matrix or the ground-truth matrix for the mesh network. Once again, note that 

the values of the capacitances and conductances in the mesh network are chosen such that 

the connectivity matrix A (≡ G) is positive definite. The connectivity matrix for the given 

mesh network is shown in Figure 9. We again choose σ2 = 4 for the white noise process w in 

equation 3.2. The value of step size is chosen to be h = 0.5. We also use a random 

initialization of v with variance . As done in the tree network, we solve equation 3.3 

iteratively to generate N samples for the voltages, and in this case, we choose N = 2000.

We again apply the correlation method, the inverse covariance method, and the SRPM 

method to recover the connectivity pattern of the mesh network. The value of λ for the 

SRPM method is chosen to be 0.005. The results are shown in Figure 10. As done in the tree 

network, we show only the binarized results.

We note that the correlation method and the inverse covariance method are not able to 

recover the true connectivity pattern of the mesh network with the correlation method having 

a large percentage of false-positive and false-negative connections. We also observe that the 

ungrounded nodes and their neighbors have high correlation even though they are not 

connected. Once again, the SRPM method is able to successfully recover the ground truth of 

the mesh network.

3.2.1 Explanation for the Recovery of the Connectivity Structure via the SRPM 
Method in the Mesh Network—Following the procedure in the tree network, if we 

assume that the mesh network is subject only to thermal perturbation, it is straightforward to 

show that the voltage vector v in the mesh network follows a multivariate gaussian 

distribution whose inverse covariance matrix differs from the connectivity matrix A of the 

mesh network shown in Figure 8 only by a scalar multiple. Hence, the inverse covariance 

matrix can recover the connectivity pattern of the mesh network. Once again, the direct 

inverse of the covariance matrix produces false-positive and false-negative connections as 

shown in Figure 10c. In contrast, since the connectivity structure is sparse, the SRPM 

method is able to successfully recover the connectivity structure of the mesh network.

Also, note that for the voltage vector v to follow a multivariate normal distribution whose 

inverse covariance matrix differs from the connectivity matrix A only by a scalar multiple, 

the RC circuit network need not be one of the specific structures (tree and mesh) given in 

Figures 5 and 8. It is straightforward to show (following the steps as before via the 

Boltzmann distribution) that the inverse covariance matrix can recover the connectivity 

pattern of an arbitrarily connected RC circuit network in the limit as the number of samples 

increases to infinity.

Das et al. Page 17

Neural Comput. Author manuscript; available in PMC 2017 May 10.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Remark 3: The performance (in terms of error percentage) of the correlation method, the 

covariance method, and the SRPM method in the tree network and the mesh network does 

not change under different types of noise distributions. We have tested the performance of 

these methods under gaussian, Poisson, and uniform distributions and have obtained similar 

performance to that given in Figure 7 for the tree network and Figure 10 for the mesh 

network for the three methods.

Remark 4: The performance (in terms of error percentage) of the three methods in the tree 

network and the mesh network does not change for signal-to-noise ratio up to 30 dB, and the 

performance is very similar to that given in Figure 7 for the tree network and in Figure 10 

for the mesh network for the three methods.

These results are not surprising. Note that in the RC networks, we have modeled the noise as 

stochastic current from white thermal noise. If the current goes up and down or changes 

direction, the connectivity pattern will not change. Noise is not responsible for the 

connectivity pattern, and the connectivity patterns for different methods shown in Figures 7 

and 10 are due to the methods themselves.

4 Connectivity Estimation during Sleep Spindles from Human ECoG 

Recordings

We now proceed to the application of the SRPM method in estimating brain connectivity 

during sleep spindles from human ECoG data. We first describe the DDA method for sleep 

spindle detection. Sleep spindles are detected from single-channel time series data, and we 

repeat the DDA method on each channel. To collect the ECoG data, we use an 8 × 8 

electrode array, hence 64 grid electrodes, or channels, in total. First, we describe the data 

acquisition protocol. Next, we briefly describe the DDA method. Then we apply the SRPM 

method for estimating the strongest connectivity between the brain regions during the sleep 

spindles. For connectivity estimation, we consider only time windows in which the spindles 

were present in a relatively large number of channels. After estimating the connectivity, we 

cluster similar brain regions together using the LMCD method and find spatially localized 

brain networks. These localized brain networks might suggest the flow of information in the 

brain areas during sleep spindles.

We clarify that the assumption of sparse connectivity is reasonable due to the following. 

During the non-REM sleep, the thalamic neurons excite the cortex with patterns of activity 

that are more spatially and temporally coherent than would normally be encountered in the 

awake state. Getting these neurons to fire together is a potent way of enhancing their impact 

on other neurons and the cortex, because the synaptic inputs arriving synchronously on a 

neuron produce greater output than the same number of inputs arriving asynchronously. 

Thus, if too many neurons fire together at the same time, this amplification may go awry and 

lead to an epileptic seizure (Steriade, McCormick, & Sejnowski, 1993). Therefore, the level 

of activity and degree of synchrony in the neural networks and cortex of the brain are 

strongly regulated through dynamic cellular mechanisms. Since at a given time very few 

neuronal cells in the brain are active, the assumption of sparse connectivity in the brain 

during sleep spindles is reasonable.
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4.1 ECoG Data Acquisition and Protocol

ECoG recordings from a 32-year-old male patient with long-standing pharmaco-resistant left 

temporal lobe complex partial epilepsy were analyzed. Recordings were performed using a 

standard clinical recording system (XLTEK, Natus Medical, San Carlos, CA) with a 500 Hz 

sampling rate. The reference channel was a strip of electrodes placed outside the dura and 

facing the skull at a region remote from the other grid and strip electrodes. Subdural 

electrode arrays were placed to confirm the hypothesized seizure focus and locate 

epileptogenic tissue in relation to essential cortex, thus directing surgical treatment. The 

decision to implant, the electrode targets, and the duration of implantation were made 

entirely on clinical grounds with no input from this research study. All data acquisition was 

performed under protocols monitored by Institutional Review Board of the Massachusetts 

General Hospital according to National Institutes of Health guidelines. Data selected for use 

in this study were exclusively from stage 2 sleep, during time periods when no seizures were 

occurring. The medication information for the patient is given in Table 1. The recordings 

analyzed here are from day 10.

