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ABSTRACT

A system of approximate, one-dimensional equations is derived
for axially symmetric motions of hollow, elastic rods of circular cross
section. The theory is valid for a range of wall thicknesses from the
very thin to thick walls and in fact is valid in the limit for the solid
cylinder. The theory takes into account the coupling between the longi-
tudinal, radial. and axial shear modes. The theory is based on expan-
sions of the displacements in a series of orthogonal polynomials in the
radial co-ordinate, retaining only the earliest terms representing the
longitudinal, radial, and axizl shear deformations. To offset the error
introduced by omission of the terms of higher order, four adjustment
factors are introduced and chosen in such a way that the behavicr of
the first three branches of the exact frequency spectrum is reproduced
at long wave lengths.

Comparison is made between the three spectrail lines developed
from this theory when the propagation constant is real and the compar-~

able spectral lines from the exact three-dimensional theory.



§ 1. INTRODUCTION

Approximate ﬁmmowwmm governing the free vibrations of infinitely
long, hollow, elastic n%ﬁﬁ@in&h&mﬂm. are very numerous and an
additional theory might seem superfluous. However, most of the
theories are based on assumptions which restrict their validity
to shells whose thickness is small compared to the inner radius and
to low frequencies [l - m“_ .1 Those that accomodate thick walled
cylinders [ 9, 10] only claim to predict accurate behaviour for the
fundamental or longitudinal mode, thus also restricting themselves
te low frequencies. m..ruﬁpmm. very few of the theories have been put
to the only valid test, that is comparison with the exact three-
dimensienal theory.

The theory developed here is applicable to cylinders having a
complete range of wall thicknesses from the thin wall to the very
thick wall and in fact is valid in the limit for the solid cylinder. It
reproduces motions corresponding to the lowest three modes of
axisymmetric motion which admits a frequency range much greater
than any previous theory. The three spectral lines representing the

[

three modes match very closely the corresponding three lines from

the exact theory for a variety of wall thicknesses and Poisson's ratios.

INumbers in brackets de signate References at end of paper.



Examination of the spectral lines derived from the exact theory
due to Gazis [11, 12] shows that the second mode is a radial mode
and the third an mkwmw shear mode for physically real values of
Poisson's ratio and that they both have a strong influence on the fund-
amental mode and Aoa each other, The fourth mode on the other hand
has a cut-off frequency independent of Poisson's ratio and it is
much higher than that of the third mode, One may predict therefore
that the fourth and all higher modes will not have a marked influence
on the lowest three modes. Accordingly, the theory includes motions
associated with the lowest three modes.

The theory is developed following the method used for solid
rods by Mindlin and McNiven [ 13]. The theory is based on expansions
of the displacements in a series of orthogenal polynomials in the
radial co-ordinate, retaining only the earliest terms representing
nWm.woumwwc&smf radial, and axial shear defocrmations, To offset
the error introduced by omission of the terms of higher order, four
adjustment factors are introduced and chosen in such a way that the
behavior of the first three branches of the exact frequency spectrum
is reproduced at long wave lengths. To make the paper self-
contained, the derivation of the exact frequency equation is outlined

in the second section,



§ 2. THREE-DIMENSIONAL THEORY

2.1 Freguency Equation.

Motions in isotropic, elastic solids are governed by the dis-
placement eguations of motion which are, in the absence of body

forces,

2

WL - 2oy = (o) 2R, (1)
ot

S&mum% is the displacement vector, the constants p, p, and v desig-
nate the mass density, the shear modulus, and Poisson's ratio,
respectively, and v is the usual del operator.

Solution of Eq. (1) is obtained by expressing % in terms of a
dilatational scalar potential ¢ and an maﬁdowcsﬁamﬁ vector potential
H according to

¢ =vd +V X H - {2)

where the divergence of H is zero throughout the body. Eq. (1)

is satisfied if  and H satisfy the equations
2
Oy ¢ =0, o,H =0 (3)

in which

5 (n= 1, 2)



2 2 2
daw.uwn mr.<.mur.| (4)
p p
and quwﬁxcw.
(1 - 2v)

We refer the rod to the cylindrical coordinates r, 8, and =z,
Ammm Fig. wv. and call the scalar components of mw in this system H.HH.
mm. and mu. The motions of the rod possess torsionless axisym-

metry about the z axis if

n uo n
u cJ.?.. z, t}, cm s ﬂN?.. m:&.

