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Abstract

Code tracing involves simulating at a high level the steps a
computer takes when it executes a computer program. This is
a fundamental skill needed for programming activities, but one
that novices find challenging. Thus, work is needed on how to
support novice programmers in this activity. We conducted an
experimental study with university students (N = 56) learning
to code trace in two conditions, namely peer tutored and solo
code tracing. Our primary outcome variable was learning, but
we also measured student emotions. Contrary to prior work in
other domains, there was no significant benefit of peer tutor-
ing and self-reported levels of emotion were similar in the two
conditions; Bayesian statistics provided evidence for the null
model in the majority of cases.

Introduction

Code tracing involves simulating at a high level the actions
a computer takes when executing a computer program. This
activity provides opportunities to learn important concepts,
including: (1) the meaning of a programming language’s syn-
tax; (2) the rules of program execution. These concepts form
the foundations needed for subsequent programming activi-
ties like code generation (Xie et al., 2019). Since learning
to code trace is challenging (Cunningham, Blanchard, Eric-
son, & Guzdial, 2017; Fitzgerald, Simon, & Thomas, 2005;
Vainio & Sajaniemi, 2007), effective teaching methods are
needed. We next review research on helping students acquire
this important skill.

Code tracing can be taught in a variety of ways, includ-
ing live demonstrations in classrooms (Hertz & Jump, 2013),
one-on-one tutoring (Xie, Nelson, & Ko, 2018), instructional
videos (Lee & Muldner, 2020), and educational technolo-
gies like tutoring systems (Kumar, 2014; Nelson, Xie, &
Ko, 2017; Jennings & Muldner, 2021; Caughey & Muldner,
2023). Code tracing can also be scaffolded with program vi-
sualization tools, which show the step-by-step flow of exe-
cution in a program and the program state at each step. In
a recent review, Muldner et al. (2022) reported that visual-
ization tools often, but not always, improved learning and/or
performance over standard instruction without such tools.

Yet another method, which we focus on in the present pa-
per, corresponds to peer tutoring. Roscoe and Chi (Roscoe
& Chi, 2007) define peer tutoring as “the recruitment of one
student to provide one-on-one instruction for another student,
accompanied by explicit assignment of participants to tutor
and tutee roles”. In this paradigm, the tutor and tutees are

of similar age and are assigned specific roles (i.e., tutor, tu-
tee), and either stay in those roles (fixed role) or take turns
playing each role (reciprocal tutoring). While in some stud-
ies the peer doing the tutoring has more expertise, this is not
always the case. Peer tutoring helps both the peer tutor and
the tutee learn (Roscoe & Chi, 2007; Leung, 2019; Goodrich,
2018; Ansuategui & Miravet, 2017; Alegre, Moliner, Maroto,
& Lorenzo-Valentin, 2019). This is encouraging given that
peer tutors often have little or no tutoring expertise, and in
the case of reciprocal tutoring, limited domain expertise.

Why is peer tutoring effective? To learn, students need
opportunities to be constructively engaged with the materi-
als (Chi & Wylie, 2014). Peer tutoring provides this oppor-
tunity for both the tutor and tutee. As far as the tutor, effec-
tive tutoring strategies include asking questions and providing
knowledge-building explanations (for a review see (Roscoe
& Chi, 2007)). Briefly, knowledge-building explanations re-
quire tutors to draw on their prior knowledge and to extend it
through additional inferences, integration of ideas, and so on,
which promotes their learning. This is in contrast to knowl-
edge telling explanations, where the tutor lectures on what
they already know with little reflection or extension. If tu-
tors are using knowledge-building strategies and asking ques-
tions, then their tutees have many opportunities for their own
knowledge construction.

