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Abstract
Individuals with bipolar disorders (BD) frequently suffer from obesity, which is often associated with neurostructural
alterations. Yet, the effects of obesity on brain structure in BD are under-researched. We obtained MRI-derived brain
subcortical volumes and body mass index (BMI) from 1134 BD and 1601 control individuals from 17 independent research
sites within the ENIGMA-BD Working Group. We jointly modeled the effects of BD and BMI on subcortical volumes using
mixed-effects modeling and tested for mediation of group differences by obesity using nonparametric bootstrapping. All
models controlled for age, sex, hemisphere, total intracranial volume, and data collection site. Relative to controls,
individuals with BD had significantly higher BMI, larger lateral ventricular volume, and smaller volumes of amygdala,
hippocampus, pallidum, caudate, and thalamus. BMI was positively associated with ventricular and amygdala and negatively
with pallidal volumes. When analyzed jointly, both BD and BMI remained associated with volumes of lateral ventricles and
amygdala. Adjusting for BMI decreased the BD vs control differences in ventricular volume. Specifically, 18.41% of the
association between BD and ventricular volume was mediated by BMI (Z= 2.73, p= 0.006). BMI was associated with
similar regional brain volumes as BD, including lateral ventricles, amygdala, and pallidum. Higher BMI may in part account
for larger ventricles, one of the most replicated findings in BD. Comorbidity with obesity could explain why neurostructural
alterations are more pronounced in some individuals with BD. Future prospective brain imaging studies should investigate
whether obesity could be a modifiable risk factor for neuroprogression.

For more details regarding the ENIGMA Bipolar Disorders Working
Group, see http://enigma.ini.usc.edu/ongoing/enigma-bipolar-w
orking-group.

* Tomas Hajek
tomas.hajek@dal.ca

Extended author information available on the last page of the article
Supplementary information The online version contains
supplementary material available at https://doi.org/10.1038/s41380-
021-01098-x.
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Introduction

Bipolar disorders (BD) are among the most disabling and
expensive psychiatric illnesses [1–3]. Yet, BD affects each
person differently. Some individuals with BD show marked
neuroimaging alterations, whereas the brains of others
appear to be comparable to those of controls [4, 5]. Con-
sequently, the strength and even the direction of associa-
tions between BD and individual brain imaging measures
vary widely across studies [6–10]. We need to better
understand why neurobiological findings differ within the
same diagnosis and which factors underly this hetero-
geneity. One potential source of differences among indivi-
duals with BD is the comorbidity with medical conditions
known to affect the brain [11]. One such condition, which
targets the brain and is disproportionately frequent in BD, is
obesity.

Between one-half and two-thirds of individuals with BD
are overweight or obese. This represents a 1.6 times greater
risk of obesity in BD than in the general population
[12, 13]. Higher rates of obesity in BD may be related to
shared genetics, pathophysiology, risk factors, including
effects of medications or lifestyle factors [14, 15].
Regardless of the reasons for the comorbidity, obesity may
be relevant for brain alterations in BD. The brain is now
recognized as one of the targets for obesity-related damage
[16–18]. Data from 12,087 individuals from the UK Bio-
bank demonstrated that those with obesity had smaller
volumes of several subcortical regions, including basal
ganglia, hippocampus, and thalamus [19], which was in line
with results from another large community-based sample
[20]. Two meta-analyses also reported associations between
measures of obesity and regional gray matter volumes,
including hippocampus and temporal lobes [16, 21]. The
same regions are often implicated in the neurobiology of
BD [22] and show volumetric alterations in individuals with
BD [23].

Whereas the negative association between obesity and
cortical measures appears relatively uniform and replicated,
there is less consistency in the direction and location of
obesity-associated subcortical alterations [16, 19–21, 24].
Therefore, more research specifically focusing on obesity
and subcortical regions is needed in general, but especially
in psychiatric disorders. Relative to cortical measures,
subcortical volumes are generally less linked to the genetic
mechanisms of major psychiatric disorders [24–26]. Yet,
subcortical changes are associated with BD [23] and are
sensitive to other BD-related factors, such as medications
[8] and metabolic alterations [19, 27]. Thus, we chose
subcortical volumes as an initial dependent variable, to
study the associations between extra-diagnostic factors and
gray matter in BD. We hypothesized that obesity might help
explain some of the subcortical brain changes in BD.

