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Abstract

Neuropathologic heterogeneity is often present within Alzheimer’s disease (AD). We sought to
determine if amyloid imaging measures of AD are affected by concurrent pathologies. Thirty-eight
clinicopathologically-defined AD and 17 non-demented cases (ND) with quantitative florbetapir
F-18 (18F-AV-45) PET imaging during life and histological B-amyloid quantification and
neuropathologic examination were assessed. AD cases were divided on the basis of concurrent
pathologies, including those with Lewy bodies (N=21), white matter rarefaction (N=27), severe
cerebral amyloid angiopathy (N=11), argyrophilic grains (N=5) and TDP-43 inclusions (N=18).
Many cases exhibited more than one type of concurrent pathology. The ratio of cortical to
cerebellar amyloid imaging signal (SUVr) and immunohistochemical p-amyloid load were
analyzed in six cortical regions of interest. All AD subgroups had strong and significant
correlations between SUVr and histological B-amyloid measures (p values <0.001). All AD
subgroups had significantly greater amyloid measures compared to ND, and mean amyloid
measures did not significantly differ between AD subgroups. When comparing AD cases with and
without each pathology, AD cases with Lewy bodies had significantly decreased SUVr measures
compared to AD cases without (p = 0.002); there were no other paired comparison differences.
These findings indicate florbetapir-PET imaging is not confounded by neuropathological
heterogeneity within AD.

Keywords

argyrophilic grains; autopsy; cerebral amyloid angiopathy; Lewy bodies; plaques; TDP-43;
vascular dementia; white matter; leuko-araiosis

INTRODUCTION

Biomarkers are increasingly being regarded as essential tools for drug discovery and for
monitoring the effects of therapeutic agents for neurodegenerative diseases. In less than 10
years since the first publication, positron emission tomography (PET) imaging of brain
amyloid with Pittsburgh Compound-B, 11C-PiB, has become an important research tool (1).
However, the 20 minute half-life of 11C -PiB restricts its usage to specialized research
centers in close proximity to a biomedical cyclotron (1). In contrast, labeling with 18F gives
a half-life of 110 minutes (2) and numerous ligands are currently under study utilizing this
approach (3-10). One such 18F-labeled compound, florbetapir F-18 (18F-AV-45), has been
shown, in an autopsy study of 35 subjects that was later extended to 59 subjects, to have
high sensitivity and specificity for B-amyloid (8, 11, 12). However, detailed
neuropathological examinations of these subjects have not yet been published.
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Considerable neuropathologic heterogeneity is often present in persons with AD and other
forms of dementia, raising the question as to whether this might have effects on amyloid
imaging measures. This may be especially crucial since the clinical diagnosis of autopsy
confirmed AD may be incorrect in between 20-30% of subjects (13) and amyloid imaging is
expected to enhance this. AD is pathologically defined by plaques and tangles but a large
majority of AD cases have a variety of concurrent pathologies including Lewy bodies,
vascular lesions, argyrophilic grains and TDP-43 inclusions (14-19).

The purpose of the present study was to test the hypothesis that florbetapir F-18 PET
imaging is a reliable method for estimating in vivo cortical amyloid load in AD subjects
regardless of neuropathologic heterogeneity. This autopsy series is the first to describe the
full spectrum of neuropathological findings in AD subjects who had received amyloid
imaging during life. We included AD and non-demented cases from the previously
published reports, (8, 11) dividing the pathologically-defined AD subjects into subgroups
based on some of the major concurrent pathologies found within AD. These subgroups
consisted of those with Lewy bodies (LBs), white matter rarefaction (WMR), severe
cerebral amyloid angiopathy (CAA), argyrophilic grains (Arg) and phosphorylated TAR
DNA binding protein-43 (TDP-43) inclusions. We examined whether in vivo amyloid
imaging measures of AD subjects, or their correlates with postmortem histological -
amyloid measures, varied due to the presence or absence of these concurrent pathologies.