We next describe work using peer tutoring and related
paradigms in the domain of programming. Golding et al.
(2005) conducted a study in the context of a first-year pro-
gramming class over one semester, where class activities
were done either alone or in a peer-tutoring context (N = 42;
60% male students). There was no significant difference be-
tween the conditions in terms of learning or student attitudes.
Spacco et al. (2013) compared outcomes from two sections of
a non-majors CSO course taught by the same instructor. One
section (N = 90) used a peer-instruction approach, where stu-
dents did readings before class, wrote a brief quiz at the start
of class, and then worked collaboratively on problems. This
study is related to the peer tutoring paradigm but not identi-
cal, as the collaboration was not structured in the form of peer
instruction. The other section (N = 124) was taught using a
standard lecture-based approach. The peer instruction class
performed significantly better on the final. Zingaro (2014)
used the same design but with two different instructors teach-
ing the two sections; self-efficacy was additionally measured
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(N =221). There was no significant learning benefit of peer
instruction but the students in the peer-instruction class had
significantly higher self-efficacy.

The other studies we found did not use an experimental de-
sign. Gerhardt and Olan (2010) created a peer tutoring drop-
in center. While many students did not take advantage of this
service, those who did reported finding the tutoring useful and
being satisfied with the tutoring. Crabtree et al. (2022) also
recruited recent graduates of a programming course to act as
peer mentors. The mentors attended lectures and answered
student questions. There was no significant effect of peer tu-
tors on class grades, as compared to a class that did not in-
clude them. Beyond peer-tutoring, a related paradigm is pair
programming, where students collaborate to complete a pro-
gramming task (but are not assigned specific tutor and tutee
roles). In this context, reviews comparing pair programming
to solo activities reported that pair programming improved
outcomes like exam scores (Umapathy & Ritzhaupt, 2017).

Current Study

As our review highlights, there is ongoing research on the de-
sign of instructional materials and methods to support learn-
ing of code tracing. While peer tutoring is a promising ap-
proach that yields moderate to high effects over other forms
of instruction, to date there is little research on its effect for
programming activities, and none to the best of our knowl-
edge that involves code-tracing activities.

Accordingly, the present study investigates the effect of
peer tutoring on learning and emotion related to code-tracing
activities. We included emotion in our analysis because it
influences student learning (Pekrun, Elliot, & Maier, 2009;
Kim & Pekrun, 2014; Camacho-Morles, Slemp, Oades, Mor-
rish, & Scoular, 2019; Camacho-Morles et al., 2021). For
instance, anxiety can reduce learning (Pekrun et al., 2009),
while enjoyment can increase it (Maclntyre & Vincze, 2017).
We compared peer tutoring outcomes to ones from individual
code-tracing activities where students worked alone.

We had the following two research questions:

RQ1 Does peer tutoring increase learning of code tracing
over solo activities?

RQ2 Does context (peer tutoring, solo activities) affect stu-
dents’ emotions?

Methods
Materials

Introductory Python Lesson We created a 22-minute in-
structional video to provide an introduction to code tracing
with the language Python. The video featured a human narra-
tor going over a PowerPoint slide deck that covered variables,
assignment, if-else blocks, and while loops, as well as how to
code trace programs.

Code-Tracing Problems and Solutions We designed four
code-tracing problems based on the introductory lesson. All

1 counter = 5 1 counter = 0@

2 while True: 2 res = 0

3 counter = counter -1 3 while True:

4 if counter < 3: 4 counter = counter + 1
5 print("ABC") 5 if counter > 2:

6 break 6 print("Hey")

7 else: 7 break

8 print("XYZ") g else: . )

9 print("0K", counter) res = res + counter

10 print("Bye")
11 print(counter, res)

Figure 1: Example of two Python programs used in code-
tracing activities.

four problems showed a Python program with a while loop
that contained an if-else block and a loop control variable (see
Figure 1, left); the last two problems additionally included
the accumulation of values in a second variable (see Figure 1,
right) and thus were more challenging.