Furthermore, the varying degrees of obesity may contribute
to the varying degrees of brain alterations in people with the
same diagnosis of BD, which are particularly pronounced in
subcortical regions [8, 9, 23].

Despite the replicated associations between obesity and
brain structure and the high prevalence of overweight/obe-
sity in BD, the relationship of obesity to brain volume in
BD remains underresearched. The available studies have
focused on highly selected samples, i.e., individuals with
the first episode of mania [28–30], adolescent BD partici-
pants [31], or offspring of people with BD [32]. The find-
ings showed that in BD, elevated body mass index (BMI)
was associated with brain structure, possibly with a stronger
effect size or with some regional specificity compared to
non-BD controls. In addition, obesity-related metabolic
alterations were associated with subcortical regional
volumes in BD [27], and obesity contributed to advanced
brain age in first-episode psychosis [4]. Yet, many questions
remain.

First, we should confirm the links between BMI and
brain structure in larger, more generalizable samples of
people with BD. Second, we need to better understand the
interplay between BD and BMI. Are the associations
between BD or BMI and brain structure specific to each
factor, additive or is there an interaction? We could even be
misinterpreting some for the brain changes as related to BD,
when they may be better explained by obesity. Addressing
these questions requires large samples, but it is crucial for
the interpretation of brain imaging findings and for potential
clinical translation. Such efforts could help us identify
modifiable risk factors for brain alterations in BD, as well as
provide insights into clinical heterogeneity and brain
impacts of pharmacotherapy, which is often associated with
weight gain [33, 34]. Thus, we jointly investigated the
association between BD, BMI, and subcortical brain
volumes in a large, highly generalizable, multicenter sample
from the ENIGMA-BD working group.

Methods

Participating sites

The ENIGMA-BD Working Group brings together
researchers with brain imaging and clinical data from peo-
ple with BD [5, 23, 35, 36]. Seventeen site members of this
group from 13 countries on 6 continents contributed indi-
vidual subject structural MRI data, medication information,
and BMI values from a total of 1134 individuals with BD
and 1601 healthy controls. Based on previously reported
effect sizes [23], this sample size was expected to provide
adequate power (n= 233 per group minimum, power=
0.80, alpha= 0.05). Supplementary Tables S1 and S2 list
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the demographic/clinical details for each cohort. Supple-
mentary Table S3 provides the diagnostic instruments used
to obtain diagnosis and clinical information. Supplementary
Table S4 lists exclusion criteria for study enrollment.
Briefly, all studies used standard diagnostic instruments,
including SCID (N= 12), MINI (N= 2), and DIGS (N= 1).
Most studies (N= 10) included both bipolar I (BDI) and
bipolar II (BDII) disorders, six studies included only BDI
and one study only BDII participants. Substance abuse was
an exclusion criterion in nine studies. Most studies did not
exclude comorbidities, other than substance abuse. Conse-
quently, the sample is a broad, ecologically valid, and
generalizable representation of BD. All participating sites
received approval from local ethics committees, and all
participants provided written informed consent.

Data acquisition and segmentation

High-resolution T1-weighted brain anatomical MRI scans were
acquired at each site, see Table S5. All groups used the same
analytical protocol and performed the same visual and statis-
tical quality assessment, as listed at: http://enigma.ini.usc.edu/
protocols/imaging-protocols/. These protocols are standardized
across the consortium, are open-source, and available online for
anyone to scrutinize, in order to foster open science/replication/
reproducibility. They were applied in the previous publications
by our group [5, 23] and more broadly in large-scale ENIGMA
studies of major depression, schizophrenia, ADHD, OCD,
PTSD, epilepsy, and autism [37].

