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a b s t r a c t

Advances in RNA sequencing technologies have led to the surprising discovery that a vast number of
transcripts emanate from regions of the genome that are not part of coding genes. Although some of the
smaller ncRNAs such as microRNAs have well-characterized functions, the majority of long ncRNA
(lncRNA) functions remain poorly understood. Understanding the significance of lncRNAs is an important
challenge facing biology today. A powerful approach to uncovering the function of lncRNAs is to explore
temporal and spatial expression profiling. This may be particularly useful for classes of lncRNAs that have
developmentally important roles as the expression of such lncRNAs will be expected to be both spatially
and temporally regulated during development. Here, we take advantage of our ultra-high frequency
(temporal) sampling of Xenopus embryos to analyze gene expression trajectories of lncRNA transcripts
over the first 3 days of development. We computationally identify 5689 potential single- and multi-exon
lncRNAs. These lncRNAs demonstrate clear dynamic expression patterns. A subset of them displays
highly correlative temporal expression profiles with respect to those of the neighboring genes. We also
identified spatially localized lncRNAs in the gastrula stage embryo. These results suggest that lncRNAs
have regulatory roles during early embryonic development.

& 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Advances in RNA sequencing technologies have identified a
large cohort of ncRNA species that have distinct functions (Rinn
and Chang, 2012), which can be subdivided into two groups. Short
ncRNAs (sncRNAs) include microRNAs (miRNAs), short interfering
RNAs (siRNAs) and piwi-interacting RNAs (piRNAs). In contrast,
long ncRNAs (lncRNAs) are considered to be greater than 200
nucleotides in length, transcribed by RNA polymerase II, and
usually polyadenylated (Ulitsky and Bartel, 2013). LncRNA loci are
also characterized by having epigenetic markers typical of protein
coding genes (Prensner and Chinnaiyan, 2011). A systematic an-
notation of lncRNA genes is not available for most organisms, and
even in those with such annotation, only a small percentage of
known lnRNAs have been subject to in depth experimental study
to ascertain their functions. A few well-known lncRNAs are Xist,
H19, and HOTAIR. The Xist gene is involved in silencing of the
r Inc. This is an open access article
X-chromosome (Brown et al., 1991; Gendrel and Heard, 2014). H19
brings repressive histone marks to the differentially methylated
regions of target genes (Bartolomei et al., 1991). HOTAIR interacts
with Polycomb repressive complex 2 (PRC2) and regulates the
chromatin state of the HOXD cluster (Rinn et al., 2007; Tsai et al.,
2010). While different classes of regulatory lncRNAs have been
discovered, the functional identity of most lncRNAs remains elu-
sive and some in fact encode small peptides (Martinho et al., 2004;
Kondo et al., 2010; Pauli et al., 2014). Understanding the sig-
nificance of lncRNAs remains an important task facing biology
today.

A challenge in identifying lncRNAs is their general lack of se-
quence conservation across species and many lncRNA genes ap-
pear to lack orthologs across different species based on nucleotide
sequence similarity. This led to the notion that lncRNA genes do
not have the same evolutionary constraints as those of protein-
coding genes and the conservation of lncRNAs is inherent in the
folded structure (e.g., secondary and tertiary structures), instead of
at the primary nucleotide sequence level (Johnsson et al., 2014).
Lack of sequence conservation makes it difficult to probe further
into the function and evolution of a particular lncRNA gene. Cur-
rently, there is no universal experimental approach to characterize
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. LncRNA discovery pipeline. The output of Cuffmerge (step 1) goes through
multiple filtering steps to remove unqualified lncRNA genes and any transcripts
with coding potential (step 2), short transcripts (step 3), miRNAs (step 4). These
processes are performed in parallel rounds for single time points and also using
pooled reads over a sliding window of 5 time points). After these commonly used
filtering steps, the remaining transcripts are combined as one set and one re-
presentative transcript model is kept among the overlapping transcripts (step 5).
Then, multi-exon and single-exon lncRNA candidates are separated (step 6). After
removing the lncRNA candidates with less than 5 consecutive time points of non-
zero expression, the SNR threshold is applied (step 7). We remove any potential
lncRNA candidates that have the possibility of being part of exons of a neighboring
gene (step 8 and 9). Our final lists of lncRNAs are 1336 multi-exon lncRNAs and
4353 single-exon lncRNAs.
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the functional contributions of individual lncRNAs, owing to the
diversity of functions that are attributed to this class of RNAs.