We created four solutions sheets, one per problem. Each
solution sheet showed a Python program on the left and a
detailed step-by-step code-trace on the right. The code trace
was presented in text form, as in some prior work (Bayman
& Mayer, 1988). An alternative way to present a code trace
is through an instructional video that shows, for instance, an
instructor generating the code trace in real time (e.g., (Lee
& Muldner, 2020)). We decided against this latter format
because in one of our conditions, participants worked in pairs
to discuss the solution, which would be challenging with a

pidse ToinssdBecvidaened dpytnRephrtessharchntime
PRGUAHORNELYRB o on effective peer tutoring strategies,
we created a brief lesson based on PowerPoint slide deck and
a corresponding script read by a researcher. The lesson in-
cluded information about the difference between knowledge
telling and knowledge building and instructed participants to
use the latter. The lesson also described other productive tu-
FLREsIcPRIBST; Wi ERfoRoN ot onaRRles- Ayston
RRAI s RdoATeldina ab el iam iR Ve R iR Rited
eight code-tracing questions (five included while loops and
three were more basic) and one code-writing transfer ques-
tion. The tests were isomorphic (i.e., the questions were
structurally identical but superficial features like variable
names and numeric values were varied). The questions in
the tests were similar but not identical to four code-tracing
problems. An emotion questionnaire was used to measure
five emotions, namely anxiety, boredom, enjoyment, frustra-
tion and confusion, on a Likert scale of 1 (not at all) to 5
(extremely). The five emotions were selected because they
are relevant to academic settings (Pekrun et al., 2009). A sep-
arate Likert scale was used for each emotion.
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Participants

The participants were 56 individuals (53 university students
and three individuals not in university; M g.=21.2; 38 identi-
fied as female, 15 as male, 1 as non-binary, 1 as demigirl,
and two preferred not to answer). To be eligible, partici-
pants needed to have either no programming experience or
limited experience (no more than one university course), in
order to avoid ceiling effects on the tests. The majority of
participants had no prior programming experience (53.6%);
the other participants had limited experience (high school or
at most one university course). Participants were recruited
through word of mouth, several social media groups on Face-
book, and through SONA (an online participant management
tool). The SONA participants were all enrolled in a first year
cognitive science class and received 2% course credit; the
other participants received $25 compensation.

Design and Procedure

The study was approved by the University Ethics Board. A
between-subjects design was used with two conditions: peer
tutoring (participants worked on code-tracing problems in
pairs, taking turns to tutor one another) and solo (participants
worked alone). Participants were assigned to the conditions
in a round robin fashion. Participants in the peer tutoring con-
dition were required to come to the study with a friend.

Each study session was conducted over Zoom. Participants
first signed an informed consent form. The researcher then
used screen sharing to show the Python lesson. Next, partic-
ipants were given a maximum of fifteen minutes to complete
the pretest. Participants were instructed to not guess their
answers and to display all of their work. The test was ad-
ministered after the lesson because we wanted to isolate any
effects of peer tutoring to the intervention (rather than inflat-
ing effects with the influence of the lesson). After the pretest,
participants worked on the four code-tracing problems. Par-
ticipants were told they could refer to the Python lesson if
they wished and were given a help sheet corresponding to a
slide from the lesson showing a detailed code trace of a pro-
gram (this problem was similar to but not identical to the four
problems, in that it used a while loop but the order of con-
structs in the loop body was different).

In the peer tutoring condition, participants worked in pairs
and took turns playing the role of the tutor and the tutee.
One partner (partner A) played the role of the tutor for code-
tracing problems (1) and (4) and the second partner (partner
B) played the role of the tutor for problems (2) and (3). Re-
call that problems 1 and 2 were simpler than problems 3 and
4. This sequencing ensured that each participant tutored with
an easy and harder problem and was also tutored with an eas-
ier and harder problem. In sum, reciprocal tutoring was used
and both participants had the opportunity to be a tutor and
a tutee. When playing the role of tutee, participants worked
on the given problem, while their tutor answered questions
and provided support, as needed; these roles flipped on the
next problem. Participants were required to spend a minimum

of three minutes per problem and were given a maximum of
seven minutes per problem. After completion of a problem,
or after the allotted time had passed, participants were given
the solution sheet (via a link in Zoom chat) and had three
minutes to review and/or revise their solution.

