UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Safe Learning and Verification of Neural Network Controllers for Autonomous Systems

Permalink
https://escholarship.org/uc/item/64t259nw

Author
Sun, Xiaowu

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/64t259nw
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Safe Learning and Verification of Neural Network Controllers for Autonomous Systems

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical and Computer Engineering

by

Xiaowu Sun

Dissertation Committee:

Assistant Professor Yasser Shoukry, Chair
Professor Mohammad Al Faruque
Assistant Professor Yanning Shen

2022

(©) 2022 Xiaowu Sun

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

LIST OF ALGORITHMS

ACKNOWLEDGMENTS

VITA

ABSTRACT OF THE DISSERTATION

I Safe Learning for Controller Synthesis

1 Neurosymbolic Motion and Task Planning for Linear Temporal Logic

1.1
1.2

1.3

1.4

1.5

Introduction
Problem Formulation oo
1.2.1 Assumptions and Information Structure
1.2.2 Dynamical Model oo
1.2.3 Temporal Logic Specification and Workspace
1.2.4 Neural Network
1.2.5 Main Problem
1.2.6 Overview of the Neurosymbolic Framework
Formal Training of NNs
1.3.1 Formulation of Formal Training
1.3.2 NN Weight Projection
1.3.3 Bounding the Change of Control Actions
1.3.4 Efficient Computation of the NN Projection Operator
Neurosymbolic Learning Framework
1.4.1 Offline Training of a Library of NNs.
1.4.2 Runtime Selection of Local NNs
1.4.3 Toy Example
Theoretical Guarantees
1.5.1 Generalization to Unseen Tasks

i

Page

vii
viii

ix

1.5.2 Optimality Guarantee, 35

1.6 Effective Adaptation 37
1.6.1 Accelerate by Transfer Learning 37
1.6.2 Data-Driven Symbolic Model 39
1.6.3 Adaptive Partitioning 41
1.7 Results e 43
1.7.1 Controller Performance in Simulation 43
1.7.2 Actual Robotic Vehicle 46
1.7.3 Scalability Study 50
NNSynth: Neural Network Guided Abstraction-based Controller Synthe-
sis for Stochastic Systems 52
2.1 Introduction 53
2.2 Problem Formulation 55
2.2.1 Dynamical Model o 56
2.2.2 Temporal Logic Specification. 57
2.2.3 Main Problem 59
2.3 NNSynth Framework o 60
2.3.1 Step 1: NN Training 61
2.3.2 Step 2: NN Projection L. 62
2.3.3 Step 3: System Augmentation 64
2.3.4 Step 4: Controller Synthesis 65
235 Stepb: Lift to NNo 66
2.4 Theoretical Analysis 68
2.4.1 Correctness Guarantee on Specification Satisfaction 68
2.4.2 Projection and Lift Erroro 69
24.3 Overall Regret 74
25 Results. 78
2.5.1 Benchmarks and Performance 79
2.5.2 Further Insights 82
DoS-Resilient Multi-Robot Temporal Logic Motion Planning 85
3.1 Introduction 86
3.2 Problem Formulation 88
3.2.1 Robot, Environment, and Threat Models 88
3.2.2 Temporal Logic Specification. 89
3.2.3 DoS-Resilient Motion Planning Problem 91
3.3 Satisfiability Modulo Convex Programming (SMC)-based Motion Planning . 93
3.4 Robust Controlled Invariant Sets and Workspace Perturbation 95
3.5 Synthesis of DoS-Free Nominal Trajectories 96
3.5.1 Encoding Mission and DoS-Resilience Constraints 97
3.5.2 Nominal Trajectory Planning 99
3.6 Tracking of the Nominal Trajectory 100
3.7 Results. e 100

il

II Neural Network Verification and Architecture Design 103

4 Formal Verification of Neural Network Controlled Autonomous Systems 104

4.1 Introduction 105
4.2 Problem Formulation 0 109
4.2.1 Dynamics and Workspace 0L 109
4.2.2 LiDAR Imaging 110
4.2.3 Neural Network Controller 111
4.2.4 Robot Trajectories and Safety Specifications 112

4.3 Framework 112
4.4 Imaging-Adapted Workspace Partitioning 118
4.4.1 Imaging-Adapted Partitions 118
4.4.2 Partitioning the Workspace 122

4.5 Computing the Finite State Abstraction 126
4.5.1 SMC Encoding of NN oo 128
4.5.2 Pruning Search Space by Pre-processing 130
4.5.3 Correctness of NN Verification Algorithm 131

4.6 Results 132
4.6.1 Scalability of the Workspace Partitioning Algorithm 132
4.6.2 Computational Reduction Due to Pre-processing 133
4.6.3 Transition Feasibility 000000 135

5 Two-Level Lattice Neural Network Architectures for Control of Nonlinear

Systems 137
5.1 Introduction 138
5.2 Abstract Disturbance Simulation 140
5.2.1 Dynamical Model oo 140
5.2.2 Abstract Disturbance Simulation 142
5.2.3 ReLU Neural Network Architectures 144

5.3 Problem Formulation 000 146
5.4 ReLU Architectures for Nonlinear Systems 147
5.5 Approximate Controllers Satisfy the Specification 149
5.6 CPWA Approximation of a Controller 154
5.7 Numerical Results 162
Bibliography 164

v

1.1

1.2

1.3

1.4

1.5

LIST OF FIGURES

A toy example of a robot that navigates a two-dimensional workspace and
needs to satisfy reach-avoid specifications ¢ = Qliveness /\ Psafety (S€€ Mmore
details in Section 1.4.3).
The upper row shows trajectories resulting from NN-based planners trained
using our framework. The lower row shows trajectories under the control
of NNs trained by standard imitation learning, where the NN architectures
are (left) 2 hidden layers with 10 neurons per layer, (middle) 2 hidden layers
with 64 neurons per layer, and (right) 3 hidden layers with 128 neurons per
layer. With the same initial states (two subfigures in the same column), only

Page

NN-based planners trained by our framework lead to collision-free trajectories. 45

The upper row shows trajectories in workspaces Wy, Wi, Ws, and the lower
row corresponds to workspaces W, W,, Ws. The subset of local networks
MNpare is trained in workspace W, and the rest five workspaces are given at
runtime. Trajectories in all the workspaces satisfy both the safety specifica-
tion Wsafety (blue areas are obstacles) and the liveness specification @iiveness for
reaching the goal (green area).
(Left) PiCar and workspace. (Right) The PiCar’s trajectory (red) for two
loops, where the striped blue obstacle is removed after the first loop.

Performance comparison between our neurosymbolic framework and a state-
of-the-art meta-RL algorithm PEARL. The first row shows the four workspaces
used for training NNs. The second row shows the PiCar’s trajectories un-
der the NN-based planner trained by our neurosymbolic framework. All the
trajectories satisfy reach-avoid specifications even in unseen workspaces. The
third row shows trajectories resulting from NN controllers trained by PEARL,
where the trajectory is only safe in the training workspace (the first subfigure
in the third row) but unsafe in the three unseen workspaces (the rest three
subfigures in the third row).

46

48

2.1

2.2

2.3

3.1

3.2

3.3

4.1
4.2
4.3

5.1

5.2
5.3

A cartoon summarizing the NNSynth framework. NNSynth starts by training
a neural network controller AV using the dataset D provided by an expert.
The obtained neural network is then projected to a symbolic model by eval-
uating the neural network at the representative points of abstract states, i.e.
using the control actions NN(ct(q), s,t). The obtained symbolic model is then
augmented with control actions in the neighborhood of the actions proposed
by the neural network NN(ct(z),s,t) = id. A controller is then synthesized
from the augmented symbolic model. In case that a controller was not found,
the “best” controller so far is then lifted to a neural network which is further
trained using the expert dataset D to obtain a new AN. The loop continues

until a controller with correctness guarantees is found. 60
Closed-loop trajectories sampled from different initial states using the synthe-
sized controller in Experiment #1. 80
State trajectories sampled from different initial conditions using the synthe-
sized controller in Experiment #2. 80

(Left) Pictorial representation of a workspace that contains a team of three
robots, two base stations, and three jamming radars. The mission is to move
at least one of robots to reach the goal location while maintaining commu-
nication between all the robots and at least one base station. (Middle) Any
communication link that passes through a jamming area is considered un-
der DoS attack. (Right) The workspace is perturbed (yellow) to account for
disturbances and a coarse-grain discretization of the free space is computed. 88
Workspace showing the initial position of the robots, the base stations, and
the jamming areas (red boxes) along with the three trajectories subject to
(OQ(m3 = 1)) A (OO(mg + 75 + 75 = 1)). Actual trajectories (green for R1,
black for R2, and blue for R3) are plotted on top of the nominal trajectories

(dashed red). 100
Snapshots of the nominal trajectories and the corresponding RCI sets, subject

to (OQ(m} =) A(OQ(ms +m2+ms=1)). 102
Pictorial representation of the problem setup under consideration. 110
Pictorial representation of the proposed framework. 113

(left-up) A partitioning of the workspace that is not imaging-adapted. Within
region Ry, the LIDAR ray (cyan arrow) intersects with different obstacle edges
depending on the robot position. (left-down) A partitioning of the workspace
that is imaging-adapted. For both regions R; and R, the LiDAR ray (cyan
arrow) intersects the same obstacle edge regardless of the robot position.
(right) Imaging-adapted partitioning of the workspace used in Section 4.6. . 121

Ilustration of R®<) notation for X C R2. For z. as labeled, the regions
REI((—1,-1)), R@)((0,+1)) and R@)(0) are shown in blue, red and light
gray, respectively. oL 160
States and inputs of the inverted pendulum with initial condition [0.7,0.5]7. 162
States and inputs of the inverted pendulum with initial condition [—0.4,1.0]7 162

vi

1.1
1.2

2.1
2.2
2.3

3.1

4.1
4.2

4.3

4.4

5.1

LIST OF TABLES

Page
Scalability with respect to Partition Granularity 51
Scalability with respect to System Dimension 51
Comparison between NNSynth and AMYTISS. 78
Numerical results for Experiment #4. 84
Numerical results for Experiment #5. 84
Execution time for the workspace in Fig. 3.2. 102
Scalability results for the WKSP-PARTITION Algorithm 133
Execution time of the SMC-based pre-processing as a function of the neural
network architecture.o oo 134
Execution time of the SMC-based pre-processing as a function of the workspace
region. Region indices are shown in Figure 4.3.. 135
Performance of the SMC-based encoding for computing d7 as a function of
the neural network (timeout =1 hour). 136
Dependence of NN parameter on partition parameters 163

vil

CO 1O U i W N

— = = = O
W N = O

LIST OF ALGORITHMS

Page
FORAMAL-TRAIN (¢, P,J) o o 16
TRAIN-LIBRARY-NNS (X, P, J)o oo oo 23
RUNTIME-SELECT (T = (£, 0, W, X0)) « - o o o o oo i e 28
TRAIN-TRANSFER ({71, T2, ..., Ta},J) - o o o oo oo 39
RUNTIME-TRANSFER (Ttest, Mpart, f, £,8) - -« o o o o oo oo 40
CONSTRUCT-SYMBOL-MODEL (7, D, X, P, I) 41
ADAPT-PARTITION (7, D, MNpart, S, g e L) - o o o o oo 42
NNSYNTH (Dexpy @5 Dy €5 1) « o v o v e e e e e e e 61
PROJECT-BY-SYNTH (AIV, Ay,) oo oo 67
SMC-BASED MOTION PLANNER 94
VERIFY-NN (X, 0NN) - - o o o oo o e 115
(Continue Algorithm 11)VERIFY-NN(X,0xn) - - o o 0 0 oo oot L 116
WKSP-PARTITION W, 0,0,0,) i 126

viii

ACKNOWLEDGMENTS

[am extremely grateful to my advisor, Prof. Yasser Shoukry, for his support and guidance
throughout these years. He offered me a Ph.D. position and showed trust in my abilities
when I was new to the field. He was always there for me whenever I needed advice, whether
it be technical, professional, personal, or otherwise. I am incredibly lucky to have had Yasser
as my advisor, and this means so much to my life.

I would like to extend my sincere appreciation to my committee members, Prof. Moham-
mad Al Faruque and Prof. Yanning Shen, for reviewing my work and providing insightful
comments. I would also like to express my deepest gratitude to Prof. Donald Yeung and
Prof. P. S. Krishnaprasad for providing me with research opportunities and advice when I
was in Maryland.

I must also thank my colleagues who shared this journey with me in the Resilient Cyber-
Physical Systems Lab. A special thanks to Wael Fatnassi, James Ferlez, Haitham Khedr,
Momina Sajid, Ulices Santa Cruz Leal, Kohei Tsujio, and Goli Vaisi.

Finally, I want to thank my family for their unconditional love. I would not be the person
I am today without their steadfast support and encouragement through the highs and the
lows in my life.

X

VITA

Xiaowu Sun

2013 B.Sc. in Physics, Nanjing University, China

2013 - 2016 Research and Teaching Assistant, Department of Physics and Astronomy,
University of Pittsburgh

2016 M.Sc. in Physics, University of Pittsburgh

2018 M.Sc. in Electrical Engineering, University of Maryland, College Park
2018 Dean’s Fellowship, University of Maryland, College Park

2021 Finalist in the ACM SIGBED SRC Student Competition at

the Cyber-Physical Systems (CPS-IoT) Week 2021
Summer 2022 Software Engineer Intern, Uber Technologies, Inc., San Francisco

2018 - 2022 Research and Teaching Assistant, Department of Electrical Engineering and
Computer Science, University of California, Irvine

ABSTRACT OF THE DISSERTATION

Safe Learning and Verification of Neural Network Controllers for Autonomous Systems
By
Xiaowu Sun
Doctor of Philosophy in Electrical and Computer Engineering
University of California, Irvine, 2022

Assistant Professor Yasser Shoukry, Chair

The last decade has witnessed tremendous success in using machine learning (ML) to control
physical systems, such as autonomous vehicles, drones, and smart cities. On the one hand,
learning-based controller synthesis enjoys the scalability and flexibility benefits offered by
purely data-driven architectures. Nevertheless, these end-to-end learning approaches suf-
fer from the lack of safety, reliability, and generalization guarantees. On the other hand,
control-theoretic and formal-methods techniques enjoy the guarantees of satisfying high-
level specifications. Nevertheless, these algorithms need an explicit model of the dynamic
systems and suffer from computational complexity whenever the dynamical models are highly
nonlinear and complex. The objective of this dissertation is to develop learning algorithms
and verification tools that bridge ideas from symbolic control /reasoning techniques to design

ML-controlled autonomous systems with certifiable trust and assurance.

The contributions of this dissertation are multi-fold. (1) We propose a neurosymbolic frame-
work that integrates machine learning and symbolic techniques in training neural network
(NN) controllers for robotic systems to satisfy temporal logic specifications. In particular, the
trained NN controllers enjoy strong correctness guarantees when applying to unseen tasks,
i.e., the exact task (including the environment, specifications, and dynamic constraints of

a robot) is unknown during the training of NNs. (2) We introduce the first framework to

x1

formally reason about the safety of autonomous systems equipped with a neural network
controller that processes LiDAR images to produce control actions. Given a NN-controlled
autonomous system that processes the environment with a LiDAR sensor, our framework
computes a set of safe initial states such that the autonomous system is guaranteed to be safe
when starting from these initial states. (3) We propose a novel approach called NNSynth
that uses machine learning techniques to guide the design of abstraction-based controllers.
Thanks to the use of ML, NNSynth achieves significant performance improvement compared
to traditional controller synthesis while maintaining probabilistic guarantees in the mean-
time. (4) We consider the problem of automatically designing neural network architectures
and exhibit a systematic methodology for choosing NN architectures that are guaranteed to
implement a controller that satisfies the given high-level specification. (5) Finally, we present
an efficient multi-robot motion planning algorithm for missions captured by temporal logic

specifications in the presence of bounded disturbances and denial-of-service (DoS) attacks.

xil

Part 1

Safe Learning for Controller Synthesis

Chapter 1

Neurosymbolic Motion and Task

Planning for Linear Temporal Logic

This chapter presents a neurosymbolic framework to solve motion planning problems for
mobile robots involving temporal goals. The temporal goals are described using temporal
logic formulas such as Linear Temporal Logic (LTL) to capture complex tasks. The proposed
framework trains Neural Network (NN)-based planners that enjoy strong correctness guaran-
tees when applying to unseen tasks, i.e., the exact task (including workspace, LTL formula,
and dynamic constraints of a robot) is unknown during the training of NNs. Our approach
to achieving theoretical guarantees and computational efficiency is based on two insights.
First, we incorporate a symbolic model into the training of NNs such that the resulting
NN-based planner inherits the interpretability and correctness guarantees of the symbolic
model. Moreover, the symbolic model serves as a discrete “memory”, which is necessary
for satisfying temporal logic formulas. Second, we train a library of neural networks offline
and combine a subset of the trained NNs into a single NN-based planner at runtime when
a task is revealed. In particular, we develop a novel constrained NN training procedure,

named formal NN training, to enforce that each neural network in the library represents a

“symbol” in the symbolic model. As a result, our neurosymbolic framework enjoys the scal-
ability and flexibility benefits of machine learning and inherits the provable guarantees from
control-theoretic and formal-methods techniques. We demonstrate the effectiveness of our
framework in both simulations and on an actual robotic vehicle, and show that our frame-
work can generalize to unknown tasks where state-of-the-art meta-reinforcement learning

techniques fail.