For this case, Sternberg [14] has shown that the vector § can be

completely described in Eq. (2) by the potentials ¢ and H Using

6"
Sternberg's theorem and cylindrical coordinates, Egs. {3) reduce

to

2
vilte? (18 0% |e=2%
2 r ar 2 2
| ar 9z at
(5)
a 2
vile® (18 _1 0% |H, = o%H .
YT ar T2 2 2 0
LeT r gz gt

For the trial solutions of Eq. (5) we assume that ¢ and mm

have the form of waves travelling along the z axis; that is,

b {r, z, t) = f{r) expi (yz - wt}
(6)
H(r, z, t) = h(r) expi{yz - wt}
where y and w designate the wavenumber in the z direction, and the

circular frequency, respectively, The functions f and h must now

satisfy the equations



2 2
|!!+|Hlm + P £=0
2 r dr
dr
{7)
2
d 1 d 2 1)in=0
N+H QH.+ ﬂl....M‘ .
dr r
2
where wm = W \<N - <N
1
{(8)
2 2
q = SN\ 2 -y . .
<N

The general solutions of Egs. {7) are given in terms of the
Bessel functions J and Y with arguments pr and qr, or the modified
Bessel functions I and K with arguments pr = |pr| and gr = |gr],
depending on whether p and q, mmﬁmwswnm&. by Egs. {8), are real
or imaginary.

Using the notation adopted by Gazis [11], the general solutions

of Egs. (7) are

f(r)

4

>w No (pr) + A a<o {pr)

P
(9)
h(r)

H

>w NH {gr) + >A$.~ (gr)

where Z denotes a J or I function and W denotes a Y or K function,
and the zero and one subscripts denote the order of the Bessel
functions. In {9) the arguments of Z and W are real.

From Egs. (2) and (6} we have

u, * [ - (iy)h] expi(yz - wt)



w, =[GV + B+ b/r] expi(yz - ot) (10)

where prime denotes differentiation with respect to r.

The boundary stresses are given by the stress-strain relations

Ter ThAF Nt.m:.

(11)

4. HNm
Tz f.HN

where N is the usual Lamé constant, and Ais the dilatation given by.*
2 2 .
A=V ¢ = - Sum+< ) f expi(yz - wt). {12)

Using the strain-displacement relations

du
€ ;o= T
or
(13)
Ju du
; € rn = 1 r + z
2 9z or
and Egqs. (10}, the boundary stresses are given in terms of the
potentials f and h according to
A 2 2 1 . ¢
R S B N R R .N:ii
r . (14)
. 2 2
T, = wl2Gy)f +(y“-q)n]

where prime, as before, denotes differentiation with respect to r.
The boundary conditions, specifying the traction-free inner

and outer surfaces, are

H
<

(2)

i
<O
9

T _(a)
rr re

(15)

]
<
*

r__ (b} (b)

rr rz

H
o
-
3



Substitution of Eqs. (14) into Egs. (15) and use of Egs. (9) gives

four homogeneous equations in terms of the amplitudes ;P'.M {(i=1-4).

The nontrivial solution of the equations is obtained by setting the

determinant of the coefficients of the .Pu. equal to zero, giving

eyl =0, Gij=1-9) (16)
where the i indicates the row and j the column. The elements of the

determinant are

N N
0: =6 (24 - R vNoava.wmQ?HNHAva

c =52 -a% W_ (8a) + 2aW (5a)

12 1

c =2 [6pz_ (68) - Z, (8p)]
C,, = 2Ll6pn W _(6p) - W, (8p)]

Omw = - mm,&.,w..mH (8a)

C,, = - 2aW, (&)

C

il

2 2
o5 = (207 -2%) z (5p)

., N
C,, = (2t -a% w, (sp)

(17)

C

* 2 2 * £
5 =8t - %) 2 (swa”) + 2an 2 (6aa)

me

sa*(2t% . 2% W (fa™) + 2 W | {sxa’™)
C,, = 2L[6pa"Z_(6pa”) - Z, (6pa™)]

C,, = Nﬁ%m*rwéo (6pa”) - LA (6pa™)]



C,p = -2 2 { 6aa™)

C,, = - 2W, { 50a™)

Cuy ® (2t° - 29 z, (6p %)
Cuy = (2t - a?) W, (BB a™).

The elements defined by Egs. (17) are given in terms of
dimensionless quantities. These quantities have the following relation-

ship to guantities already defined.

nuE\ew , a =p-a/s
ewud.m. 8/a , B=q-2/b (18)
L=y -a/s , a®*=1b/a .

In the above & is the lowest root of Eg. (24) é:wmw = 1. The i 's
1

{i =1, 2) are introduced in order to account for the differences in
the recursion equations involving the first derivatives of the different
kinds of Bessel functions.

The appropriate choice of each rw depends on whether a J or

Y function or an I or K function is used and the choice is made by

reference to Table 1,

Table 1
N = e 2 0
-1 Lt < <N
N = 1 Q # .
N IH m.\..- A




9

For a given rod the geometric and physical parameters {a * and
vy, respectively) are established. When these are substituted in Eq. ..
(16), it becomes an equaticon implicitly relating the normalized
frequency £ and the dimensionless propagation constant {. The com-
binations of 2 and { that satisfy Eq. (16) are obtained by numerical
msm,ﬂ%mwm_ as explained by Gazis [12], and discussed later in section
4. The pairs of roots when plotted on the @ - { plane, form frequency
spectra. Because of the transcendental nature of the frequency
equation, an infinite number of spectral lines can be formed from its
roots. Only the lowest four are explored in this paper. The lowest
three are shown in Figs. 3-10 by solid lines and the fourth by dash-
dot lines.