MATERIALS AND METHODS

Subject selection

Subjects were derived from those described in two previous publications (8, 11). Details of
the recruitment, amyloid imaging, tissue processing, and analytic methodology are given in
the prior publications. Briefly, patients near the end of their lives were recruited from
hospice, long-term care and community healthcare facilities for florbetapir-PET scanning.
Fifty-nine subjects died within two years of amyloid imaging, were autopsied and
neuropathologically examined. From these, 55 subjects were selected for inclusion in the
present study, based on their clinicopathological classification as either AD or non-
demented controls. Subjects with AD (N=38) were defined as demented subjects meeting
CERAD “probable” or “definite” criteria for AD pathology (22). Control cases (N = 17,
Table 1) were defined as those without a final clinical diagnosis of dementia (regardless of
pathology findings), and included clinically-normal non-demented individuals (N = 12) and
those with mild cognitive impairment (MCI, N = 5) but not demented subjects. Three other
subjects were excluded because they were demented but did not meet neuropathological
criteria for AD; these included one with Parkinson’s disease, one with dementia with Lewy
bodies (DLB) and one with hippocampal sclerosis dementia. One case was excluded due to
methodological deviation.

Florbetapir-PET imaging methods

The details of the imaging methods have been previously described (8, 11). Briefly, each
subject underwent a 10-minute PET scan at 50 minutes after receiving an intravenous bolus
of 370 MBq (10mCi) florbetapir F-18. Acquired PET scans were reconstructed either by
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iterative reconstruction with a post-reconstruction Gaussian filter or row action maximum
likelihood algorithms to a 128x128 matrix with a zoom of 2.0- 2.33. Florbetapir F18 PET
images were independently spatially normalized using statistical parametric mapping to
standard atlas co-ordinates with reference to a florbetapir PET template. Standard uptake
value ratios (SUVTr) were expressed as the average ratio, compared to the whole cerebellar
uptake, of 6 predefined anatomically relevant cortical regions: frontal, parietal, temporal,
precuneus, posterior cingulate and anterior cingulate cortices.

amyloid quantification

Upon autopsy, brains were processed with methods as outlined previously (8, 11), as well as
with standard methods utilized by the Banner Sun Health Research Institute Brain and Body
Donation Program (20). Brains were fixed whole in 10% neutral-buffered formalin for 2
weeks prior to dissection. One set of tissue blocks was taken from the same ROls as were
used for imaging (8). These blocks were embedded in paraffin and immunohistochemically
stained for g-amyloid using the anti-Ap antibody 4G8 (Covance, Emeryville, CA)(8). The
cortical amyloid burden on each of these slides, which included all morphologically-defined
plaque subtypes, was defined as the percentage of gray matter occupied by stained neuropil
exceeding a threshold stain density (8, 21), using PERMITS™ image processing and
analysis software (Biospective Inc., Montreal, Quebec, Canada). Amyloid burden estimates
were thus obtained for all six cortical regions of interest (ROIls), and a mean cortical
amyloid load was determined by averaging these. Additionally, another set of large (3 x 5
cm) tissue blocks, from standard levels of the frontal (superior half of frontal lobe at the
coronal level of the genu of the corpus callosum), parietal (superior half of parietal lobe at
the coronal level of the splenium of the corpus callosum) and temporal lobes (coronal levels
of the amygdala and body of the hippocampus), were cryoprotected in ethylene glycol and
sectioned at 80 um thickness on a sliding freezing microtome (20). These sections were
stained using the Campbell-Switzer stain, an enhanced, amyloid-selective silver technique,
together with the Thioflavin S stain; semi-quantitative estimates of regional and average
(means from all three regions) cortical amyloid burden were obtained from these sections.
Scores for plaque density were derived by considering all types of plaques (cored, neuritic
and diffuse) together to obtain a “total” plaque score, while cored and neuritic plaques were
also separately estimated. Plaque density scores were obtained by assigning values of none,
sparse, moderate and frequent, according to the published CERAD templates (22, 23).
Conversion of the descriptive terms to numerical values resulted in scores of 0-3 for each
area (demonstrated in Figure 1). Semi-quantitative amyloid scoring was performed blinded
to clinical diagnosis by a single observer (TGB).