1.1 Introduction

Developing intelligent machines with a considerable level of cognition dates to the early 1950s.
With the current rise of machine learning (ML) techniques, robotic platforms are witnessing
a breakthrough in their cognition. Nevertheless, regardless of how many environments they
were trained (or programmed) to consider, such intelligent machines will always face new
environments which the human designer failed to examine during the training phase. To
circumvent the lack of autonomous systems to adapt to new environments, several researchers
asked whether we could build autonomous agents that can learn how to learn. In other words,
while conventional machine learning focuses on designing agents that can perform one task,
the so-called meta-learning aims instead to solve the problem of designing agents that can
generalize to different tasks that were not considered during the design or the training of
these agents. For example, in the context of meta-Reinforcement Learning (meta-RL), given
data collected from a multitude of tasks (e.g., changes in the environments, goals, and robot
dynamics), meta-RL aims to combine all such experiences and use them to design agents that
can quickly adapt to unseen tasks. While the current successes of meta-RL are undeniable,
significant drawbacks of meta-RL in its current form are (i) the lack of formal guarantees
on its ability to generalize to unseen tasks, (ii) the lack of formal guarantees with regards

to its safety and (iii) the lack of interpretability due to the use of black-box deep learning

techniques.

In this chapter, we focus on the problem of designing Neural Network (NN)-based task
and motion planners that are guaranteed to generalize to unseen tasks, enjoy strong safety
guarantees, and are interpretable [139, 143, 142]. We consider agents who need to accomplish
temporal goals captured by temporal logic formulas such as Linear Temporal Logic (LTL) [21,
78]. The use of LTL in task and motion planning has been widely studied (e.g., [76, 75,
19, 54, 58, 18, 43, 44, 74, 130, 147, 12]) due to the ability of LTL formulas to capture
complex goals such as “eventually visit region A followed by a visit to region B or region
C while always avoiding hitting obstacle D.” On the one hand, motion and task planning
using symbolic techniques enjoy the guarantees of satisfying task specifications in temporal
logic. Nevertheless, these algorithms need an explicit model of the dynamic constraints of
the robot and suffer from computational complexity whenever such dynamic constraints are
highly nonlinear and complex. On the other hand, machine learning approaches are capable
of training NN planners without the explicit knowledge of the dynamic constraints and
scale favorably to highly nonlinear and complex dynamics. Nevertheless, these data-driven
approaches suffer from the lack of safety and generalization guarantees. Therefore, in this
work, we aim to design a novel neurosymbolic framework for motion and task planning by

combining the benefits of symbolic control and machine learning techniques.

At the heart of the proposed framework is using a symbolic model to guide the training of
NNs and restricting the behavior of NNs to “symbols” in the symbolic model. Specifically,
our framework consists of offline (or training) and online (or runtime) phases. During the
offline phase, we assume access to a “nominal” simulator that approximates the dynamic
constraints of a robot. We assume no knowledge of the exact task (e.g., workspace, LTL
formula, and exact dynamic constraints of a robot). We use this information to train a
“library” of NNs through a novel NN training procedure, named formal NN training, which

enforces each trained NN to represent a continuous piece-wise affine (CPWA) function from a

chosen family of CPWA functions. The exact task becomes available only during the online

(or runtime) phase. Given the dynamic constraints of a robot, we compute a finite-state

Markov decision process (MDP) as our symbolic model. Thanks to the formal NN training

procedure, the symbolic model can be constructed so that each of the trained NNs in the

library represents a transition in the MDP (and hence a symbol in this MDP). By analyzing

this symbolic model, our framework selects NNs from the library and combines them into a

single NN-based planner to perform the task and motion planning.

In summary, the main contributions of this chapter are:

1)

4)

We propose a neurosymbolic framework that integrates machine learning and symbolic
techniques in training NN-based planners for an agent to accomplish unseen tasks.
Thanks to the use of a symbolic model, the resulting NN-based planners are guaranteed
to satisfy the temporal goals described in linear temporal logic formulas, which cannot

be satisfied by existing NN training algorithms.

We develop a formal training algorithm that restricts the trained NNs to specific local
behavior. The training procedure combines classical gradient descent training of NNs
with a novel NN weight projection operator that modifies the NN weights as little as
possible to ensure the trained NN belongs to a chosen family of CPWA functions. We
provide theoretical guarantees on the proposed NN weight projection operator in terms
of correctness and upper bounds on the error between the NN before and after the

projection.

We provide a theoretical analysis of the overall neurosymbolic framework. We show
theoretical guarantees that govern the correctness of the resulting NN-based planners
when generalizing to unseen tasks, including unknown workspaces, unknown temporal

logic formulas, and uncertain dynamic constraints.

We pursue the high performance of the proposed framework in fast adaptation to

5

unseen tasks with efficient training. For example, we accelerate the training of NNs by
employing ideas from transfer learning and constructing the symbolic model using a
data-driven approach. We validate the effectiveness of the proposed framework on an
actual robotic vehicle and demonstrate that our framework can generalize to unknown
tasks where state-of-the-art meta-RL techniques are known to fail (e.g., when the tasks

are chosen from across homotopy classes [24]).

The remainder of the chapter is organized as follows. After the problem formulation in
Section 3.2, we present the formal NN training algorithm in Section 1.3. In Section 1.4,
we introduce the neurosymbolic framework that uses the formal NN training algorithm to
obtain a library of NNs and combines them into a single NN-based planner at runtime. In
Section 1.5, we provide theoretical guarantees of the proposed framework. In Section 1.6,
we present some key elements for performance improvement while maintaining the same

theoretical guarantees. Experimental results are given in Section 4.6.

Related work: The literature on the safe design of ML-based motion and task planners
can be classified according to three broad approaches, namely (i) incorporating safety in the
training of ML-based planners, (ii) post-training verification of ML models, and (iii) online
validation of safety and control intervention. Representative examples of the first approach
include reward-shaping [67, 125], Bayesian and robust regression [15, 86, 102], and policy
optimization with constraints [2, 155, 162]. Unfortunately, these approaches do not provide

provable guarantees about the safety of the trained ML-based planners.

To provide strong safety and reliability guarantees, several works in the literature focus
on applying formal verification techniques (e.g., model checking) to verify pre-trained ML
models against formal safety properties. Representative examples of this approach include
the use of SMT-like solvers [38, 87, 140, 70, 47, 123] and hybrid-system verification [45, 65,

167]. However, these techniques only assess a given MIL-based planner’s safety rather than

design or train a safe agent.

Due to the lack of safety guarantees on the resulting ML-based planners, researchers proposed
several techniques to restrict the output of the ML models to a set of safe control actions.
Such a set of safe actions can be obtained through Hamilton-Jacobi analysis [52, 63] and
barrier certificates [1, 28, 30, 115, 150, 160, 171]. Unfortunately, methods of this type suffer
from being computationally expensive, specific to certain controller structures, or requiring
assumptions on the system model. Other techniques in this domain include synthesizing a
safety layer (shield) based on model predictive control with the assumption of safe terminal
sets [9, 157, 158], logically-constrained reinforcement learning [60, 8, 4], and Lyapunov meth-
ods [16, 33, 34| that focus on providing stability guarantees rather than safety or general

temporal logic guarantees.

The idea of learning neurosymbolic models is studied in works [5, 156, 10] that use NNs
to guide the synthesis of control policies represented as short programs. The algorithms
in [5, 156, 10] train a NN controller, project it to the space of program languages, analyze
the short programs, and lift the programs back to the space of NNs for further training. These
works focus on tasks given during the training of NNs, and the final controller is a short
program. Another line of related work is reported in [161, 25], which study the problem of
extracting a finite-state controller from a recurrent neural network. Unlike the above works,
we consider temporal logic specifications and unseen tasks, and our final planner is NNs in

tandem with a finite-state MDP.

1.2 Problem Formulation

Let R, R*, N be the set of real numbers, positive real numbers, and natural numbers,

respectively. For a non-empty set S, let 2% be the power set of S, 1g be the indicator

function of S, and Int(S) be the interior of S. Furthermore, we use S™ to denote the set of
all finite sequences of length n € N of elements in S. The product of two sets is defined as
S1 X Sy = {(s1,52)|51 € S1, 52 € Sa}. Let |z be the Euclidean norm of a vector x € R", | A|
be the induced 2-norm of a matrix A € R™*" and |A|max = H%E;X|Aij| be the max norm of

a matrix A. Any Borel space X is assumed to be endowed with a Borel g-algebra denoted

by B(X).

1.2.1 Assumptions and Information Structure

We consider a meta-RL setting that aims to train neural networks for controlling a robot to
achieve tasks that were unseen during training. To be specific, we denote a task by a tuple
T = (t,p, W, Xp), where t captures the dynamic constraints of a robot (see Section 1.2.2), ¢
is a Linear Temporal Logic (LTL) formula that defines the mission for a robot to accomplish
(see Section 2.2.2), W is a workspace (or an environment) in which a robot operates, and X,
contains the initials states of a robot. Furthermore, we use J to denote a cost functional of

controllers, and the cost of using a neural network AV 'is given by J(AN) (see Section 1.2.5).

During training, we assume the availability of the cost functional J and an approximation
of the dynamical model t (see Section 1.2.2 for details). The mission specification ¢, the
workspace W, and the set of initial states X are unknown during training and only become
available at runtime. Despite the limited knowledge of tasks during training, we aim to

design provably correct NNs for unseen tasks 7 while minimizing some given cost J.

1.2.2 Dynamical Model

We consider robotic systems that can be modeled as stochastic, discrete-time, nonlinear

dynamical systems with a transition probability of the form:

Pr(z' € Alx,u) = /At(d:ﬂ’\x?u), (1.1)

where states of a robot € X and control actions v € U are from continuous state and
action spaces X C R™ and U C R™, respectively. In (2.2), we use ¢t : B(X) x X x U — [0, 1]
to denote a stochastic kernel that assigns to any state x € X and action u € U a probability
measure t(-|x,u). Then, Pr(z’ € Alx,u) is the probability of reaching a subset A € B(X) in
one time step from state x € X under action u € U. We assume that ¢ consists of a priori
known nominal model f and an unknown model-error g capturing unmodeled dynamics. As
a well-studied technique to learn unknown functions from data, we assume the model-error ¢
can be learned by a Gaussian Process (GP) regression model GP (1, 02), where i, and 02 are
the posterior mean and variance functions, respectively [113]. Hence, we can re-write (2.2)

as:

Pr(z’ € Alz,u) = /AN(d:E’|f(x,u) + pig(z,u), 05 (2, 1)), (1.2)

which is an integral of the normal distribution N'(f(z,u) + py(z, u), o2

5(z,u)) and hence can

be easily computed.

We assume the nominal model f is given during the NN training phase, while the model-
error g is evaluated at runtime, and hence the exact stochastic kernel ¢ only becomes known
at runtime. This allows us to apply the trained NN to various robotic systems with different

dynamics captured by the model error g.

Remark: We note that our algorithm does not require the knowledge of the function f in

a closed-form/symbolic representation. Access to a simulator would suffice.

1.2.3 Temporal Logic Specification and Workspace

A well-known weakness of RL and meta-RL algorithms is the difficulty in designing reward
functions that capture the exact intent of designers [51, 60, 8]. Agent behavior that scores
high according to a user-defined reward function may not be aligned with the user’s in-
tention, which is often referred to as “specification gaming” [116]. To that end, we adopt
the representation of an agent’s mission in temporal logic specifications, which have been

extensively demonstrated the capability to capture complex behaviors of robotic systems.

In particular, we consider mission specifications defined in either bounded linear temporal
logic (BLTL) [21] or syntactically co-safe linear temporal logic (scLTL) [78]. Let AP be a
finite set of atomic propositions that describe a robotic system’s states with respect to a
workspace WW. For example, these atomic propositions can describe the location of a robot
with respect to the obstacles to avoid and the goal location to achieve. Given AP, any BLTL

formula can be generated according to the following grammar:

=0 | @| o1V | o1 Up k) P2

where ¢ € AP and time steps k; < ko. Given the above grammar, we can define ¢; A
Yo = (1 V a), false = @ A —p, and true = = false. Furthermore, the bounded-time
eventually operator can be derived as Q, k) = true Uy, x,) » and the bounded-time always

operator is given by U, r,jp = ﬂO[klka]—'go.

Given a set of atomic propositions AP, the corresponding alphabet is defined as A := 247,
and a finite (infinite) word w is a finite (infinite) sequence of letters from the alphabet A,

ie, w=wWw® W ¢ AH+1 The satisfaction of a word w to a specification ¢ can be

10

determined based on the semantics of BLTL [21]. Given a robotic system and an alphabet
A let L : X — A be a labeling function that assigns to each state x € X the subset of
atomic propositions L(x) € A that evaluate true at . Then, a robotic system’s trajectory
¢ satisfies a specification ¢, denoted by & |= ¢, if the corresponding word satisfies ¢, i.e.,
L(&) = ¢, where £ = Oz 2H) ¢ XHH and L(€) = L(xO)L(zW) ... L(z*)) € AL
Similarly, we can consider scL.TL specifications interpreted over infinite words based on the
fact that any infinite word that satisfies a scLTL formula ¢ contains a finite “good” prefix

such that all infinite words that contain the prefix satisfy ¢ [78].

Example 1 (Reach-avoid Specification): Consider a robot that navigates a workspace W =
{Xgoal; O1,...,0.}, where Xgyoa C X is a set of goal states that the robot would like to
reach and Oq,...,0. C X are obstacles that the robot needs to avoid. The set of atomic
propositions is given by AP = {x € Xyoa,x € O1,...,2 € O.}, where z is the state of the
robot. Then, a reach-avoid specification can be expressed as ¢ = Qiiveness A\ Psafety, Where
Pliveness = Q[0,H] (r € Xgoa) requires the robot to reach the goal X,a in H time steps and
Psafety = jo,] /\izl,...,c —(z € O;) specifies to avoid all the obstacles during the time horizon
H. Let € = 20z 2(H) be a trajectory of the robot, then the reach-avoid specification

 is interpreted as:
€ = Griveness <= Tk € {0,... H},2® € Xyo,

£ E uatety == Yk € {0,.. . H},Vie {1,...,c},a® £ O;.

1.2.4 Neural Network

To account for the stochastic behavior of a robot, we aim to design a state-feedback neural
network ANV : X — U that can achieve temporal motion and task specifications ¢. An F-

layer Rectified Linear Unit (ReLU) NN is specified by composing F' layer functions (or just

11

layers). A layer [with i; inputs and o; outputs is specified by a weight matrix W ¢ Ro>u

and a bias vector b € R% as follows:
L 2 s max{w®z + 50 0}, (1.3)

where the max function is taken element-wise, and 00 = (W® p1) for brevity. Thus, an
F-layer ReLLU NN is specified by F' layer functions {Le(l) : 1 =1,...,F} whose input and

output dimensions are composable: that is, they satisfy i, = 0;_1, [= 2, ..., F'. Specifically:

MV (z) = (L*" o LV o o L) (), (1.4)

where we index a ReLU NN function by a list of parameters § = (61, ... 00)). As a
common practice, we allow the output layer L9 to omit the max function. For simplicity

of notation, we drop the superscript 6 in AN? whenever the dependence on @ is obvious.

1.2.5 Main Problem

We consider training a finite set (or a library) of ReLU NNs (during the offline phase) and
designing a selection algorithm (during the online phase) that can select the correct NNs
once the exact task T = (¢, o, W, Xj) is revealed at runtime. Before formalizing the problem

under consideration, we introduce the following notion of neural network composition.

Definition 1.1. Given a set (or a library) of neural networks NI = {AN7, ANz, ..., NN}
along with an activation map T' : X — {1,...,d}, the composed neural network NNjmm) is

defined as: NNmory(z) = MNp() ().

In other words, the activation map I' selects the NN that needs to be activated at each state

x € X. In addition to achieving the motion and task specifications, the neural network needs

12

to minimize a given cost functional J. The cost functional J is defined as:

J(AMNjgorr)) = / c(, N\Non 1y (2))dpN (), (1.5)

X

where ¢ : X x U — R is a state-action cost function and ;/V is the distribution of states
induced by the nominal dynamics f in (4.1) under the control of ANmmr). As an example,

the cost functional can be a controller’s energy J(ANmnr) = [y [NNVoon () |2 dp"N ().

Let @”{Mmm . be a closed-loop trajectory of a robot that starts from the state x € X, and
evolves under the composed neural network ANmo). We define the problem of interest as

follows:

Problem 1.1. Given a cost functional J, train a library of ReL U neural networks NN, and
compute an activation map I' at runtime when a task T = (t,p, W, Xo) is revealed, such that
the composed neural network minimizes the cost J(NNmor)) and satisfies the specification

@ with probability at least p, i.e., Pr (gﬁﬂ\ﬁmm . = <p> > p for any v € Xo.

1.2.6 Overview of the Neurosymbolic Framework

Our approach to designing the NN-based planner ANmm) can be split into two stages: offline
training and runtime selection. During the offline training phase, our algorithm obtains
a library of networks 9191. At runtime, and to fulfill unseen tasks using a finite set of
neural networks D1, our neurosymbolic framework bridges ideas from symbolic LTL-based
planning and machine learning. Similar to symbolic LTL-based planning, our framework
uses a hierarchical approach that consists of a “high-level” discrete planner and a “low-level”
continuous controller [130, 43, 18]. The “high-level” discrete planner focuses on ensuring the
satisfaction of the LTL specification. At the same time, the “low-level” controllers compute
control actions that steer the robot to satisfy the “high-level” plan. Unlike symbolic LTL-

based planners, our framework uses neural networks as low-level controllers, thanks to their

13

ability to handle complex nonlinear dynamic constraints. In particular, the “high-level”

planner chooses the activation map I' to activate particular neural networks.