4.2 DDA Method for Sleep Spindle Detection in Human ECoG Data

In order to detect sleep spindles reliably in the ECoG data, we used DDA. In Figure 11a, 

DDA is introduced as a time domain classification framework based on embedding theory in 

nonlinear dynamics (Kremliovsky & Kadtke, 1997; Lainscsek, Hernandez et al., 2013; 

Lainscsek & Sejnowski, 2015; Lainscsek, Weyhenmeyer et al., 2013; Sampson et al., 2015). 

Given a recording (here, ECoG data) from some unknown dynamical system (here, the 

brain), an embedding will reveal the nonlinear invariant properties of the system, even from 

a single time series (Takens, 1981). The embedding in DDA provides a low-dimensional 

nonlinear functional basis onto which the data are mapped. Since this basis is built on the 

dynamical structure of the data, preprocessing of the data (such as filtering) is not necessary. 

DDA yields a low number of features (around four), as compared with traditional spectral 

techniques, which greatly reduces the risk of overfitting.

Another way of viewing DDA models is as sparse Volterra series (Volterra, 1887, 1959). A 

general nonlinear real-valued function can be expressed as a Taylor series expansion of 

functionals of increasing complexity around a fixed point. When the function represents the 

behavior of a dynamical system, the expansion becomes a Volterra series. DDA restricts the 

complexity of the analysis by using a low-dimensional sparse delay differential equation 

model. In such a model, linear and nonlinear data components are analyzed in an 

interconnected manner. This reduces the computational load, and leaving some of the 

nonrelevant dynamics unmodeled highly reduces the effect of artifacts and other signals 

unrelated to those we aim to detect.

All of these properties make DDA well suited to the problem of spindle detection. 

Frequency-based approaches that have often been used for detecting spindles are sensitive to 

artifacts involving transient increases in spectral power in the band of interest, and 

parameters often have to be adjusted to fit individual subjects. In DDA, we train on real data 

from a single subject and a single electrode and find the relevant dynamical features for 

spindle identification that are highly generalizable to a wide class of subjects and recordings.
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In practice, DDA (see Figure 11a) combines a differential embedding with a delay 

embedding by relating them in a polynomial function,

(4.1)

where I is the number of monomials in the model, N is the number of delays in each 

monomial, and mn,i is the order of the nth term in the ith monomial. The time derivative of 

the data, , is computed with a five-point center derivative (Miletics & Molnárka, 2005). 

The estimated coefficients ai for the model, as well as the least-squares error, form the low-

dimensional feature space used for classifying the data (here, for detecting spindles). The 

least-squares error is defined as

(4.2)

where K denotes the number of time points,  denotes , and  denotes x(t − τn).

The particular form of the polynomial in equation 4.1 was chosen after an exhaustive search 

of all model forms subject to the following constraints: model forms were constrained to two 

delays (N ≤ 2), three terms (I ≤ 3), and third-order nonlinearity (Σn mn,i ≤ 3), and the delays 

were constrained to values up to 150 time points (τn ≤ 150). For model selection, we used a 

training data set with human expert–scored spindles in stereoelectroen-cephalogram (SEEG) 

data sampled at 500 Hz. As shown in Figure 11b, the best-performing model was selected 

using repeated random subsampling cross-validation (Kohavi, 1995). This method involves 

repeatedly dividing the data at random into training and testing sets. Each random split 

assigns 70% of the data to the training set and 30% to the testing set. The model form and 

values of the delays τ1 and τ2 in equation 4.3 were chosen to maximize the separation 

between spindle and nonspindle epochs. For spindle detection, we used the model

(4.3)

with τ1 = 19 δt and τ2 = 12 δt, where δt 1/fs = 2 ms. Different values of the delays would be 

selected for a different sampling rate. From the cross-validation procedure, we obtain 

weights using singular-value decomposition (SVD), which we apply to the four features 

from this model— a1, a2, a3, and ρ—to transform the four-dimensional feature space to a 

one-dimensional distance from a hyperplane of separation. This transformation is illustrated 

in Figure 11c. The small number of features is a general feature of DDA, which has the 

advantages of minimizing overfitting and reducing the influences of artifacts in the 

recordings. DDA is also more sensitive than traditional methods based on frequency analysis 

and thresholding, allowing spindles to be detected in most electrodes.
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After selecting the model based on the SEEG training data, its performance was evaluated 

on a set of 20 recordings from SEEG, ECoG, and laminar electrodes. Across this data set, 

our DDA-based spindle detector agrees with the expert scoring with a mean area of 0.84 

under the receiver operating characteristic (ROC) curve and a mean F1 score of 0.9. This is 

comparable to or better than typical interrater agreement between human experts. Warby et 

al. (2014) found a mean F1 score of 0.75 for marked spindles for a group of 24 experts as 

compared with the group consensus (designed to maximize mean individual F1 score). This 

finding is similar to those of other studies of human-expert sleep scoring, where typical inter 

rater agreement is in the range of 72% (Basner, Griefahn, & Penzel, 2008; Danker-Hopfe et 

al., 2009; Iber, 2007).