The determinant _Ow.L of Eq. (16) coincides, with the deter-

minant D

3 shown by Gazis in Eq. (30) of his paper [11] for the case

of motions having axial symmetry.



0

2.2 Motions Having Infinite Wavelength.

When the wavelength is infinite (propagation constant {is
zero)}, not only do the dilatational and equivoluminal modes become
uncoupled, but the motions become either pure radial or pure axial
depending on the frequency.

As the propagation constant is zero, these resonant frequencies
are called the cutoff frequencies of the appropriate axial shear or
radial modes. The equations governing these frequencies are
established next and, subseguently, the eguations giving the dis-
placement distributions along the radius accompanying each frequency
are developed.

When £ = 0, the frequency Eq. (16) can be factored into three

equations.
The first is
2® - 0. (19}
This can be interpreted as identifying the mode whose mwmﬂnmpn<
approaches zero, as the wavelength becomes infinitely long. This
has been historically called the longitudinal mode. The phase
velocity of this mode for infinite wavelength is obtained by taking the

lim © in Eq. (16). This process gives
§2--0 8

=2 (1 +v) or



i1
which is the ""par' velocity as given by elementary theory and that
obtained by Pochhammer [15] for the analogous limiting case of the
solid rod.

The second eguation

- T 2 - T - .7 - wew T 2 % _r W= T
2T (82)) - k(&2 T (o5t 2Y (a¥E27 ) -k (a &0y Y {a 5§ 3]
(27 (e) (82 J ey ] [2Y (a7t (262 ¥ i
- T 2 - _r . e T 2 k- 1 o 1
- [2Y_(82) - kK60 Y (& Q)] [27 (a2 - kTa 80 J(a &231=0
[2Y, (8a)) (os5) Y (b a)l [27 (aba, (a 82y J(a 660)]
(20}
where 5 = &/k (21)

establishes the cutoff frequencies of the radial modes. Omitting

. . . s .th .
mkvosmsnwmwm,gmaumﬁﬁmnmgmbw&Hmmzwﬁ?osmow.nwm_Hmnﬁmﬁaomm

(i=1,2, . . . )is given by

_ . - T - _r
u = ->H\wiomm [T, %u. r/ 3 :mm\bw .migu. ﬂ\mwws

where the amplitude ratio A is obtained from

N\? ,
A TQ (i) - k2 (80 7 Qmi .
_2 _ 1] j__¢° ] (23)
~ T 2 . = T S
4 Tﬁan% - kT (3R Y, ?5@.@
The third eguation
s o , % s %8
J(e2) ¥ (a %U - Y, (89) T (a 82) = 0 (24)

establishes the cutoff frequencies Sum of the axial shear modes.

th
The displacement distribution for the i axial shear mode is given

by.



i2

u = A»w\L mmmu go hmmw w\mjr Tp\bwv«o Enm n\ﬁﬁ.,&

where the amplitude ratio A is obtained from
ﬁ\bw

Ba/a” 0 (62} Y ?nm I (26)

We now restrict our attention to the lowest three modes. The
lowest cutoff frequency will obviously be 2= 0 but study shows, what
is not obvious, that the second mode is almost always a radial mode
for real materials. For example, for a rod whose outside diameter
is eight times its inner diameter the second mode will be a radial
mode for all v < -3364. For thinner tubes the critical Poisson's
ratio will be even higher. The third mode will be an axial shear
mode, so the second and third cutoff frequencies will be denoted
by ﬂ.w. and DHm respectively.

The displacements for the longitudinal mode are axial and
are uniform over a cross section,

The distribution of &m@wmnmgwnﬁm along a radial line for the
radial mode is obtained using the lowest root of Eq. (20) in Egs.
(22) and {23). This distribution is shown in Fig. 2.

The distribution for the axial shear mode is obtained using
the lowest root of Eq. (24) in Egs. (25) and (26) and is also shown

in Fig. 2.
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§ 3. APPROXIMATE THEORY

3.1 Expansion in Infinite Series

An approximate theory can be constructed that will predict a
relationship between frequency and wavelength for as many modes

as desired. What follows are the beginning steps in the generation

of a theory accounting for "n"

n'' modes.

We start by choosing the radial dependency of the radial and

axial displacements. These functions will be polynomials mnmi

which satisfy the orthogonality conditions

b
Amqﬂ?v ) ma:wv HR‘ mg:v ms?.v rdr =0
a

m#é#n {27}
for reasons which will be apparent later.

The radial and axial components of displacement incorporating

these polynomials will be as follows:

oo
u HDMO nﬁﬂﬁ.v u {z, t} {28)
o0
u usmo_ eﬁml W (z, t) {29}
Bii 3
where nﬁoﬁwvn r/a; QGHT,W =rfa - R
B
n k nk 2k+l
U (r) = r/a+Z (-1)° Z (30)
W (r)=1;W (r) =1 - Hm.oé (ry=1- A H.NTP %
o S HE W, 21 22
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n k 2k
gsAl =1 .JAMHH {(-1) .,PDW T,

Each term in the series represents a mode of motion and the notation
is such that the subscript for a mode matches the number of nodal
circles existing in the cutoff frequency displacement distribution.

