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In response to environmental changes, signaling pathways 
rewire gene expression programs through transcription 
factors. Epigenetic modification of the transcribed RNA 
can be another layer of gene expression regulation. N6-
adenosine methylation (m6A) is one of the most common 
modifications on mRNA. It is a reversible chemical mark 
catalyzed by the enzymes that deposit and remove methyl 
groups. m6A recruits effector proteins that determine the fate 
of mRNAs through changes in splicing, cellular localization, 
stability, and translation efficiency. Emerging evidence 
shows that key signal transduction pathways including 
TGFβ (transforming growth factor-β), ERK (extracellular 
signal-regulated kinase), and mTORC1 (mechanistic target 
of rapamycin complex 1) regulate downstream gene 
expression through m6A processing. Conversely, m6A can 
modulate the activity of signal transduction networks via 
m6A modification of signaling pathway genes or by acting as 
a ligand for receptors. In this review, we discuss the current 
understanding of the crosstalk between m6A and signaling 
pathways and its implication for biological systems.

Keywords: ERK, mTOR, N6-methyladenosine, RNA modifi-

cation, signaling, TGFβ

INTRODUCTION

N6-methyladenosine (m6A) is a methylation modification of 

adenosine on RNA. m6A is evolutionarily conserved, ranging 

from yeasts, plants, insects to mammals (Meyer and Jaffrey, 

2017; Yue et al., 2019). In mammalian cells, m6A is detected 

on 0.1%-1% of adenosines in mRNA with an average of 2-3 

sites per transcript (Perry et al., 1975). Transcriptome-wide 

sequencing revealed that m6A occurs in the consensus motif 

DRA*CH (D = A, G, or U; R = A or G; A* = m6A-modified A; 

H = A, C, or U) (Dominissini et al., 2012; Meyer et al., 2012). 

Considering that DRACH appears once every ~57 nucleotides 

in mRNA, many transcripts have the potential to be modified 

with m6A. Nevertheless, only 20%-30% of coding genes 

are methylated in cells (Dominissini et al., 2012; Meyer et al., 

2012), indicating a specific site selection mechanism of m6A 

modification.

 Indeed, cells tightly regulate m6A modification using spe-

cialized enzymes, m6A writers and erasers. The m6A-modified 

RNAs then recruit m6A-binding proteins (readers) that guide 

these RNAs for RNA biogenesis processes such as pre-mR-

NA splicing, nuclear export, stabilization, degradation, and 

translation. Aberrant m6A modifications by overactivation 

or suppression of these enzymes lead to human diseases 

such as cancer, diabetes, and neurological disorders. There 

are comprehensive review papers about the molecular func-

tions of m6A enzymes (Meyer and Jaffrey, 2017; Wiener and 

Schwartz, 2021; Zaccara et al., 2019) and their pathophysio-

logical functions (Barbieri and Kouzarides, 2020; He and He, 

2021; Huang et al., 2020; Kasowitz et al., 2018). In this re-

view, we will focus on how the signal transduction pathways, 

which play key roles in diverse physiological and pathological 

conditions, coordinate cellular processes through m6A. Given 

that m6A also controls signaling pathways through RNA mod-

ification or acting as a ligand, understanding the crosstalk be-
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tween signal transduction networks and m6A RNA processing 

will provide us insights into the complex biological systems.

THE m6A PROCESSING PROTEINS: WRITER, ERASER, 
AND READER

The m6A methyltransferase (writer) consists of the enzymatic 

m6A-methyltransferase like (METTL) complex (MAC) and 

the scaffolding MAC-associated complex (MACOM) (Fig. 1). 