For detecting the spindles used in this analysis, we treat each channel separately and use 

sliding windows of 0.25 seconds, with a 0.05 second step size. In each window, we obtain a 

distance from the hyperplane as described above, which serves as an index indicating the 

presence of a spindle when it exceeds a set threshold. The threshold was set to maximize 

agreement with human scoring in the training data, as measured by the area under the ROC 

curve. Figure 12 shows, for two example spindles, the output detection index from DDA, 

along with the raw waveform and spectrogram for reference from one channel of ECoG 

data.

It is important to note that DDA is used here only to identify spindle epochs for study, and 

the outputs of DDA are not used in any of the subsequent analysis.

4.3 Sparse Connectivity Estimation by the SRPM Method during Sleep Spindles

After detecting the sleep spindles for each channel (see Figure 13) as described, we selected 

only time windows in which spindles were present in a relatively large number of channels. 

We selected 10 such time windows and estimated the SRPM for each of them. The average 

number of channels in which sleep spindles were present in the selected time windows was 

found to be 32.10 ± 6.78. We then applied the LMCD (Blondel et al., 2008; Brandes et al., 

2008; Newman & Girvan, 2004; Newman, 2006; Reichardt & Bornholdt, 2006; Ronhovde & 

Nussinov, 2009; Sporns, 2010; Sun et al., 2009) on the SRPM to cluster similar electrodes 

together. The regularization parameter λ in the SRPM method was chosen to be large 

enough to minimize the intercluster connectivity after applying the LMCD, thus clustering 

the brain regions with the strongest connectivity. The range of values of λ used for the 

analysis was between 0.035 and 0.054. The SRPM method was found to be fairly robust to 

the regularization parameter, and small changes in the values of the regularization 

parameters did not significantly alter the results reported here. Figure 13 shows the clustered 

brain regions in the 10 time windows considered. Note that in all of the panels in Figure 13, 

the clusters are spatially localized, indicating spatially localized connectivity among brain 

regions. The average modularity across the 10 panels was found to be 0.41 defined as

(4.4)
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where Bi j denotes the strength of connectivity (obtained from the SRPM) between brain 

regions i and j, si = Σj Bi j denotes the sum of connectivity strengths between brain region i 
and the rest of the brain regions, σi denotes the cluster to which brain region i belongs to, 

, and δ(σi, σj) is 1 if σi = σj and 0 otherwise (Blondel et al., 2008; Reichardt & 

Bornholdt, 2006). Also, the number of clusters is not the same in the panels. Observe that in 

different panels, different brain regions show the strongest connectivity.

We next analyzed the time windows in which sleep spindles were not present in any of the 

64 channels. We selected 21 such time windows in total and observed that the clustered 

brain regions were not as spatially localized as that of the time windows where sleep 

spindles were present. Figure 14 shows the clustered brain regions in four time windows in 

which there were no spindles. The average modularity across all the nonspindle time 

windows (including those not shown here) was found to be 0.49. The number of clusters is 

not the same in the panels, and in different panels, different brain regions show the strongest 

connectivity.

In order to quantify the degree of spatial localization in spindle and nonspindle cases, we 

calculated the average relative surface area (ARSA) for both the cases. The ARSA for the 

spindle case was defined to be the average of the relative surface areas (RSAs) of all clusters 

across all time windows in which spindles were present and the ARSA for the nonspindle 

case was defined similarly. The RSA of a cluster was defined as

(4.5)

where SA denotes the the surface area spanned by the cluster, TA denotes the total surface 

area spanned by all the electrodes, and NA denotes the number of electrodes in that 

particular cluster. The ARSA for the spindle case was found to be 0.010 ± 0.006, and the 

ARSA for the nonspindle case was found to be 0.031 ± 0.009, which is significantly higher 

than that of the spindle case. This indicates that the brain networks during sleep spindles are 

highly spatially localized in comparison to during the absence of spindles.

Moreover, we applied the correlation method, and almost all brain regions showed very 

strong connectivity after applying the LMCD on the correlation matrix, indicating that the 

correlation method does not result in sparse connectivity between brain regions.

5 Discussion

The correlation method cannot find true physical connections in a network since two brain 

regions might show very high correlation even when the two regions are not directly 

connected; rather, the high correlation could be due to the strong interaction of the two 

regions with common input from a third region. Although research has primarily focused on 

the correlation method and conclusions have been drawn based on the results, those 

experiments need to be repeated using our proposed approach to validate the correctness of 

the findings. Researchers have proposed solutions to this problem and have suggested using 
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a sparse regularized inverse covariance matrix or precision matrix (SRPM), assuming that 

the connectivity structure is sparse. This method yields partial correlations to measure strong 

direct interactions between pairs of regions while simultaneously removing the influence of 

the rest of the regions, thus identifying conditionally independent regions. Although the 

SRPM method and the inverse covariance method have been previously applied in brain 

research to identify functionally connected networks in the human brain and conclusions 

have been drawn regarding how the brain processes information, more experimental 

analyses are necessary to verify these claims.

Thus, we generated simple artificial networks via simulation and demonstrated through 

extensive analysis that the SRPM method can indeed find the true physical connection in a 

network. The spring-mass model and the two network topologies in the RC circuit model 

were used to evaluate the performance of the SRPM method. We showed successfully that as 

long as the connectivity structure is sparse, the SRPM method has the potential to 

outperform the correlation method and the inverse covariance method. For these two linear 

problems, SRPM recovered the exact network connectivity. This result is in contrast to the 

results in Sojoudi and Doyle (2014) and Sojoudi (2016), where the correlation method and 

the inverse covariance method gave equivalent or better performance than the SRPM 

method, although a different algorithm was used to solve the optimization problem in 

equation 1.1. Even though the algorithm in Sojoudi and Doyle (2014) and Sojoudi (2016) 

promoted sparsity, it did not successfully recover the connectivity pattern in a physical 

network.