Nevertheless, to ensure the correctness of the proposed framework, it is essential to ensure
that each neural network in 9101 satisfies some “formal” property. This “formal” property
allows the high-level planner to abstract the capabilities of each of the neural networks in
M and hence choose the correct activation map I'. To that end, in Section 1.3, we formulate
the sub-problem of “formal NN training” that guarantees the trained NNs satisfy certain
formal properties, and solve it efficiently by introducing a NN weight projection operator.
The solution to the formal training is used in Section 1.4.1 to obtain the library of networks
NN offline. The associated formal property of each NN is used in Section 1.4.2 to design

the activation map I'.

1.3 Formal Training of NNs

In this section, we study the sub-problem of training NNs that are guaranteed to obey certain
behaviors. In addition to the classical gradient-descent update of NN weights, we propose a
novel “projection” operator that ensures the resulting NN obeys the selected behavior. We
provide a theoretical analysis of the proposed projection operator in terms of correctness

and computational complexity.

1.3.1 Formulation of Formal Training

We start by recalling that every ReLU NN represents a Continuous Piece-Wise Affine
(CPWA) function [95]. Let Uepwa : X — R™ denote a CPWA function of the form:

14

\I/CPWA(JZ) ZKZ,JZ—I—b; if ¢ ERZ‘, 7 = 1,...,L, (16)

where the collection of polytopic subsets {Rq,..., R} is a partition of the set X C R™ such
that [, R; = X and Int(R;) NInt(R;) = 0 if i # j. We call each polytopic subset R; C X
a linear region, and denote by Ly.,, the set of linear regions associated to ¥cpwa, i.e.,
Lycpws = {R1,-..,Rr}. In this chapter, we confine our attention to CPWA controllers (and
hence neural network controllers) that are selected from a bounded polytopic set P x Pb
R™" x R™, i.e., we assume that K! € PX and b, € P°. For simplicity of notation, we
use PExb ¢ R™*("+1) to denote the polytopic set PX x P’ and use K;(x) with a single

parameter K; € PX*? to denote Klz; + b, with the pair (K[, V) = K;.

1) 7

Let P C PE*? be a bounded polytopic subset of the parameters K;, then with some abuse
of notation, we use the same notation P to denote the subset of CPWA functions whose
parameters K; are chosen from P. In other words, a CPWA function Ycpwa € P if and
only if K; € P at all linear regions R; € Ly p,, where the CPWA function Wepwa is in the

form of (1.6).

Using this notation, we define the formal training problem that ensures the trained NNs

belong to subsets of CPWA functions P C PX*t as follows:

Problem 1.2. Given a bounded polytopic subset ¢ C X, a bounded subset of CPWA functions

P C PEX and a cost functional J, find NN weights 0% such that:

0* = argmin J(NN®) s.t. NN?|, € P. (1.7)
0

In Problem 1.2, we use NN9|q to denote the restriction of AW? to the subset ¢, i.e., NN9|q :

q — R™ is given by AN?|,(x) = AN?(z) for x € q. Consider the CPWA function AN

15

is in the form of (1.6), then the constraint AN?|, € P requires that K; € P whenever the

corresponding linear region R; intersects the subset ¢, i.e.:

M|, €P <= K, €P, VR, €{RELpps|RNq# 0} (1.8)

1.3.2 NN Weight Projection

To solve Problem 1.2, we introduce a NN weight projection operator that can be incorpo-
rated into the training of neural networks. Algorithm 1 outlines our procedure for solving
Problem 1.2. As a projected-gradient algorithm, Algorithm 1 alternates the gradient de-
scent based training (line 3 in Algorithm 1) and the NN weight projection (line 4-5 in
Algorithm 1) up to a pre-specified maximum iteration max_iter. Given a subset of CPWA
functions P C PE** we denote by IIp the NN weight projection operator that enforces a
network ANV to satisfy AN?|, € P, i.e., the constraints (1.8). In the following, we formulate

this NN weight projection operator IIp as an optimization problem.

Algorithm 1 FORAMAL-TRAIN (¢, P, J)

. Initialize neural network AN?, i =1
while ¢ < max_iter do
AMN? = gradient-descent(ANN?, P, J)
WE) = TIp(AN?)
Set the output layer weights of AN? be W& HF)
1=1t4+1
end while
. Return AN?

A R A T

Consider a neural network AN? with F' layers, including F — 1 hidden layers and an output
layer. Let W& and) be the weight matrix and the bias vector of the output layer,

respectively, i.e.:

16

Then, the NN weight projection II» updates the output layer weights W) p() to /W(F),

[(line 4-5 in Algorithm 1). As a result, the projected NN weights 9 are given by:
= (60,...gh, (T, 5. (10
We formulate the NN weight projection operator Ilp as the following optimization problem:

argmin max JAN?(z) — AN?(z)|: (1.11)

W) pr) €1

st. K; € P, VR, € {R € Logys | RN q # 0} (1.12)

In the constraints (1.12), we use K; to denote the affine function parameters of the CPWA
function AN,

The optimization problem (1.11)-(1.12) tries to minimize the change of the NN’s out-
puts due to the weight projection, where the change is measured by the largest 1-norm
difference between the outputs given by AN? and AN? across the subset ¢ C X, ie.,
max IAN?(z) — AW?(2)];. In the following two subsections, we first upper bound the ob-

jective function (1.11) in terms of the change of the NN’s weights, and then show that the

optimization problem (1.11)-(1.12) can be solved efficiently.

1.3.3 Bounding the Change of Control Actions

First, we note that it is common to omit the ReLLU activation functions from the NN’s
output layer. Since the proposed projection operator only modifies the output layer weights,
it is straightforward to show that the NN weight projection operator does not affect the
set of linear regions, i.e., IL,,s = Lpe, but only updates the affine functions defined over
these regions. The following proposition shows the relation between the change in the NN’s

outputs and the change made in the output layer weights.

17

Proposition 1.3. Consider two F-layer neural networks AN and AN? where 6 and 0 are
as defined in (1.9)-(1.10). Then, the largest difference in the NNs’ outputs across a subset

q € X s upper bounded as follows:

max [AN? (2) = AV ()], (1.13)

m OF-1

< max S AW)+ 30 8K
=1

erert(]Lwemq) i=1 j=1

In Proposition 1.3, m is the dimension of the NN’s output, Aﬂ/i(jF) and Abz(»F) are the (i, j)-th
and the i-th entry of AW) = WE —WE and ApE) =5F) — b)) respectively. With the
notation of layer functions (1.3), we use a single function i : R* — R° -1 to represent all
the hidden layers, i.e., h(z) = (Lypr-1) © Lyr—2) 0 -+ 0 Lya))(x), where 0p_; is the number
of neurons in the (F' — 1)-layer (the last hidden layer). Furthermore, we use Lypreq, to
denote the intersected regions between the linear regions in L s and the subset ¢ C X, i.e.,
Laneng = {R N qIR € Laye, RN g # 0}. Let Vert(R) be the set of vertices of a region R,

then Vert(Lpron,) = URelj\Nemq Vert(R) is the set of vertices of all regions in Lpron,.

Proof. Let h : R® — R°"-! represent all the hidden layers, then the neural networks before
and after the change of the output layer weights are given by AN? : z +— WU h(x) + o)

and AN? : z — W(F)h(m) +/b\(F), respectively. The change in the NN’s outputs is bounded

18

as follows:

max AN (z) — AN? ()1 (1.14)

= max ;]Z_:AWW) + A (1.15)

<max S ST IAWP) + > 1467 (1.16)
i=1 j=1 =1

m OF—1

max Z S AW i) + > A6 (1.17)
=1

xEVert
./\Neﬂq i=1 j=1

where (1.15) directly follows the form of AN? and AN?, (1.16) swaps the order of taking the
absolute value and the summation, and uses the fact that the hidden layers satisfy h(z) >0
due to the ReLU activation function. When z is restricted to each linear region of AN, the
hidden layer function h is affine, and hence (1.16) is a linear program whose optimal solution
is attained at extreme points. Therefore, in (1.17), the maximum can be taken over a finite

set of states that are vertices of the linear regions in Lpson,. O]

1.3.4 Efficient Computation of the NN Projection Operator

Now, we focus on how to compute the NN weight projection operator Ilp efficiently. In
particular, Proposition 1.3 proposes a direct way to solve the intended projection operator.
In order to minimize the change of the NN’s outputs (1.11) due to the weight projection,
we minimize its upper bound given by (1.13). Accordingly, we compute the NN weight

projection operator IIp by solving following optimization problem:

m OF—1 m
argmin max ZZ|AW/Z j($)+z }Abl(-F)‘ (1.18)
W) p) weVert(Lyyron,) = 11 i—1

st. K; € P, VR; € {R € Ly | RN q # 0} (1.19)

19

The next result establishes the computational complexity of solving the optimization problem

above.

Proposition 1.4. The optimization problem (1.18)-(1.19) is a linear program.

While Proposition 1.4 ensures that solving the optimization problem can be done efficiently,
we note that identifying the set of linear regions Ly of a ReLU neural network AN? needs
to enumerate the hyperplanes represented by AV?. For shallow NNs and other special NN
architectures, this can be done in polynomial time (e.g., [49] uses a poset for the enumer-
ation). For general NNs, identifying linear regions may not be polynomial time, but there
exist efficient tools such as NNENUM [6] that uses star sets to enumerate all the linear regions.
Moreover, as we will show in the following sections, each NN in the library 91 can contain
a limited number of weights (and hence a limited number of linear regions), but their combi-
nation leads to NNs with a large number of linear regions and hence capable of implementing

complex functions.

Proof. We write the optimization problem (1.18)-(1.19) in its equivalent epigraph form:

min t such that

/I/I7<F),/Z;<F),t,sij,vi

m O0F—1 m

S syhila) +) v <t Va € Vert(Lypvon,) (1.20)
i=1 j=1 i=1

|/I/I7’L(]F) - ngF)| S Sijs 1= 1’ sy M, j = 17 s, 0F (121)
B — o <wypyi=1,...,m (1.22)
K, € P, VR € {R €Lyyo | RNq#0}. (1.23)

The inequalities in (1.20) are affine since the hidden layer function A is known and does not
depend on the optimization variables. The number of inequalities in (1.20) is finite since

the set of vertices Vert(Lyyon,) is finite. To see the constraints (1.23) are affine, consider

20

the neural network AN? : z /W(F)h(x) + 5 with the output layer weights W(F),)
and the hidden layer function h. The CPWA function AN % can also be written in the form
of (1.6), i.e., NN : 2+ K;(z) at each linear region R; € Ly, where we use the notation
K;(z) to denote K!x + b,. Since the hidden-layer function h restricted to each linear region
Ri € Lane is a known affine function of x, the parameters K; affinely depend on W and

). T herefore, the constraints l?z € P are affine constraints of W) and 5. O

We conclude this section with the following result whose proof follows directly from Propo-

sition 1.4 and the equivalence in (1.8).

Theorem 1.5. Given a bounded polytopic subset ¢ C X and a bounded subset of CPWA
functions P C PE*b. Consider a neural network NN whose output layer weights are given
by the NN weight projection operator Ilp (i.e., the solution to (1.18)-(1.19)). Then, the net-
work NN satisfies the constraint in (1.7), i.e., NN?|, € P. Furthermore, the optimization

problem (1.18)-(1.19) is a linear program.

1.4 Neurosymbolic Learning Framework

As discussed in Section 1.2.6, our approach to designing the NN-based planner ANmn
and solving Problem 2.1 is split into two stages: offline training and runtime selection.
During the offline training phase, our algorithm obtains a library of networks 901, where
each NN is trained using the formal training Algorithm 1. At runtime, when the exact task
T = (t, o, W, Xj) is observed, we use dynamic programming (DP) to compute an activation
map [', which selects a subset of the trained NNs and combines them into a single planner.

We provide details on these two stages in the following two subsections separately.

21

1.4.1 Offline Training of a Library of NNs

Similar to standard LTL-based motion planners [43, 44, 74, 130, 147, 12], we partition the
continuous state space X C R"™ into a finite set of abstract states X = {q1,...,qn}, where
each abstract state ¢; € X is an infinity-norm ball in R™ with a pre-specified diameter
ny € RT (see Section 1.6 for the choice of n,). The partitioning satisfies X = |J,.x ¢ and
Int(g;) N Int(g;) = 0 if ¢ # j. Let abs : X — X map a state x € X to the abstract state
abs(z) € X that contains z, i.e., x € abs(x), and ctx : X — X map an abstract state ¢ € X
to its center ctx(q) € X, which is well-defined since abstract states are inifinity-norm balls.
With some abuse of notation, we denote by ¢ both an abstract state, i.e., ¢ € X, and a subset

of states, i.e., ¢ C X.

As mentioned in the above section, we consider CPWA controllers (and hence neural network
controllers) selected from a bounded polytopic set (namely a controller space) PX** C
R™* 4+ We partition the controller space PX*0 ¢ R™*(+1) into a finite set of controller
partitions P = {Py,..., Py} with a pre-specified grid size np € Rt (see Section 1.6 for the
choice of np). Each controller partition P; € PP is an infinity-norm ball centered around some
K; € P¥* such that PX* = | Jpp P and Int(P;) NInt(P;) = 0 if ¢ # j. Let ctp : P — PH*P
map a controller partition P € P to its center ctp(P) € PE*?. As mentioned in Section 1.3.1,
we use the same notation P to denote both a subset of the parameters K; € PX*% and a

subset of CPWA functions whose parameters K; are chosen from P.

Algorithm 2 outlines the training of a library of neural networks 910t. Without knowing the
exact robot dynamics (i.e., the stochastic kernel), the workspace W, and the specification ¢,
we use the formal training Algorithm 1 to train one neural network N/\/&P) corresponding
to each combination of controller partitions P € P and abstract states ¢ € X (line 4 in
Algorithm 2). Thanks to the NN weight projection operator IIp, the neural networks ./\/./\/'(%’P)

satisfy the constraint in (1.7), i.e., /\/N(Z,P) | €P. In the following, we use the notation AN, p)

22

by dropping the superscript ¢ for simplicity and refer to each neural network AN, py a local

network.

To minimize the cost functional J, we implement the training approach gradient-descent
(line 3 in Algorithm 1) based on Proximal Policy Optimization (PPO) [127] with the reward

function as follows:

r(z,u) = —wic(z,u) — way|u — k(z)]|, (1.24)

where k = ctp(P) is the center of the assigned controller partition P € P, wy, wy € R are
pre-specified weights, and the state-action cost function ¢ : X x U — R is from the definition
of Jin (1.5). Maximizing the above reward minimizes the cost ¢(z,u) and encourages choos-
ing controllers from the assigned controller partition P. We assume access to a “nominal”
simulator (i.e., the nominal dynamics f in (4.1)) for updating the robot states. Algorithm 2
returns a library 9191 of M x N local networks, where M and N are the number of abstract
states and the number of controller partitions, respectively. In Section 1.6, we reduce the

number of local networks that need to be trained by employing transfer learning.

Algorithm 2 TRAIN-LIBRARY-NNs (X, P, J)
1 9N = {}
2: for ¢ € X do
3: for PecPdo
4: ANy, p) = Formal-Train(q, P, J)
5: NN = NN U {./\/’/V’(q,p)}
6
7
8

end for
. end for
: Return 9N

1.4.2 Runtime Selection of Local NNs

In this subsection, we present our selection algorithm used at runtime when an arbitrary

task T = (t, o, W, Xo) is given. The selection algorithm assigns one local neural network

23

in the set MM to each abstract state {qi,...,qy} in order to satisfy the given specification
. Given a stochastic kernel ¢, our algorithm first computes a finite-state Markov Decision
Process (MDP) that captures the closed-loop behavior of the robot under all possible CPWA
controllers. Transitions in this finite-state MDP correspond to different subsets of CPWA
functions in P = {Py,..., Py }. Thanks to the fact that the neural networks in the library
MN were trained using the formal training algorithm (Algorithm 1), each neural network
now represents a transition (symbol) in the finite-state MDP. In other words, although neu-
ral networks are hard to interpret due to their construction, the formal training algorithm
ensures the one-to-one mapping between these black-box neural networks and the transitions

in the finite-state symbolic model.

Next, we use standard techniques in LTL-based motion planning to construct a finite-state
automaton that captures the satisfaction of mission specifications ¢. By analyzing the prod-
uct between the finite-state MDP (that abstracts the robot dynamics) and the automaton
corresponding to the specification ¢, our algorithm decides which local networks in the set
MM need to be activated. We present details on the selection algorithm in the three steps

below.

Step 1: Compute Symbolic Model

We construct a finite-state Markov decision process (MDP) ¥ = (X, Xy, P,) of the robotic

system ¥ = (X, Xy, U, t) as:

X ={q,...,qn} is the set of abstract states;

Xo={¢eX|qC Xo} is the set of initial states;
o P={Py,..., Py} is the set of controller partitions;

The transition probability from state ¢ € X to state ¢’ € X with label P € P is given

24

t(q'|q, P) = // t(da'|z, k(2)) (1.25)

where z = ctx(q), k = ctp(P).

As explained in Section 1.2.2, the integral (1.25) can be easily computed since the stochastic
kernel £(-|x, u) is a normal distribution, and we show techniques to accelerate the construction
of the symbolic model 3 in Section 1.6. Such finite symbolic models have been used heavily
in state-of-the-art LTL-based controller synthesis. Nevertheless, and unlike state-of-the-art
LTL-based controllers, the control alphabet in S is controller partitions (i.e., subsets of
CPWA functions). This is in contrast to LTL-based controllers in the literature (e.g., [147,

12]) that use subsets of control signals as their control alphabet.