The procedure in the solo condition was the same, except
that participants worked alone and were asked to think aloud
(Ericsson & Simon, 1980) while working on the four prob-
lems. Thinking aloud involves verbalizing the contents of
working memory (without further prompts to explain verbal-
izations). Before participants begun working on the code-
tracing problems, a researcher described what thinking aloud
involved using a predefined script. We asked the solo partic-
ipants to think aloud to encourage engagement with the con-
tent and to increase consistency between conditions, given
that participants in the peer tutoring condition also verbalized
ideas. Solo participants were given a maximum of seven min-
utes per problem and had to spend a minimum of two minutes
per problem. A minimum of two minutes was used because
no dialogue was required in this condition, which reduced
time on task, and requiring participants to keep talking could
induce frustration and/or superficial comments. After partic-
ipants stated that were finished the problem, or after seven
minutes had passed, they were given the solution sheet and
had three minutes to review and/or revise their solution.

In both conditions, after the pretest and after each code-
tracing problem, participants completed the emotion self-
report questionnaire. After the final code-tracing problem and
self-report questionnaire, participants individually completed
the posttest (20 minutes). Participants were asked not to guess
and to show their work. After the posttest participants were
debriefed and compensated. The entire study, in both condi-
tions, took no more than two hours.

Results

For the analysis, we used both frequentist statistics (null hy-
pothesis significance testing, NHST) and Bayesian statistics
(Bayes Factor, BF). In the latter, the “likelihood of the data
is considered under both the null and alternative hypothe-
ses, and these probabilities are compared via the Bayes fac-
tor. The Bayes factor is a ratio that contrasts the likelihood
of the data fitting under the null hypothesis with the likeli-
hood of fitting under the alternative hypothesis” (Jarosz &
Wiley, 2014). The ratio can be computed in either direction
(i.e., to show the results from the perspective of the alterna-
tive hypothesis or the null hypothesis). A key advantage of
this method is that it can provide evidence for either model,
null or alternative (as opposed to NHST that can only pro-
vide evidence for rejecting the null model). Thus, there have
been calls to present results from both frameworks (NHST,
Bayesian), so that complimentary evidence can be compared
(Jarosz & Wiley, 2014; Quintana & Williams, 2018).

As is standard, we report the Bayes factor for the more
likely model: BFy; when the null model is more likely (no
conditional difference) and BFjo when the alternative model
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Table 1: Descriptives for the pretest, posttest, and gain scores
for each condition

Peer Tutoring Solo
n= 26 n=30

Pretest % 34.07% (21.13) 36.11% (21.43)
55.77% (24.30) 62.70% (22.94)

21.70% (19.33) 26.75% (18.40)

Posttest %
Gain %

is more likely (conditional difference exists) as appropriate,
stating which direction we are reporting. Of note, the other
BF factor can be calculated simply by inverting the reported
one. When either Bayes factor is close to 1, this indicates lack
of evidence for either model being superior. As the Bayes
factor increases, it provides mounting evidence for the target
model (either null or alternative, depending on the way the
ratio is set up). We follow the guidelines in (Jarosz & Wiley,
2014) to interpret Bayes factors, as follows: BF = 1-3 pro-
vides anecdotal evidence for the corresponding model; BF
=3 - 10 provides substantial evidence for the corresponding
model; and BF > 100 provides decisive evidence. To obtain
the Bayes factor, we used JASP (JASP Team, 2019).

Learning Results

Learning was measured using the difference from pretest to
posttest. The tests were graded using a detailed grading
scheme, blind to condition. As shown in Table 1, the pretest
scores were low and similar in both conditions, #(54) = .36, p
=.72,d = .01; BFy; = 3.50 indicated substantial evidence for
the null model. No participant was at ceiling, as all pretest
scores were below 80%.