Briefly, using the freely available and extensively vali-
dated FreeSurfer software, we performed segmentations of
8 subcortical regions (lateral ventricles, nucleus accumbens,
amygdala, hippocampus, pallidum, putamen, caudate
nucleus, and thalamus), per hemisphere (left and right),
based on the Desikan–Killiany atlas. We also computed
measures of total intracranial volume (ICV) to standardize
estimates. Visual quality controls were performed on a
region of interest (ROI) level aided by a visual inspection
guide including pass/fail segmentation examples. In addi-
tion, we generated diagnostic histogram plots for each site
and outliers, i.e., ROI volumes, which deviated from the site
mean for each structure at >3 standard deviations, were
flagged for further review. All ROIs failing quality
inspection were withheld from subsequent analyses, see
Table S6. Previous analyses from the ENIGMA-BD
Working Group showed that scanner field strength, voxel
volume, and the version of FreeSurfer used for segmenta-
tion did not significantly influence the effect size estimates.
Further details regarding these analyses, as well as forest
plots of subcortical effect sizes from individual sites, can be
found here [23].

We focused on subcortical volumes, as these regions,
including amygdala [20, 24, 38], hippocampus [19, 20, 38–40],

striatum [19, 20, 39, 41], thalamus [19, 20, 24, 39, 40] or lateral
ventricles [42] were previously associated with obesity. The
same subcortical regions are consistently associated with BD in
meta-analyses [9, 43] and mega-analyses [23, 44]. In addition,
larger lateral ventricles are among the most replicated findings
in BD [7, 44]. Analyses of other structural measures, i.e.,
cortical thickness, surface area, subcortical shape, were beyond
the scope of the current study and will be analyzed separately.

Statistical modeling

We used linear mixed modeling (package nlme version 3.1-
140 in R version 3.6.2) with individual subcortical volumes
as dependent variables and with (1) group (BD vs no BD),
or (2) BMI and in each case also age, sex, hemisphere (left
or right), and total ICV as fixed predictors. Models also
included random effects of hemisphere within participants
and a random effect of the data collection site. This random
effect structure captures inter-subject variability, inter-
hemisphere volume differences within subjects, and varia-
bility across data collection sites. Improvements in the
Akaike information criterion supported this approach. We
created one model per each of the eight subcortical regions,
each including both hemispheres and all of the covariates,
as described above. Subsequently, we modeled both group
and BMI jointly, alongside the above-described covariates.
We tested for interactions and included them where sig-
nificant. In order to compare the associations with brain
measures across the sites, we also separately tested for BMI
× site interaction. We used BMI as a continuous variable,
which captures more variability between participants,
increases sensitivity, and was the preferred approach in
most previous studies [21]. BMI was normally distributed,
see Fig. S1. We checked the normality of model residuals
using QQ plots and tested for multicollinearity using the
variance inflation factor (VIF) of all predictor variables
included in the modeling, see Table S7. Variance in
regional volumes was comparable between groups, differ-
ences ranging between 2 and 15%.

In post hoc analyses among individuals with BD, we
separately explored the effects of medications. As the rates
of monotherapy were low in this sample, we studied the
association between number of medication classes used
(zero through three, including anticonvulsants, anti-
psychotics, and antidepressants) and BMI or subcortical
volumes. We also separately modeled the effects of current
lithium (Li) treatment. We used the same covariates and
random effect structure as described above. The a priori
decision to analyze the effects of Li separately was moti-
vated by the fact that Li predominantly shows a positive
association with subcortical volumes [8, 45], whereas
antipsychotics [46, 47] or anticonvulsants [48] are pre-
dominantly negatively associated with regional brain
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volumes. In our previous work, we have documented that
analyzing Li-treated individuals together with those not on
Li may cancel the volumetric alterations and nullify effect
sizes [8].

We adjusted all p values for multiple comparisons using
false discovery rate (FDR), with adjusted p values reported,
at α= 0.05. We calculated effect sizes for between-group
differences (Cohen’s d) and associations between BMI and
ROI volumes (partial r), together with their 95% confidence
intervals (CIs) using model coefficients and their standard
error (SE) [49], as also used in previous ENIGMA studies.
The computer code for all of these analyses will be provided
upon reasonable request.