The superior performance of the SRPM method on the artificial networks encouraged us to 

apply the same for analyzing the human brain. We applied the SRPM method for estimating 

brain connectivity during sleep spindles from human electrocorticography (ECoG) data 

using an 8 × 8 electrode array. For sleep spindle detection, we used DDA, a time domain 

classification framework based on embedding theory in nonlinear dynamics. After obtaining 

the SRPM during the sleep spindles, we clustered similar brain regions of strongest activity 

together using the LMCD and found spatially localized brain networks during spindles. 

Moreover, analyzing the time windows in which sleep spindles were not present, we found 

that the clusters were not as compact compared with that of the time windows where sleep 

spindles were present. These findings suggest that regional interactions in the cortex are 

stronger during sleep spindles. Moreover, this gives us insight into local information 

processing during spindle activity in brain. During sleep spindles, the connectivity pattern in 

the brain was transiently synchronized, thus providing evidence for globally organized 

coherence patterns. These findings on spatial localization during spindles provide us with 

new insights into how sleep spindles have a major role in learning, memory consolidation, 

and neuronal plasticity.

Furthermore, the clusters shown in Figure 13 obtained during sleep spindles were large, and 

in 7 of the 10 epochs, there was a cluster that included regions of both the temporal and 

prefrontal cortices. This suggests that some of the connectivity underlying the clustering is 

from association fiber bundles that project between the major cortical lobes. It is worth 

noting that the comparison we are making is between spindle epochs and all other epochs 

during this recording of stage 2 sleep. These nonspindle epochs, then, can be quite 
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heterogeneous, with various other phenomena such as K-complexes or other slow 

oscillations occurring at different times throughout. As such, we expect the connectivity 

pattern to change accordingly throughout these periods. By including a number of different 

nonspindle epochs in our analysis, then, we establish a broad baseline for connectivity 

during stage 2 sleep that we can then compare to the specific connectivity patterns observed 

during spindles. Although the data were from a patient with epilepsy, the recordings we 

analyzed were during long seizure-free periods. Nonetheless, there is concern that the 

cortical sleep states may not be normal, and further work is needed to confirm our results in 

healthy control subjects. Another issue is that the ECoG recordings that we analyzed were 

from a single patient, and hence there is a need to test our methods in a large number of 

epileptic patients. It is important to note that the inputs from the thalamus also act as 

common inputs to the cortex and constitute latent (unobserved) variables in our analysis. In 

order to estimate the connectivity by modeling the latent inputs, we have applied the sparse-

plus-latent regularized precision matrix (SLRPM) method (Chandrasekaran, Parrilo, & 

Willsky, 2012) on the same ECoG recordings shown here and found very similar results to 

the SRPM method, which is surprising. Hence, additional work is needed to test the SRPM 

and SLRPM methods on more subjects to find conditions on the applicability of these 

methods.

Recently, Brunton, Johnson, Ojemann, and Kutz (2016) used the dynamic mode 

decomposition algorithm and clustering methods to characterize brain networks during sleep 

spindles. Similar to our results, they found that the brain networks during sleep spindles are 

spatially localized. However, no results were reported in the absence of sleep spindles. Other 

researchers (Andrillon et al., 2011) also have found similar results. Recently Muller et al. 

(2016), by analyzing the phase coherence, found that sleep spindles are associated with 

traveling waves, which provides further support for our findings.

The analytical and experimental advances made in this letter on sleep, learning, and 

information processing in the brain suggest a possible resolution to one of the greatest 

mysteries in biology: the nature and function of sleep. The experimental results so far are 

incomplete and tentative, but they should lead us toward further advances that will widen our 

understanding of sleep. Additional analysis is needed to test these conclusions, and these are 

reserved for future research.

Finally, the same SRPM method we have used to analyze ECoG recordings could also be 

applied to single unit recordings, local field potentials, and fMRI data.

Acknowledgments

This research was supported by the Howard Hughes Medical Institute, the NIH under grant R01EB009282, and the 
Office of Naval Research under grant N000141310672. We also like to thank Dr. David J. C. MacKay for 
interesting discussions on the spring-mass model.

References

Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele E, Calhoun VD. Tracking whole-brain 
connectivity dynamics in the resting state. Cerebral Cortex. 2012; 24:663–676. [PubMed: 
23146964] 

Das et al. Page 24

Neural Comput. Author manuscript; available in PMC 2017 May 10.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Anand A, Li Y, Wang Y, Wu J, Gao S, Bukhari L, Lowe MJ. Antidepressant effect on connectivity of 
the mood-regulating circuit: An FMRI study. Neuropsychopharmacology. 2005; 30(7):1334–1344. 
[PubMed: 15856081] 

Andrade KC, Spoormaker VI, Dresler M, Wehrle R, Holsboer F, Samann PG, Czisch M. Sleep 
spindles and hippocampal functional connectivity in human NREM sleep. Journal of Neuroscience. 
2011; 31(28):10331–10339. [PubMed: 21753010] 

Andrillon T, Nir Y, Staba RJ, Ferrarelli F, Cirelli C, Tononi G, Fried I. Sleep spindles in humans: 
Insights from intracranial EEG and unit recordings. Journal of Neuroscience. 2011; 31(49):17821–
17834. [PubMed: 22159098] 

Banerjee O, El Ghaoui L, d’Aspremont A. Model selection through sparse maximum likelihood 
estimation for multivariate gaussian or binary data. Journal of Machine Learning Research. 2008; 
9:485–516.