A few of the coefficients B and A are given below.
nk fnk

B ,,w:uw+w3 ;
- 4
H Nzu&+ ,Ummm + a )
2
A = (31)
12, 2
A _ mﬁcw+mmw . A B 6 .
- N 2
2Lt L antal e athy 22t 4ptat e at

3.2 Three-Mode Theory

We retain in our theory only the first three modes namely the
longitudinal, first radial, and first axial shear. The displacements
appropriate to this theory are derived from Egs. (28) and (29). As
there is only one mode having radial motions we retain only the
first term in Eq. (28) and we retain the first two terms of Eq. (29)

representing the longitudinal and first axial shear modes. The dis-

placements are

ot
H

AH\m.VG AN. 3
© (32)

=
"

SOAN. Ey+ (1 - A H.Nv ﬁu {z, t).

11
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Stress-equation of motion. Egs. {32) are substituted in the eguations

{£ b
m.ﬂww m.ﬂww 43. 4.H.N mwz
\v\\y + + ~ -p—=%] 6u rdrdz=0
or 9z r 2 r
-4 a ot

(33)

£ b
\» \, wﬂwN m.._‘NN q.HN mma
1” a + + - p Z16u rdrdz =0

gr gz r mnw A

which are obtained from the variational equations of motion [16].

InEgs. (33}, 7. _, 7

and are components of stress

zZ

derivable from a strain-energy-function U by differentiation with

and ¢ , respect-

respect to components of strains ¢ € €
p P rr’ 98" " zz' rz

ively, Performing the integration with respect to r and setting
the coefficients of .mco. méco. and m.&.._ equal toc zero, we obtain

three equations of motion invelving stress-resultant forces.

muw..u mDo EU& - Wﬁw wmso
T Ta * 0 +H~o N 2 2
z 4a ot
&P 2
__ 20 . x =o/2 (bP-a% £ %o (34)
0z o 2
gt
o P 2 2.3 2
5ot 2A2Q, T X ﬁ?w - mNVN g 7
2 6{b” +a")" 8t
b
where
u.Un.O& mq.H.H+ QQQV r dr
a
b
Huuon 4NNH&H
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b
P = {1 - A HNV d 35
z1 * T T2z * (35)
a
,UH.N d
Q = L Ty, ®F
o a
a
,.H.N b
R =}— Ter
o a
3 a
r b 2 b
uﬁou H.q.w.mm,. quﬁiw:x?wwﬂvﬂuwu.w-

Components of strain. Upon substituting Eqs. {32} in the usual

- T o o e A i e M e e o -

strain-displacement relations, we obtain

¢ - 84, uup.pm,
rr ar a
aw c.o
99 " r " = (36)
mGN 2
- = i - ]
mNN 0z S.o+ (1 b:w wiw
i wcu mcu .
= — T — -
mﬂmrw oz * ar 2a T,HO N)Hmiwv

where prime indicates differentiation with respect to z.

Energy-densities. From the strain-energy-density of the three

dimensional theory:

. ¥
2u Aﬂwmm HH+ ﬁmm mmw 4.NNmNN+ ¢ ﬂHNmHNV (37)
we define an energy-density
b
U=[ Uradr (38}
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Substituting Egs. {36) in Eq. {37) and this, in turn, substituted in

Eqg. {38), we obtain, after performing the integrations:

u
IT - _° ! 1 v
v = Huw.c a + HuNoﬁwo * Huchqw * DD Asc N%wwwmiwv. (39)

Defining modified strains as,

Y
S = —
ro a
S = w'
z0 o
(40)
= 1
mmw ﬁw
— { -
Hao = so N.&uwmﬁw
and substituting Egs. (40} in Egs. (39) and (36}, we obtain
20=P S +P S +P S8 +Q r (41)
r¥o ro Z0  ZO z1  Z1 o o
and
Crr T 98" Sro
s +(1-A,.r9 s (42)
mNN T Yzo 1 z1
r
mHN T 2a HJO -

Similarly, from the kinetie -energy-density
[ou_ 2 mzu/w

= . 3

K=p/2 \57/ * \ 3\ (43)

we define an energy-density




i8

=~
1

%
=
H
o
H

= +
L L2
2 pmw ot 2 3] .m;clwmmw ot
(44)
Stress-strain relations. 1f Egs. {42} are substituted in the stress-
strain relations
ﬂﬁHumG\mme = meﬂﬂ+mm%+mNNu+ Nt.mH.H.
= = + +
Tog mdxmmmm Vﬁmww.fmmm mNNw Nt.mmm (45
ﬂNNumG\mmNN = ?ﬁmﬂﬂ+m®®+mNNv+ NTmNN
_ 1 8Uoe  _ >
Trz ~ 2 re b€ rz
we obtain, after performing the integration, the relation between
the components of stress resultants and modified strain as:
P =G 5 + G S
ro ro ro z0 zO .
P =D S _+D S (46)
Z0 ro ro z0 ZO :
P = E 5
z1 Zl 21
Q = B I
o o o
where
1 2 2
UNO = w; +2p) (b -a’)
2 2
OHO: 2 (N +p)(b -a")
2 2.3
= = AVr + N—.nv AW. - & v ﬁm«l_uv
z1 2.2
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3.3 Introduction of Adjustment Factors up

The guality of such an approximate theory may be judged by
how well it predicis the phase and group velocities for trains of
waves having a given wavelength and how well it predicts the accom-
panying motionsy that is, how well these quantities match those of
the exact theory.