Mediation analysis

We tested whether the variance in ventricular volume
associated with a diagnostic group (direct path) remained
significant after also accounting for variance associated with
BMI (indirect path). The presence or absence of BD was
modeled as the associated variable, BMI as the mediating
variable, and regional brain volume was the dependent
variable. We modeled the direct effect of group on volume,
in comparison with the indirect effect of this association
through BMI as a mediator, corrected for age, sex, ICV, and
random effects. To test this, we built 5000 bootstrapped
models using random selection with replacement. This
method nonparametrically identified the 95% CI for effect
sizes. The bootstrap CI, which did not include zero indi-
cated a significant indirect effect. Simulation research
indicates that the bootstrap method is more robust to non-
normality and has better type I error control than the Sobel
test [50]. Nevertheless, for methodological consistency, we
also applied the Sobel test to investigate whether accounting
for BMI significantly mitigated group-related differences in
volume. All of these analyses were performed in R (version
3.6.2).

These analyses were applied only to regions, which met
the criteria for mediation, i.e., showed that: (1) BD was a
significant predictor of the ROI volume, (2) BD was a
significant predictor of the mediator (BMI), and when
modeled jointly, (3) the mediator was a significant predictor
of the dependent variable, and (4) the strength of the
coefficient of the previously significant independent vari-
able (BD) was reduced.

Results

Sample description

We included 2735 participants (1134 individuals with BD
and 1601 healthy controls), see Table 1.

Regional volume differences by group

BMI, when modeled without the diagnosis factor, was
associated positively with the volume of the lateral ven-
tricles and amygdala, and negatively with pallidal volume,
see Table 2. The association between BMI and these sub-
cortical measures was linear, see Fig. S2. The diagnosis of

Table 1 Demographic, diagnostic and treatment characteristics of
the sample.

Controls Cases Significance

N 1601 1134

Age, mean (SD) 35.47 (12.63) 41.72 (12.66) t(2 436) =
12.73,
p < 0.001

BMI, mean (SD) 24.43 (4.12) 26.80 (5.22) t(2070)a =
12.71,
p < 0.001

Normal weight/
Overweight/
Obese, N (%)

1014 (63.34)/
437(27.30)/
150 (9.37)

470 (41.45)/
399(35.19)/
265 (23.37)

χ2= 157.87,
DF= 2,
p < 0.001

Sex, N (%) female 916 (57.21) 684 (60.32) χ2= 2.63,
p= 0.105

Diagnosis, N (%) N/A

BDI - 777 (68.52)

BDII - 258 (22.75)

BD-NOS - 3 (0.26)

Treatment at time of
scanning, N (%)/
Monotherapy N(%)

N/A

No treatment - 79 (6.97)

Lithium - 516 (45.5)/
112 (9.88)

Antiepileptic - 382 (33.69)/
51 (4.50)

First-generation
antipsychotic

- 68 (6)/
5 (0.44)

Second-generation
antipsychotic

- 349 (30.78)/
39 (3.44)

Antidepressant - 380 (33.51)/
28 (2.47)

Mood state, N (%) N/A

Euthymic - 595 (52.47)

Depressed - 287 (25.31)

Manic - 28 (2.47)

Hypomanic - 10 (0.88)

Mixed - 5 (0.44)

Age of onset,
mean (SD)

- 25.16 (10.83) N/A

History of psychosis,
N (%)

- 423 (37.3) N/A

aThere were no missing age or BMI values. We used the Welch two-
sample t-test (unequal variance assumed), which relies on a
Welch–Satterthwaite degrees of freedom adjustment, resulting in
varying degrees of freedom.
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BD, when modeled without BMI, was associated with lar-
ger lateral ventricular volumes, and smaller volumes of the
amygdala, hippocampus, pallidum, caudate nucleus, and
thalamus, see Fig. 1 and Table 2.

The impact of jointly modeling BMI and BD varied by
region, see Fig. 1 and Table 2. In the lateral ventricles and
amygdala, both BD and BMI remained significantly asso-
ciated with regional volumes when analyzed jointly.
Adjusting for BMI decreased the BD vs control differences
in ventricular volume, but it increased the group differences
in amygdala volumes, see Table 2 and Fig. 2. In the palli-
dum, the partial effect of BMI when adjusting for BD
became non-significant. In all other regions, BD remained
significantly associated with regional brain volume even
while controlling for BMI. There was no significant inter-
action between group and BMI, or between BMI and site,
see Table S8 and Fig. S3.