An effective approach to uncover the function of lncRNAs is to
explore temporal and spatial expression profiling. This may be
particularly powerful for classes of lncRNAs that have devel-
opmentally important roles as expression of such lncRNAs is ex-
pected to be both spatially and temporally regulated. Here, we use
RNA-seq data from various developmental stages and dissected
embryonic tissues and apply a set of search criteria (Fig. 1) to
identify both multi-exon and single-exon lncRNAs that have not
been described previously. As the first step to systematically
identify lncRNAs that are likely to play important developmental
functions, we analyzed a set of comprehensive RNA-seq data
covering the first 66 h of frog embryogenesis (Owens et al., 2016).
In that work, we established a method to quantify the absolute
levels of transcripts per embryo and analyzed the temporal ex-
pression patterns. Here, we continue with a similar approach
employing Gaussian processes, which offer an efficient statistical
representation of the high-temporal resolution time-series data
analyzed. We make use of Gaussian processes to identify
developmentally relevant temporal dynamics of lncRNAs. We have
compared the expression trajectories of individual lncRNA genes
to the neighboring protein coding genes and identified groups of
lncRNAs that show correlative expression profiles with respect to
those of the neighboring genes. We propose that this subclass of
lncRNAs has cis-regulatory functions in development. We also
identified lncRNAs showing spatially confined expression patterns
in the gastrula stage embryo, implicating their roles during
gastrulation.
2. Materials and methods

2.1. Overview of analysis

We previously obtained high-density RNA-seq time course data
covering the first 66 h of Xenopus tropicalis development (Owens
et al., 2016). Here, RNA-seq reads from polyAþ RNA (GSE65785)
were aligned to the X. tropicalis v9 genome using TopHat (Trapnell,
2009) and Cufflinks (Trapnell, 2010). The initial Cuffmerge output
was further subjected to a multi-step filtering process (Fig. 1), after
which, we were left with 1336 multi-exon lncRNAs and 4353
single-exon lncRNAs. We modeled the expression dynamics of
these lncRNAs using Gaussian processes, which is a commonly
used machine learning technique that has been used to model
gene expression over time (Gao et al., 2008; Owens et al., 2016).

2.2. Xenopus embryo dissection, RNA isolation and sequencing

Synchronously developing Xenopus tropicalis embryos were
obtained by in vitro fertilization using standard methods. Stage 10–
10.25 gastrula embryos were manually dissected into five frag-
ments representing ectoderm, dorsal mesoderm, lateral meso-
derm, ventral mesoderm and endoderm (Blitz et al., 2016) and
RNAs were isolated after homogenization. The RNA samples were
subjected to polyAþ selection and library production according to
the Illumina Tru-Seq mRNA-seq kit. Libraries were ligated using
bar-coded adaptors and subjected to 50-bp single end sequencing
on an Illumina HiSeq2000 instrument (Blitz et al., 2016). Dissec-
tion RNA-seq datasets can be found in Blitz et al. (2016).

2.3. Transcriptome assembly

Our lncRNA detection pipeline started with aligning the time-
course RNA-Seq paired-end reads from each time point (90 sam-
ples) to the Xenopus tropicalis version 9 genome using TopHat
v2.0.12 (Trapnell et al., 2009) and Bowtie2 v2.2.1 (Langmead and
Salzberg, 2012). Mapping assignment did not retain the multi-
mapping reads. We constructed the transcripts from mapped
reads from each individual time point using Cufflinks v2.2.1
(Trapnell et al., 2010), guided by the X. tropicalis version 9 genome.
In parallel, we combined the mapped reads from each five con-
secutive time points (sliding window size of five applied across 90
time course samples) and performed the same analysis. This
sliding window approach across the datasets allows us to reliably
detect weakly expressed lncRNAs owing to deeper sequence cov-
erage resulting from this compilation. After the assembly step, all
of the transcripts were analyzed for possible artifacts and com-
bined into one set using CuffMerge (Trapnell et al., 2010) to create
a reference transcriptome. This step was performed separately on
transcripts coming from individual time points and also on tran-
scripts generated using the sliding window (step 1 in Fig. 1). These
initial sets of transcripts were then subject to multiple filtering
steps.
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2.4. Transcript abundance estimation

To generate the expression profiles of transcripts, we used
HTSeq (Anders and Huber, 2010) to count the number of reads
mapped to each transcript at each time point, based on Tophat
alignment results. These read counts then were normalized by the
library size and transcript length and converted to RPKM values.