As we have omitted the higher order terms in Egs. (28) and
{29), we have omitted the higher modes each of which infiuences to
a different degree the phase and group velocities, Further,by &mdw.ﬁm
to choose displacement patterns that satisfy a radial orthogonality
condition the motions do not match those from the exact theory even
when the wavelength is infinite. It is advisable therefore to intro-
duce means for compensating for the omission of the higher order
terms and for the prejudiced displacement patterns. Accordingly,
we introduce adjustment factors Jw: =1 -4). We replace mmo
by ﬁwmno and H.c by JNH.O in the strain-energy-density and Qo

by ﬁwwc and .mq..F by j.pa.zm in the kinetic-energy-density, where the n;

*

are constants for a given rod, whose values are determined later
on, and the dot indicates differentiation with respect to time. Then

the adjusted energy densities are
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2T=G n%_ +D S° +E 8° 4+4G__+D ) n.S S
ro 'l ro ZO ZQ zi z1 20 ro 1 ro zo
2.2
+B nT_ (48)
— ﬁo» - mf 2.2 :um - mmv ) :cm- mwvw 2.2 (49)
2K = p > Mt 2 Yot Tz
4a 6{b +a )

The adjusted stress resultant. strain-displacement relations, derived

from the strain-energy-density function (486}, and Egs. (40}, are

et 2
muuo N mC\meo - OHOJHmHo + Owoswmwo
u
- Z _o '
IOHOJH a +ON03w€o
P =8U/8S =D S +D .q.S
o] 20 20 zO ro 'l ro
u
=D w'+ D n -2
Z0 O ro 'l a {50}
P =3U/88S =E S
A1 A AN A ]
umuuuéw
Q = 0U/er =B n°r
o o] o '2 o
=B NHGW 2A. aw_ )
R L it § Sk

where prime indicates differentiation with respect to z.
Letting the surface traction vanish, the adjusted stress -

resultant equations of motion, derived from the variational
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equations of motion with constants My and Ny introduced into the

kinetic energy are

Q'- " ro =
2
© a 4da

' n m.ul ..
Mun_o = m? -a Jw {51)

2 2.3
(b~ =& ) 2.
2A_ a0 + P = £ now. .
11 o z1 E,Um.wmmvw 4 1

Substituting Egs. (47) in {50), and these, in turn, in Egs. (51}, the

displacement equations of motion are

2 2 2 2
+ L
p{b a ) n,yuy 8\ + p) W
2 2 2. 2.
- ! - 1 =
.ﬁfwspéo .»t.wdmﬁw p{b +a wdwco
o+ 2 vmmi: + 2 u! - pa’w (52)
H o M1 % LA™

(N + 21) ?N - mmvwﬁz, - 24p :um + mmvswéw

3.4 Frequency Equation

For the trial solutions of the equations of motion (52), we

consider again free harmonic motions, in the form

u = mw cos y 2z expiwt



§
H

3
1

o m.m sin y z expiwt {53)

) ww sin vz expiwt.

Substituting Egs. {53) in {52), we obtain the characteristic equation

where
211
&22°
2337
127
q13°
and
A
B

11 212 %13
a, a,, O =0 (54)
?13 0 %33
B 2622 + 8(k% - 1)n’ - Brisa’
2 1 3
2.2.2 2
26 (k'L . q ) {55)
28 22 24 2 A% 222
6 kT —S &8¢ +—5mn,-——=5mn,68
2 B2 2™

(56)

By formally letting A = B =1 in Egs. (55}, which can be

derived by normalizing appropriate guantities in Eqs. (18) and {30}

with respect to b instead of "a’ and letting "a’ equal to zero, Egs.

(55) coincide with Egs. {45) of Mindlin and McNiven [13] for the

case of a solid rod.
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For the evaltuation of adjustment factors n,, as weil as for
1
plotting the approximate frequency spectra, it is convenient to

expand the determinantal Eq. {54) in the polynomial form

6 4 2 _ \
OWA 682 ) -ONTm@V .,wnmﬁmhwv unﬁzo {57)
where
P
c u> 2 2
1 - B "3 7% .
2 2z pA
A 2 2 2 A 2 2 A 2 2 2
EiTE Mgtk H gtk Tgng oy (8%
2 >N 2 2 2 2
+i8(k a:]M My Mg + 24 n, Mg
B
- 2 2 2
T2a° 2. 2A° 2 2 44 ,L 4
c, = ﬁﬁ =yt kT ooy my vk g ) (68) (58)
2..2 >N 2 2 >N 2 2 2 2 2 2
+ |8k (k- 1)>==mn, + B(3k -4)——=mn, 7n, 24k n_n,i{60
2 1 2 'l 4 2 '3
B B
N »
(kK -1) 2 2
+ 1192 B M,
»»?N 2 6 2 2 .>N 2 4
c, =k —=n {6¢)” + |8k (3k -4) =~ n (6L}
4 B 2 WN 1
2
(3k° - 4) 2 2 2
+3i192 B SH Jm.u__ {6L) .