Mediating effect of BMI

Only the lateral ventricles met conditions for mediation
analyses, i.e., BD was associated with both BMI and ven-
tricular volume, but the partial effect of BD on ventricular
volume decreased when the significant partial effect of BMI
was included in the model (Fig. 3). There was a significant
indirect effect of BD associated with larger ventricle
volumes through BMI (112.97; 95% CI, 50.33-174.12, see
Fig. 3). Specifically, 18.41% (95% CI: 5.71; 46.64) of the

association between diagnosis and ventricular volume was
mediated by BMI (Z= 2.73, p= 0.006, Fig. 3).

Medications, clinical variables, BMI, and brain
structure

In individuals with BD, higher BMI was associated with a
higher number of medication classes per participant
(t(1100)= 4.89, p < 0.001), but not with Li treatment
(t(1030)=−0.42, p= 0.67). The number of medication
classes was also significantly associated with
lateral ventricular volume (b= 485.89, SE b= 160.46,
t(1099)= 3.03, p= 0.003), but no other regional volumes.
Jointly modeling the association between number of
medications, BMI and ventricular volumes yielded a
significant partial effect of number of medications (b=
459.76, SE b= 162.18, t(1098)= 2.83, p= 0.005),
whereas the partial effect of BMI was non-significant
(b= 29.81, SE b= 26.16, t(1098)= 1.14, p= 0.255).
There was no interaction between BMI and medications
(t(1097)= 0.908, p= 0.364). The model that included
both BMI and medications achieved a fit (R2= 22.76%)
very similar to the model which included only BMI
(R2= 22.40%) or only the number of medications (R2=
22.69%). Thus, combining the two factors offered mini-
mal unique value to the model, despite very low multi-
collinearity (BMI VIF= 1.01, medications VIF= 1.01).
BMI was not significantly associated with illness

Table 2 Results of the multiple regression analyses.

Region b SE b DF p (FDR) d 95% CI b SE b DF p (FDR) r 95% CI

Effect of diagnosis without BMI Effect of BMI, without diagnosis

Accumbens 4.66 4.09 2372 0.290 0.05 −0.04 0.13 0.23 0.39 2372 0.630 0.01 −0.03 0.05

Amygdala 21.70 8.62 2380 0.016 * 0.11 0.02 0.19 2.96 0.81 2380 0.002 * 0.08 0.04 0.12

Hippocampus 44.49 17.68 2386 0.016 * 0.11 0.02 0.19 0.03 1.66 2386 0.983 0.00 −0.04 0.04

Pallidum 34.21 10.35 2274 0.004 * 0.14 0.06 0.23 −2.60 0.97 2274 0.020 * −0.06 −0.10 −0.02

Putamen −9.52 24.89 2351 0.702 −0.02 −0.10 0.07 3.48 2.36 2351 0.226 0.03 −0.01 0.07

Caudate 57.37 18.61 2388 0.005 * 0.13 0.05 0.22 −2.75 1.75 2388 0.226 −0.03 −0.07 0.01

Thalamus 82.77 29.78 2382 0.010 * 0.12 0.04 0.20 3.49 2.80 2382 0.283 0.03 −0.02 0.07

Lat. Ventricles −613.65 187.28 2414 0.004 * −0.14 −0.22 −0.06 61.22 17.61 2414 0.002 * 0.07 0.03 0.11

Partial effect of diagnosis, when controlling for BMI Partial effect of BMI, when controlling for diagnosis

Accumbens 5.38 4.17 2371 0.225 0.06 −0.03 0.14 0.33 0.40 2371 0.455 0.02 −0.02 0.06

Amygdala 29.70 8.78 2379 0.008 * 0.15 0.06 0.23 3.55 0.82 2379 0.000 * 0.09 0.05 0.13

Hippocampus 46.59 18.08 2385 0.013 * 0.11 0.03 0.20 0.95 1.69 2385 0.577 0.01 −0.03 0.05

Pallidum 29.76 10.58 2273 0.010 * 0.12 0.04 0.21 −2.02 0.99 2273 0.112 −0.04 −0.08 0.00

Putamen −2.26 25.40 2350 0.929 0.00 −0.09 0.08 3.43 2.41 2350 0.248 0.03 −0.01 0.07

Caudate 53.62 19.02 2387 0.010 * 0.12 0.04 0.21 −1.71 1.78 2387 0.449 −0.02 −0.06 0.02

Thalamus 94.66 30.44 2381 0.008 * 0.13 0.05 0.22 5.35 2.86 2381 0.122 0.04 0.00 0.08

Lat. Ventricles −500.84 191.11 2413 0.013 * −0.11 −0.20 −0.03 51.54 17.98 2413 0.016 * 0.06 0.02 0.10

*p < 0.05
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duration, history of psychotic symptoms, diagnostic sub-
type, or mood state; see Table S9.