2.5. Gaussian processes to model expression dynamics

Gaussian processes, a machine learning tool used commonly to
model biological time series dynamics (Gao et al., 2008; Honkela
et al., 2010; Äijö et al., 2014), offer a non-parametric representa-
tion of gene expression profiles. Here, we use them to assess the
quality of expression dynamics by calculating a signal to noise
ratio for each lncRNA candidate. We used Gaussian processes with
a Matérn kernel with shape parameter ν = 5/2 to model the ex-
pression profiles. The Matérn kernel has three hyperparameters:
σf

2 – the signal variance; τ – the timescale (commonly referred to as

the lengthscale); and σn
2 – the noise variance. Roughly, σf measures

the scale of the data (the expression level of a given lncRNA); τ –

measures how rapidly in time the lncRNAs expression can change;
and σn – measures the sample noise around a trend in expression,
this is a contributing factor to the width of confidence intervals in
Fig. 3. See Owens et al. (2016) for details of the kernel and these
hyperparameters. To assess our ability to discern lncRNA dynamics
we evaluated the signal-to-noise ratio (SNR) for each lncRNA. This
is defined as σ σ= [ ]SNR log /f n

2 2 , and is related to the expression level
of a lncRNA divided by the size of the sample noise. Therefore, a
larger SNR indicates that the noise is less dominant and that we
are better able to characterize the dynamics of the lncRNA (Sup-
plementary Figs. 1 and 2). We use the SNR as an alternative to
filtering on expression level alone. As σf is correlated to expression
level, the SNR is a more informative filter than an expression level
filter. Here, Gaussian process analysis is performed using the GPy
library in Python (http://sheffieldml.github.io/GPy/).

2.6. Strand verification employing strand-specific RNA-seq data

We used available strand-specific data (Collart et al., 2014),
covering the first 9 h of our time course, to predict the strand of
assembled transcripts. For each transcript, a binomial test was
used to find the strand with significantly more mapped reads (p-
value: o0.01). These strand predictions were later used to eval-
uate and modify Cufflinks strand predictions.

2.7. Differential spatial expression analysis

To identify differentially expressed transcripts in the early
gastrula, HTSeq data was used to find the number of mapped reads
on each transcript, for each replicate. These numbers then were
analyzed by limma v.3.22.6 (Ritchie et al., 2015), after the RNA-seq
data read count were preprocessed by voom transformation (Law
et al., 2014). A p-value of 0.05 was used to find significant differ-
entially expressed transcripts.
3. Results and discussion

3.1. Computational pipeline to identify lncRNAs

Fig. 1 shows the pipeline used to identify lncRNAs in Xenopus
tropicalis by analyzing an RNA-seq timecourse of closely-spaced
timepoints (Owens et al., 2016). We used Cufflinks to discover the
transcripts and Cuffmerge to generate a dataset of all detected
transcripts. We focused on identifying only intergenic lncRNAs
that do not show overlap with coding genes. We examined the
coding potential of individual lncRNA transcripts using TransDe-
coder (https://transdecoder.github.io), and removed the tran-
scripts that have coding potential (step 2). We set a minimum
length open reading frame (ORF) to be 100 amino acids (aa) long,
which has previously been used to identify lncRNAs (Chen et al.,
2016; Clark et al., 2015). Lowering the threshold will exponentially
increase the number of ORFs identified (https://github.com/Trans
Decoder/TransDecoder/), and will lead to the exclusion of many
genuine lncRNAs. Next, we removed short transcripts that were
less than 200 nucleotides in length (step 3) and that overlapped
with miRNAs (step 4). We then combined all the transcripts,
checked the overlaps between them, and kept one representative
model among overlapping transcripts, resulting in 59,970 lncRNA
candidates (step 5). The list resulted in 4640 multi-exon lncRNA
candidates and 55,330 single-exon lncRNA candidates (step 6),
which were subsequently analyzed separately (steps 7, 8, 9).