We emphasize that our trained NN controllers are used to control the robotic system 3
with continuous state and action spaces, and the theoretical guarantees that we provide
in Section 1.5 are also for the robotic system 3, not for the finite-state MDP 3. As the
motivation to introduce the symbolic model 3, our approach provides correctness guarantees
for the NN-controlled robotic system 3 through (i) analyzing the behavior of the finite-state
MDP 3 (in this section), and (ii) bounding the difference in behavior between the finite-
state MDP % and the NN-controlled robotic system 3 (in Section 1.5). Critical to the latter
step is the ability to restrict the NN’s behavior thanks to the formal training proposed in

Section 1.3.

Step 2: Construct Product MDP

Given a mission specification ¢ encoded in BLTL or scLTL formula, we construct the equiv-

alent deterministic finite-state automaton (DFA) A, = (5,50, A, G,) as follows:

25

S is a finite set of states;

Sy C S is the set of initial states;

A is an alphabet;

G C S is the accepting set;

0: S5 x A — S is a transition function.

Such translation of BLTL and scLTL specifications to the equivalent DFA can be done using
off-the-shelf tools (e.g., [81, 56]).

Given the finite-state MDP capturing the robot dynamics & = (X, X, P,£) and the DFA
A, = (5,5, A, G, 0) of the mission specification ¢, we construct the product MDP ZA?®A¢ =
(X®,X§, P, X%, £9) as follows:

e X® =X x S is a finite set of states;

o X® = {(qo,(s0, L(q0))|q0 € Xo,50 € So} is the set of initial states, where L : X — A

is the labeling function that assigns to each abstract state ¢ € X the subset of atomic

~

propositions L(gq) € A that evaluate true at g;
e P is the set of controller partitions;
e X% =X x G is the accepting set;
e The transition probability from state (g, s) € X® to state (¢/,s") € X® under P € P is

given by:

N t(q'|q,P) if &' = d(s, L(¢))
t°(¢',s'lq,5,P) =

0 else.

26

Step 3: Select Local NNs by Dynamic Programming

Once constructed the product MDP S ® A, the next step is to assign one local network
ANy p) € NN to each abstract state ¢ € X. In particular, the selection of NNs aims to
maximize the probability of the finite-state MDP)y satisfying the given specification . This
can be formulated as finding the optimal policy that maximizes the probability of reaching
the accepting set X, in the product MDP S ® A,. To that end, we define the optimal value
functions V;* : X® — [0,1] that map a state (¢,s) € X® to the maximum probability of
reaching the accepting set X& in H — k steps from the state (¢, s). When k = 0, the optimal
value function \70* yields the maximum probability of reaching the accepting set X& in H
steps, i.e., the maximum probability of ¥ satisfying ¢. The optimal value functions can be

solved by the following dynamic programming recursion:

Qi(q, 5, P) = 1¢(s) + 1s\a(s) Z Viald, $)E%(d,s'lq, s, P) (1.26)

(¢',s")eX®

Vi (a.5) = max Qx(q,s,P) (1.27)

with the initial condition Vi (g, s) = 1¢(s) for all (¢,s) € X®, where k= H —1,...,0.

Algorithm 3 summarizes the above three steps for selecting local NNs. Given a task T =
(t, o, W, Xy) at runtime, Algorithm 3 first computes the symbolic model 3 based on the
stochastic kernel ¢, translates the mission specification ¢ to a DFA A, using off-the-shelf
tools, and constructs the product MDP f]@Aw (line 1-3 in Algorithm 3). Then, Algorithm 3
solves the optimal policy for the product MDP 3 ® A, using the DP recursion (2.8)-(2.9)
(line 1-20 in Algorithm 3). At time step k, the optimal controller partition P* at state
(q,s) € X% is given by the maximizer of Qk(q, s,P) (line 16 in Algorithm 3). The last step

is to assign a corresponding neural network to be applied given the robot states x € X and

27

the DFA states s € S. To that end, let:

~

Ci(z, s) = Li(abs(z), s),

where T, maps the product MDP’s states (¢,s) € X® to neural network’s indices (g, P*)
(line 17 in Algorithm 3). In other words, given the robot states x € X and the DFA
states s € S at time step k, we first find the abstract state ¢ € X that contains =z, i.e.,
q = abs(z), and then use the neural network ANV, p-) € MN to control the robot at =, where

I'v(q,s) = (¢, P*). Recall that the neural networks in 99 are indexed as (¢, P) and hence

the function I'(z, s) = ['x(abs(z), s) computes such indices.

Algorithm 3 RUNTIME-SELECT (T = (¢, o, W, Xy))

1: Compute the symbolic model 3 = (X, Xq, P,)
2: Translate ¢ to a DFA A, = (5,5, A, G,)
3: Construct the product MDP ¥ ® A,
4: for (g,s) € X® do
5 Vila,s) = 1a(s)
6: end for

T k=H-1

8: while £ > 0 do

9: for (¢,s) € X¥ do

10: if s € G then
11: Qk<Q7 S, P) =1
12: else
13: Qk<QJ S, P) = Z vk*+1(q/7 S/)t® (q/7 S/|Q7 S, 7))
(¢',8")€X®
14: e:nd if R
15: Vi(g,s) = IgggAQk(q, s, P)
16: P* = argmax Qx(q, s, P)
PeP

17: I'v(q, s) = (¢, P*)
18: end for

19: kEk=k—-1

20: end while

28

1.4.3 Toy Example

° °

Ctx?‘h) Ctx.(%) ctx.(qs) ctx(q1) CtX(Q% ctx(gs) Ctx.((h) ﬁ Cfx.(lh) w
° ° ° w ° ° ° ° ° °

ctx(qe) ctx(qs) ctx(ge) ctx (12) ctx(q2) ctx(qs) ctx(ge) ctx(qe) ctx(qs) ctx(ge)

ql q3 q5 q]_ N/\/((Il 1) q3 NM% P1) q5 ql (fh 7’1) ob tNM%,Pl)g al ql Wﬁ 7’2 obs tNM%PJ goal
AT RN
B w6 L GES B s 2

G2 75— obstig—>goal (42 5 G4 55— 6 (42 15— 94 35— 46

(7’)

(a) (b) () (d)

Figure 1.1: A toy example of a robot that navigates a two-dimensional workspace and needs
to satisfy reach-avoid specifications ¢ = @iiveness /A Psafety (See more details in Section 1.4.3).

We conclude this section by providing a toy example in Figure 1.1. Consider a mobile robot
that navigates a two-dimensional workspace. We partition the state space X C R? into six
abstract states X = {qy, ..., qs} and discretize the controller space PX*? into two controller
partitions P = {P;,P»}. Figure 1.1 (a) shows the state space (top) and the abstract states

¢, - - -, qe resulted from the partitioning (bottom), where the centers of abstract states are

Ctx(ql), e 7CtX(QG)-

During the offline training (Section 1.4.1), we use the formal training Algorithm 1 to obtain a

library 9191 consisting of 12 neural networks, i.e., MN = {AN,, p,)li € {1,...,6},7 € {1,2}}.

We consider three different tasks 77, 72, and 73 that only become available at runtime
after all the neural networks in M1 have been trained. Figure 1.1 (b), (¢), and (d) show
the workspaces for these three tasks, respectively. The specifications for these three tasks
are @1 = Qg (z € ¢) A g~ (x € qu), w2 = Qo) (@ € g5) A Dpg— (2 € g3), and 3 =
O, (T € g5) A Ojo 3~ (x € g3), respectively. Finally, the three tasks have different robot
dynamics t. Figure 1.1 (b)-(d) also depict the transitions in the resulting symbolic models,

where we assume that all the transition probabilities ¢ are 1 for simplicity (the transition

29

probabilities £ are computed as the integral of ¢ in (1.25)). Thanks to the formal training
Algorithm 1, the neural networks in 901 are guaranteed to be members of the CPWA
functions in {P;,P>}. Hence, we label the transitions in the MDPs in Figure 1.1 (b)-(d)
using AN, p,) instead of {1, P,}. While the transitions in the MDPs in Figure 1.1 (b) and
(c) are the same, the MDP in Figure 1.1 (d) is different from that in Figure 1.1 (b) and (c)

due to the difference in the robot dynamics in this task.

When the tasks Ty, 72, and T3 become available, we use the runtime selection algorithm
(Algorithm 3) to obtain the selection functions I'y. In Figure 1.1 (b)-(d), the selected NNs
are the labels of the transitions marked in red. For example, in Figure 1.1 (b), our algorithm
selects AV (4, p,) to be used at all states © € ¢;. It is clear from the figures that the selected
NNs are guaranteed to satisfy the given specifications ¢1, @9, and 3, respectively, regardless

of the difference in the workspaces and robot dynamics.

1.5 Theoretical Guarantees

In this section, we study the theoretical guarantees of the proposed approach. We first pro-
vide a probabilistic guarantee for our NN-based planners on satisfying mission specifications
given at runtime, then bound the difference between the NN-based planner and the optimal

controller that maximizes the probability of satisfying the given specifications.

1.5.1 Generalization to Unseen Tasks

For an arbitrary task 7 = (¢, o, W, Xy), let AN 1] be the corresponding NN-based planner,
where the library of networks 9191 is trained by Algorithm 2 without knowing the task 7", and
the activation map I' denotes the time-dependent functions I'; obtained from Algorithm 3.

As a key feature of MNmn), the activation map I' selects NNs based on both the robot

30

states and the states of the A, DFA. This allows the NN-based planner J\/'/\/'[mmﬂ to take
into account the specification ¢ by tracking states of the DFA A,. In comparison, a single
state-feedback neural network AN : X — U is not able to track the DFA states and hence

cannot be trained to satisfy BLTL or scLTL specifications in general.

We denote by 5%; - the closed-loop trajectory of a robot under the NN-based planner
MNmor) with the robot starting from state z € X, and the DFA A, starting from state
s € Sp. Notice that though the symbolic model S is a finite-state MDP, the NN-based
planner N./\/’[mm’r] is used to control the robotic system ¥ with continuous state and action
spaces. The following theorem provides a probabilistic guarantee for the NN-controlled

robotic system to satisfy mission specifications given at runtime.

Theorem 1.6. Let \70* be the optimal value function returned by Algorithm 3. For arbitrary
states x € Xy and s € Sy, the probability of the closed-loop trajectory 5/(\7;/\;[31«1 . satisfying the

given mission specification ¢ is bounded as follows:

Pr (%’ﬁ;m,r] = w) - ‘70*(%8)’ < HZAW (1.28)

where g = abs(z) and

AW = ax (Amq + B;Lij, + /m(n + 1)£X3mp> . (1.29)

e{1,...,N}

Recall that 1, and 7p are the grid sizes used for partitioning the state space and the controller
space, respectively. The upper bound HZAM in Theorem 1.6 can be arbitrarily small
by tuning the grid sizes 7, and np. In (1.28)-(1.29), H is the time horizon, N = |X] is
the number of abstract states, and Z = |S]| is the number of the A, DFA states. The
parameters A; and B; are given by A; = [, Xi(y)u(dy) and B; = [Bi(y)p(dy), where X;(y)
and f;(y) are the Lipschitz constants of the stochastic kernel ¢ : B(X) x X x U — [0,1], i.e.,

Va,z' € q;, Yu € U: |t(dy|x’,u) — t(dy|x,u)| < N(y)|2" — z|p(dy), and Vx € ¢;, Yu, v € U:

31

[t(dy|z,u') — t(dy|x,u)| < Bi(y)|u — u|p(dy). Furthermore, L; is the Lipschitz constant of

the local neural networks at abstract state ¢; € X, i.e., VP € P, Vx, 2’ € ¢;:
[AN . (2) = AN, 2 (2)] < Lillw — /).

Finally, sup|z| < Lx, sup |K| < Lp, and n, m are the dimensions of X C R”, U C R™,
reX KePpKxb

respectively.

We now provide proofs of Theorem 1.6 and Theorem 1.7 in Section 1.5. Let ¥ = (X, Xo, U, t)
be a robotic system with continuous state and action spaces and A, = (5, 5y, A, G, §) be the

DFA of a mission specification ¢. Similar to the product MDP S® A, the product between
> and A, is given by ¥ ® A, = (X®, X7, U, X§,1%), where:

X® = X x S is the state space;

X§ = {(x0,0(s0, L(wo))|zo € Xo,50 € So} is the set of initial states, where L : X —
A is the labeling function that assigns to each state x € X the subset of atomic

propositions L(z) € A that evaluate true at x;

U C R™ is the control action space;

X& = X x G is the accepting set;

The stochastic kernel ¢® is given by:

t(dx'|x,u) if s =d(s, L(2))
t%(da', 8|z, s,u) =

0 else.

Proof. Given the NN-based planner ANmy) obtained using our framework, we define func-
tions VMV': X® — [0,1] that map a state (x,s) € X® to the probability of reaching the

accepting set X& in H — k steps from the state (z,s) and under the control of ANy .

32

With this notation, we have ViV(z, s) = Pr <£ /\?\fam . = cp) since reaching the accepting set
X& in H steps in the product MDP ¥ ® A, is equivalent to ¥ satisfying ¢. In the following,

we show that for any z € g and k =0,..., H:
Vi, 8) = Vi (g,)| < (H — k)28, (1.30)

which yields (1.28) by letting £ = 0. By the definition of VkAW, the probabilities of reaching

the accepting set X& under the NN-based planner AN,y can be expressed as:

VM,) = 1a(s) + 1s\a(s Z/ VM (!, st (da!, 8|2, s, NN () (1.31)

s'eS

with the initial condition Vi™(z,s) = 1¢(s). In the stochastic kernel ¢® in (1.31), we use
AN to denote the local network selected by the activation map I'y,; at the state (x,s) for
simplicity. Though solving (1.31) is intractable due to the continuous state space, we can

bound the difference between VM and V;* as (1.30) by induction.

For the base case k = H, (1.30) trivially holds since VAV(z, s) = 1¢(s) and V}i(q, s) = 1¢(s).

For the induction hypothesis, suppose for k + 1 it holds that:

| k+1(s) — Vk*ﬂ(% s < (H—Fk— 1)ZAW (1.32)

~

Let V¥ be a piecewise constant interpolation of \A/k* defined by V*(z,s) = V;*(q,s) for any

x € qgand any s € S. Then,

Vi, 8) = Vi (@ 5)] < [V, s) = Vi, 8)] + V(0 8) = Vi (2, 9) (1.33)

33

where z = ctx(q) and = € ¢. For the first term on the RHS:

ANCIORA AN

=|1a(s —i—lS\G Z/ k16 ®(dx', 8|z, s, NM(x))
s'eS
—1g(s) + 1g\a(s Z/ (@, st (da, 8|z, 8, AN(2))|
s'es
< Z/ k+1 SHt®(da', 8|, s, NN (x)) — t¥(da’, &' |z, 5, NN(2)]

s'eS

<z /X (#(d’ |z, AM()) — t(da’ |2, AN(2)|
< Z/X [t(da'|z, AN(x)) — t(dx|z, NN (@))| + |t(da'|z, NN(z)) — t(dz’ |z, NN(2))]

< ZAiJe - 2| + ZBIANM=) - NM2)|

< ZAZ‘T]q + ZBZ‘LZ‘T]q. (1.34)
For the second term on the RHS of (1.33):
ViN(z5) = Vi (2.9)
= [1g(s) + 1s\a(s) / iz ®(dx', 8|z, 5, AN (2))
s'eS
_ 7k I N
10(8) +]'S\G(S) %2% Z Vk+1(q , S)t (q , S |Q7 S>P)| (135)
(¢',8")€X®
<|Z/ (@, $)t®(da, 8|z, s, AN(2) ZZV,ﬁqu Ht®(d, 8'|q,s,P*)| (1.36)
s'es s'eS ¢ eX
<| Z/ k:+1 9 (dx', 8|z, 5, NN(2) / Vi (z ®(da', s |z, s, ctp(P*)(2))]
s'eS s'eS
(1.37)
<30 [VI = Vi ANG)
s'eS
+ Z/ Vi (2!, 2 (da!, 8|z, 8, AN(2)) — t2(da’, §'|2, s, ctp(P*)(2))] (1.38)
s'esS
< (H—-k-1)2ZMWV+ Z\/m(n+1)LxBnp (1.39)

34

where (1.35) uses the DP recursion (2.8)-(2.9), in (1.36) P* denotes the maximizer, and (1.37)
uses the definition of £ in (1.25) with z = ctx(g). In (1.39), we use the induction hypothe-
sis (1.32), and the inequality | K (z) — K'(2)| < |K — K'||z]| < v/m(n + 1)K — K'|maxLx <
Vm(n+ 1)npLx, where | K — K'|max < 1p since the local network AV selected by the activa-
tion map I' represents a CPWA function from the maximizer P*, i.e., K, K’ € P* C Rmx(n+1),

Substitute (1.34) and (1.39) into (1.33) yields (1.30). O

1.5.2 Optimality Guarantee

Next, we compare our NN-based planner ANmo r with the optimal controller (not necessarily
a neural network) that maximizes the probability of satisfying the given specification ¢. To
that end, we provide an upper bound on the difference in the probabilities of satisfying ¢
without explicit computing of the optimal controller. Let C7 : X x S — U be the optimal

(I7s

controller and &) be the closed-loop trajectory of the robotic system ¥ = (X, Xo, U, t)

.
controlled by Cj. Similar to the NN-based planner AlVjmy), the optimal controller C7
applies to the robotic system X with continuous state and action spaces, and takes the
DFA states s € S into consideration when computing control actions. Synthesizing the
optimal controller C; for a mission specification ¢ is computationally prohibitive due to the
continuous state and action spaces. Without explicitly computing C;, the following theorem
tells how close our NN-based planner -/\/N[mm,r} is to the optimal controller C; in terms of

satisfying the specification ¢. By tuning the grid sizes n, and 7p, our NN-based planner

AN ry can be arbitrarily close to the optimal controller C;.