METTL3 is a catalytic core of MAC, which methylates target 

mRNAs on the adenosine of DRACH sequence (Bokar et al., 

1994; Dominissini et al., 2012; Meyer et al., 2012). METTL14 

acts as a scaffolding protein of MAC by recognizing the sub-

strate RNA and interacting with Wilms’ tumor 1-associating 

protein (WTAP) of MACOM (Bujnicki et al., 2002; Liu et al., 

2014; Ping et al., 2014). MACOM consists of several adaptor 

proteins including WTAP, VIRMA (vir-like m6A methyltrans-

ferase associated), RBM15 (RNA-binding motif protein 15), 

HAKAI, and ZC3H13 (zinc finger CCCH domain-containing 

protein 13) (Knuckles et al., 2018; Patil et al., 2016; Růžička 

et al., 2017; Śledź and Jinek, 2016; Wang et al., 2021; Yue 

et al., 2018). The MACOM complex does not have catalytic 

activity, but it is necessary for efficient m6A methylation by 

recruiting RNA substrates and stabilizing the MAC-MACOM 

complex in the nucleus and nuclear speckles.

 Similar to DNA and histone methylations, m6A RNA meth-

ylation is a reversible process regulated by the demethylase 

enzymes (erasers): Fat mass and obesity-associated pro-

tein (FTO) and AlkB homolog 5 (ALKBH5) (Jia et al., 2011; 

Zheng et al., 2013) (Fig. 1). They belong to AlkB homolog 

iron(II) and αKG-dependent dioxygenases, which include 

nine proteins with different substrate preferences toward 

single-stranded (ss) or double-stranded (ds) DNA and RNA 

substrates (Guengerich, 2015). Interestingly, although FTO 

and ALKBH5 exhibit comparable catalytic activities for m6A 

demethylation on ssRNA, the reaction steps are quite differ-

ent. While ALKBH5 directly converts m6A to adenosine, FTO 

produces two intermediates N6-hydroxymethyladenosine 

(hm6A) and N6-formyladenosine (fm6A) during the demeth-

ylation process (Chen et al., 2014; Fu et al., 2013). This could 

be one of the reasons why FTO can demethylate another 

m6A-related modification, N6,2’-O-dimethyladenosine (m6Am) 

(Mauer et al., 2017; Zhang et al., 2019). In contrast to the 

tissue-specific function of ALKBH5 in testes (Zheng et al., 

2013), FTO is expressed in most tissues and involved in vari-

ous human diseases including diabetes, obesity, and several 

cancers (Hirayama et al., 2020; Losman et al., 2020; Song et 

al., 2019; Zhao et al., 2014). Therefore, the substrate pools 

and specificity of FTO may dynamically change depending 

on the cellular context. Studies illuminating the predominant 

substrate of FTO in specific tissues and pathophysiological 

conditions will be needed.

 The m6A binding proteins that determine the fates of 

m6A-methylated mRNA are classified as readers, which in-

clude several proteins such as YT521-B homology (YTH) and 

insulin-like growth factor-2 mRNA-binding protein (IGF2BP) 

family proteins (Fig. 1). As a common function, YTHDF1/2/3 

promote the degradation of m6A-containing mRNAs (Lee 

et al., 2020; Patil et al., 2018; Wang et al., 2014; Zaccara 

and Jaffrey, 2020). YTHDF1 and YTHDF3 facilitate protein 

translation of m6A-methylated mRNAs by promoting ribo-

some assembly (Li et al., 2017; Shi et al., 2017; Wang et al., 

2015). YTHDF2 undergoes liquid-liquid phase separation 

with mRNAs containing multiple m6A residues (Ries et al., 

2019; Wang et al., 2014). Similar to YTHDF1 and YTHDF3, 

YTHDC2 induces degradation of m6A-modified mRNAs while 

enhancing their translation efficiency (Hsu et al., 2017; Mao 

et al., 2019; Tanabe et al., 2016; Wojtas et al., 2017; Zhou 

et al., 2021). The last YTH family protein, YTHDC1, facilitates 

pre-mRNA splicing and nuclear export of m6A-modified mR-

NAs (Kasowitz et al., 2018; Roundtree et al., 2017a; 2017b; 

Xiao et al., 2016; Xu et al., 2014). In contrast to the YTH 

family proteins, IGF2BP family proteins increase both the 

stability and translation efficiency of m6A-modified mRNAs, 

maximizing the expression of m6A-modified genes (Huang et 

al., 2018).