Ignoring condition, participants did learn from the instruc-
tional activities as indicated by the significant gain from
pretest to posttest, #(51) = 10.60, p < .001, d = 1.47; BFg
> 100 indicated decisive evidence for the alternative model.
The effect of condition on learning was not significant, #(54)
= 1.00, p = .32, d = .27; BFy; = 2.44 indicated anecdotal
evidence for the null model. Four participants did not learn
(either had no gain or reduced performance at posttest; three
were in the peer tutoring condition). Lack of learning can
be the result of either students rushing through the last activ-
ity, namely the posttest, or the instructional materials causing
confusion. Since only four out of 56 participants did not learn
in the current study, the latter option is unlikely and the more
plausible explanation is that these participants did not invest
effort in the posttest. If we re-run the learning results with-
out these participants, the pattern for frequentist statistics re-
mains (p > .05) but the Bayes factor now provides substantial
evidence for the null model indicating lack of a peer-tutoring
benefit (BFy; = 3.14).

Emotion Results

We now turn to the results related to the five emotions mea-
sured in our study (anxiety, boredom, confusion, enjoyment,
frustration). Recall participants were prompted to self-report
on their emotions at five points, namely after the pretest and
each of the four code-tracing problems. We asked for emo-
tion information after each problem rather than at the end of
the experimental session to avoid losing information, which
would happen if emotions fluctuated during the study.

We begin with the descriptives, shown in Figure 2. We
focus on the last four self-reports produced after each code-
tracing problem (T2-T5 in Figure 2). In the majority of cases
for each of the five emotions, the line in Figure 2 for each
condition tends to be fairly flat, indicating little difference
between the emotion levels at the four time points within that
condition. Similar trends appeared in both conditions. Anx-
iety started off moderately low (< 2.5 out of 5), eventually
dropping slightly to 2 by the last problem. Boredom stayed
low and constant (around 2 out of 5), which makes sense
given that participants had to engage in a problem-solving
activity (and so were active, which likely reduced boredom).
Confusion followed a similar trend as boredom. The rela-
tively low levels of confusion were initially surprising as we
recruited novices but this state may have been mitigated by
the feedback provided by the solution sheets. Enjoyment was
moderate throughout (around 3 out of 5); compared to the
similar levels reported in the solo condition, the peer tutoring
group’s enjoyment increased slightly by the fourth problem
(around 3.5 out of 5). Frustration was low and similar in the
two conditions with one exception, namely after the second
code-tracing problem. Here, the solo group’s frustration in-
creased while the peer-tutoring group’s frustration decreased,
compared to the amount reported after problem 1.

Given the fact that there was little variation in emotion level
between the four key time points (i.e., after each code-tracing
activity) and given this was the case in each condition, the
most straightforward way to analyze the data to obtain the
effect of condition is as follows: (1) compute the mean self-
reported level of each emotion across the time points (focus-
ing on the reports after each problem), and (2) compare the
result between the two conditions using a separate indepen-
dent t-test for each emotion (frequentist, Bayesian). The re-
sults are in Table 2. In sum, there was no significant dif-
ference between the conditions in terms of emotion level re-
ported and the effect sizes were all low except for frustration.
The Bayesian analysis reported substantial evidence for the
null model for anxiety, boredom, confusion (i.e., no condi-
tional effect on these emotions), while for enjoyment, the ev-
idence for the null model was only anecdotal. For frustration
both the null and alternative models were equally likely, so
no conclusions can be drawn about the effect of condition on
frustration.