Discussion

In this study of 2735 individuals, BMI was associated with
similar regional brain volumes as BD, including lateral
ventricles, amygdala, and pallidum. Those with higher BMI
demonstrated larger volumes of ventricles or amygdala than
those with lower BMI, despite having the same diagnosis of
BD. About one-fifth of the total association between BD
and ventricular volume was related to the higher BMI in
BD. Other subcortical regions, including hippocampus,
caudate, and thalamus, were robustly associated with BD
even when we controlled for BMI. Importantly, this large
study showed no interaction between BD and BMI in their
relationship to subcortical brain volumes, indicating that the

effects of BMI on subcortical volumes were comparable
between BD and control individuals. Last but not least,
increased BMI and the number of psychiatric medications
mostly overlapped in their contribution to larger ventricular
volumes in BD.

The unique focus of this study was to investigate how
apparent regional brain volume differences between indi-
viduals with and without BD may change when adjusting
for BMI. Controlling for BMI decreased apparent neuro-
structural differences in ventricular volumes, that had been
attributed to the diagnosis of BD. In fact, a significant
proportion of the total association between BD and ven-
tricular volume was related to higher BMI. This is the first
study to suggest that higher BMI may in part account for
larger ventricles, one of the most replicated findings in BD
[7, 19, 33]. While surprising, this is in keeping with a study
in major depressive disorders, which also showed that BMI
contributed to volumetric alterations in depression [51].

Fig. 1 Effect size of between-group volume differences in each region without adjusting for BMI (left), and after adjusting for BMI (right).
Statistically significant group differences are denoted by asterisks. BMI slopes shown where significant (FDR-adjusted p < 0.05).
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Differences in ventricular volumes between individuals
with BD and controls may in fact be smaller and less
consistent than previously reported and may in part depend
on factors other than the diagnosis of BD.

It is reassuring that previously reported associations
between BD and smaller volumes of hippocampus, caudate,
and thalamus were robust to controlling for BMI. Further-
more, our study demonstrated that adjusting for BMI
improved sensitivity to between-group differences in
amygdala volumes. Interestingly, previous meta-analyses of
amygdala volumes demonstrated an absence of between-
group differences in a number of individual studies as well
as a significant statistical heterogeneity [9, 23]. This is

congruent with the presence of a hidden variable, such as
BMI. Thus, not controlling for BMI could have contributed
to false-negative findings in previous studies. Differences in
amygdala volumes between individuals with BD and con-
trols may be potentially larger and more consistent than
previously reported.

This is also one of the first studies to investigate the
interplay between medications, BMI, and brain structure.
As in other studies, we showed that antipsychotics and
anticonvulsants were negatively associated with brain
structure [23, 35, 46–48, 52, 53] and positively with BMI
[33, 34]. Thus, some authors have proposed that the
association between medications, especially anti-
psychotics and brain structure could be confounded by
weight gain [54]. A single previous study showed that
antipsychotic medications remained associated with brain
structure even when BMI was controlled for [55], which is
in keeping with our findings. Here we also demonstrated
that when modeled separately, each of BMI and the
number of medications explained a similar and largely
overlapping proportion of variance in ventricular
volumes. Thus, we cannot rule out that weight gain may
be relevant for some of the negative effects of medications
on the brain structure. This needs to be verified in a
prospective study. Preclinical studies should also inves-
tigate whether some of the mechanisms through which
antipsychotics contribute to obesity, i.e. upregulation of
neuropeptide Y and melanin-concentrating hormone,
decreased expression of leptin-induced AMP-activated
protein kinase, reduction of orexin, effects on α2 or
muscarinic receptors [56], could also directly affect brain
structure.