Fig. 1. Key players of the m6A RNA modification process. The 

deposition of m6A on mRNA is mediated by the writer complex 

which consists of m6A-METTL complex (MAC) and scaffolding 

MAC-associated complex (MACOM). MAC includes METTL3, a 

catalytic core protein, and METTL14, a scaffolding protein, which 

methylates adenosine in the consensus motif (DRACH, D = A, G, 

or U; R = A or G; A = m6A-modified A; H = A, C, or U). MACOM 

consists of adaptor proteins including Wilms’ tumor 1-associated 

protein (WTAP), VIRMA (vir-like m6A methyltransferase 

associated), RBM15 (RNA-binding motif protein 15), HAKAI, 

and ZC3H13 (zinc finger CCCH domain-containing protein 13). 

FTO and ALKBH5 demethylate m6A (erasers). The m6A binding 

proteins (readers) include YT521-B homology (YTH) and insulin-

like growth factor-2 mRNA binding protein (IGF2BP) family 

proteins, which determine the fate of m6A-methylated mRNA 

such as splicing, nuclear export, stability, and translation. The 

chemical structure of m6A is shown in the circle.
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TRANSFORMING GROWTH FACTOR-β (TGFβ) 
SIGNALING REWIRES GENE EXPRESSION PROGRAM 
THROUGH m6A MODIFICATION

TGFβ signaling pathway plays an essential role in cell fate 

decisions, including pluripotency maintenance, differenti-

ation, senescence, apoptosis, and tumorigenesis (Derynck 

and Zhang, 2003). TGFβ family proteins are ligands for TGFβ 

receptors (TGFβR), which includes TGFβ, nodal, activin, bone 

morphogenetic protein (BMP), and growth differentiation 

factor (GDF) (Derynck and Zhang, 2003; Zhang et al., 2017). 

The activated TGFβR phosphorylates downstream signaling 

proteins, the receptor-regulated SMADs (R-SMADs). Each 

TGFβ family ligand activates distinct R-SMADs. For example, 

BMP and GDF promote the phosphorylation of SMAD1, 

SMAD5, and SMAD8 (Hata and Chen, 2016). On the other 

hand, TGFβ, nodal, and activin promote SMAD2 and SMAD3 

phosphorylation (Hata and Chen, 2016). The phosphorylat-

ed R-SMADs form a heterodimer such as SMAD2-SMAD3 

(SMAD2/3), which subsequently binds with a common bind-

ing partner SMAD4 (co-SMAD). The SMAD complex then 

moves into the nucleus and associates with transcription fac-

tors and chromatin remodeling proteins to induce transcrip-

tion of target genes (Derynck and Zhang, 2003; Hata and 

Chen, 2016) (Fig. 2).

 In addition to their well-established role in transcription, a 

novel function of TGFβ-SMAD signaling has been revealed 

in m6A modification (Fig. 2). TGFβ ligands activin and nod-

al maintain embryonic stem cell (ESC) stemness through 

SMAD2/3-dependent pluripotency gene expression (James 

et al., 2005). On the other hand, considering the rapid differ-

entiation of ESCs upon TGFβ withdrawal, ESCs would have 

also developed some mechanisms for such a rapid, efficient 

transition. From interactome analysis of SMAD2/3, Bertero et 

al. (2018) found that the phosphorylated SMAD2/3 interacts 

with the m6A writer complex, METTL3, METTL14, and WTAP. 

m6A methylation of SMAD2/3 target genes, NANOG, NOD-

AL, and LEFTY1, leads to degradation of these transcripts, 

thereby inducing ESC differentiation. In line with their find-

ings, Mettl3 knockout induces prolonged Nanog expression 

and impaired differentiation in ESCs (Batista et al., 2014; 

Geula et al., 2015).