3.5 Evaluation of Adjustment Factors Jw

Eq. (57) is the freguency equation relating the square of the

frequency to the sqguare of the wave number, with the radii,
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. . 2
Pceisson's ratios, and the adjustment factors n, as the parameters,
i

The three spectral branches derived from the roots of this eqguation
should match, as closely as possible, the corresponding branches
from frequency equation (16) of the exact theory. In general, the
frequency 2 must be real; but the wave number [ along the axis of
the rod may be real, imaginary, or complex. In this paper, we
restrict ourselves to real wave numbers.

The match between the three branches of the cubic equation
and the analogous branches of Eq. (16) may be improved by means
of the adjustment factors . but, since the n, are constants for
a given rod, a perfect match can be made, in general, only at one
value of { for each of them. |

Now large, real { corresponds to frequencies high enough to
enter the frequency range of modes that have not been inciuded in
the approximate equations so that in general the applicability of
the approximate equations is limited to frequencies below mr,m lowe st
frequency, for real wave numbers, of the lowest neglected mode and
the correspondingly small wave numbers,

It is wamowﬂman that the approximate theory match the exact
theory for long wavelengths so that ideally the matching should be
made at the cutoff frequencies for which the wavelength is infinite.
m.,ow the solid rod theory, developed in [13], it was possible to match

four quantities at the cutoff frequencies for the evaluation of all four
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adjustment factors. The intercepts im.Hm matched as well as the
curvatures of the second and third spectral lines at the intercepts.
For the Hollow Rod theory the intercepts are likewise matched but
because the frequency equations are much more complicated than
for the solid rod it is not possible to match the intercept curvatures.
As an alternative the spectral lines from the approximate theory
are made to pass through two points on the spectral lines from the
exact &umcww. on the & - { plane apart from the 2 axis, that is at
points for which the wavelength is finite.

We first match the wswmwnmwun.m. From the exact theory the

lowest three intercepts are

where SM. is the lowest root of Eq. {20). From the approximate

theory the intercepts are

2 Ve 2 Vol - (59)

m y
A 7 m<m M3

0,

Setting comparable intercepts equal gives the two equations

2
A U
Ny 2 24B
(60)
" (2’ B
X = P = ee————
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It can be observed that the intercepi of the fundamental mode needs
no adjustment. Neither does the slope of the fundamental mode at
the intercept. The slopes from both the exact and approximate -

theories are

I.A.M..e V2 (1 + 9.,

It remains to establish two more matching points leading to two
more equations,

After much exploration it was decided to match the first and
third spectral lines at { = 0. 6. Matching at these two points main-
tained a match for longer wavelengths and gave real, positive
adjustment factors which is a necessary condition to maintain real

strains and positive definite energy densities, If we call the

frequencies of the first and third modes for [ = N = 0, 6, SH and

Q we obtain two more eguations in the adjustment factors by sub-

w-

stituting the mw and mw from the exact equation {16} successively

in the approximate Eq. {57).
The four equations can be reduced to the following equation
in m,
4 2 .
= 1
Gyn, *+G,n +G; =0 E..v

where

1 317713 11733
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G, =Dy D3y +Dy,D55 - Dy Dy - D305 (62)

D, D

Qw 14732 UMNUE

and fori=1or 3

-2 . =2 2. -2
D, = (82,) f(e2,)” - k7 (85)7]
_ -2 2 .2
D, = k°(60)% [(67)" - K (6d)] (63)
2 2 2 .
(A - 6 f2 A -2 2 A = 4
D, = ﬁn@l (62,)° - Tn et + |8k - )5 Py wm»& (6%2)
B gt
2 A% 2 .2 ?N-S 2
+M 8(3k L:WMHJ + 24K°P, (60)7 +]192 == P | B, Eﬁv
2 I
(3k" - 4) - 2
. M 192 o HJHUL (88) \,M
2 2
_ 2 ,,.mw,.. £ & 5 4 4 i.|.> .& 714
UMKM = <k 5 {6L) Wﬁ%m - koo ;88 +
2.2 A? 2 2 2.2 A 4
Bk (k"-1) — P (80)° > (802,)" +{ |8k (3k -ﬁfmf,@ .
B 1 i _WN w‘_

Eg. (61) has two real solutions but only one is acceptable on

physical grounds., Having M, T3 is obtained from

2
2 Aw. n‘ - D, w
2 -
nf =5 p q (5% At 12T o or 3, (64)
3 B 24 ﬁU 2 - D w
i34~ Vi4
Finally n; and n, are obtained from Eq. {60}.