Theorem 1.7. For arbitrary states x € Xy and s € Sy, the difference in the probabilities of

)

the closed-loop trajectories 5/(\?\2 and féf’s) satisfying the given mission specification ¢ is
7]

9NN, T
upper bounded as follows:
Pr (6600, F)~ Pr (€87 o) < B2+ A (1.40)

35

where ANV is given by (1.29) and

A" = max (Amq + B,Lpn, + 2/ m(n + 1)£XBi77p> . (1.41)

ie{1,..,N}

Proof. Let functions V¥ : X® — [0, 1] map a state (z,s) € X® to the probability of reaching
the accepting set X§& in H — k steps from the state (x, s) and under the optimal controller
C,: X xS —U. Then, Vi(z,s) = Pr (%’8) = gp) since reaching the accepting set X in H
steps in the product MDP ¥ ® A,, is equivalent to ¥ satisfying ¢. The optimal probabilities

of reaching the accepting set X§ can be expressed using DP recursion:

Qr(z,s,u) = 1g(s) + 1s\a(s) Z/ Vi (!, 2 (da') sz, s, u) (1.42)
ses /X
Vii(z,s) = max Qr(x,s,u) (1.43)

Though solving V;* and the corresponding optimal controller C is intractable due to the
continuous state and action spaces, we can bound the difference between V;* and Vk* by
induction similar to the proof of (1.30) in Theorem 1.6. We skip the details and directly

give the following bound:
Vi, 8) = Vid(a,8) < (H = k) ZA (1.44)
where = € ¢ and A* is given by (1.41). With (1.30) and (1.44), we have:

Vi@,) = Vi,)] < [V, s) = Vi(a,)]+ Vi (2, 8) = Vil (g,)]

< (H = k) Z(AW 4+ A9, (1.45)

which yields (1.40) by letting k& = 0. O

36

1.6 Effective Adaptation

In this section, we focus on practical issues of the proposed approach and present some key
elements for performance improvement while maintaining the same theoretical guarantees
as Section 1.5. Firstly, we show that the proposed composition of neural networks leads
to an effective way to adapt previous learning experiences to unseen tasks. In particular,
instead of training the whole library of neural networks 9191 in Algorithm 2, we only train a
subset of networks MMy, C N based on tasks provided for training. Obtaining this subset
IMNM,are can be viewed as a systematic way to store learning experiences, which are adapted
to unseen tasks via transfer learning (see Section 1.6.1). Secondly, we propose a data-driven
approach to accelerate the construction of the symbolic model 5 (see Section 1.6.2). Finally,
we comment on the choice of grid sizes 7, and np for partitioning the state and action spaces

(see Section 1.6.3).

1.6.1 Accelerate by Transfer Learning

Consider a meta-RL problem with a set of training tasks {77, 7, ..., T4} that are provided
for training neural networks in the hope of fast adaptation to unseen tasks Ties; during the
test phase, where each task is a tuple T = (¢, o, W, Xy) as defined before. We consider the
problem of how to leverage the learning experiences from the training tasks to accelerate the
learning of the unseen test tasks. Our intuition is that when the training tasks have enough
variety, the local behavior for fulfilling a test task Tt should be close to the local behavior for
fulfilling some training task Tipain € {71, T2, ..., Ta}. In other words, the controller needed
by a robot to fulfill the test task Ti.t should be close to the controller used for fulfilling
some training task Tiain € {71, 72, - - -, Ta}, where the training task T can be different in
different subsets of the state space X. This is more general than the prevalent assumption

in the meta-RL literature that the test task’s controller is close to the same training task’s

37

controller everywhere in the state space. As a result, our approach requires less variety of

the training tasks {7, 7z, ..., 74} for fast adaptation to unseen tasks.

The form of the composed NN-based planner MNmn) provides a systematic way to store
learning experiences from all the training tasks and enables to select which training task
should be adapted to the test task based on the current state of the robot. Given a set of
training tasks {71, 72, ..., Ta}, Algorithm 4 trains a subset of local networks 9M,at € NN
suggested by the training tasks. For each training task Tgam € {71, T2, ..., Ta}, Algorithm 4
first calls Runtime-Select (i.e., Algorithm 3) to compute the corresponding activation maps
I, (line 3 in Algorithm 4). The activation maps Iy are then used to determine which
local networks AV, p) need to be trained at each state (¢,s) € X® of the product MDP
> ® A, (line 5 in Algorithm 4). The local neural networks are trained using the method
Formal-Train given by Algorithm 1 (line 7 in Algorithm 4). Compared to Algorithm 2 that
trains all the neural networks to obtain the library 9191, Algorithm 4 reduces the number of

NNs need to be trained by leveraging the training tasks {71, 7, ..., Ta}-

During the test phase, we adapt previous learning experiences stored in the subset of networks
MNpare to test tasks Tiesy by employing transfer learning. In particular, if a local NN needed
by the test task Ties; has not been trained, we fast learn it by fine-tuning the “closest” NN
to it in the subset MM,.. Thanks to the fact that each local network ./\/N(qp) is associated
with an abstract state ¢ € X and a controller partition P € P, we can define the distance

between two local networks ANy, p,) and ANy, p,) as follows:

Dist (ANigy 1) ANigan) = enlltin(a1) — ctix(aa)] + azlcte(P1) = ctp(Pa)las (1.46)

with pre-specified weights aq, as € RT. Given a test task Ties;, Algorithm 5 first computes
the corresponding activation maps Lk (line 1 in Algorithm 5), and then selects local networks

AMN(q.p) to be applied at each time step until reaching the product MDP’s accepting set Xg

38

(line 3-4 in Algorithm 5). If the needed network AV(, py has not been trained, Algorithm 5
initializes the missing network AV(,) using the weights of the closest network AN« p+) to
it in the subset M ,art, where the distance metric between neural networks is given by (1.46)
(line 5-7 in Algorithm 5). After that, the algorithm trains the missing network AN, p) using
PPO with only a few episodes for fine-tuning (line 8 in Algorithm 5). Thanks to the NN
weight projection operator Ilp, the resulting NN-based planner enjoys the same theoretical

guarantees presented in Section 1.5 (line 9-10 in Algorithm 5).

Algorithm 4 TRAIN-TRANSFER ({71, 7T2,...,Ta},J)

1: ‘ﬁ‘ﬁpart = {}
2: fOI; 7;r?,in g {T17757 e ’7dd} dO

3 I, Vi, X ® A, = Runtime-Select(Tirain)
4: for (¢,5) € X®, k€ {0,...,H —1} do
5: (Q» 7)) = Fk(Q7 S)

6: if MN(gp) € NMNpare then

7 ANy p) = Formal-Train(q, P, J)

8: MNpare = MMpary U {N./\/-(%p)}

9: end if

10: end for

11: end for

12: Return 90,

1.6.2 Data-Driven Symbolic Model

Recall that in Algorithm 3, after knowing the robot dynamics (i.e., the stochastic kernel
t), the first step is to construct the symbolic model ¥ = (X, Xy, P,7) (line 1 in Algo-
rithm 3). The construction of 3 requires to compute the transition probabilities t(d'|q,P) =
fq,t(dw’ |z, k(z)) with all controller partitions P € P at each abstract state ¢ € X, where
z = ctx(q), k = ctp(P). Reducing the computation of transition probabilities is tempting
when the number of controller partitions is large, especially if the stochastic kernel #(-|z, u) is
not a normal distribution and needs numerical integration. In this subsection, we accelerate

the construction of ¥ in a data-driven manner.

39

Algorithm 5 RUNTIME-TRANSFER (Tiest; Mpart J, 2, 5)

1: f‘k, VO*, Y ® A, = Runtime-Select(Tsest)
2: k=0, qg=abs(x)
3: while (¢, s) € X& do

4 (¢,P) =Ti(g,s)
5. if AN(gp) € NMpart then
6: MVigpy = argmin Dist (AN, py), MN(4.p))

MN(qy 1) EMMpart
: ANgp) = initialize(ANN(g p)
8: ./\/:/\/’(q,’p) = PPO-update(NMq,p), J)
9: WE B = TIp (AN, 7))

10 Set AV, p) output layer weights be W))
11: ‘ﬂ‘ﬁpart - ‘ﬁ‘ﬁpart U {N/\/‘(q;]))}
12: end if

13: u = ./\/’./V’(qu) (l‘)

14: Apply action u, observe the new state x
15: g =abs(z), s =d(s, L(z))

16: k=k+1

17: end while

For a given task 7, we consider our algorithm has access to a set of expert-provided trajec-
tories D = {1, &s, ..., &}, such as human demonstrations that fulfill the task 7. Instead of
computing all the transition probabilities #(¢’|¢, P), we use the set of expert trajectories D
to guide the computation of transitions. The resulting symbolic model can be viewed as a

symbolic representation of the expert trajectories in D.

In Algorithm 6, we first use imitation learning to train a neural network AN by imitating
the expert trajectories in D (line 1 in Algorithm 6). Though the neural network AN trained
using a limited dataset D may not always fulfill the task 7", the network NV contains relevant
control actions that can be used to obtain the final controller. In particular, at each abstract
state ¢ € X, we only compute transition probabilities £(¢'|q, P) with controller partitions
P suggested by the network AIV. To be specific, let u* be the control actions given by
the network AN at the centers of abstract states ¢ € X (line 3 in Algorithm 6). Then,
Algorithm 6 selects a subset P, C P consists of I controller partitions that yield control

actions close to the NN’s output u*, where I € N is a user-defined parameter (line 4-8 in

40

Algorithm 6). Finally, Algorithm 6 computes a symbolic model 3 with only transitions
under the controller partitions in the subset P, (line 9 in Algorithm 6). The symbolic model

>} contains more transitions by increasing the parameter I at the cost of computational

efficiency. The choice of I can be adaptively determined as discussed in the next subsection.

Algorithm 6 CoNSTRUCT-SYMBOL-MODEL (7,D, X, P,)

1: NN = imitation-learning(D)
2: for ¢ € X do
3. uw* = NMz), where z = ctx(q)
Py, = {
fori=1,...,1 do
P*= argmin|k(z) — u*|, s.t. k = ctp(P),z = ctx(q)
PEP\P,
7 P,=P,U {P*}
8: end for
9: Compute t(¢'|q, P) with P € P,
10: end for
11: Return &

1.6.3 Adaptive Partitioning

Recall that during the offline training, we partition the state space X C R"™ and the controller
space PExt <« R™*(+1) yging the pre-specified parameters n, and np, respectively (see
Section 1.4.1). In this subsection, we comment on the choice of the grid sizes 1, and np.
In particular, our framework can directly incorporate the discretization techniques from the
literature of abstraction-based controller synthesis (e.g. [40, 62]). To that end, we provide
a simple yet efficient example of adaptive partitioning in Algorithm 7, which enables the

update of gird sizes 7, and np at runtime using transfer learning.

The first part of Algorithm 7 aims to partition the state and controller spaces such that
the resulting probabilities VO*(q,s) of satisfying the specification ¢ are greater than the
pre-specified threshold p at all initial states (¢, s) € Xy x Sy (line 1-7 in Algorithm 7). In

particular, if the probability VO* (g, s) is less than p at some state (¢, s) € Xy x Sy, Algorithm 7

41

decreases the current grid sizes 1, and np by half and increases the parameter I (line 6 in
Algorithm 7). After having such a partitioning of the state and controller spaces, Algorithm 7
trains the corresponding locals networks by fine-tuning the NNs in the provided library of
networks MNpar (line 8-18 in Algorithm 7). The following theoretical guarantee for the

resulting NN-based planner to satisfy the given specification ¢ directly follows Theorem 1.6.

Corollary 1.8. Consider Algorithm 7 returns a library of local networks YtM,e and an
activation map I (denoting the functions f‘k) Then, the NN-based planner NN,
satisfying Pr (éf(\ﬁ;mmmr] = go) >p—¢ for any x € Xy and s € Sy, where e = HZA and

AW s given by (1.29).

Algorithm 7 ADAPT-PARTITION (7, D, MNpart, J, 0y, np, 1)
while V

1: i < pdo

2. X = partition(X,n,), P = partition(PX* np)
3 Y= Construct-Symbol-Model(7,D, X, P, I)

4 Ty, Vi, X ® A, = Runtime-Select(7T)

5

Vi = min V q,s
min (4,5)€X0x So 0())

6: 77q=77q/27 777327773/27 I =21

7. end while

8: for (¢,s) € X® ke {0,...,H -1} do
9 (q7 P) - Fk(qv S)

10: if AN p) & NMNpare then

11: ANy p+y = argmin Dist (N/\/—(ql’Pl),N./\[(q,P))
ANy 1) €M

12: AN p) = initialize(AN gy p+))
13: AN4,p) = PPO-update(AN 4 p), J)
14: WE) B = TIp (AN, 7))

15: Set AN, p) output layer weights be WE 5
16: m‘ﬁpart = ‘Jt‘ﬁpm U {./\[/\/’(q,p)}

17: end if

18: end for

42

1.7 Results

We evaluated the proposed framework both in simulation and on a robotic vehicle. All
experiments were executed on a single Intel Core 19 2.4-GHz processor with 32 GB of memory.
Our open-source implementation of the proposed neurosymbolic framework can be found at

https://github.com/rcpsl/Neurosymbolic_planning.

1.7.1 Controller Performance in Simulation

Consider a wheeled robot with the state vector x = [(,, (,,0] " € X C R3, where (,, ¢, denote
the coordinates of the robot and 6 is the heading direction. The priori known nominal model

f in the form of (4.1) is given by:

CHHAD — ¢ 1 At v cos(A1)
CZ(,HN) _ <3(1t) + At v sin(Q(t)) (1.47)

AN — g 4 At 4

where the speed v = 0.3m/s and the time step At = 1s. We train NNs to control the
robot, i.e., u) = NN(z®), NN € PK*b ¢ R™* with the controller space P**® being a

hyperrectangle.

As the first step of our framework, we discretized the state space X C R? and the controller
space PE*b c R4 as described in Section 1.4.1. Specifically, we partitioned the range
of heading direction 6 € [0,27) uniformly into 8 intervals, and the partitions in the x,
y dimensions are shown as the dashed lines in Figure 1.2. We uniformly partitioned the

controller space PX*? into 240 hyperrectangles.

Study#1: Comparison against standard NN training for a fixed task. The objec-

43

tive of this study is to compare the proposed framework against standard NN training when
the task is known during training time. We aim to show the ability of our framework to
guarantee the safety and correctness of achieving the task compared with standard NN train-
ing. To that end, we considered the workspace shown in Figure 1.2 and a simple reach-avoid

specification, i.e., reach the goal area (green) while avoiding the obstacles (blue).

We collected data by observing the control actions of an expert controller operating in this
workspace while varying the initial position of the robot. We trained several NNs using
imitation learning for a wide range of NN architectures and a number of episodes to achieve

the best performance.

We then trained a library of neural networks D191 using Algorithm 2, and we used the
dataset—used to train NNs with imitation learning—to accelerate the runtime selection as

detailed in Algorithm 6 (recall that line 1 in Algorithm 6 uses imitation-learning).

We report the trajectories of the proposed neurosymbolic framework in the first row of
Figure 1.2 and the results of the top performing NNs obtained from imitation learning in
the second row of Figure 1.2. As shown in the figure, we were able to find initial states from
which the imitation-learning-based NNs failed to guarantee the safety of the robot (and
hence failed to satisfy the mission goals). However, as shown in the figure (and supported
by our theoretical analysis in Theorem 1.7), our framework was capable of always achieving

the mission goals and steering the robot safely to the goal.

Study#2: Generalization to unknown workspace/tasks using transfer learning.
This experiment aims to study our framework’s ability to generalize to unseen tasks even
when the library of neural networks is not complete. In other words, the trained local
networks in NN cannot cover all possible transitions in the symbolic model, and hence a

transfer learning needs to be performed during the runtime selection phase.

During the offline training, we trained a subset of local networks 90, by following Algo-

44

Our Neurosymbolic Framework
1=
Vi
yim
AL

Standard Imitation Learning

I
I
I

Figure 1.2: The upper row shows trajectories resulting from NN-based planners trained
using our framework. The lower row shows trajectories under the control of NNs trained by
standard imitation learning, where the NN architectures are (left) 2 hidden layers with 10
neurons per layer, (middle) 2 hidden layers with 64 neurons per layer, and (right) 3 hidden
layers with 128 neurons per layer. With the same initial states (two subfigures in the same
column), only NN-based planners trained by our framework lead to collision-free trajectories.

rithm 4 in Section 1.6.1. Specifically, the local NNs are trained in the workspace W, (the
first subfigure in the upper row of Figure 1.3). The set DM, consists of 658 local NN,
where each local NN has only one hidden layer with 6 neurons. We used Proximal Policy
Optimization (PPO) implemented in Keras [31] to train each local NN for 800 episodes, and
projected the NN weights at the end of training. The total time for training and projecting

weights of the 658 local networks in 9,4 is 2368 seconds.

At runtime, we tested the trained NN-based planner in five unseen workspaces W;, i =
2,...,6, and the corresponding trajectories are shown in Figure 1.3. For each of the
workspaces, our framework computes an activation map I' that assigns a controller par-
tition P € P to each abstract state ¢ € X through dynamical programming (Algorithm 3 in
Section 1.4.2). The local NNs corresponding to the assigned controller partitions may not
have been trained offline. If this was the case, we follow Algorithm 5 that employs trans-
fer learning to learn the missing NNs at runtime efficiently. Specifically, after initializing a

missing NN using its closest NN in the set 911,,, We trained it for 80 episodes, which is

45

much less than the number of episodes used in the offline training. For example, for the
workspace W, (the first subfigure in the lower row of Figure 1.3), the length of the corre-
sponding trajectory is 35 steps, and 28 local NNs used along the trajectory are not in the
set NMIyare. Our algorithm efficiently trains these 28 local NNs in 10.5 seconds, which shows

the capability of our framework in real-time applications.