 Interestingly, SMAD2/3 do not directly control the activ-

ity of m6A writer complex (Bertero et al., 2018). Instead, 

SMAD2/3 induce m6A methylation of its target genes by 

recruiting the m6A writer complex to the active transcription 

sites (Fig. 2). In another study, Huang et al. (2019) showed 

that trimethylation of histone H3 at Lys36 (H3K36me3) 

recruits m6A writer complex to the active transcription elon-

gation sites. It may seem odd that transcription factors and 

elongation markers recruit m6A enzymes to label newly 

transcribed mRNAs with m6A for degradation. However, this 

priming system would be most efficient when a timely cell 

fate transition is required. For example, in early development 

of zebrafish embryos, maternal mRNAs are marked with m6A 

and degraded by the YTHDF2 reader protein during the ma-

ternal-to-zygotic transition (Zhao et al., 2017).

 TGFβ signaling also triggers m6A modification of target 

genes for epithelial-mesenchymal transition (EMT) of cancer 

cells (Fig. 2). TGFβ treatment increases m6A levels in diverse 

cancer cells, including cervical, liver, breast, and lung cancers. 

Particularly, TGFβ induces methylation of SNAIL mRNA, an 

important transcription factor in EMT. The methylated SNAIL 

mRNA binds to an m6A reader protein, YTHDF1, which then 

induces translation of SNAIL by recruiting eEF-2 (eukaryotic 

elongation factor-2). Interestingly, METTL3 depletion stabi-

lized SNAIL mRNA, implying that m6A modification promotes 

its degradation while inducing translation (Lin et al., 2019). 

Further investigation is needed to examine whether these 

opposite effects of m6A on SNAIL mRNA fates are mediated 

solely by YTHDF1 or through other m6A reader proteins that 

are activated by TGFβ signaling.

REGULATION OF m6A PROCESSING ENZYMES BY 
EXTRACELLULAR SIGNAL-REGULATED KINASE (ERK)

ERK is a member of the mitogen-activated protein kinases 

(MAPKs) family (Roberts and Der, 2007). MAPK pathway is 

a phosphorylation cascade composed of GTPase-activated 

kinase (MAPKKK) that phosphorylates and activates an inter-

mediate kinase (MAPKK), which in turn phosphorylates and 

activates the effector kinase (MAPK) (Lavoie et al., 2020). In 

the ERK MAPK pathway, the epithermal growth factor (EGF) 

binds to the receptor tyrosine kinase, EGF receptor (EGFR), to 

activate RAS GTPase (Boriack-Sjodin et al., 1998). Then the 

Fig. 2. TGFβ  controls gene expression through m6A 

modification. Upon TGFβ stimulation, SMAD2/3 interact with 

METTL3, METTL14, and WTAP, to induce m6A methylation 

and degradation of pluripotency genes for differentiation of 

embryonic stem cells. On the other hand, in cancer cells, TGFβ 

induces SNAIL mRNA methylation during EMT. The methylated 

SNAIL mRNA binds with YTHDF1, which induces SNAIL 

translation through interaction with a translation elongation 

factor eEF-2 (eukaryotic elongation factor-2).
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GTP-loaded RAS promotes the kinase activity of RAF (MAP-

KKK), which is followed by MEK (MAPKK) activation (Lavoie 

and Therrien, 2015). Finally, MEK activates ERK (MAPK) that 

controls a wide range of cellular processes by phosphory-

lating downstream target proteins (Wee and Wang, 2017). 

Because of its key role in regulating cell proliferation, survival, 

and differentiation, ERK signaling is one of the frequently 

activated signaling pathways in human cancers (Davies et al., 

2002; Li et al., 2018).

 The activity of RNA processing enzymes such as RNA poly-

merase, splicing enzymes, and translation factors are often 

regulated by phosphorylation (Nosella and Forman-Kay, 

2021; Thapar, 2015). In a recent paper, Sun et al. (2020) 