Our findings are consistent with previous large-scale
studies, which also demonstrated negative associations
between BMI and the volume of subcortical regions
including pallidum [19, 20, 39, 57], and the temporal lobes
overall [28, 29], but a positive association with amygdala
volume [19, 24, 39, 57]. Yet, we do not know the temporal
direction or pathophysiology of these findings. It is possible
that overweight/obesity caused the observed changes
through a range of mechanisms, including effects of adi-
pokines [58], oxidative stress, systemic inflammation
[59, 60], insulin resistance/diabetes [16, 27], hypertension
[15, 39] or dyslipidemia [60]. Smaller brain volumes in
obesity may also reflect lower mobility/fitness or sedentary
lifestyle, which are associated with the volumes of hippo-
campus [61] or motoric brain regions, including striatum
[62–64]. However, the reverse causality, where neuro-
structural alterations cause obesity, is also possible. Specific
brain changes may increase the risk of obesity through
impulsivity, conditioning, or impaired homeostatic regula-
tion [65], and these same brain alterations may be over-
represented in BD [22].

Fig. 2 Changes in differences between BD and control individuals
with versus without controlling for BMI. Change in group effect
size after controlling for BMI, shown in regions where both BD and
BMI were significantly associated with regional volume.

Fig. 3 The effect of diagnosis and BMI on ventricular volume. Path
(c) represents the direct effect of diagnosis, while (a) through (b)
represents the indirect path of diagnosis through BMI. The adjusted
effect of diagnosis on volume is shown after accounting for BMI (c′).
We show unstandardized coefficients along with their 95% CI derived
from bootstrap. Significant effects (p < 0.05) are marked by asterisks.
In all effects, we controlled for the covariates age, sex, and data col-
lection site, while those impacting volume additionally adjusted for
hemisphere, ICV.

6812 S. R. McWhinney et al.



We can find some insight into these questions from the
neuroanatomical patterns of the observed changes. The
positive association between BMI and amygdala volume
may support the role of neurostructural alterations in
influencing obesity. The amygdala is involved in cue-
triggered learning and Pavlovian conditioning to hedonic
food that represents a key mechanism in future weight gain
[66]. Indeed, previous studies have shown that obese indi-
viduals exhibit hyperactive responses to food cues in sev-
eral regions, including the amygdala [67, 68] and that this
response correlated with BMI [67, 69]. The amygdala is
also implicated in appetitive behavior in preclinical studies
[70, 71]. The positive association between BMI and ven-
tricular volume, which summarizes atrophy across sur-
rounding subcortical regions, may indicate a more non-
specific, diffuse effect, which might be congruent with brain
alterations as consequences of higher BMI. The negative
effects of BMI on brain structure are supported by repli-
cated evidence from different lines of investigation,
including a Mendelian randomization study [72], several
longitudinal studies, including one in BD, which have
demonstrated that obesity or obesity-related metabolic
alterations precede and accelerate brain changes over time,
including temporal lobe atrophy and expansion of lateral
ventricles [30, 73, 74]. Regardless of the exact mechanisms
and temporal direction of the association, the findings have
important implications.

Considering the high prevalence of obesity, which has
reached epidemic proportions, especially in major psy-
chiatric disorders, studying the links between obesity, BD,
and brain structure could have major clinical implications. If
obesity leads to brain alterations, this represents a man-
ageable/modifiable risk factor for neuroprogressive BD
[75]. Obesity-related structural brain abnormalities might be
preventable or even reversible with dietary/lifestyle/surgical
interventions focused on weight management [76–78].
Also, medications targeting obesity, such as liraglutide, may
have neuroprotective effects, as also documented in parti-
cipants with BD [79]. The links between obesity and brain
structure might provide new treatment options for some of
the currently difficult to treat outcomes, such as cognitive
impairments, residual symptoms, poor functioning, which
have also been associated with obesity [1, 80] or neuro-
structural alterations/ventriculomegaly [81, 82]. On the
other hand, if certain BD-related alterations predispose
individuals to obesity, then this is a prognostic marker for
targeted prevention of obesity in BD. Indeed, previous
studies have documented that it is possible to differentiate
obese from normal weight subjects based on multivariate
brain structural patterns [24].