Basner M, Griefahn B, Penzel T. Inter-rater agreement in sleep stage classification between centers 
with different backgrounds. Somnologie-Schlafforschung und Schlafmedizin. 2008; 12(1):75–84.

Bassett DS, Greenfield DL, Lindenberg AM, Weinberger DR, Moore SW, Bullmore ET. Efficient 
physical embedding of topologically complex information processing networks in brains and 
computer circuits. PLoS Computational Biology. 2010; 6(4):e1000748. [PubMed: 20421990] 

Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST. Dynamic reconfiguration of 
human brain networks during learning. Proceedings of the National Academy of Sciences USA. 
2011; 108(18):7641–7646.

Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting 
human brain using echo-planar MRI. Magnetic Resonance in Medicine. 1995; 34(4):537–541. 
[PubMed: 8524021] 

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large 
networks. Journal of Statistical Mechanics: Theory and Experiment. 2008; 2008(10):10008.

Brandes U, Delling D, Gaertler M, Gorke R, Hoefer M, Nikoloski Z, Wagner D. On modularity 
clustering. IEEE Transactions on Knowledge and Data Engineering. 2008; 20(2):172–188.

Brunton BW, Johnson LA, Ojemann JG, Kutz JN. Extracting spatialtemporal coherent patterns in 
large-scale neural recordings using dynamic mode decomposition. Journal of Neuroscience 
Methods. 2016; 258:1–15. [PubMed: 26529367] 

Bullmore ET, Bassett DS. Brain graphs: Graphical models of the human brain connectome. Annual 
Review of Clinical Psychology. 2011; 7(1):113–140.

Chandrasekaran V, Parrilo PA, Willsky AS. Latent variable graphical model selection via convex 
optimization. Annals of Statistics. 2012; 40(4):1935–1967.

Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE. Intrinsic and task-evoked network 
architectures of the human brain. Neuron. 2014; 83(1):238–251. [PubMed: 24991964] 

Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, Meyerand ME. Mapping 
functionally related regions of brain with functional connectivity MR imaging. American Journal 
of Neuroradiology. 2000; 21(9):1636–1644. [PubMed: 11039342] 

Danker-Hopfe H, Anderer P, Zeitlhofer J, Boeck M, Dorn H, Gruber G, Dorffner G. Interrater 
reliability for sleep scoring according to the Rechtschaffen & Kales and the new AASM standard. 
Journal of Sleep Research. 2009; 18(1):74–84. [PubMed: 19250176] 

Dempster AP. Covariance selection. Biometrics. 1972; 28(1):157–175.

Ferrarelli F, Huber R, Peterson MJ, Massimini M, Murphy M, Riedner BA, Tononi G. Reduced sleep 
spindle activity in schizophrenia patients. American Journal of Psychiatry. 2007; 164(3):483–492. 
[PubMed: 17329474] 

Fogel SM, Nader R, Cote KA, Smith CT. Sleep spindles and learning potential. Behavioral 
Neuroscience. 2007; 121(1):1–10. [PubMed: 17324046] 

Fogel SM, Smith CT. Learning-dependent changes in sleep spindles and stage 2 sleep. Journal of Sleep 
Research. 2006; 15(3):250–255. [PubMed: 16911026] 

Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME. Spontaneous neuronal activity 
distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of 
Sciences USA. 2006; 26(103):10046–10051.

Das et al. Page 25

Neural Comput. Author manuscript; available in PMC 2017 May 10.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is 
intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the 
National Academy of Sciences USA. 2005; 102(27):9673–9678.

Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. 
Biostatistics. 2008; 9(3):432–441. [PubMed: 18079126] 

Gais S, Born J. Declarative memory consolidation: Mechanisms acting during human sleep. Learning 
and Memory. 2004; 11(6):679–685. [PubMed: 15576885] 

Gais S, Mölle M, Helms K, Born J. Learning-dependent increases in sleep spindle density. Journal of 
Neuroscience. 2002; 22(15):6830–6834. [PubMed: 12151563] 

Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Van Essen DC. A multi-
modal parcellation of human cerebral cortex. Nature. 2016; 536:171–178. [PubMed: 27437579] 

Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: A network 
analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences USA. 
2003; 1(100):253–258.

Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC. Detection of functional connectivity 
using temporal correlations in MR images. Human Brain Mapping. 2002; 15(4):247–262. 
[PubMed: 11835612] 

Hsieh, CJ., Sustik, MA., Dhillon, IS., Ravikumar, P. Sparse inverse covariance matrix estimation using 
quadratic approximation. In: Shawe-Taylor, J.Zemel, RS.Bartlett, PL.Pereira, F., Weinberger, KQ., 
editors. Advances in neural information processing systems. Red Hook, NY: Curran; 2011. p. 
2330-2338.

Hsieh, CJ., Sustik, MA., Dhillon, IS., Ravikumar, P., Poldrack, R. BIG & QUIC: Sparse inverse 
covariance estimation for a million variables. In: Burges, CJC.Bottou, L.Welling, M.Ghahramani, 
Z., Weinberger, KO., editors. Advances in neural information processing systems. Red Hook, NY: 
Curran; 2013. p. 3165-3173.

Iber, C. The AASM manual for the scoring of sleep and associated events: rules, terminology and 
technical specifications. Darien: American Academy of Sleep Medicine; 2007. 

Kohavi, R. Proceedings of the 14th International Joint Conference on Artificial Intelligence. Vol. 2. 
San Francisco: Morgan Kaufmann; 1995. A study of cross-validation and bootstrap for accuracy 
estimation and model selection; p. 1137-1143.