Neuropathological examination

Neuropathological examination was performed blinded to clinical diagnosis by a single
observer (TGB); assignment of a clinicopathological diagnosis was done after un-blinding to
clinical history. Multiple additional brain regions were dissected for neuropathological
assessment and diagnosis according to the standard protocols of the Banner Sun Health
Research Institute Brain and Body Donation Program (20). This included a comprehensive
set of twenty-two blocks embedded in paraffin as well as a set of six to eight 3 x 5 cm
blocks from standard levels of the frontal, temporal and parietal lobes as described above, as
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well as one block through the middle of the occipital lobe and one parasagittal block through
the cerebellum at the level of the dentate nucleus. The temporal and parietal blocks
contained standard levels of the thalamus, basal ganglia and substantia nigra. These
cryoprotected blocks were sectioned at 80 pum thickness on a sliding freezing microtome and
stained with H & E, Thioflavin S and enhanced silver methods (Campbell-Switzer and
Gallyas) for amyloid plaques and neurofibrillary tangles. Amyloid plaque and
neurofibrillary tangle density and distribution were determined in these thick sections of the
frontal, temporal, parietal and occipital cortex as well as hippocampus and entorhinal cortex,
based on the CERAD templates (23) and the aggregate impression from Thioflavin S,
Campbell-Switzer and Gallyas methods. Amyloid plaque distribution was described
according to the Thal-Braak system while the distribution of neurofibrillary degeneration
was described using the original Braak protocol; for both of these, their development was
based on the usage of similarly-thick sections (24, 25). As in the originally-published studies
of this group of subjects, the diagnosis of AD was based on a CERAD “probable” or
“definite” classification (23).

Rating of white matter rarefaction (WMR; Figure 1) was done using a semi-quantitative (0—
3) scale on the thick 80 um sections stained with H & E, according to the fraction of centrum
semi-ovale affected (20). Those cases with a score of 2 or higher in one or more lobes were
considered to have significant WMR. Cerebral amyloid angiopathy (CAA) was defined
semi-quantitatively with three levels of severity by analogy to the CERAD templates; for
this study, significant CAA was defined when one or more cerebral lobes had a severity
score of 2 or higher. Argyrophilic grains (Arg) were defined as typical spindle-shaped
structures revealed by the Gallyas silver stain (26, 27) and were recorded as being present or
absent.

Formalin-fixed, paraffin-embedded sections from a set of ten standard brain regions (28)
were immunohistochemically stained with an antibody against phosphorylated a-synuclein
peptide (1:10,000; rabbit polyclonal anti-human phosphoserine 129, gift of Dr. Haruhiko
Akiyama, Tokyo Institute of Psychiatry, Tokyo, Japan) (29) and these were used to classify
the density and distribution of Lewy bodies and related neuropil elements using the Unified
Staging System for Lewy Body Disorders (28). Diagnostic criteria for dementia with Lewy
bodies were those of the third Dementia with Lewy Bodies Consortium (14); the diagnosis
was assigned when subjects met “intermediate” or “high” definitions.

Thick, free-floating 80 um sections of the frontal and temporal lobes were
immunohistochemically stained with an antibody against phosphorylated TDP-43 peptide
(1:10,000 rabbit polyclonal antihuman phosphoserine 409/410, gift of Dr. Haruhiko
Akiyama, Tokyo Institute of Psychiatry, Tokyo, Japan) (30). Diagnostic criteria for vascular
dementia were adapted from those of Roman et al. (31).

Statistical methods

Statistical analyses and graphs were performed with Sigma Plot 12.1 (Systat Software, Inc.
San Jose, CA) and Microsoft Excel (Microsoft Corporation, Redmond, WA). The Student t-
test and the Mann-Whitney U-test were used to compare group means for continuous and
discontinuous measures, respectively. Chi-squared and Fisher’s exact tests were used to
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determine whether proportional measures were significantly different. Spearman
correlations were used to show relationships between semi-quantitative measures. For all
tests, the type | error rate was set as 0.05. For multiple comparisons, the Benjamini-
Hochberg False Discovery Rate Procedure was applied to control the expected proportion of
falsely rejected hypotheses.