2 25 3 35 4 45 5 %0 s 1 15 2 25 3 35 4 45 5 ‘0 05 s 25
£ (m] £ (m] £ (m]

Figure 1.3: The upper row shows trajectories in workspaces Wi, W5, W5, and the lower
row corresponds to workspaces Wa, Wy, Ws. The subset of local networks 00, is trained
in workspace W; and the rest five workspaces are given at runtime. Trajectories in all the
workspaces satisfy both the safety specification gty (blue areas are obstacles) and the
liveness specification @jiveness for reaching the goal (green area).

1.7.2 Actual Robotic Vehicle

We tested the proposed framework on a small robotic vehicle called PiCar, which carries a
Raspberry Pi that runs the NNs trained by our framework. We used a Vicon motion capture
system to measure the states of the PiCar in real-time. Figure 1.4 (left) shows the PiCar
and our experimental setup. We modeled the PiCar’s dynamics using the rear-wheel bicycle

drive [72] and used GP regression to learn the model-error.

Study#3: Dynamic changes in the workspace. We study the ability of our frame-

work to adapt, at runtime, to changes in the workspace. This is critical in cases when the

46

workspace is dynamic and changes over time. To that end, we trained NNs in the workspace
shown in Figure 1.4 (right). The part of the obstacle colored in striped blue was considered
an obstacle during the training, but was removed at runtime after the PiCar finished run-
ning the first loop. Thanks to the DP recursion that selects the optimal NNs at runtime
(Algorithm 3 in Section 1.4.2), the PiCar was capable of updating its optimal selection of

neural networks and found a better trajectory to achieve the mission.

Study#4: Comparison against meta-RL in terms of generalization to unknown
workspace/tasks. The objective of this study is to show the ability of our framework
to generalize to unseen tasks, even in scenarios that are known to be hard for state-of-
the-art meta-RL algorithms. We conducted our second experiment with the workspaces in
Figure 1.5. In particular, the four subfigures in the first row of Figure 1.5 are the workspaces
considered for training. These four training workspaces differ in the y-coordinate of the two
obstacles (blue areas). During runtime, we use the workspaces shown in the second/third
row of Figure 1.5. Specifically, the first subfigure in the second/third rows of Figure 1.5
corresponds to a workspace that has appeared in training. The rest three subfigures in
the second/third row of Figure 1.5 are unseen workspaces, i.e., they are not present in
training and only become known at runtime. Indeed, as demonstrated in [24], existing meta-
RL algorithms are limited by the ability to adapt across homotopy classes (in Figure 1.5,
the training tasks and the unseen tasks are in different homotopy classes since trajectories
satisfying a training task cannot be continuously deformed to trajectories satisfying an unseen

task without intersecting the obstacles).

We show the PiCar’s trajectories under the NN-based planner trained by our neurosymbolic
framework in the second row of Figure 1.5. By following Algorithm 5 with transfer learning,
the PiCar’s trajectories satisfy the reach-avoid specifications in all four workspaces, including
the three unseen ones. Thanks to the fact that our NN-based planner is composed of local

networks, our framework enables easy adaptation across homotopy classes by updating the

47

activation map I' based on the revealed task (Algorithm 3).

Figure 1.4: (Left) PiCar and workspace. (Right) The PiCar’s trajectory (red) for two loops,
where the striped blue obstacle is removed after the first loop.

As a comparison, we assessed NN controllers trained by a state-of-the-art meta-RL algorithm
PEARL [111] in the above workspaces. Given the four training workspaces (the first row
of Figure 1.5), we use PEARL to jointly learn a probabilistic encoder [71] (3 hidden layers
with 20 neurons per layer) and a NN controller (3 hidden layers with 30 neurons per layer).
The probabilistic encoder accumulates information about tasks into a vector of probabilistic
context variables z € R%, and the NN controller AV takes both the robot states x and the

context variables z as input and outputs control actions NN(z, z).

When applying the trained NN controller to a task (either a training task or an unseen task)
at runtime, PEARL needs to first update the posterior distribution of the context variables
2z € R® by collecting trajectories from the corresponding task. The third row of Figure 1.5
shows trajectories under the control of neural networks trained by PEARL. Specifically, the
first subfigure in the third row of Figure 1.5 corresponds to a workspace that has appeared in
training, and the presented trajectory is obtained after updating the posterior distribution
of z with 2 trajectories collected from this workspace. The rest three subfigures in the third
row of Figure 1.5 show trajectories in unseen workspaces, where the trajectories cannot
be safe even after updating the posterior distribution of z with 100 trajectories collected

from the corresponding unseen workspace. By comparing trajectories resulting from our

48

y [m]
y[m]
y[m]

[m]
. B

‘Workspaces Used for Training NNs

)
w0

x[m] a [m] a [m] z [m]

y(m]
y[m]
y [m]

Our Neurosymbolic Framework|
y [m]

y [m]
y(m]

PEARL (State-of-the-Art Meta-RL)

Figure 1.5: Performance comparison between our neurosymbolic framework and a state-of-
the-art meta-RL algorithm PEARL. The first row shows the four workspaces used for training
NNs. The second row shows the PiCar’s trajectories under the NN-based planner trained by
our neurosymbolic framework. All the trajectories satisfy reach-avoid specifications even in
unseen workspaces. The third row shows trajectories resulting from NN controllers trained
by PEARL, where the trajectory is only safe in the training workspace (the first subfigure
in the third row) but unsafe in the three unseen workspaces (the rest three subfigures in the
third row).

neurosymbolic framework and PEARL (the second and third rows in Figure 1.5), NN-based

planners trained by our algorithm show the capability of adapting to unseen tasks that can

49

be very different from training tasks.

1.7.3 Scalability Study

We study the scalability of our framework with respect to both partition granularity and
system dimension. In this experiment, we construct the symbolic models > and assign
controller partitions by following Algorithm 3. Table 1.1 reports the execution time that
grows with the increasing number of abstract states and controller partitions. In Table 1.2,
we show the scalability by increasing the system dimension n. To conveniently increase
the system dimension, we consider a chain of integrators represented as the linear system
D = Az® + Bu® where A € R™™ is the identity matrix and « € R2. Note that our
algorithms is not aware of the linearity of the dynamics constraints nor is exploiting this
fact. The algorithm has access to a simulator (the function f in (4.1)) that it can use to

construct the symbolic model 3.

To construct the symbolic models 5 efficiently, we adopt Algorithm 6 and only consider
local controller partitions by setting the range parameter I be 25. The execution time
show that our algorithm can handle a high-dimensional system in a reasonable amount of
time. Although we conducted all the experiments on a single CPU core, we note that our
framework is highly parallelizable. For example, both computing transition probabilities in

the symbolic model 3 and training local networks AN(g,p) can be parallelized.

50

Table 1.1: Scalability with respect to Partition Granularity

Number of Number of Build Symbolic | Assign Controller
Abstract States | Controller Partitions Model ¥ [s] Partitions [s]
1000 100 10.1 21.8
1000 324 11.3 69.8
1000 900 13.3 193.2
2197 100 41.6 74.2
2197 324 44.7 227.5
2197 900 51.3 673.45
4096 100 145.6 383.8
4096 324 151.2 1210.64
4096 900 164.6 3444.43

Table 1.2: Scalability with respect to System Dimension

System Number of Build Symbolic | Assign Controller
Dimension n | Abstract States Model 3. [s] Partitions [s]
2 324 2.1 1.8
4 1296 9.4 10.4
6 4096 70.3 62.9
8 16384 311.2. 158.4
10 59049 1581.9 441.7

51

Chapter 2

NNSynth: Neural Network Guided
Abstraction-based Controller

Synthesis for Stochastic Systems

In this chapter, we introduce NNSynth, a new framework that uses machine learning tech-
niques to guide the design of abstraction-based controllers with correctness guarantees.
NNSynth utilizes neural networks (NNs) to guide the search over the space of controllers.
The trained neural networks are “projected” and used for constructing a “local” abstrac-
tion of the system. An abstraction-based controller is then synthesized from such “local”
abstractions. If a controller that satisfies the specifications is not found, then the best found
controller is “lifted” to a neural network for additional training. Our experiments show that
this neural network-guided synthesis leads to more than 50x or even 100x speedup in high

dimensional systems compared to the state-of-the-art.

92

2.1 Introduction

Abstraction-based control synthesis techniques have gained considerable attention in the past
decade. These techniques provide tools for automated, correct-by-construction controller
synthesis from complex specifications, typically given in the form of a Linear Temporal Logic
(LTL) formulae [147]. It is then unsurprising the vast amount of developed software tools that
can handle a wide variety of nonlinear control systems including Pessoa [92], CoSyMa [96],
SCOTS [120], QUEST [66], FAUST [136], StocHy [26], and AMYTISS [82]. At the heart
of all these tools is the need to obtain discrete abstraction of continuous-time dynamical
systems using various quantization methods for state and input spaces. The resulting discrete
abstraction is then traversed to search for a feedback controller that conforms to the required
LTL specification. While performing the search for the feedback controller over the quantized
system is motivated by the availability of tools from the computer science literature that
can find such controllers, a significant drawback is the vast number of combinations of
quantized states and inputs that needs to be considered. The problem is exacerbated in

high-dimensional state and input spaces, leading to the so-called curse of dimensionality.

Motivated by the recent success of machine learning techniques in efficiently searching over
the space of feedback controllers (e.g., imitation learning and reinforcement learning), we ask
the following question: Can machine learning techniques be used to accelerate the process of
synthesizing abstraction-based controllers from LTL specifications? On the one hand, ma-
chine learning techniques enjoy favorable scalability properties and eliminate the dependency
on state-space quantization. On the other hand, these learning-based feedback controllers
(or policies) do not come with the guarantee that they conform to the LTL specifications.
This motivates the need to closely integrate the scalability of learning-based techniques with

the provable guarantees provided by the abstraction-based techniques.

Toward this end, we propose NNSynth, a new framework for synthesizing abstraction-based

53

controllers from LTL specifications [144]. Unique to NNSynth is the use of machine learning
techniques to train a neural network (NN) based controller, which will guide the synthe-
sis of the final abstraction-based controller. The advantages of the proposed NN guided
abstraction-based controller synthesis is multi-fold. First, it utilizes the empirically proven
advantages of machine learning algorithms to search the space of feedback controllers with-
out relying on expensive quantizations of state and input spaces. Second, it limits the search
over the quantized spaces only to local control actions within the neighborhood of the con-
troller proposed by the NN training. That is, our approach uses NN training to guide the
search over the quantized abstract system and eliminates the need to consider all combina-
tions of quantized states and inputs. Third, the use of neural networks to guide the design of
the abstraction-based controller opens the door to encode the human’s preferences for how
a dynamical system should act. Such human’s preference is crucial for several real-world
settings in which a human user or operator interacts with an autonomous dynamical sys-
tem [32]. Current research found that human preferences can be efficiently captured using
expert demonstrations and preference-based learning which can be hard to be accurately
capture in the form of a logical formulae or a reward function [99]. These advantages are
demonstrated using several key applications showing that NNSynth scales more favorably
compared to the state-of-the-art techniques while achieving more than 50x or even 100x

speedup in high dimensional systems.

Related Work. The closest results to our work are those reported in [5, 156] which pro-
poses a neurosymbolic framework to train control policies that can be represented as short
programs in a symbolic language while ensuring the generated policies are safe. Similar to
our approach, the work in [5, 156] trains a NN controller, project it to the space of symbolic
controllers, analyze the symbolic controller and lift it back to the space of NN policies for fur-
ther training. Differently, our approach focuses on designing a finite-state, abstraction-based
controller instead of short programs in a symbolic language. This difference (short programs

versus finite-state controller) manifests itself in all the framework steps, particularly the NN

o4

training, projection, and lifting. We confine our focus on synthesizing finite-state controllers
due to the extensive literature on analyzing such controllers in tandem with the controlled
physical systems [147]. Another line of related work is reported in [161, 25] which studies
the problem of extracting a finite-state controller from a recurrent neural network controller.
We note that our framework uses the NN policy to guide the search for abstraction-based

controllers and not as the final produced controller.

2.2 Problem Formulation

Let R, RT, N be the set of real numbers, positive real numbers, and natural numbers,
respectively. For a non-empty set S, let |S| be the cardinality of S, 2% be the power set of
S, 1g be the indicator function of S, and Int(S) be the interior of S. Furthermore, we use
S™ to denote the set of all finite sequences of length n € N of elements in S. The product of
two sets is defined as S x Sy = {(s1, $2)|s1 € S1, 2 € Sa}. Given a natural number H € N,
let H = {0,1,...,H}. Let |z| be the Euclidean norm of a vector x € R™ and =" be the
transpose of x € R™. Let the inner product of two functions h; : X — R"™ and hy : X — R™
be defined as (hi, ho) = [k()" ho(2)dz, which induces a norm |h; | = V/(hi, hy). We use
VJ to denote the Fréchet gradient of a functional J, and use the big O notation for upper
bounds. Any Borel space X is assumed to be endowed with a Borel g-algebra denoted by

B(X).

%)

2.2.1 Dynamical Model

We consider discrete-time nonlinear stochastic systems with continuous state and action

spaces:
2D = F(® 4 4O (2.1)

where) € X C R™ is the state and uY) € U C R™ is the control action at time step t € N,
respectively. The dynamical model (4.1) consists of a nominal model f and an addictive
noise (. We consider the nominal model f can be evaluated using a simulator (we do
not require the function f in a closed-form/symbolic representation), and the noise ¢(® is

sampled from a given distribution.

The dynamical model (4.1) can be equivalently expressed using a stochastic kernel 7 : B(X) x
X x U — [0,1] that assigns to any z € X and u € U a probability measure 7(-|x,u) such

that for any subset A € B(X):

Pr(z) € Alz® u®) = / 7(dz D] z® 4 0), (2.2)
A

The stochastic kernel T captures the evolution of system (4.1) and can be uniquely determined

by the nominal model f and the noise ¢ in (4.1).

Ezxzample 1 Consider a nonlinear dynamical system of the form:
2D = f(20,u®) 4 gz, u®), (2.3)

where f is a priori known nominal model and g captures the unknown model-error. As a
well-studied technique to learn unknown functions from data, we assume the model-error

g can be learned by a Gaussian Process (GP) regression model GP(u,, 03), where p, and

56

03 are the posterior mean and variance functions, respectively [113]. Then, the nonlinear

2

) can be treated as a nonlinear

system (2.3) with the model-error g learned by GP(pg, 0
stochastic system in the form of (4.1), where the noise () is sampled from the normal
distribution N (py(z,u®), 02(2®, u®)). Furthermore, the stochastic kernel 7(-|z®, u®)
is given by the normal distribution N'(f(z®, u®) + py(z®, u®), 62(x,u)), and hence the

integral (2.2) can be easily computed as an integral of normal distribution.

2.2.2 Temporal Logic Specification

We consider bounded linear temporal logic (BLTL) [21] and syntactically co-safe linear tem-
poral logic (scLTL) [78] specifications, which have been extensively demonstrated the capa-
bility to capture complex behaviors of dynamical systems. Let AP be a finite set of atomic
propositions that describe the states of a dynamical system with respect to the environment.

Given AP, any BLTL formula can be generated according to the following grammar:

=0 | @| o1V | o1 U) P2

where ¢ € AP and time steps t; < ty. Given the above grammar, we can define ¢, A
Yo = (1 V a), false = @ A —p, and true = = false. Furthermore, the bounded-time
eventually operator can be derived as O, 1,19 = true Uy, 1,) ¢ and the bounded-time always

operator is given by Oy, 4,10 = ﬁo[tlytﬂﬂgp.

Given a set of atomic propositions AP, the corresponding alphabet is defined as A := 247
and a finite (infinite) word w is a finite (infinite) sequence of letters from the alphabet A,
ie., w=wWw® wH c AH+1 The satisfaction of a word w to a specification ¢ can be
determined based on the semantics of BLTL [21]. Given the dynamical system (4.1) and
an alphabet A, let L : X — A be a labeling function that assigns to each state x € X the

subset of atomic propositions L(x) € A that evaluate true at . Then, a system’s trajectory

57

¢ satisfies a specification ¢, denoted by £ |= ¢, if the corresponding word satisfies ¢, i.e.,
L(&) | ¢, where £ = @z 2H) ¢ XHH and L(€) = L(xO)L(zW) ... L(z)) € A+
Similarly, we can consider scL.TL specifications interpreted over infinite words based on the
fact that any infinite word that satisfies a scLTL formula ¢ contains a finite “good” prefix

such that all infinite words that contain the prefix satisfy ¢ [78].

Every BLTL or scLTL formula ¢ defined over an alphabet A can be translated to an equiv-

alent deterministic finite-state automaton (DFA) A, = (5,5, A, G, p), where:

S is a finite set of states;
e Sy C S is the set of initial states;

A := 247 is the alphabet;

e (G C S is the accepting set;

p:S x A — Sis a transition function.

Such translation of BLTL and scLTL specifications to the equivalent DFA can be done using
off-the-shelf tools (e.g., [81, 56]).