The alternative way to analyze the data is to run mixed two-
way ANOVAs with condition as the between-subjects factor
(solo, peer tutoring) and time point as the four-level within
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Figure 2: Mean self-reported emotion levels for the 5 target emotions in each condition (solo and peer tutoring). Y-axis shows
mean reported level for the corresponding emotion (1 indicating not all feeling that emotion and 5 indicating extremely); X-
axis shows the five time points at which the self-report was administered: T1 = right after the pretest, and T1-T4 right after the

corresponding code-trace problem.

Table 2: Frequentist and Bayesian inferential statistics for the
effect of condition on mean self-reported emotions.

Frequentist Statistics Bayes

(NHST) Factor

(BF)
anxiety t=0.1,p=.93,d=.03 BFy =3.6
boredom t=04,p=.71,d=.10 BFy =34
confusion t=02,p=.88,d=.04 BFy; =3.5
enjoyment t=13,p=.23,d=.24 BFy; =2.0
frustration t=1.7,p=.09,d=.49 BFy; =1.0

subject factor (focusing on the self-reports after each code-
tracing activity). This analysis makes it possible to check for
trends over time. Based on the descriptives, the only poten-
tial trend is for frustration and this indeed turned out to be
the case. Specifically, the effect of condition on self-reported
level of anxiety, boredom, confusion, and enjoyment was not
significant and neither was the condition x time interaction
(all p < 0.05); these results were mirrored with decisive evi-
dence for the null model produced by the Bayesian analysis.
This is evident from Figure 2, given the relatively flat lines,
indicating little change over time, and the relatively parallel
slopes in terms of the two conditions, indicating lack of in-
teraction. The one exception was for frustration. Specifically,

as noted above, frustration spiked after the second problem
in the solo condition but decreased slightly in the peer con-
dition. Frequentist statistics confirmed this pattern through
a significant condition x time interaction, F(3, 147) = 2.93,
p = .036, nIZ, = .056, likely driven by the difference between
the conditions after the third self-report right after the first
complex problem was solved. However, these results have to
be interpreted with caution, as there is virtually no evidence
for the effect of this interaction through the Bayesian statis-
tics - the inclusion BF used to interpret results from mixed
ANOVAs (JASP, 2023) is .74, which indicates that the null
and alternative models are similarly likely.

Discussion

We conducted an experimental study that involved code-
tracing activities (N = 56). In the peer tutoring condition,
students engaged in reciprocal tutoring, while in the solo con-
dition students worked alone. There was no significant effect
of condition on learning (RQ1) and the effect size was small
for all analyses. Bayesian statistics provided evidence for the
null model (no conditional effect), trending towards substan-
tial with all participants and substantial when four partici-
pants who did not learn were excluded. There was also no
significant effect of learning context on emotion (RQ2), with
the possible exception of frustration.

Meta-analysis in domains outside of programming activ-
ities indicated peer tutoring resulted in more learning than
other activities, like solo problem solving. Why was this not
the case in our study? The posttest scores were not at ceil-
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ing and in general had room for improvement (below 65%);
students did learn overall, so these are not potential explana-
tions. Neither is the fact that the solo condition was asked to
verbalize their thoughts, because they were not asked to self-
explain their reasoning. Had the latter been the case, then
this would have boosted the solo condition’s performance as
self-explanation improves learning (Chi & Wylie, 2014).

We recruited novice tutors. Prior work shows that even
novice tutors can help their tutees learn (Robinson, Schofield,
& Steers-Wentzelll, 2005), but it is possible our tutors did not
do enough prompting (good for learning and did too much
telling (bad for learning), which would have reduced learning
in the peer-tutoring condition. To check for this possibility,
we analyzed a subset of the transcripts corresponding to six of
the peer tutoring sessions (each one involved a pair or partici-
pants, for a total of n = 12). Prompting was defined as guiding
the tutee towards the answer without giving the full answer
away via hints, similar examples, open-ended prompts, while
telling corresponded to the tutor telling the answer!.