Table 1 shows the complete list of AD cases and their concurrent pathologies. Of the AD
cases, 21 had Lewy body-related a-synuclein pathology (LBs); 8 met clinicopathological
criteria for dementia with Lewy bodies, 27 had significant WMR, 11 had significant CAA, 5
had Arg, and 18 had incidental TDP-43 inclusions. Furthermore, one AD case had an
additional diagnosis of Trisomy 21 and one had concomitant frontotemporal lobar
degeneration with TDP-43 inclusions (FTLD- TDP). There was considerable overlap, with
many cases exhibiting more than one type of concurrent pathology. Only three AD cases did
not have any of the above concurrent diagnoses (“pure” AD). In all groups (AD subsets and
non-demented individuals) there were multiple cases with one or more infarcts (38% of the
non-demented cases and 39% of the AD subjects had one or more infarcts). We did not
analyze for the effect of infarcts on amyloid measures due to great variability in infarct size,
location and type. Table 2 summarizes the overall group demographics. Groups did not
significantly differ from each other with respect to age of death, interval from imaging until
death, or gender ratio. All AD subgroups had significantly higher CERAD neuritic plaque
densities, as well as higher Braak NFT stages when compared with the MCI and non-
demented control group (p values < 0.001), but did not significantly differ from each other
in these measures. In terms of both in vivo imaging-derived SUVr and postmortem (-
amyloid IHC measures, when adjusting for multiple comparisons, all AD subgroups were
significantly different from the normal control and MCI groups (p < 0.001), but there were
no significant differences amongst the subgroups. There were no statistically significant
differences on any measure between MCI and non-demented individuals. Unadjusted p-
values generated by comparisons of SUVr and B-amyloid IHC values of each AD subgroup
are located in Table 3. The only significant difference was in SUVr measures between AD
with LBs and AD with CAA (P = 0.045).

There were significant correlations between cortical amyloid measures (SUVr and p-
amyloid IHC) and both Braak neurofibrillary stage and Thal-Braak amyloid phase.
Correlation coefficients (Spearman rho) for Braak NFT stage with SUVr and p-amyloid IHC
measures were 0.709 and 0.717 respectively (p values < 0.0001). Correlation coefficients for
Thal-Braak amyloid phase to SUVr and p-amyloid IHC measures were 0.792 and 0.826
respectively (p values < 0.0001).

The case-by-case in vivo estimates of amyloid density, based on the florbetapir PET image
average cortical to cerebellum standard uptake value ratio (SUVTr), for each AD subgroup
are located in Figure 2. The figure shows that for each AD subgroup individual cases were
within the range predicted from the overall AD population. When conducting a pairwise
comparison of AD cases with and without each concurrent pathology; AD cases with LBs
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were significantly different from AD cases without LBs (p = 0.002; Fig. 3). All other
comparisons showed no significant differences.

In vivo average cortical amyloid load (SUVr) was significantly correlated with postmortem
average cortical B-amyloid load (IHC) across all study subjects (including both control and
AD cases) regardless of co-morbid pathology. Correlation coefficients (Spearman rho) were
0.76 for AD cases with WMR (p < 0.0001), 0.78 for AD cases with LBs (p < 0.0001), 0.60
for AD cases with Arg (p = 0.003), 0.76 for cases with severe CAA (p = 0.0006) and 0.78
for AD cases with TDP-43 inclusions (p = 0.0003). For the entire AD group the correlation
coefficient was 0.71 (p < 0.001). When considering all cases together, using semi-
quantitative estimates of average cortical amyloid plaque densities derived from the
Campbell-Switzer silver stain and Thioflavin S stain, the correlation coefficient (Spearman
rho) was 0.76 for the comparison with average cortical p-amyloid IHC (p < 0.0001), and
0.73 for the comparison with SUVr (p < 0.0001). MCI and non-demented control subjects
were included in all correlations in order to attain a wider range of measures.