Example 2 (Reach-avoid Specification): Consider an agent that navigates an environment
characterized by a goal Xg.. C X that the agent would like to reach and a set of obstacles
Oq,...,0. C X that the agent needs to avoid. The set of atomic propositions is given by
AP = {z € Xgoa1,x € Oy,...,x € O.}, where x is the state of the agent. Then, a reach-
avoid specification can be expressed as ¢ = Qliveness/\ Psatety, Where Piiveness = 0, (x € Xgoal)
requires the agent to reach the goal Xg.q in H time steps and pgafety = Lo, /\izl’.w —(z €

O;) specifies to avoid all the obstacles during the time horizon H. Let ¢ = (@21 2

58

be a trajectory of the agent, then the reach-avoid specification ¢ is interpreted as:

€ = Pliveness <= 3t € {0,... H}, 2 € X,0u,

£ Quatery ==Vt €{0,.. . H}, Vi€ {1,...,c}, 2" ¢ O,.

2.2.3 Main Problem

The goal of this chapter is to synthesize a controller ¥ : X x S x H — U for the dynamical
system (4.1) to satisfy a given specification ¢ while minimizing some cost functional J. To
take into account the BLTL or scLTL formula ¢, the controller W takes as input the system’s
states x € X, states s € S of the DFA A, and times steps ¢ € H. The cost functional J is

defined as:
) = [e w0) (@, 50),
= JXxS

ted
where ¢ : X xU — R is a state-action cost function and p¥ is the distribution of the system’s
states and the DFA’s states induced by the controller ¥. Let Xy C X be the set of initial
states of the dynamical system (4.1) and & denote a closed-loop trajectory of the system
that starts from the state x € X and evolves under the controller ¥. We define the problem

of interest as follows:

Problem 2.1. Given a nonlinear stochastic system (4.1), a high-level specification p, and a
cost functional J, synthesize a controller ¥ : X x Sx H — U that minimizes the cost J(¥) and
satisfies the specification ¢ with a pre-specified probability threshold p, i.e., Pr (& = ¢) > p,
Vo € Xp.

59

: AN
NN Projection @

NN (a1)

V(s

@)
N (g1

Figure 2.1: A cartoon summarizing the NNSynth framework. NNSynth starts by training
a neural network controller AN using the dataset D provided by an expert. The obtained
neural network is then projected to a symbolic model by evaluating the neural network at
the representative points of abstract states, i.e. using the control actions AN(ct(q),s,t).
The obtained symbolic model is then augmented with control actions in the neighborhood
of the actions proposed by the neural network AN(ct(z),s,t) £ id. A controller is then
synthesized from the augmented symbolic model. In case that a controller was not found,
the “best” controller so far is then lifted to a neural network which is further trained using the
expert dataset D to obtain a new A/NV. The loop continues until a controller with correctness
guarantees is found.

2.3 NNSynth Framework

Our framework is featured by the use of neural networks to guide the synthesis of controllers
in symbolic representation. Controller synthesis using symbolic techniques enjoy the guaran-
tees of satisfying temporal logic specifications p. However, these symbolic techniques suffer
from computational complexity whenever the dynamical models are highly nonlinear and
complex. Moreover, controllers in symbolic representation are hard to be optimized in terms
of minimizing the cost functional J. To that end, NNSynth incorporates neural networks
in the synthesis loop of symbolic controllers. The benefit of using NNs are two-fold: (i) we
use NNs to limit the search space of symbolic controllers and hence improve the computa-
tional efficiency; (ii) we use the gradient of NNs to optimize the performance of symbolic
controllers (i.e., minimizing the cost functional J) by “projecting” and “lifting” between
NNs and symbolic controllers. In this way, even though the gradient of a symbolic controller
does not exist in general, we can improve NN controllers using gradient-based approaches

and “project” the improvement to symbolic controllers.

60

Algorithm 8 NNSYNTH (Deyp, ¥, D, €, 1)

Translate ¢ to a DFA A, = (5, S0, A, G, p)
Initialize ANVin;¢ with random weights
ANy = UPDATE(AMNinit, Dexp, 1)
W0, Vinin = PROJECT-BY-SYNTH(ANp, A,,)
for k=0,..., K —1do

if Vipin > p + € then

Return Uy, Vi,

end if

AN, = LIFT(¥y)

MV 41 = UPDATE (AN, Dexp, 1)

Uit1, Vinin = PROJECT-BY-SYNTH(AN 41, Ay)
: end for
: Return Vg, Viin

— =

We first give an overview of our framework, and then present each step separately in the
following subsections. The overview of the proposed NNSynth is depicted in Figure 2.1.
Algorithm 8 outlines the framework. After translating the given specification ¢ to the
equivalent DFA A, NNSynth trains a neural network ANy using gradient-based approaches
such as imitation learning of the expert dataset Dey, with learning rate n (line 3 in Algo-
rithm 8). The trained neural network is then projected to a symbolic controller ¥, through
the procedure PROJECT-BY-SYNTH presented in Algorithm 9 (line 4 in Algorithm 8). If the
resulting symbolic controller ¥, does not satisfy the specification ¢ with probability at least
p~+¢ (line 6 in Algorithm 8), the controller Uy, is lifted to a neural network ANV}, for further
training (line 9-10 in Algorithm 8). This synthesis loop iterates until a symbolic controller

with the desired correctness guarantee is found.

2.3.1 Step 1: NN Training

The first step of NNSynth is to train a NN controller ANV : X x S x H — U that minimizes
the cost functional J. The NN controller can be trained using either imitation learning or
reinforcement learning. For imitation learning, the training dataset is given by a set of expert-

provided trajectories Deyp = {(xgt), sg-t),u;t))}, where the trajectory index j = 1,2,..., M

61

and the time step t = 0,1,..., H. Alternatively, the NN controller can be trained by
reinforcement learning, which requires the expert to provide the state-action cost function
c: X x U — R instead of the dataset Dey,. Neural networks are highly parameterized and
can be updated using gradient-based approaches AN 1 =ANN;, — nVJ(AN), where n € Rt
is the learning rate. Let AV denote a neural network parameterized by weights 6, then the

gradient VJ(ANY) can be approximated using sampled trajectories:

M H
1 ~
JAN)) = 57 32 3 VoA (], 57) QL (2.4)
i=1 t=0
where M is the number of trajectories, H is the bounded time horizon, and Q\Z@ is the

estimated cost-to-go. Detailed optimality analysis of the gradient-based update is given in

Section IV.

2.3.2 Step 2: NN Projection

Regardless of the use of imitation learning or reinforcement learning, the resulting neural
network AN is not guaranteed to satisfy the specification ¢ and hence can not be used
directly as a controller. Nevertheless, the neural network contains relevant control actions
that can be used to obtain the final controller. To that end, NNSynth projects the trained
neural network AV to a symbolic model and synthesizes a symbolic controller ¥ based on

the symbolic model.

To construct the symbolic model, we first partition the continuous state space X C R”"
into a finite set of abstract states X = {q1,...,qn}, where each abstract state ¢; € X is
an infinity-norm ball in R™ with a pre-specified diameter A € R* (see Section 2.4 for the
choice of A). The partitioning satisfies X = {J .5 ¢ and Int(g;) N Int(g;) = 0 if i # j. Let

abs 1 X — X map a state € X to the abstract state abs(x) € X that contains z, i.c.,

62

x € abs(z), and ct : X=X map an abstract state g € X to its center ct(q) € X, which is
well-defined since abstract states are inifinity-norm balls. With some abuse of notation, we

denote by ¢ both an abstract state, i.e., ¢ €)A(, and a subset of states, i.e., ¢ C X.

Given the dynamical model (4.1), the DFA A, = (5, So, A, G, p) of the specification ¢, and a
state space partitioning X , we project the trained NN controller AV to the symbolic model

EgN: (X® X&, UMW, X&, TV as follows:

o X® =X x S is a finite set of states;

o X& = {(q0,0(s0, L(q0)) | g0 € Xo, 50 € So} is the set of initial states, where Xo = {q €
X | ¢ € Xo} and L:X — A is the labeling function that assigns to each abstract

state q € X the subset of atomic propositions f}(q) € A that evaluate true at g;

N - {NNV(ct(q),s,t) | q €)A(,s € S,t € H} is a finite set of control actions by

evaluating NV at the center of each abstract state;

o X& = X x G is the accepting set;

e The transition probability from state (¢,s) € X© to state (¢, s') € X® under action
u € U is given by:

(

Pr(q/|et(q),u) if s = p(s, L(¢')) and

T™M4d','|g, 5,u) = ue IANMct(q), s,1) | t € HY (2.5)

0 otherwise.

In (2.5), the transition probability Pr(¢/|ct(q),u) can be computed as the integral (2.2).
The symbolic model EJ;W considers only control actions taken by the trained NN, i.e, u €
UV, Computing such symbolic model Z{;W is straightforward and entails evaluating the NN
controller at the center of each each abstract state and computing the transition probabilities

associated with these actions.

63

2.3.3 Step 3: System Augmentation

The symbolic model EQN may contain transitions that violate the given specification ¢ since
the trained neural network AV lacks correctness guarantees. Therefore, the next step is to
“augment” E@W with additional transitions corresponding to control actions that are close to
those taken by AV. This augmentation will provide the controller synthesis algorithm with
the freedom to choose control actions not contained in the set UV, Given a precision 6 € R

and a range parameter I € N (see the choice of § and I in Section 2.4), we construct the

augmented symbolic model E{;W“ = (X%, X, ﬁNN+5,X§, TNV where X®, X§, and X§

are the same as those in Zgw, with a finite set of actions UM+ and transition probabilities
TN+ a5 follows:
UMV — {ANM(ct(q), s, t) £ i | g€ X,s € S,t € H,ie I} (2.6)
Pr(q'|ct(q),u) if 8" = p(s, L(¢')) and
TVY(, 8 |g,5,u) = u e {NMct(q), s, t)£id |t € Hie I} (2.7)
0 otherwise

where with some abuse of notation, we use NN(ct(q), s,t) £ 6 to denote NNV(ct(q), s,t) +
(4010, 490, . . ., Fipd] T with iy, 4o, .. .4 € {0,1,..., I}. In other words, the augmented sym-
bolic model EQWJF‘S takes into account all the control actions that are 6,24, ... 1) away from
those given by the neural network ANV, where the distance is considered for each dimension

of the control input v € R™.

64

2.3.4 Step 4: Controller Synthesis

The next step is to synthesize a controller ¥ : X x S x H — U using the augmented
symbolic model ZQWJ“S. Specifically, we first synthesize a controller U: X xSxH — U that
maximizes the probability of reaching the accepting set X& in ZQW”. Then, the controller
U : X xS x H — U can be obtained by letting ¥(z, s,t) = @(abs(m), s, 1), i.e., applying the
same control action \Tl(q, s,t) at all states = € ¢, where ¢q € X. In Section 2.4, we will show
that such a controller ¥ maximizes the probability of satisfying the given specification ¢ for

the dynamical system (4.1) with continuous state and action spaces.

We use dynamic programming (DP) to synthesize the controller U: X xS x H— U that
maximizes the probability of reaching the accepting set X in the augmented symbolic model
Ef;WJF‘S. To that end, we define the optimal value functions V;* : X® — [0,1] that map a
state (¢,s) € X® to the maximum probability of reaching the accepting set X§& in H — ¢
steps from the state (q,s). When ¢ = 0, the optimal value function V' yields the maximum
probability of reaching the accepting set X& in H steps, i.e., the maximum probability of
the dynamical system (4.1) satisfying ¢. The optimal value functions can be solved by the

following dynamic programming recursion:

Qi(g,8,10) = La(s) + 1sa(s) Y Viuld,)T, g, 5,0) (2.8)
(q/78,)€X®
Vilgs) = max Qu(q, s,u) (2.9)

u€{NN(ct(q),s,t)LidlicT}

with the initial condition V}; (g, s) = 1¢(s) for all (¢,s) € X®, where the transition proba-

bility matrix 7"V is given by (2.7) and t = H — 1,...,0.

Critical to the speedup of NNSynth is that the entries TAN*9(¢/. §'|q, s, u) are nonzero only

when u € U AN+0 4 e., the control actions are close to that suggested by the neural network.

This avoids computing all the transition probabilities from any state (¢,s) € X® to any

65

state (¢/,s') € X® under any control action u € U, which is usually the computational bot-
tlenecks for abstraction-based controller synthesis. Further speedup is achieved by limiting
the search of the optimal action to the neighborhood of the actions suggested by AJV, i.e.,

the maximization over {AN(ct(q),s,t) & id | i € I} in (2.9).

Algorithm 9 presents details on using the NN controller AV to guide the synthesis of the
symbolic controller ¥ by summarizing Subsections 2.3.2, 2.3.3, and 2.3.4. Given a neural
network AV and a DFA A,, NNSynth first projects AV to the augmented symbolic model
Z{;WH (line 6-11 of Algorithm 9), where the transition probability matrix /M9 is defined
as (2.7). In particular, the entries T"V*9(¢/, s'|q, 5, 1) are computed only if the control action
u is close to that given by AV and u has not been considered before at (¢,s) € X%, i.e.,
u & Uputrer(q, $) (line 7 of Algorithm 9). The optimal control action at each state (¢, s) € X®
is determined as the maximizer of the Q-function (line 12-21 in Algorithm 9). Unique to
NNSynth, the optimal action is searched over the local action space {AN(ct(q), s,t)£id | i €
I} at each state (g,s) € X®. In line 9 of Algorithm 9, B,(f(ct(q),u)) denotes the subset
of abstract states that are in a ball centered at f(ct(q),u) with radius r, where 7 is a user-
defined probability cut-off (i.e., when probability is smaller than the cut-off, the probability
is treated as zero), which allows further speedup by discarding transitions with small enough
probabilities [82]. The resulting controller ¥ : X x S x H — U applies the same control

action U(q, s,t) at all states z € ¢ (line 20 of Algorithm 9).

2.3.5 Step 5: Lift to NN

To further minimize the cost J(Wy), NNSynth “lifts” the symbolic controller ¥y, obtained in
the above step to a neural network AN, which allows us to employ the well-developed
deep policy gradient approaches to update the controller. Such lifting can be done by

imitation learning with sampled trajectories of the dynamical system (4.1) controlled by

66

Algorithm 9 PROJECT-BY-SYNTH (AN, A,)

1: for (¢,s) € X® do
2: Vg, s) =1g(s)
3: end for
4: Upusier(q, 8) = set() for all (¢,s) € X©
5. fort=H —1,...,0do
6: for (¢,5) € X® do
7 for u € {AN(ct(q),s,t) £id|i € I} \ Upuster(q,) do
8: Ubuffer(Qa 5) = Ubuffer(Qa 8) U {U}
9: Compute T (¢ &' |q, s, u), Vg € B (f(ct(q),u))
10: end for
11: end for
12: for (q,s) € X® do
13: if s € G then
14: Q:(q,s,P) =1
15: else
16: Qi(q,s,P) = Z Vt*+1(q/7 S,)TNN+6(QI7 8,|Q7 S, u)
(¢/,s")eX®
17: end if
e Vi(a,s) = we (ANt (@) o) £idliE T} Qulg.s,u)
19: \f/(q, s,t) = argmax Q+(q, s,u)
ue{ANM(ct(q),s,t)£idlicI}
20: U(z,s,t) = \T/(q, s,t) for all z € ¢
21: end for
22: end for
23: Vipin = min Vi (g, s)

(g,9) EX?
24: Return ¥, Vi,

V.. The obtained neural network is then used as an initialization for further training by

either reinforcement learning or imitation learning of the expert dataset Dey,. In Section 2.4,

we analyze the performance of the synthesized controllers by taking into account the error

due to the lift.

67

2.4 Theoretical Analysis

2.4.1 Correctness Guarantee on Specification Satisfaction

We provide theoretical guarantees of NNSynth on both satisfying the given specification
¢ and minimizing the cost functional J in this section. The satisfaction of ¢ with the
pre-specified probability is correct-by-construction. In particular, the procedure PROJECT-
BY-SYNTH (Algorithm 9) maximizes the probability of reaching the accepting set Xg in
the augmented symbolic model ZQW”. We show that the resulting controller maximizes
the probability of satisfying the given specification ¢ for the dynamical system (4.1), and
then bound the probability difference between the symbolic model ZQWM and the dynamical
system (4.1). Let H be the bounded time horizon in ¢, A be the Lebesgue measure of the
state space X, L, be the Lipschitz constant of the stochastic kernel 7 (in (2.2)), and A be
the grid size used for partitioning the state space X when constructing the symbolic model

33", Then, the correctness guarantee on satisfying ¢ is the following:

Theorem 2.2. Consider Algorithm 8 returns a symbolic controller Uy with a probability
Vinin = p + €, where ¢ = N\HAL.. Then, the dynamical system (4.1) controlled by ¥y is
guaranteed to satisfy the given specification ¢ with probability at least p, i.e., Pr (fff,k = gp) >

p, Vr € Xj.

Proof. By the construction, the augmented symbolic model EQ/N” = (X®, X2 UMV, X§&, TNV
is the product of the DFA A, = (5,50,A,G,p) and the finite-state automaton F =

()/(\' ,)?0, AN+ , T%), where the transition probabilities are given by:

/ Pr(q'|ct(q),w) if u € {NN(ct(q),s,t) £id|t € H,i e I}
Tr(d|q,u) =
0 otherwise.

68

As a property of the product automaton, the probability of the finite-state automaton F
satisfying the given specification ¢ equals the probability of the product automaton E/S;WM =
F ® A, reaching the accepting set X5. Then, we have Pr <§%k = gp) > pfor all g €)A(O,
where S%k is a trajectory of F starting from ¢ under the control of \/I\fk. Finally, we use the
fact that the difference in the satisfaction probabilities between the finite-state automaton

F and the dynamical system (4.1) is upper bounded as follows [83, Theorem 2.1]:

‘Pr (53% - gp) —pPr(e = gp)‘ < AHAL,, Vz € q.