The peer tutors in our study did slightly more prompting
than telling (on average per problem, 1.83 vs. 1.41, respec-
tively). Examples of prompting included: “when we looked
at the example, where was the variable that we were talking
about?” and “okay, how do you want to go about this? What
are we setting the counter?”. In these examples, the tutor is
guiding the tutee to the solution by reminding them of past ex-
amples and by having them reflect on the problem. Examples
of telling included: “since line 10 is still within the indented
loop for the while loop, I think we print out bye” and “yeah
and then you go back to line seven”. Here, the tutor is telling
the tutee the answer, instead of helping their tutee work con-
struct it. The fact there was more prompting than telling is
encouraging because prompting is beneficial for tutor and tu-
tee learning. Thus, this aspect is not a likely cause of the lack
of a peer tutoring benefit.

Yet another possibility to explain lack of a peer tutoring
benefit relates to the fact that in our study, participants were
given the canonical solution after each problem in both con-
ditions. Feedback is highly beneficial, with a slightly larger
effect size than peer tutoring, .62 vs. .51 (Hattie, John, 2023).
Thus, the provision of feedback may have overshadowed any
peer tutoring effects.

We now turn to the emotion results. Peer tutoring involves
collaborating with another individual. In general, the quality
of collaboration influences emotions experienced (Pietarinen,
Vauras, Laakkonen, Kinnunen, & Volet, 2019; Zschocke,
Wosnitza, & Biirger, 2016).> Since we recruited participants
who knew each other, we expected this would have boosted
the collaboration and thus increased positive emotions over

nitially, four transcripts were coded by two researchers, and
any disagreements were discussed; the coding scheme was refined
to clarify as needed. The remaining transcripts were coded by one
researcher.

ZWhile the aforementioned research did not structure collabora-
tion using peer tutoring roles, the results should still transfer to peer
tutoring contexts.

solo activities. We did not, however, find evidence of this.
The only significant effect corresponded to frustration, which
increased after code-tracing problem 2 in the solo condition
and decreased in the peer tutoring condition. It’s not clear
why frustration would be affected by problem 2 in this way,
particularly since the levels of frustration at other points were
similar. Since Bayesian statistics did not provide reliable ev-
idence for this effect, it must be interpreted with caution.

Limitations and Future Work

The study was conducted over Zoom rather than as part of
regular class activities, which may have influenced motiva-
tion to complete the activities. Conducting a study in the
context of a regular class increases ecological validity but re-
duces experimental control. We recruited participants for the
peer tutoring condition who already knew each other. This
method may help participants be more comfortable exchang-
ing ideas but it also means that our results may not generalize
to settings where the tutor and tutee do not know each other.

The modest sample size in the present study influences the
power of frequentist statistics. To mitigate this limitation,
we followed the advocated practice of reporting effect sizes,
which are informative in modest power situations. We also
used Bayesian statistics that are not as influenced by sample
size (Dienes, 2014).

We measured emotion using a questionnaire. While it was
administered several times, it was brief (five questions) and
so unlikely to be disruptive. However, future work could in-
vestigate alternative approaches that don’t involve asking par-
ticipants to self-report. In our prior work we analyzed the
talk aloud data for emotional content (Savelson & Muldner,
2023). This approach has the advantage of not asking partic-
ipants directly how they are feeling, but it also makes it more
challenging to identify certain emotions because participants
do not express them much (or at all). Future work should also
investigate the influence of the activities students are asked to
complete. Here, code tracing was used, which is a procedural
task that affords limited opportunity for elaboration. It may
be that for peer tutoring to have an effect, a richer problem is
needed, like program generation.

Conclusion

Meta-reviews of peer tutoring show it increases learning over
other instructional activities like working alone. However,
very little work exists in this paradigm involving program-
ming activities. Although we did not find evidence that peer
tutoring increased learning or influenced emotions over solo
activities related to code tracing, it is premature to conclude
that peer tutoring is not effective for programming activities.
Thus, further studies are needed, as well as research to iden-
tify factors that influence peer tutoring effectiveness in this
domain.
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