These findings could also help explain the heterogeneity
of brain imaging findings in BD. The extent of brain ima-
ging alterations in several relevant regions was contingent

not only on the presence of BD but also on the variations in
an additional factor, i.e., BMI. Thus, BD individuals with
higher BMI will show larger ventricles or amygdala then
BD individuals with lower BMI. Similarly, differences
between BD and control individuals in ventricular or
amygdala volumes will in part depend on between-group
differences in BMI. Consequently, variations in BMI could
help explain why brain imaging measures vary within the
same diagnosis [5] and why the magnitude of patient-
control differences varies across studies in BD [6–10].

Our results could also provide insight into the marked
overlap among major psychiatric disorders in brain imaging
alterations [83, 84]. For example, greater rates of obesity
[33] and larger ventricles [85] are also reported in schizo-
phrenia. It is possible that some of the overlaps among
major psychiatric disorders in their brain imaging findings
are related to overlaps in comorbid medical conditions,
including obesity. These common influences could even be
obscuring effects that are truly disorder specific.

With 2735 individuals, this is the largest study investi-
gating associations between BD, BMI, and brain structure
and the largest mega-analysis of subcortical volumes in BD.
Of note, the previous ENIGMA meta-analysis [23] failed to
detect significantly smaller pallidum and caudate in BD,
likely due to lower statistical power relative to our mega-
analysis. Our focus on BMI as a specific mediator of neu-
rostuctural alterations in those suffering from BD or
exposed to psychiatric medications targeted important
knowledge gaps. In addition to novel findings, we provide
several replications of previous results, including similar
associations between subcortical brain structure and BMI or
BD. Due to the large sample size and multicentric, inter-
national nature of the study, these results may be considered
highly generalizable, as the included individuals represent a
broad spectrum of BD from around the world.

This study has several limitations. Due to the focus on
legacy datasets, we could not analyze specific anthropo-
metric or metabolic markers beyond BMI. Waist cir-
cumference or waist–hip ratio may show more extensive
associations with GM, but usually in the same regions
[20, 86]. Moreover, BMI is much easier to acquire, it cap-
tures a large part of variance in other obesity-related
alterations and is by far the most frequently used measure
[16, 21], thus allowing for a more direct comparison with
previous work. Furthermore, in our previous study, insulin
resistance or diabetes were not associated with amygdala or
pallidum volume [27]. As the study was performed in 13
countries, it is possible that racial/ethnic and social-
economic factors could have contributed to our findings,
but there was no interaction between BMI and site in their
effects on brain measures. Due to the nature of ENIGMA,
which works with legacy datasets, we could not access raw,
whole-brain data and could not utilize methods, such as
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voxel-based morphometry. We did not focus on subregions,
which are often beyond the resolution of MRI or cannot be
reliably delineated without dedicated and often very lengthy
scans. Aside from the standardization of methods, we also
addressed any differences between scanners statistically by
using mixed models and including site as a random factor in
all analyses. As our study was not designed to test the
effects of medication, the number of medication classes
prescribed could also be a proxy for the severity/complexity
of illness. Medication details were limited to the current
prescription, without any measures of duration, dosage,
compliance, treatment response, or symptom levels at the
time of prescription, so we cannot address the effects of
these factors. Fat content near the MRI coil may lead to
slight signal intensity changes [87], but the vast majority of
individuals were normal weight to overweight. Last but not
least, caution is needed when interpreting mediation ana-
lyses in observational studies.

Conclusions

To conclude, we confirmed regionally specific associations
between BMI and subcortical volumes in individuals with
BD. Variations in BMI contributed to variations in regional
brain volumes, which in case of ventricles increased, but in
case of amygdala decreased apparent differences between
BD and control individuals. Higher BMI may even in part
account for larger ventricles, one of the most replicated
findings in BD. Volumes of hippocampus, caudate and
thalamus remained smaller in BD regardless of BMI. Our
findings, together with the high rates of obesity in BD
indicate that measures of obesity should be incorporated in
future neuroimaging investigations of BD in order to
decrease their heterogeneity. The fact that a significant
proportion of the association between BD and ventricular
volume was related to higher BMI raises the possibility that
targeting BMI could lower the extent of ventricular
expansion in BD. Future studies should prospectively
investigate whether obesity could be a modifiable risk factor
for neuroprogression and related adverse clinical outcomes.
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