DISCUSSION

There is great interest in validating amyloid imaging methods as they hold great promise for
improving AD clinical diagnostic accuracy and for testing of disease-modifying agents. We
have recently published results from PET studies using the amyloid ligand, florbetapir F-18,
demonstrating a strong correlation between in vivo and postmortem amyloid load estimates
in the cerebral cortex, utilizing Alzheimer’s disease subjects as well as non-demented
individuals (8, 11). These previous results found florbetapir-PET images rated as positive or
negative for amyloid presence agreed, in 55 of 59 individuals, with postmortem histology
for the presence or absence of a defined amyloid plaque density (11). However, the detailed
neuropathology of these cases has not been published and is of considerable interest as AD
is neuropathologically heterogeneous. We sought to determine whether amyloid imaging
measures differed or had differing in vivo-postmortem correlation strength depending on the
type of concurrent pathologies within AD. The 38 AD subjects in this study, which were
selected from the original study group of 59 subjects (8), had a high frequency of other
pathologies including LBs, WMR, severe CAA, Arg and TDP-43. There were only three AD
cases that did not contain at least one of these additional abnormalities, supporting the
evolving consensus that AD is more frequently than not complicated by additional
pathology (16-19). Despite this neuropathological heterogeneity, in vivo imaging measures
of average cortical p-amyloid load (SUVr) remained significantly correlated to average
cortical postmortem p-amyloid IHC measures within all AD pathology subgroups. All AD
cases except one had mean cortical SUVr values that were above the proposed cutoff
“positive” ratio of 1.1 (Fig. 2) (32). The one positive case, based on histology (case #24 in
Table 1), that was below the cutoff ratio had multiple concomitant pathologies including
hippocampal sclerosis, TDP-43 inclusions; Arg, WMR, and LBs. There are no clear
conclusions as to why this case is below the proposed cutoff and it is possible that it is only
random variation. Furthermore, both in vivo and postmortem average cortical amyloid
measures for each AD subgroup were significantly greater than those for non-demented
individuals and the average SUVR values of each AD subgroup stay close to the overall
mean. Overall, these data suggest that florbetapir SUVr measures are a reliable predictor of
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postmortem histopathological B-amyloid load despite the substantial neuropathological
variability commonly encountered in AD subjects.

This study contributes new clinicopathological correlative data for subjects that have
received amyloid imaging during life. In particular, we are not aware of any reports that
have described in vivo amyloid imaging results for AD with concurrent WMR, Arg or
aberrant TDP-43 deposition (26, 33). Amyloid imaging results for subjects with clinically-
diagnosed Lewy body disorders have been published, but these studies have generally
lacked postmortem confirmation and the clinical diagnostic accuracy for DLB has known
limitations (34-41). To our knowledge there has only been one small series and one case
study with autopsy confirmation of DLB (36, 37). In the case study, there was a strong
association between PiB retention and postmortem cortical f-amyloid densities in 17
corresponding ROIs (36). In a series of 5 clinically diagnosed Parkinson’s dementia and
DLB cases that had come to autopsy, three cases were PiB positive and all had amyloid
pathology at autopsy; one of these cases also met neuropathological diagnostic criteria for
AD. Neither of the two PiB negative cases had significant amyloid pathology at autopsy
(37). No amyloid imaging study has compared clinicopathological AD cases with and
without LBs. Our results demonstrated that AD cases with LBs had significantly decreased
SUVr measures compared to AD cases without LBs; additionally, the only significantly
different comparison, out of all possible comparisons, of average cortical SUVr between all
AD subgroups, was between the AD/CAA subgroup and the AD/LB subgroup, and again,
the AD/LB subgroup had a lower average cortical SUVr. These results are consistent with
previous neuropathological reports demonstrating plaque densities may be lower in the
cortex of AD subjects with DLB as compared to AD subjects without DLB (14, 38,42, 43).
High densities of CAA are likely to be additive to amyloid plaques in affecting cortical
SUVTr, as a high-resolution postmortem study has demonstrated that another amyloid
imaging agent, PiB, binds with high sensitivity to CAA (44). However, we found no
significant differences in average cortical SUVr between AD cases with and without higher
CAA density.