provided direct evidence for the phosphorylation-dependent 

regulation of m6A processing enzymes. To find a new regu-

lator of m6A modification, the authors performed a CRISPR 

knockout screen using a GFP reporter system that contains 

m6A modification site on a circular RNA sequence. Once the 

GFP RNA is assembled by back splicing of the circular RNA 

(Yang et al., 2017), m6A methylation on that RNA drives 

translation and expression of GFP. From the screen, several 

genes in the MAPK signaling pathway were identified (Sun 

et al., 2020). Mechanistically, it turns out that the effector 

protein of MAPK signaling pathway, ERK, phosphorylates 

m6A writer proteins METTL3 and WTAP. The ERK-dependent 

phosphorylation of METTL3 and WTAP strengthened their 

interaction; however, ERK did not influence the binding 

between METTL3 and METTL14 (Sun et al., 2020). The as-

sociation between METTL3 and METTL14 is strong and not 

affected by other phosphorylation events either, including a 

serine residue of METTL14 that forms a salt bridge with MET-

TL3 (Schöller et al., 2018; Wang et al., 2016).

 Even though the binding of METTL3-METTL14 was not 

regulated by ERK-dependent phosphorylation, ERK controlled 

the activity of MAC complex through METTL3 stabilization 

(Sun et al., 2020) (Fig. 3). While the non-phosphorylated 

METTL3 is degraded by ubiquitination, the phosphorylated 

METTL3 recruits ubiquitin-specific protease 5 (USP5) which 

removes ubiquitin from METTL3. From the m6A-GFP reporter 

CRISPR screen, Sun et al. (2020) also found several E3 ubiqui-

tin ligases that decrease m6A levels. Knockdown of ubiquitin 

ligase candidates SPOP, ANAPC1, or TRIM28 restored MET-

TL3 expression. Depletion of SPOP or ANAPC1 decreased 

K11 and K48 ubiquitination of METTL3, the ubiquitination 

sites targeted by USP5 (Sun et al., 2020). In contrast to the 

negative effect of TRIM28 on m6A modification on the m6A-

GFP reporter, TRIM28 did not affect global m6A levels (Yue 

et al., 2018). Considering that TRIM28 was identified as an 

interacting protein of the m6A writer complex, TRIM28 may 

regulate m6A modification of specific target genes by localiz-

ing the writer complex to the target transcripts like MACOM 

complex proteins.

 In addition to m6A writers, ERK-dependent regulation of 

the m6A reader protein is reported (Fig. 3). Fang et al. (2021) 

found that ERK phosphorylation status correlates with YT-

HDF2 expression level in the glioblastoma tissues. Upon EGF 

stimulation or EGFR overexpression, ERK phosphorylates 

YTHDF2 to induce stabilization of YTHDF2. The stabilized YT-

HDF2 degrades m6A-modified liver X receptor alpha (LXRA) 

and human immunodeficiency virus type I enhancer binding 

protein 2 (HIVEP2) genes, which elevates cholesterol uptake 

and proliferation of glioblastoma cells (Fang et al., 2021).

 Under stress conditions, such as heat shock, m6A modifi-

cation of mRNA is globally increased (Meyer et al., 2015; Ries 

et al., 2019; Zhou et al., 2015). Yu et al. (2021) found that 

m6A rapidly accumulates upon reactive oxygen species (ROS) 

stress, within five minutes. Such rapid response indicates 

that ROS may directly influence the activity of m6A enzymes. 

Surprisingly, ERK signaling plays a crucial role in this stress 

response by promoting sumoylation of m6A eraser, ALKBH5 

(Fig. 3). In hematopoietic stem and progenitor cells, ROS-in-

duced ERK and another MAPK, JNK (c-Jun N-terminal kinase), 

phosphorylate ALKBH5. ALKBH5 phosphorylation promotes 

its interaction with UBC9, a SUMO E2 conjugating enzyme, 

and disassociates ALKBH5 from the desumoylase SENP1. 

Consequently, the increased sumoylation on ALKBH5 pre-

vents its binding with the substrate mRNAs and leads to the 

elevation of m6A levels on mRNAs (Yu et al., 2021). Among 

the m6A readers, the mRNA stabilizing reader, IGF2BP 

(Huang et al., 2018), plays a major role in ROS-ERK-ALK-

BH5-dependent gene expression regulation. In response to 

ROS, IGF2BP1/2/3 stabilize mRNA of FA core complex associ-

ation protein 20 (FAAP20) and alpha-thalassemia/mental re-

tardation X-linked (ATRX), which are critical enzymes for DNA 

repair under oxidative stress (Yu et al., 2021). These seminal 

studies show that ERK signaling pathway insistently controls 

m6A modification process through the regulation of writers, 

readers, and erasers, to rewire gene expression programs in 

diverse physiological and pathological conditions.