3.1.1. Signal to noise ratio
We applied additional filtering steps to remove poor quality

lncRNA candidates. We disqualified lncRNA candidates that were
not expressed in at least 5 consecutive time points (step 7). This
filtering step removed 637 and 32,130 transcripts from the set of
multi-exon and single-exon candidates, respectively. Following
this, we restricted our attention to those lncRNAs that exhibited
consistent dynamics. A simple approach could be to set an abso-
lute expression level threshold and remove low expression
lncRNAs. However, this approach may remove lncRNAs that are
expressed at consistent, but low levels during development. To
avoid the loss of these lncRNAs, we opted for a different approach.
We took advantage of our Gaussian process analysis to calculate a
signal to noise ratio (SNR) for each gene (the log ratio of signal
variance and noise variance hyperparameters, see Methods and
Supplementary Figs. 1 and 2 for examples). We set a threshold
requiring all lncRNA candidates to have of SNR40.6 (Supple-
mentary Figs. 1 and 2). After this filtering (step 7), 2795 multi-exon
and 8852 single-exon lncRNAs remained.

3.1.2. Strand-assignment
We examined the orientation of the lncRNA transcripts with

respect to the closest genes. First, we identified the closest gene on
both sides (upstream and downstream) of a candidate lncRNA and
determined their relative transcriptional directions (e.g., each
lncRNA - neighboring gene pair has a parallel or anti-parallel or-
ientation). Since our RNA-seq data is not strand-specific, making a
strand assignment for each lncRNA is challenging. Cufflinks makes
a strand prediction based on asymmetric splice junction in-
formation in multi-exon lncRNAs. We compared the accuracy of
Cufflink's strand prediction for multi-exon lncRNAs to strand calls
based on published strand-specific RNA-seq data (Collart et al.,
2014). The strand-specific RNA-seq data by Collart et al., are lim-
ited to the first 9hours post fertilization, and so this comparison
only allows us to evaluate the accuracy of strand calls predicted by
Cufflinks over this developmental window. We mapped Collart et
al.’s sequencing data to our set of lncRNAs, and applied a binomial
test on the number of the mapped reads on each strand to decide
the orientation of each candidate. We identified that, of 2795
lncRNA candidates, 1849 multi-exon lncRNA candidates are ex-
pressed during the first 9 h of development, and then we validated
that 77% (1418 out of 1849 multi-exon lncRNAs) of strand pre-
diction by Cufflinks are accurate. For single-exon lncRNAs, 5108
(58%) of 8852 single-exon lncRNAs are present during the first 9 h
of Xenopus tropicalis development, and only 53% of these candi-
dates (2707 single-exon lncRNAs) were supported by Collart et al.
(2014). Consequently, Cufflinks strand predictions for single-exon

http://sheffieldml.github.io/GPy/
https://transdecoder.github.io
https://github.com/TransDecoder/TransDecoder/
https://github.com/TransDecoder/TransDecoder/
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genes are no better than random and therefore the strand calls
were made based on the Collart et al., data.

Next, we used strand prediction information to further dis-
qualify poor quality lncRNA candidates. We reasoned that if a
candidate lncRNA is transcribed as part of an adjacent transcrip-
tional unit (e.g., unrecognized exons), instead of being in-
dependently transcribed from a bone fide lncRNA gene, we expect
1) the transcriptional direction of a lncRNA and the neighboring
gene to be the same direction, 2) their expression levels to be
highly correlated. Pearson correlation coefficients were calculated
between each lncRNA and each of the neighboring genes on either
side. If Pearson correlation was 40.9 and the lncRNA has the same
strand orientation as the correlated gene, then the lncRNA was
removed (Step 8). For multi-exon genes, 283 of 2795 were re-
moved. We assigned “class 1” to these if the strand information of
the lncRNA was known from Collart et al. (2014), and if the lncRNA
and the neighboring genes were transcribed from the same strand;
we assigned “class 2” otherwise. Of the 283, 256 were class 1 and
27 were class 2. Similarly, for single-exon lncRNAs, 536 (436 class
1 and 100 class 2) lncRNA candidates were removed.

3.1.3. Paired-end read overlaps
To ensure we identify lncRNAs with high confidence, we have

inspected and identified paired-end reads that were mapped on
both lncRNA and an adjacent coding gene transcription, as such
read pairs are evidence of a physical link between these two
transcripts. If a single or multi-mapping paired-end read connects
a lncRNA to a neighboring coding gene, then the candidate
lncRNAs were removed (step 9), resulting in a final set of 1336
multi-exon lncRNAs and 4353 single-exon lncRNAs. The list of
lncRNAs is shown in Supplementary Tables 1–4 (also see https://
cbcl.ics.uci.edu/public_data/Xen-LncRNA/). We also include a list of
lncRNAs that were removed at step 9 (Supplementary Tables 5 and
6) as this stringent criterion could potentially remove genuine
lncRNAs (Supplementary Figs. 3 and 4, see below).