Our study had some limitations. One limitation is subjects tended to have either no amyloid
or high amyloid loads, with relatively few having sparse to moderate loads. This is most
likely due to the clinical trial selection process, whereby most subjects were identified by
neurologists with an interest in dementia, and by the need to select subjects who were near
death. Amyloid deposition in AD is hypothesized to be a rapid and mostly preclinical event
(45). To enhance the range of amyloid densities we therefore included the non-demented
study individuals. Another limitation is the relatively low number of subjects. Although this
is the largest amyloid imaging-to-autopsy study to date, our sample size is still relatively
small, especially when subdivided into several subgroups. Furthermore, many cases
exhibited more than one type of concurrent pathology. Still, this is a real life setting for AD
subjects and most AD subjects will have more than one additional non-AD pathology. The
main purpose of this study was to examine whether quantitative cortical amyloid imaging
measures differed as a result of neuropathological heterogeneity within AD. The results
show that despite considerable neuropathological diversity, cortical amyloid imaging
measures were remarkably uniform. In conclusion, the results of this study indicate that
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florbetapir PET-derived estimates of AD cortical amyloid load are not significantly altered
by several common concomitant pathologies.
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WMR

Severity Score

Figure 1.
Examples of severity scores given to plaque densities (top) and white matter rarefaction

(WMR- bottom). Top: 80 um sections of the superior frontal gyrus stained with the
Campbell Switzer enhanced silver stain -from left to right: 0 - none, 1 - mild, 2 - moderate,
and 3 - frequent plaque densities. Bottom: macro view of 80 um sections of the frontal lobe
stained with hematoxylin and eosin, WMR was scored as from left to right: 0 - none, 1 -
mild, 2 - moderate, and 3 - severe. In this study, a case was defined as having significant
WMR if it had a score of 2 or higher in one or more of the following lobes: frontal, parietal,
temporal and occipital.
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Figure 2.

Measures of average cortical amyloid load in AD subgroups with different concurrent
pathologies. Left: Graphs demonstrating the variability of in vivo amyloid imaging measures
for average cortical amyloid load, using the mean standard uptake value ratios (SUVr) for
each AD subgroup. The thick black line on all graphs represents the mean of all AD cases,
while the dashed and lighter lines represent one and two standard deviations from the mean,
respectively. The red line at an SUVr value of 1.1. represents an adopted SUVr cut off
between amyloid positive and negative (32). The x-axis numbers are the individual case
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numbers as listed in Table 2. Right: photos taken at 10x of the respective pathologies. Panel
A: AD with white matter rarefaction (WMR) — photo from an 80 um section of parietal
cortex white matter stained with hematoxylin and eosin. Panel B: AD with Lewy bodies
(LBs-grey circles indicate clinicopathological diagnosis of DLB), photo from a 5 um
paraffin amygdala section stained immunohistochemically for phosphorylated a-synuclein
(black) and counterstained with Neutral Red. Panel C: AD with argyrophilic grains (Arg),
photo from an 80 um section of amygdala stained with the Gallyas silver method. Panel D:
AD with TDP-43 inclusions (white diamond indicates case with a clinicopathological
diagnosis of FTLD-TDP-43 in addition to AD) ; photo taken from a 40 um section of middle
frontal gyrus that was immunohistochemically stained for phosphorylated TDP-43 (black)
and counterstained with Neutral Red. Panel E: AD with severe cerebral amyloid angiopathy
(CAA); photo from an 80 um Thioflavin-S stained section of frontal cortex.

J Neuropathol Exp Neurol. Author manuscript; available in PMC 2015 January 01.
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Fig. 3.
Box plots of median, 25t and 75™ percentile of in vivo amyloid imaging measures for

average cortical amyloid load of Alzheimer’s disease cases using the standard uptake value
ratios (SUVTr) in subjects with presence (gray boxes) or absence (white boxes) of concurrent
pathologies: (CAA; with N = 11; without N = 27), TDP-43 (with N = 18; without N = 20),
LBs (with n = 21, without N = 17), WMR (with N = 27, without N = 11), and Arg (with N =
5, without N = 33). Whiskers above and below the box indicate the 90th and 10th
percentiles. Utilizing the Mann-Whitney U-test, the only significantly different pairwise
comparison was that comparing AD subjects with and without LBs (p = 0.002).
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