Fig. 3. Dynamic regulation of m6A enzymes by ERK. METTL3 

phosphorylation by ERK inhibits its degradation by recruiting 

ubiquitin-specific protease 5 (USP5). ERK-mediated METTL3 

phosphorylation also enhances the interaction between METTL3 

and WTAP (bottom panel). ERK stabilizes YTHDF2 through 

phosphorylation (right panel). ALKBH5 phosphorylation by ERK 

sustains its sumoylation and induces disassociation of ALKBH5 

from m6A-modified mRNA (left panel).
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ACTIVATION OF m6A WRITER COMPLEX BY 
MECHANISTIC TARGET OF RAPAMYCIN COMPLEX 1 
(mTORC1) SIGNALING

mTORC1 is a serine/threonine kinase that promotes anabolic 

process including synthesis of proteins, nucleic acids, and 

lipids (Saxton and Sabatini, 2017; Shimobayashi and Hall, 

2014). In response to extracellular stimuli such as growth 

factors and nutrients, PI3K-Akt initiate the signaling cas-

cade that activates mTORC1. Akt inhibits tuberous sclerosis 

complex (TSC) 1/2, a GTPase activating protein that inhibits 

mTORC1-activating small GTPase Rheb (Saxton and Sabatini, 

2017; Shimobayashi and Hall, 2014). To turn on the gene 

expression program, mTORC1 activates RNA processes from 

transcription, splicing, to translation through its downstream 

proteins including ribosomal protein S6 kinase (S6K), SRPK 

(serine/arginine-rich protein specific kinase), eIF4B (eukary-

otic translation initiation factor 4B), and 4E-BP (eIF4E-binding 

protein) (Lee et al., 2017; Ma and Blenis, 2009).

 mTORC1’s role in promoting m6A RNA modification has 

also been elucidated. Cho et al. (2021) and Villa et al. (2021) 

found that mTORC1 increases expression of the MACOM 

component, WTAP (Fig. 4). mTORC1/S6K enhances WTAP 

translation through eIF4A/4B-dependent unwinding of 

secondary structure in WTAP’s 5’-untranslated region. The 

elevation of WTAP expression enhances m6A methyltransfer-

ase activity (Cho et al., 2021; Villa et al., 2021). In another 

paper, Tang et al. (2021) found that mTORC1-mediated 

activation of the chaperonin protein, chaperonin contain-

ing tailless complex polypeptide 1 (CCT) complex, stabilizes 

the MAC component proteins, METTL3 and METTL14 (Fig. 

4). In addition to regulating enzyme expression, mTORC1 

promotes m6A modification by increasing S-adenosylmethi-

onine (SAM) level (Villa et al., 2021) (Fig. 4). SAM is a methyl 

donor for m6A, whose increase can stimulate the activity of 

methyltransferase enzymes (Bokar et al., 1997; Kim and Lee, 

2021; Tuck, 1992). mTORC1 induces SAM synthesis through 

cMyc-dependent expression of MAT2A (methionine adenosyl 

transferase 2A) (Villa et al., 2021). SAM has been shown to 

induce condensation of METTL3 through liquid-liquid phase 

separation and promotes the association of MAC with WTAP 

at nuclear speckles (Han et al., 2022). Therefore, induction 

of SAM levels could be another way of increasing the activ-

ity of m6A methyltransferase complex by mTORC1. Further 

studies are necessary to elucidate how mTORC1-dependent 

expression and localization changes of MAC (METTL3 and 

METTL14) and MACOM (WTAP) proteins coordinate m6A 

processing in physiological and disease conditions.