Tables II - V give the values of the Jw for some typical values

of the parameters,
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It is important fo note that for the special case where the rod
is solid the four adjustment {actors obtained, for a variety of
Poisson's ratios, are exactly the same as those derived using the
equations of Mindlin and McNiven [13].

. 2 .
Having the ; the roots of Eq. {57) are found and plotted on

the 2 - { plane. The spectral lines formed from these points are

shown as dotted lines in Figs. 3-10.
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§ 4. NUMERICAL ANALYSIS AND FREQUENCY SPECTRA

4.1 Numerical Analysis

Numerical analysis using a digital computer was required in
many aspects of the solution, but only the solutions of the frequency
equations are discussed, as the other analyses were carried out
using similar methods,

The frequency equations (16} and (57) implicitly relate the
normalized frequency §2 and the dimensionless propagation constant
t, and are influenced by the parameters v and a*. The equations,
therefore, can be written

F(2,Lv a)=0- (65)
They were each analysed for twenty eight sets of parameters, VizZ.,
a¥ =1.1, 2.0, 4.0, and 8.0, and for each a , v=0.20, 0.21, 0.23,"
0.25, 0.27, 0.29, and 0.31. After the introduction of the parameters,
Eq. (65) can be solved either by adopting successive values of & and
finding a set of roots { for each @, or by adopting values of { and
finding the roots . The latter scheme was adopted as the roots &
can be more easily identified. A pair of roots (2, {) establishes a

point on the @ - { plane of the frequency spectrum. Only roots

involving real { were established.
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The method of finding the roots of Eqg. {16) is as follews. An

adopted value of the propagation constant { is introduced into the

equation which can then be satisfied by a set of roots ﬁw. A coarse
o . . 2 - .
mesh size AQ and a fine mesh size A Q, giving plotting accuracy,

.

are adopted. The frequency range 0 < € < 2 is then scanned {rom
a low frequency wmo to the upper limit. The values of Eq. (65) are
found for @o +naf, U{n=0,1, 2, ... ) until a change of sign
of the values indicate a root. The interval in which the change in
sign occurs is then immediately scanned using the smaller mesh

size Dmﬂ until a change in sign of the value of Eq. (65) establishes

) within plotting accuracy. Starting now at Q.+ Af, and

a root (2 ]

1

moving up the spectrum, the root wa is established in the same way,

and s0 on.
As noted in Ref. 12, spurious roots appear along those lines
where o and P egual zero. These roots were distinguished easily

from the true roots during the plotting of the spectral lines.

For Eq. {57), we determine the values of sw, as explained

earlier, and adopt a value of {. It then becomes a cubic equation

. 2 . : 2 . :
in 2 . It is easy to determine the three roots Dm of this eguation

using one of the polynomial subroutines.

4.2 Frequency Spectra

Frequency spectra have been formed from the roots of the

frequency equations obtained numerically as described in the
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previous section. Figs. 3-10 show the spectra for the eight physical
rods described. The range of frequencies has been restricted to
0 © £2.0, which admits the lowest four spectral lines from the
exact theory, and all three branches from the approximate theory.
The range of propagation constant extends, for each'case, from {=0
(infinite wavelength) to { = 0. 8.

For the values of the geometric parameter (a%) considered,

H!{

there is no value of v in the range 0. 20 & c.A/o. 31, for which Sw

Q 1.0. For the solid rod, it was found, that for v=v_= 0.2833

H

L)

5
1
M. 1. The nearest value of v to the range, ﬁﬁmnmﬂ =1, isv =
.3364 for a* = 8.0 as explained previously.

The ratio of the phase velocity (V) and group velocity A<mv

to the velocity of equiveluminal waves T.awv can be obtained from

Figs. 3-10, in as much as

(66)

do _ d@
<Nm.< m

<
g
AP

e

Thus the slope of the straight line from the origin to a point on a
branch is proportional to the phase velocity, and the slope of the

branch is proportional to the group velocity. .



32

§ 5. UNIQUENESS AND ORTHOGONALITY

A uniqueness theorem, analogous to Newmann's [13, 16], will
establish the initial and boundary conditions appropriate to three-
mode theory.

Consider two systems of displacements, strains, and stresses
which satisfy the strain-displacements relations (40), the associated
compatibility condition.

ér 8 5
o ro

P T (67

i
a

the stress-strain relations {(50), and the stress equation of motion
(34). Let the differences between corresponding components of dis-
placement, strain, and stress constitute a "difference system'" of

these quantities and let WN and U_ be the kinetic and strain energy

2

densities of the difference system. Then the sum of WN and dm in a

bar of length 2f at time ¢t is
mﬂ+dﬂnWo+do+\\oﬁ%hﬁANerNvau (68)

where HAO and Go are the values of WH and Qn at an initial time t = 0.

4 4 2 2
(b_-a ) 24 (b = \w w + -mwgmé ,.L (69)
4a ©o° #b +NNV ;w
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where u , w_, and w_ are the displacements of the difference

) o] 1

system; and

58U 83U PR 5 U
2 - 2 2 2 -
I =
UL=35 5:00t38 S0t5s5 5. T3 Yo (70)
ro zZ0 7l o]

where the strains are those of the difference system. From Egs.