3.2. Temporal expression dynamics of lncRNAs

We examined the temporal expression dynamics of 5689
lncRNAs including both single and multi-exon lncRNAs. We first
determined expression values of individual lncRNAs at each time
point after normalizing (RPKM) the number of mapped reads
based on the length of the lncRNA and the library size. Next, we
applied Gaussian processes to generate a smooth representation of
the expression profile, and followed this by clustering the ex-
pression profiles of the lncRNAs based on k-means clustering
(Fig. 2). The results show that lncRNA expression is dynamically
regulated during the course of embryonic development. Cluster
1 lncRNAs are maternally expressed and drop to very low levels
shortly after zygotic transcription initiates. Cluster 2 lncRNAs are
also maternally expressed, but the expression persists through the
timecourse. Cluster 3, 4 and 5 lncRNAs are zygotically activated
with increasingly later expression peaks and differing dynamics of
later temporal expression. Cluster 6, 7 and 8 lncRNAs are zygoti-
cally activated, but their expression persists for a prolonged period
of time. The time course analysis indicates that many lncRNAs are
developmentally regulated and thus likely to have devel-
opmentally relevant functions.

3.3. Expression correlation between lncRNAs and neighboring genes

It has been shown that lncRNAs are often located in close
proximity to coding genes (Sigova et al., 2013; Rinn and Chang,
2012). We investigated the correlation in expression between
lncRNAs and neighboring genes. The motivation behind this ap-
proach is to identify lncRNA genes that may act locally to affect
neighboring gene expression, or vice versa. We calculated the
Pearson correlation coefficient for lncRNA and smoothened gene
expression profiles. Fig. 3A shows representative examples of the
correlation of eight lncRNA – neighboring gene pairs. Supple-
mentary Fig. 5 shows gene browser views illustrating the genomic
positional relationships between these eight lncRNA and neigh-
boring gene pairs. We have performed permutation analysis to
determine whether adjacent lncRNA-gene pairs have greater cor-
relation than expected at random. Fig. 3B (left panel) shows that
adjacent lncRNA-neighboring gene pairs are more correlated than
lncRNA-random gene pairs. In order to ensure that the correlation
observed is not due to some lncRNAs in our set that are actually
part of neighboring genes, we selected lncRNA-gene pairs on op-
posing strand (the direction of lncRNA transcription and adjacent
genes are opposite), and examined the relationship between
strand and correlation. We found that opposing strand lncRNAs-
adjacent gene pairs correlated well (Fig. 3B, right panel), thus
suggesting that these lncRNAs have cis-regulatory roles. We also
note that a significant number of lncRNA-neighboring gene pairs
show no correlation, which indicates that these lncRNAs may have
novel biological functions.

3.4. Spatially regulated lncRNA expression

Previous studies have reported that lncRNA expression can be
cell-type or tissue-type specific and may vary spatially across
different tissues (Derrien et al., 2012). We obtained RNA-seq data
from dissected embryonic tissues (animal poles, dorsal, lateral and
ventral marginal zones, and vegetal masses, representing ecto-
derm, dorsal mesoderm, lateral mesoderm, ventral mesoderm and
endoderm, respectively) at the gastrula stage (Blitz et al., 2016).
Reads from these datasets were mapped to our lncRNA collection
identified in this study. Using the software limma (Ritchie et al.,
2015), we compared animally (ectoderm) and vegetally (en-
doderm) enriched lncRNAs. Of the 4353 single-exon and 1336
multi-exon lncRNAs, we find 266 single-exon lncRNAs and 65
multi-exon lncRNAs that are expressed in a spatially defined
manner (Fig. 4, Supplementary Table 7). When a similar analysis
was performed for dorsally or ventrally (mesoderm) enriched
lncRNAs, we only identified 8 lncRNAs (5 single-exon and 3 multi-
exon) (Supplementary Table 8). We have independently validated
the localization data by performing RT-qPCR analysis of RNA
samples from dissected tissue fragments using specific primers
(Fig. 4B, Supplementary Table 9), which confirmed the results of
RNA-seq. We propose that these lncRNAs may be involved in
regulating the expression of germ layer-specific genes.