 Surprisingly, mTORC1-induced m6A modification induced 

degradation of mRNAs, which seems to be the opposite of 

canonical mTORC1 function in promoting macromolecule 

synthesis. However, those mRNAs methylated by mTORC1 

include cell growth-suppressing genes such as cMyc suppres-

sor and autophagy machinery (Cho et al., 2021; Tang et al., 

2021). For example, mTORC1 induces methylation of MAX 

dimerization protein 2 (MXD2), which is followed by YT-

HDF2/3-mediated degradation of MXD2 mRNA (Cho et al., 

2021). MXD2 is a cMyc inhibitor that competes with cMyc 

for binding with a transcription activator MAX (Mathsyaraja 

et al., 2019; Schreiber-Agus et al., 1995). The decreased 

MXD2 expression results in cMyc activation, which induces 

the proliferation of cancer cells derived from diverse tissues 

including kidney, breast, lung, and colon (Cho et al., 2021). 

These findings demonstrate a complex interplay of mTORC1, 

cMyc, and m6A signals in tumorigenesis.

REGULATION OF CELLULAR SIGNALING BY m6A

In the signal transduction cascade, feedback inhibition of 

upstream signaling by the downstream components plays 

crucial role in preventing overactivation of signal transduction 

cascade (Mendoza et al., 2011). Such negative feedback 

loops are often hijacked by cancers to promote cell prolifera-

tion and survival. From a genome-wide sequencing study of 

endometrial cancers, Liu et al. (2018) found that METTL14 is 

frequently mutated in cancers with a predominant mutation 

of arginine 298 to proline. The arginine 298 locates in the 

RNA binding domain of METTL14 and mutation of this resi-

due decreases m6A methylation activity of the MAC complex 

(Śledź and Jinek, 2016; Wang et al., 2016). In the endome-

trial cancers that do not contain METTL14 loss-of-function 

mutations, the expression of METTL3 is decreased, indicating 

that decreasing the activity of MAC either by decreasing 

METTL3 expression or through METTL14 mutation promotes 

Fig. 4. mTORC1 activates the activity of m6A writer complex. 

mTORC1 activates the m6A writer complex in three ways. 

mTORC1-mediated activation of chaperonin protein, chaperonin 

containing tailless complex polypeptide 1 (CCT) complex, stabilize 

METTL3 and METTL14 (middle panel). mTORC1 induces WTAP 

expression through eukaryotic initiation factor 4A (eIF4A)/4B-

dependent translation (right panel). mTORC1 also stimulates 

S-adenosylmethionine (SAM) synthesis through cMyc-mediated 

upregulation of MAT2A (methionine adenosyl transferase 2A) 

(left panel).
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endometrial cancers (Liu et al., 2018). Transcriptome-wide 

m6A sequencing of endometrial tumors revealed that m6A 

modification is decreased in the group of genes that regulate 

Akt activity. Interestingly, the decreased m6A modification of 

Akt phosphorylation-inducing genes, such as mTOR, proline 

rich protein 5 (PRR5), and PRR5-like (PRR5L), led to stabili-

zation of those transcripts. In contrast, the decreased m6A 

modification of Akt phosphatase, PH domain leucine rich 

repeat protein phosphatase 2 (PHLPP2), reduced translation 

of PHLPP2. Together, these changes increase Akt phosphor-

ylation and thus activate Akt downstream signaling for pro-

liferation of endometrial cancer cells (Liu et al., 2018) (Fig. 

5A). In another study, using a reverse phase protein microar-

ray assay (RPPA), Vu et al. (2017) found that the activity of 

Akt signaling pathway components is increased by METTL3 

knockdown in leukemia cells. Specifically, the decreased m6A 

modification of phosphatase and tensin homolog (PTEN) 

mRNA, a negative regulator of Akt, decrease PTEN transla-

tion; and, the decreased PTEN expression lead to activation 

of Akt signaling in METTL3 knockdown cells (Vu et al., 2017) 

(Fig. 5A).