Kremliovsky, MN., Kadtke, JB. Proceedings: Applied nonlinear dynamics and stochastic systems near 
the millennium. Vol. 411. College Par, MD: AIP Publishing; 1997. Using delay differential 
equations as dynamical classifiers; p. 57-62.

Lainscsek C, Hernandez ME, Weyhenmeyer J, Sejnowski TJ, Poizner H. Non-linear dynamical 
analysis of EEG time series distinguishes patients with Parkinsons disease from healthy 
individuals. Frontiers in Neurology. 2013:4. [PubMed: 23408773] 

Lainscsek C, Sejnowski TJ. Delay differential analysis of time series. Neural Computation. 2015; 
27:615–627. [PubMed: 25149701] 

Lainscsek C, Weyhenmeyer J, Hernandez ME, Poizner H, Sejnowski TJ. Non-linear dynamical 
classification of short time series of the Rössler system in high noise regimes. Frontiers in 
Neurology. 2013; 4:182. [PubMed: 24379798] 

Larson-Prior LJ, Zempel JM, Nolan TS, Prior FW, Snyder AZ, Raichle ME. Cortical network 
functional connectivity in the descent to sleep. Proceedings of the National Academy of Sciences 
USA. 2009; 1(106):4489–4494.

Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A. 
Electroencephalographic signatures of attentional and cognitive default modes in spontaneous 
brain activity fluctuations at rest. Proceedings of the National Academy of Sciences USA. 2003; 
100(19):11053–11058.

Lauritzen, SL. Graphical models. New York: Oxford University Press; 1996. 

MacKay, DJC. Information theory, inference and learning algorithms. Cambridge: Cambridge 
University Press; 2002. 

Marjanovic G, Hero AO. ℓ0 sparse inverse covariance estimation. IEEE Transactions on Signal 
Processing. 2015; 63(12):3218–3231.

Das et al. Page 26

Neural Comput. Author manuscript; available in PMC 2017 May 10.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Marjanovic G, Solo V. On ℓq optimization and sparse inverse covariance selection. IEEE Transactions 
on Signal Processing. 2014; 62(7):1644–1654.

Marshall L, Born J. The contribution of sleep to hippocampus-dependent memory consolidation. 
Trends in Cognitive Sciences. 2007; 11(10):442–450. [PubMed: 17905642] 

Martin N, Lafortune M, Godbout J, Barakat M, Robillard R, Poirier G, Carrier J. Topography of age-
related changes in sleep spindles. Neurobiology of Aging. 2013; 34(2):468–476. [PubMed: 
22809452] 

McIntosh AR, Rajah MN, Lobaugh NJ. Functional connectivity of the medial temporal lobe relates to 
learning and awareness. Journal of Neuroscience. 2003; 23(16):6520–6528. [PubMed: 12878693] 

Meier-Koll A, Bussmann B, Schmidt C, Neuschwander D. Walking through a maze alters the 
architecture of sleep. Perceptual and Motor Skills. 1999; 88(3):1141–1159. [PubMed: 10485095] 

Meunier D, Lambiotte R, Bullmore ET. Modular and hierarchically modular organization of brain 
networks. Frontiers in Neuroscience. 2010; 4:200. [PubMed: 21151783] 

Miletics E, Molnárka G. Implicit extension of Taylor series method with numerical derivatives for 
initial value problems. Computers and Mathematics with Applications. 2005; 50(7):1167–1177.

Monti RP, Hellyer P, Sharp D, Leech R, Anagnostopoulos C, Montana G. Estimating time-varying 
brain connectivity networks from functional MRI time series. NeuroImage. 2014; 103:427–443. 
[PubMed: 25107854] 

Muller L, Piantoni S, Koller D, Cash SS, Halgren E, Sejnowski TJ. Rotating waves during human 
sleep spindles organize global patterns of activity that repeat precisely through the night. eLife. 
2016; 5:e17267. [PubMed: 27855061] 

Newman MEJ. Modularity and community structure in networks. Proceedings of the National 
Academy of Sciences USA. 2006; 103(23):8577–8582.

Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Physical Review 
E. 2004; 69(2):026113.

Oztoprak, F., Nocedal, J., Rennie, S., Olsen, PA. Newton-like methods for sparse inverse covariance 
estimation. In: Pereira, F.Burges, CJC.Bottou, L., Weinberger, KQ., editors. Advances in neural 
information processing systems. Red Hook, NY: Curran; 2012. p. 764-772.

Petit D, Gagnon JF, Fantini ML, Ferini-Strambi L, Montplaisir J. Sleep and quantitative EEG in 
neurodegenerative disorders. Journal of Psychosomatic Research. 2004; 56(5):487–496. [PubMed: 
15172204] 

Reichardt J, Bornholdt S. Statistical mechanics of community detection. Physical Review E. 2006; 
74(1):016110.

Ronhovde P, Nussinov Z. Multiresolution community detection for megascale networks by 
information-based replica correlations. Physical Review E. 2009; 80(1):016109.

Rosa MJ, Portugal L, Hahn T, Fallgatter AJ, Garrido MI, Taylor JS, Mourao-Miranda J. Sparse 
network-based models for patient classification using fMRI. NeuroImage. 2015; 105:493–506. 
[PubMed: 25463459] 

Rothman AJ, Bickel PJ, Levina E, Zhu J. Sparse permutation invariant covariance estimation. 
Electronic Journal of Statistics. 2008; 2:494–515.

Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. 
NeuroImage. 2010; 52(3):1059–1069. [PubMed: 19819337] 

Rubinov M, Sporns O. Weight-conserving characterization of complex functional brain networks. 
NeuroImage. 2011; 56(4):2068–2079. [PubMed: 21459148] 

Ryali S, Chen T, Supekar K, Menon V. Estimation of functional connectivity in fMRI data using 
stability selection-based sparse partial correlation with elastic net penalty. NeuroImage. 2012; 
59(4):3852–3861. [PubMed: 22155039] 

Sampson, AL., Lainscsek, C., Cash, SS., Halgren, E., Sejnowski, TJ. Society for Neuroscience. 2015. 
Nonlinear dynamical sleep spindle detection using delay differential analysis. abstract

Schabus M, Gruber G, Parapatics S, Sauter C, Klösch G, Anderer P, Zeitlhofer J. Sleep spindles and 
their significance for declarative memory consolidation. Sleep. 2004; 27(8):1479–1485. [PubMed: 
15683137] 

Das et al. Page 27

Neural Comput. Author manuscript; available in PMC 2017 May 10.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Scheinberg, K., Ma, S., Goldfarb, D. Sparse inverse covariance selection via alternating linearization 
methods. In: Lafferty, JD.Williams, CKI.Shawe-Taylor, J.Zemel, RS., Culotta, A., editors. 
Advances in neural information processing systems. Red Hook, NY: Curran; 2010. p. 2101-2109.

Sejnowski TJ. Neural networks: Sleep and memory. Current Biology. 1995; 5(8):832–834. [PubMed: 
7583133] 

Sejnowski TJ, Destexhe A. Why do we sleep? Brain Research. 2000; 886(1–2):208–223. [PubMed: 
11119697] 

Siegle GJ, Thompson W, Carter CS, Steinhauer SR, Thase ME. Increased amygdala and decreased 
dorsolateral prefrontal BOLD responses in unipolar depression: Related and independent features. 
Biological Psychiatry. 2007; 61(2):198–209. [PubMed: 17027931] 

Smith C, Macneill C. Impaired motor memory for a pursuit rotor task following stage 2 sleep loss in 
college students. Journal of Sleep Research. 1994; 3(4):206–213. [PubMed: 10607127] 

Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Woolrich MW. 
Network modelling methods for FMRI. NeuroImage. 2011; 54(2):875–891. [PubMed: 20817103] 

Sojoudi S. Equivalence of graphical lasso and thresholding for sparse graphs. Journal of Machine 
Learning Research. 2016; 17(115):1–21.

Sojoudi, S., Doyle, J. Proceedings of the 52nd Annual Allerton Conference on Communication, 
Control, and Computing. Piscataway, NJ: IEEE; 2014. Study of the brain functional network using 
synthetic data; p. 350-357.

Spoormaker VI, Schröter MS, Gleiser PM, Andrade KC, Dresler M, Wehrle R, Czisch M. 
Development of a large-scale functional brain network during human non-rapid eye movement 
sleep. Journal of Neuroscience. 2010; 30(34):11379–11387. [PubMed: 20739559] 

Sporns, O. Brain connectivity toolbox. 2010. https://sites.google.com/site/bctnet/visualization

Sporns O. The nonrandom brain: Efficiency, economy, and complex dynamics. Frontiers in 
Computational Neuroscience. 2011; 5(5)

Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused 
brain. Science. 1993; 262(5134):679–685. [PubMed: 8235588] 

Stickgold R, Walker MP. Memory consolidation and reconsolidation: What is the role of sleep? Trends 
in Neurosciences. 2005; 28(8):408–415. [PubMed: 15979164] 

Stickgold R, Walker MP. Sleep-dependent memory consolidation and reconsolidation. Sleep Medicine. 
2007; 8(4):331–343. [PubMed: 17470412] 

Sun Y, Danila B, Josić K, Bassler KE. Improved community structure detection using a modified fine-
tuning strategy. Europhysics Letters. 2009; 86(2):28004.

Takens F. Detecting strange attractors in turbulence. Lecture Notes in Mathematics. 1981; 898:366–
381.

Uddin LQ, Kelly AC, Biswal BB, Castellanos FX, Milham MP. Functional connectivity of default 
mode network components: Correlation, anti-correlation, and causality. Human Brain Mapping. 
2009; 30(2):625–637. [PubMed: 18219617] 

Varoquaux, G., Gramfort, A., Jean-Baptiste, P., Thirion, B. Brain covariance selection: Better 
individual functional connectivity models using population prior. In: Lafferty, JD.Williams, 
CKI.Shawe-Taylor, J.Zemel, RS., Weinberger, KQ., editors. Advances in neural information 
processing systems. Red Hook, NJ: Curran; 2010. p. 2334-2342.

Vertes PE, Alexander-Bloch AF, Gogtay N, Giedd JN, Rapoport JL, Bullmore ET. Simple models of 
human brain functional networks. Proceedings of the National Academy of Sciences. 2012; 
109(15):5868–5873.

Volterra V. Sopra le funzioni che dipendono da altre funzioni. Atti della Reale Accademia dei Lincei. 
1887; 3:97–105.

Volterra, V. Theory of functionals and of integral and integro-differential equations. Mineola, NY: 
Dover Publications; 1959. 