3.5. Accounting for lncRNA model inaccuracies

Identification of lncRNAs in the genome is challenging because
they are not well conserved at the primary sequence level. In ad-
dition, some lncRNAs are transcribed from intronic regions of genes,
while others are transcribed from intergenic regions. For identifi-
cation of lncRNAs near coding genes, stranded RNA-seq data is key
to understand the transcriptional architecture. For example, it
simplifies the discrimination between a genuine lncRNA and as yet
unannotated exon of a coding gene. Our timecourse RNA-seq
(Owens et al., 2016) is not strand-specific data, and whilst we have
taken a conservative strategy to identify lncRNAs, strand-specific
data will nevertheless be beneficial. In our list of lncRNAs (Sup-
plementary Tables 1, 2, 5 and 6), whenever the strand of lncRNAs is
confirmed with respect to the neighboring genes, it is indicated. Our
current analysis should provide a comprehensive and useful list for
further study. Our stringent criteria have removed any lncRNAs, for
example, with very high temporal correlations to neighboring genes
with the same strandedness, or with a single paired-end read

https://cbcl.ics.uci.edu/public_data/Xen-LncRNA/
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Fig. 2. Temporal expression dynamics of lncRNAs. The expression values of individual candidate lncRNAs are normalized by their maxima. These expression profiles are
assigned (k-means clustering) to 8 different expression clusters. A) The heatmaps show individual normalized expression patterns for all 5689 lncRNAs. B) The plots
demonstrate the average expression of all genes within individual clusters. Each blue bar in panel B corresponds to egg (E), late blastula (B), gastrula (G), neurula (N), tailbud
(T).
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Fig. 3. Expression profiles of lncRNAs and the neighboring genes. A) Gene expression values in RPKM are shown for a lncRNA and a neighboring gene during the developmental
time course. The blue and red solid lines represent Gaussian processes medians and the shaded areas are the 95% confidence intervals of the data. C denotes the Pearson
correlation between the lncRNA and neighboring gene expression dynamics. Gene models of lncRNAs are shown in Supplementary Fig. 5. B) Left panel shows distribution of
correlations of pairs of lncRNA – neighboring gene (in blue) and pairs of lncRNA – random gene (green). Right panel shows the distribution of correlations of pairs of lncRNA –

neighboring gene (in blue) and pairs of antisense strand lncRNA –neighboring gene (light blue). Pearson coefficient of 1 is highly correlated, and �1 is highly anti-correlated.
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Fig. 4. LncRNA distribution in gastrula stage embryos. A) Spatial expression of lncRNAs in gastrula stage embryos. The scatter plot in left panel depicts the comparison
between vegetal and animal RPKM values of lncRNAs. The scatter plot in the right panel depicts the comparison between ventral and dorsal expressions. Individual points
represent 5689 lncRNAs expressed in gastrula embryos, and the red boxes mark differentially expressed lncRNAs. The black line denotes equal expression between vegetal
and animal, or dorsal and ventral tissue fragements. B) RT-qPCR analysis of lncRNAs using RNA isolated from designated tissue fragements.
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connecting a lncRNA to a neighboring gene. This criterion may be
overly stringent and, thus, we may have discarded genuine lncRNAs
from our current list. Examples of such include lncRNAs associated
with foxa2 and sox2 (Supplementary Fig. 3), and evolutionarily
conserved lncRNAs such as the malat1/neat2 lncRNAs. All these
lncRNAs were discarded because one paired-end read bridged
lncRNA and adjacent gene exon. However, these lncRNAs are con-
served in human and mouse. In addition, we note that evolutio-
narily conserved Xlsirts-like lncRNAs have survived our pipeline
analysis (Supplementary Fig. 4).
4. Concluding remarks

Two main challenges exist in uncovering the function of
lncRNAs. First is the identification of bona-fide lncRNAs and the
second is to infer biological functions of these lncRNAs. In this
study, we described a systematic pipeline to identify Xenopus
tropicalis lncRNAs during early embryonic development. We de-
monstrate the usefulness of applying Gaussian processes to iden-
tify dynamic expression patterns of lncRNAs that may be involved
in developmental roles. With available RNA-seq data and bioin-
formatics tools, we identified thousands of multi-exon and single-
exon lncRNAs that show interesting temporal expression dy-
namics. The next step is to reveal their precise biological me-
chanisms and the links to pathogenesis in various diseases. The
Xenopus system is likely to contribute significantly to the under-
standing of lncRNA biology because the system is ideally suited to
perform experimental embryology, ectopic/overexpression and
genome editing in whole animals.
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