{40) and (50}, Eq. {70} becomes

.

u
o o e -y - .
CN - HuH.O a + HUNO‘%O M @Nwﬁw * Do TpO N\wwwmﬁwv
P
ro . . .
= - Q'itu - P'w (P +2A,.a0 ) w
& o o ZO © Z1 i1 o 1
. . .
+ ﬁmumo.&o + Huwudqw + DOCOV (71)

where prime and dot, as before, indicate differentiation with respect

to z and t, respectively. Hence

‘ P 4 4
(K. + U )= (@ -2tz g g
2 2 o} a 2 30 o
4z
2
- iPY - M,UN..WV w w
Z0 P 2 e} o
. 2 2.3
(b” - a’)” 2 - .
P +2a, a0 B2 2ty w
21 117 0o o:om+ mwvw 4 1 1
- , i s 1
TP o%e T P W Y, (72)

or, using the stress equations of motion (34),
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+ Docow . (73]

. . ) . %o X . .
AHAN +C.Nv woso + oio Hccw * HHUNoéo + Huﬁ,ﬁu

Upon substituting 'Eq. (73) into Eq. (68), we have, finally
t £
K +U =K +7U L%& (R0 +X w + X w)dz
£ t s o o ' o 0 o o 11

. . . h
* mmuuoﬁo * Huuu 1 * Docou_..h . (74}

Then, by the usual arguments based on the positive definiteness of

K_and U

5 x uniqueness of solution is insured if the following are

specified,

(i} Throughout the rod, the initial values of U, W Wy and

{ii) . Throughout the rod, one member of each of the three

products w.uco. Xoﬁo. NHEH._

(iii) At each end of the rod, one member of each of the three

products P w , P w
z Z

and Q u .
c o c o

Hw

By a closely related procedure, it may be shown that in two

solutions
Ac.o. W iwv = ﬂcomu. ﬁomu. E:uv mxﬁws,@w
(75}
?_o. W ﬁwV = ?oa. ﬁon. iwav muﬁwE@n
of the homogeneous Swo = X~ NH = 0} stress equations of motion

{34), the characteristic functions satisfy the orthogonality condition
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: 2 .Pm 2
g\ Aww.a.w covson + 6 ﬁovﬁoa + 2 My 5:uccwov dz = 0
-1 B (76)

mou Eﬁuxu Ea mnnw,nognummsmccmms&oom@:wosrq,?wi.



a*=1.1, &= 31-4267 .

v jw Jw JN jm

1 3 2 4
g. 20 0-401325 1:064051 2.337040 2-845992
0421 0-398401 1.079190 2.-430611 2.959940
0-23 0-395163 1-121668 2- 587513 3.151012
0-25 0-381G52 1-139998 2- 664081 3- 244254
G- 27 G- 368688 1-165718 2-759261 3.360162
G- 29 0- 366005 1-232827 2-984602 3-634577
0- 31 0- 353429 1-280322 1.138162 3-821578

Table II
a*=2-0, &§=3-1965

v :N 3N JN JN

1 3 2 4
G- 20 G- 394295 0-B81355 1- 670803 2-180292
0-21 0- 390406 0-889170 1-735301 2- 264457
0-23 0- 378151 0-896708 1-752411 2. 286785
0-25 0- 370561 0-919328 1-889082 2:-465132
0-27 0- 358553 0-935558 1-914999 2-498952
0-29 0- 346977 0-958394 1-942561 2:534918
G- 31 0- 340080 1-002438 2-105549 2-747608

Table III
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ax=4.-0 ,6 =1.1118
2 2 2
v | ul 3 s Jm
G- 20 1o.¢®wmmm 0800074 1-062626 1.558852
0-21 0-487715 0.-799452 1- 106085 1.622606
0-23 D-476251 0-801344 1-101373 1.615692
6. 25 0-454181 0- 786957 1-11059%0 1-629213
0-27 0-437677 0.783598 1-106261 1.622863
0-29 0-431979 0.803462 1-049796 1.540030
0- 31 0-410059 0-797118 1-164164 1.707806
Table IV
a¥=8'0 , & = 0.4998
2 2 2 2
v ™ M3 2 g
0. 20 0- 686266 0.917775 0- 855902 1-346714
0-21 0. 673244 0-905798 0.894568 1-407551
0-23 0- 666135 0-907477 G- 878628 1-382472
0-25 0- 621471 0-857672 0.972849 1-530723
0-27 0- 590321 0-827546 0-974109 1-532705
0.-29 Q- 580178 0- 828065 1-048586 1- 649890
0- 31 0-553994 0-807003 1-054721 1.659544

Table V

37



Figure 1:

Figure 2:

Figures 3-10:
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CAPTIONS FOR FIGURES

The hollow rod showing the reference coordinates and

dimensions.

Displacement distributions for the lowest three modes
for motions having infinite wavelength. The distributions
are for the first radial, longitudinal, and first axial

shear modes.

Spectra of frequency vs, real propagation constant
showing comparison between the exact and approxi-

mate theories,
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