Walker MP, Brakefield T, Morgan A, Hobson JA, Stickgold R. Practice with sleep makes perfect: 
Sleep-dependent motor skill learning. Neuron. 2002; 35(1):205–211. [PubMed: 12123620] 

Das et al. Page 28

Neural Comput. Author manuscript; available in PMC 2017 May 10.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

https://sites.google.com/site/bctnet/visualization


Wang Y, Kang J, Kemmer PB, Guo Y. An efficient and reliable statistical method for estimating 
functional connectivity in large scale brain networks using partial correlation. Frontiers in 
Neuroscience. 2016; 10:123. [PubMed: 27242395] 

Warby SC, Wendt SL, Welinder P, Munk EGS, Carrillo O, Sorensen HBD, Mignot E. Sleep-spindle 
detection: Crowdsourcing and evaluating performance of experts, non-experts and automated 
methods. Nature Methods. 2014; 11:385–392. [PubMed: 24562424] 

Whittaker, J. Graphical models in applied multivariate statistics. Hoboken, NJ: Wiley; 1990. 

Xiong J, Parsons LM, Gao JH, Fox PT. Interregional connectivity to primary motor cortex revealed 
using MRI resting state images. Human Brain Mapping. 1999; 8(2–3):151–156. [PubMed: 
10524607] 

Yatsenko D, Josić K, Ecker AS, Froudarakis E, Cotton RJ, Tolias AS. Improved estimation and 
interpretation of correlations in neural circuits. PLoS Computational Biology. 2015; 
11(3):e1004083. [PubMed: 25826696] 

Yuan M, Lin Y. Model selection and estimation in the gaussian graphical model. Biometrika. 2007; 
94(1):19–35.

Zhou D, Thompson WK, Siegle G. MATLAB toolbox for functional connectivity. NeuroImage. 2009; 
47(4):1590–1607. [PubMed: 19520177] 

Zuo XN, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O, Milham MP. Network 
centrality in the human functional connectome. Cerebral Cortex. 2012; 22(8):1862–1875. 
[PubMed: 21968567] 

Das et al. Page 29

Neural Comput. Author manuscript; available in PMC 2017 May 10.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Figure 1. 
The spring-mass model. The black dots denote continuation of springs and masses.
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Figure 2. 
The connectivity matrix or the ground-truth matrix C for the spring-mass model.
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Figure 3. 
Results of the estimation methods for the spring-mass model. (a) The ground-truth matrix. 

(b) The estimated connection matrix from the correlation method (16% error). (c) The 

estimated connection matrix from the inverse covariance method (53% error). (d) The 

estimated connection matrix from the SRPM method (0% error). In panels a–d, black 

denotes either a diagonal element or a connectivity between two masses via a spring, and 

white denotes no connectivity.
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Figure 4. 
Elements of the RC circuit model. (a) Parallel RC circuit between a pair of nodes. (b) 

Thermal current associated with a node.
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Figure 5. 
The tree network.
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Figure 6. 
The connectivity matrix or the ground-truth matrix A (≡ G) for the tree network.
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Figure 7. 
Results of the estimation methods for the tree network in the RC circuit model. (a) The 

ground-truth matrix. (b) The estimated connection matrix from the correlation method (29% 

error). (c) The estimated connection matrix from the inverse covariance method (7% error). 

(d) The estimated connection matrix from the SRPM method (0% error). In panels a–d, 

black denotes either a diagonal element or a connectivity between two nodes, and white 

denotes no connectivity.
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Figure 8. 
The mesh network.
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Figure 9. 
The connectivity matrix or the ground-truth matrix A (≡ G) for the mesh network.
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Figure 10. 
Results of the estimation methods for the mesh network in the RC circuit model. (a) The 

ground-truth matrix. (b) The estimated connection matrix from the correlation method (40% 

error). (c) The estimated connection matrix from the inverse covariance method (11% error). 

(d) The estimated connection matrix from the SRPM method (0% error). In panels a–d, 

black denotes either a diagonal element or a connectivity between two nodes, and white 

denotes no connectivity.
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Figure 11. 
Delay differential analysis (DDA). (a) For an unknown dynamical system (such as the brain) 

from which we can record the value of a single variable over time (such as ECoG data), 

embedding theory states that we can recover the nonlinear invariant properties of the original 

system. DDA combines delay and differential embeddings in a functional form that allows 

time-domain classification of the data. (b) Performance of DDA model forms is evaluated 

with repeated random subsampling cross-validation. The data are repeatedly divided at 

random into training and testing sets. (c) Applying the weights (set by SVD) to the DDA 

features transforms from the feature space to a one-dimensional distance from the 

hyperplane of separation. This value is used as a measure of performance for classification.
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Figure 12. 
DDA spindle detection. The top panel shows a spectrogram of the ECoG data for a 4 second 

time period in which two sleep spindles are detected. The middle panel shows the same data 

in the time domain after the application of a 60 Hz notch filter for visualization. The bottom 

panel shows the spindle detection index from DDA; higher values above the set threshold, in 

red, correspond to the presence of spindles.
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Figure 13. 
Estimating brain connectivity during sleep spindles from human ECoG data by the SRPM 

method in 10 epochs from a patient. Circles denote electrode locations, and clusters (of 

strongest activity) put together by the LMCD have the same color. For example, in the left 

top panel, there are three clusters of strongest activity denoted by red, blue, and green.
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Figure 14. 
Estimating brain connectivity during absence of spindles from human ECoG data by the 

SRPM method in 4 epochs from a patient. Circles denote electrode locations, and clusters 

(of strongest activity) put together by the LMCD have the same color. For example, in the 

left top panel, there are five clusters of strongest activity, denoted by red, blue, green, yellow, 

and cyan.
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Table 1

Patient Medication Information.

Day Medication

Home medications Keppra 1000 bid

Day 1 Levetiracetam 1000 bid

Day 2 Levetiracetam 1000 bid

Day 3 Levetiracetam 500 bid

Day 4 Levetiracetam 500 bid

Day 5 off

Day 9 Levetiracetam 1500 qhs, lorazepam 1mg IV

Day 10 Levetiracetam 1000 bid
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