 In addition to the gene expression regulation, an unexpect-

ed function of m6A has been uncovered as an extracellular 

signaling molecule. Considering the existence of G-protein 

coupled receptors (GPCR) that are activated by nucleotide 

ligands such as adenosine receptor (AR) (Borea et al., 2015), 

Ogawa et al. (2021) performed a screen to identify a new 

nucleotide ligand for ARs. From the screen, several adenos-

ine derivatives including 1-methyladenosine (m1A), m6A, 

and m6Am activated adenosine A3 receptor (A3R), with m6A 

being the most potent activator. In fact, m6A activated A3R 

approximately 10-fold higher than adenosine, with EC50 (half 

maximal effective concentration) of 10 nM in contrast to that 

of adenosine being 100 nM. The ligand binding domain of 

A3R has hydrophobic amino acids including valine, leucine, 

and isoleucine, which could form van der Waals interactions 

with the methyl group on m6A. In contrast, adenosine would 

be less stable in the ligand binding pocket due to the lack of 

those intermolecular interactions. Indeed, when the ligand 

binding pocket of other ARs was mutated to contain those 

hydrophobic amino acids, they were also activated by m6A 

(Ogawa et al., 2021).

 When m6A was treated onto A3R-expressing cells, the AR 

downstream signals such as ERK and intracellular calcium 

transport were induced, which was abolished by AR antag-

onist. Upon cytotoxic stresses such as ROS that activate AR 

signaling, m6A was produced in cells by lysosomal degrada-

tion of mRNA and rRNA to initiate the m6A-AR-ERK signaling 

pathway (Fig. 5B) (Ogawa et al., 2021). Although Ogawa et 

al. (2021) tested the activity of only single nucleoside m6A 

molecules, it is possible that m6A-containing oligonucleotides 

can also act as a ligand for GPCRs. The RNase T2 ribonucle-

ases in the lysosome generate both mono- and oligo-nucle-

otides (Fujiwara et al., 2017) which can be secreted outside 

of the cells. It will be exciting to dissect the potential roles of 

m6A-containing nucleic acids as receptor-binding signaling 

molecules in various developmental and disease processes.

CONCLUDING REMARKS

The regulation of m6A modification by multiple signaling 

pathways demonstrates cells’ abilities to dynamically deter-

mine their fate by rewiring gene expression via post-tran-

scriptional gene modifications beyond the gene transcription 

level. Although research has begun to identify the effects 

of individual signaling pathways on m6A processing, there 

remains open questions regarding the potential for cross-

talk between interwoven signaling pathways. For example, 

phosphorylation of METTL3 by ERK signaling induces m6A 

methylation of pluripotency genes such as Nanog, Klf2, Sox2, 

and Lefty1, which results in degradation of these transcripts 

and mouse ESC differentiation (Sun et al., 2020). In another 

study, Bertero et al. (2018) observed that upon TGFβ stimu-

lation, the transcription factors SMAD2/3 bind with METTL3 

to promote m6A modification and degradation of plurip-

otency genes including NANOG and LEFTY1. Considering 

that ERK-mediated METTL3 phosphorylation strengthens its 

interaction with WTAP and USP5 (Sun et al., 2020), the phos-

phorylated METTL3 could also interact with other proteins. 

Future work will be needed to elucidate whether METTL3 

phosphorylation induces its interaction with SMAD2/3 and 

triggers m6A modification of SMAD2/3 target genes, which 

could be the nexus between TGFβ and ERK signals for stem 

cell differentiation. Building a comprehensive signaling map 

for the m6A-dependent gene expression program will provide 

Fig. 5. Regulation of signal transduction by m6A. (A) m6A 

modification suppresses Akt signaling by destabilizing mRNAs of 

Akt activators mTOR, proline rich protein 5 (PRR5), and PRR5-

like (PRR5L) (top panel), while increasing translational efficiency 

of Akt suppressors phosphatase and tensin homolog (PTEN) and 

PH domain leucine rich repeat protein phosphatase 2 (PHLPP2) 

(bottom panel). (B) Upon cytotoxic stress, m6A is generated by 

RNA degradation and binds to the G-protein coupled receptor, 

adenosine receptor, which in turn activates ERK signaling.
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us further insights into understanding the complex biological 

networks in human health and diseases.
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