2.4.2 Projection and Lift Error

Now, we focus on the performance analysis of NNSynth, i.e., the optimality of controllers
returned by Algorithm 8 in terms of minimizing the cost functional J. To circumvent eval-
uating the gradient of symbolic controllers V.J(W¥y), each iteration of Algorithm 8 lifts a
symbolic controller Wy to a neural network AN} (line 9 in Algorithm 8), updates the neural
network using its gradient V.J(AN;) (line 10 in Algorithm 8), and projects the updated
neural network AV, back to a symbolic controller Wy ; (line 11 in Algorithm 8). In this
subsection, we focus on the lift and projection procedures, and present the overall perfor-

mance guarantee in the next subsection.

Recall that the symbolic controller ¥ : X x S x H — U returned by NNSynth is given by
U(z,s,t) = ITf(q, s,t) for all x € ¢ (line 20 of Algorithm 9). Such a controller ¥ is known as
an abstraction-based controller, which is featured by applying the same control action at all

states in the same abstract state q € X (when the DFA’s states s € S and the time steps

69

t € H are fixed). We use C,ps to denote the set of all abstraction-based controllers:

Cabs = {V : X x Sx H—U|V(xy,s,t) = V(xy,s,t)

if abs(z,) = abs(z,),Vs € S,Vt € H}. (2.10)

With the notation of C,ps, our framework can be viewed via the lens of mirror-descent [|, i.e.,
NNSynth updates the controllers in the neural network space and projects the trained NNs
back to the set of abstraction-based controllers C,,s in each iteration of the synthsis loop.
Given a neural network AN, 1, the procedure PROJECT-BY-SYNTH (Algorithm 9) projects
AMN41 to an abstraction-based controller W, ; € C,,s while maximizing the probability of
satisfying the specification ¢ at the meantime. This leads to the projection error com-
pared the abstraction-based controller ¥y, € Caps that minimizes the distance to the neural

network, i.e., Up, , = argmingce | ¥ —ANji1|. In Proposition 2.4, we upper bound the dif-

abs

ference between the abstraction-based controller Wy, returned by the projection procedure

PROJECT-BY-SYNTH and the actual minimizer ¥, of the distance to MNj1.

Proposition 2.3. Let T : XxSxH — U be an arbitrary controller and V* = argmingec | ¥—
Y|?. Consider an arbitrary abstract state q €)?, a DFA’s state s € S, and a time stept € H.
If 3¢ € R such that | Y (z1,s,t) — Y(x2,8,t)| < ¢ for all x1,25 € q, then Iy € q such that
[T (y, s,1) = W*(ct(q), s,)] < c.

Proof. By evaluating W at the centers ct(q), we have

U* = argmin| ¥ — Y|
lI/ecabs

= argminZZ/ W (z,s,t) — Y(z,s,t)|*dr

VECabs tcH s€S

_ argmmZZZ/H\lf (ct(q), 5, 1) — Tz, 5, 1)|2da. (2.11)

vel
ECabs tcH seS le q

70

Since the value of ¥*(ct(q), s,t) can be chosen independently at different (g, s,t) € X x 8 x
H, (2.11) yields:

T*(ct(q), 5, 1) = argmin / [— Tz, 5,0)|2dz. (2.12)

uelU

Now, we prove the proposition by contradiction. Assume that Vx € ¢, | Y (z, s,t)—V*(ct(q), s, t)| >
¢, then fq I (z,s,t) — ¥*(ct(q), s, t)|*dx > *A,, where A, is the Lebesgue measure of the

abstract state ¢. This along with (2.12) yields:
m1n/||u —Y(x,s,t)|*dr > A (2.13)
Since |Y(z1,s,t) — Y(z2,s,t)| < ¢ for all z1,29 € ¢, by choosing u = Y(2/,s,t) with an

arbitrary 2’ € ¢, we have [|u— Y(x,s,t)|*dz < ¢*A,, which contradicts (2.13). O

Proposition 2.4. At an arbitrary iteration k € {0,..., K — 1} in Algorithm 8, let Uy 4
be the abstraction-based controller returned by the procedure PROJECT-BY-SYNTH (line 11
in Algorithm 8), and Vi, = argmingec , |V — ANpy1|, where NNiyy is the updated NN
(line 10 in Algorithm 8). Then, the difference between Wi,y and Yy, is upper bounded as

follows:

[— Wi o] = O (6 + ML) (2.14)

In the above proposisition, L,, is the Lipshitz constant of the neural network ANV i :

X xSxH—=U,ie.:
||NN}€+1(ZL’1, S,t) —NNk+1<J]2, S,t)” S Lnn”l’l — Ig” (215)

for all 1,20 € X, s € S, and t € H. The parameter \ is the grid size in partitioning

the state space X, § and I are the precision and range parameters in system augmentation,

71

respectively (see (2.7)).

Proof. Since Wiy, ¥y, | € Caps, We evaluate their values at the center ct(q) € X of each

abstract state q € X:

[Phr1 — Wiyl

=S [(e st) - Wi s 0P da

tecH s€S

=3 3N AN Tia(etlq), s.t) — T (ct(q), s, 1)

tcH s€eS qe)?

<|SIHA max [Wia(et(a),s,0) = Wi (ct(a),s,), (2.16)

eXxSxH

where A, and A are the Lebesgue measure of the abstract state ¢ and the state space X,
respectively. Consider an arbitrary choice of g € X ,s €S, and t € H. By Proposition 2.3,
since |ANji1(x1,8,t) — NNji1(xg, 5,t)| < ALy, for all x1, 25 € ¢, there exists y € ¢ such

that:
ANk +1(y, 5,8) — Wiy (ct(q), s, 1) < ALy (2.17)

With this choice of y, we have:

[Wkia(ct(a), s,8) = Wrpa(ct(q), s, 1)
< W54 (ct(a), 5,) = MNoya (v, s,)] + [ANkya (ct(q), s, 1)
— MNia (y, 5,)] + [Weia(ct(q), s,1) — ANg1a(ct(q), s,1)]

< /m8I + 2)\Ly, (2.18)

where the last step uses (2.17) and |Us1(ct(q), s,t) —ANk11(ct(q), s,t)| < /mdl. The later
equation holds since W is the projection of AN}, through the procedure PROJECT-BY-

SYNTH, which first evaluates AN, at the centers ct(g), and then augments local actions

72

within the radius 6/ in each of the m dimensions of U C R™. Since (2.18) holds for an

arbitrary choice of (g, s,t) € X x S x H, substituting (2.18) into (2.16) yields (2.14). O

The LIFT procedure (line 9 in Algorithm 8) trains a neural network ANV, whose output
is close to that of the abstraction-based controller W;. In particular, we use the train-
ing approach [173] to memorize the outputs of W, at the centers of abstract states, i.e.,
U, (ct(q), s,t) = ANi(ct(q), s, t) for all g € X, s € S, and ¢t € H. The following proposition

provides an upper bound for the lift error.

Proposition 2.5. Consider the neural network NN, is given by lifting an abstraction-based
controller Wy, i.e., NN, = LIFT(Uy) (line 9 in Algorithm 8), and the Lipschitz constant of
AN, 08 Ly, then AN, — Ui = O (ALpy).

Proof. By evaluating Wy at the centers ct(q), we have:

JANG — Wy |

DI RIIBRUEL ACRYIKE

teH s€S

= ZZZ/HNNM%SJ) — W (ct(q), s,)] *dx

< |S|HANLyn)* (2.19)
where A is the Lebesgue measure of the state space X. The last step of (2.19) is due to:

[AN (2, 5,1) = Br(ct(q), s, t)] < [ANk(z, s,t)
— AN(ct(q), s, 1) + [AV(ct(q), s,1) — Wr(ct(q), s, 1)]

< ALp, + ¢, (2.20)

73

for all z € ¢, where c is constant given by:

c= max [AN(ct(q), s,t) — Ur(ct(q), s,)|

(g,5,)EXxSxH

which can be zero by training NN to memorize the outputs of W, at all the centers of abstract

states. O

2.4.3 Overall Regret

In Algorithm 8, the procedure UPDATE (line 10 in Algorithm 8) improves the neural network
AN, using its gradient, i.e., ANy = NN, — nVJ(AN,), where 7 is the learning rate and
VJ(AN;) can be evaluated as (2.4). This can be treated as an approximation of updating
the abstraction-based controller ¥y, € Cups directly through Yy = ¥y — nVJ(Vy), where
Yii1 : X xS x H — U is not necessarily an abstraction-based controller and needs to
be projected back to the set C,,s. We take into account this gradient approximation error,
along with the projection and lift errors in the previous subsection, to provide the overall

performance guarantee of NNSynth in terms of regret as follows:

Theorem 2.6. Consider the synthesis loop (line 5-11 in Algorithm 8) executes K iterations
and the abstraction-based controller obtained at the end of each iteration is Wy, k=1,... K.
Let U* be the optimal abstraction-based controller, i.e., V* = argmingcc , J(V). Then, the

regret over K iterations is upper bounded as follows:

= > J(Wy) = J(TF) =0

1 & (1 S + AL,
+—
k=1

— + ALy + n) : 2.21
K p (2.21)

74

In the above theorem, by choosing the learning rate n = \/% + 01 + ALy, (2.21) becomes:

K
1 . 1
= :J(\Ifk)—J(\If):O<>\Lm+\/?+51+)\Lnn),

which shows that when the precision parameters A\ and ¢ approach zero, the regret can
be arbitrarily small by increasing the number of iterations K. In general, the choice of
parameters A and ¢ depends on the satisfaction probability and regret that need to be

achieved, and these parameters can be determined based on Theorem 2.2 and Theorem 2.6.

In the proof of Theorem 2.6, we use D : U x U — R to denote the distance between
two controllers for simplicity of notation, i.e., D(Yy,Ts) = $|T; — T5|?, where & = {T :
X x S x H— U}. We will use the identity that for any T;, Ty, T3 € U it holds that:

(Y1 — "9, Ty —T3) = D(Y1,YT2) + D(Y3,T;) — D(T3, Ts). (2.22)

Proof. Let B be the error due to the gradient approximation using neural networks, i.e.,
MNiy1 = Yii1 + Br, where NN =AN;, — nVJ(AN;) and Ty = Uy — nVJ (). Due to

the convexity of J over Ca,ps, we have that for any U € C,p:

J(Uy) = J(U) < (VJ(U),) —). (2.23)

5

We now bound the RHS of (2.23):

(VJ(Wy), Uy — W) = %(npk T, U — W) (2.24)
%(qfk — ANy, U —) + %<5k> T, —) (2.25)
%(D(\If T,) — DV, ANest) + D(Wp, ANs)) + %wk, T, — 0 (2.26)
< C(D(¥, %) = DV, W) = DV AN
+ D(W, AN)) + %m, U, —) (2.27)

< %(D(\IJ V) = DV, Weiq) + ek + %) + %(Bk, Uy, — W), (2.28)

where the projection error e, £ D(U,W¥;,1) — D(V, W5, ,) and v, = D(Vj, ADNjy1) —
D(¥; 1, NNj41) is the relative improvement. In the above, (2.26) uses the identity (2.22)
above; (2.27) is due to the generalized Pythagorean theorem: if W, , = argming . D(¥', AN;11),
then it holds that D(¥, ANj41) > D(V, U5) 4+ D(U;_ 1, MNji1) for all U € Cyps.

The projection error £; can be bounded as follows:

er 2 D(V, Uy iq) — D(V, V5,) (2.29)
< (W1 = Wiy, Upr — 0) (2.30)
S Wi = Uy [[Whsa = | (2.31)
< A Whir — Vi, (2.32)

U — U'|. In the above, (2.30) uses the identity (2.22)

where the diameter d = SUDy yrec

abs

and the fact that the distance defined by D is nonnegative; (2.31) is due to Cauchy—Schwarz

inequality.

76

The relative improvement =, can be bounded as follows:

= D(Wr, ANgy1) = D(T5 1, AN 1) (2.33)
1 1, . .
= §||‘1’1<:||2 - §||‘1’k+1||2 + (AN, Uy — i) (2.34)
1
< <N-/\[k+1 — Wy, ‘IJZH - \I’k> - 5”% - \PZHHQ (235)

* 1 * *
< (Thgr =V, Uy —Wg) — 3 10— s [P+ (B Uy — W)
* 1 * *
< (VI (i), Vi — Vi) — 3 19— [P+ (B Wiy — W)

1
< S5+ dli], (2.36)
where L is the Lipschitz constant of J; (2.35) is due to the strong convexity |¥; [?* >
LHWg]? + (U, Wry —) + 1|0~ W5 %5 (2.36) is because az — b2 < %, Vz € R and uses

Cauchy—Schwarz inequality.

The error S, can also be bounded:

18k] = IMNk1 — Tia (2.37)
< AN = Wi| + 0| VI(ANL) — VI ()] (2.38)
< (1 + ney) JANg, — Wy (2.39)

where ¢; is the Lipschitz constant of VJ.

Substitute (2.32), (2.36), (2.39) into (2.28) yields:

(VJ(Uy), ¥y — 0)
1 1
< (D) = DOV, Whir) o+ d| Wha = W |+ 2d(1 4 e) AN = i) + 315

(2.40)

7

With (2.40), the summation of (2.23) over K iterations yields:

K
1 1
7 2 (W) = J(¥) < (DU 1) = DY, W)
d 2d
oW = Wil (1) ANG = B+ 5 L5 (2.41)

By following the similar process as (2.29)-(2.32), we have D(¥,U;) — D(¥, Uy,) < d*. By
Proposition 2.4, the projection error |V, — W5 | = O (0] + AL,,). By Proposition 2.5,
the lift error |AN, — Uy = O (ALyy,). With these bounds, (2.41) leads to (2.21). O

2.5 Results

We implemented NNSynth in Python and evaluated its performance on a Machook Pro 15
with 32 GB RAM and Intel Core 19 2.4-GHz CPU. To compare with existing tools, we run all

experiments on a single CPU core without using GPUs to accelerate neural network training.

Table 2.1: Comparison between NNSynth and AMYTISS.

’ Benchmark \ 2-d Robot \ 5-d Room Temp. \ 5-d Traffic ‘
Specification ¢ Reach-avoid Safety Safety
Specification horizon H 16 8 7
Problem complexity | X x U] 705600 3429216 1.25 x 108

Satisfaction Probability Vi 96% 95% 80%
NNSynth (time) [s] 49.0 319.1 367.7

AMYTISS (time) [s] 108.4 34640.0 23100.0
Speedup 2x 108 x 62 x

78

2.5.1 Benchmarks and Performance

We start by evaluating NNSynth on three benchmarks with an increasing number of com-
plexity. We compare NNSynth with the state-of-the-art tool in synthesizing controllers for
stochastic systems, AMYTISS [82]. Table 2.1 summarizes the comparison results. For each
of the benchmarks, we list the specification ¢ used in this experiment along with its horizon
H, the complexity of the problem measured by the number of abstract states times the
number of discretized control actions \)? x U |, the average probability of satisfying the spec-
ification (averaged over the state space) Vi, the execution time for each of the two tools,
and the corresponding speedup. Indeed, the last row in Table 2.1 empirically proves that
using neural networks to guide the controller synthesis provides significant improvement to

the overall execution time. Below, we provide more details about each of the benchmarks.

Experiment #1: 2-d Robot. Consider a 2-dimensional robot model given by:

2 = 20 4y Peos(ul?) +

20 = 20 + uPsin(ul?) + 7,

where the state space X = [—10, 10] x [—10, 10], control input space U = [—1,1] x [—1, 1], and
the noise (1, <) follows a Gaussian distribution with covariance matrix ¥ = diag(0.75,0.75).
We are interested in the task of steering the robot into a goal set [5,7] X [5,7] in 16 time

steps, while avoiding the obstacle set [—2,2] x [—2,2] (see Figure 2.2).

To construct the abstraction-based controller, we partition the state space with discretization
parameters (0.5,0.5), and the input space with (0.1,0.1). This leads to a total number of
|X| = 1600 abstract states and |U| = 441 control actions (by including the upper and
lower limits of the input space as additional control actions) leading to a complexity of
|)? x U | = 705600. NNSynth starts by training a neural network using imitation learning

with a total of 121 expert trajectories. The neural network consists of two hidden layers

79

Figure 2.2: Closed-loop trajectories sampled from different initial states using the synthesized
controller in Experiment #1.

Figure 2.3: State trajectories sampled from different initial conditions using the synthesized
controller in Experiment #2.

and ten neurons per hidden layer. We used Keras to train the neural network with the
default adaptive learning rate optimization algorithm ADAM. By setting 6 = 0.1 (the same
precision used to discretize the input space) and I = 10, NNSynth only needs to consider 100
local control actions (out of the |U] = 441 total control actions) to construct the finite-state

SAN+6 - The controller synthesis is then executed to find a controller U that

abstraction
maximizes the probability of satisfying the specification, and one was found in 49.0 seconds
with an average satisfaction probability of 96%. The algorithm terminates in one iteration,

and lifting the abstraction-based controller to a NN was not needed.

Using the same discretization parameters, AMYTISS was able to find a controller that
satisfies the specs with 93% probability in 108.4 seconds. This shows a 2.2x speedup of our
tool (and an increase in the satisfaction probability) thanks to the fact that only 25% of the
state-action pairs are considered during the synthesis. These 25% actions are chosen by the
neural network that NNSynths used to guide the search. In Figure 2.2, we present 8 example

trajectories under the control of \T/, by sampling some initial states.

80

Experiment #2: 5-d Room Temperature Control. This example considers temper-
ature regulation of 5 rooms each equipped with a heater and connected on a circle [82].
The state variables are temperatures of individual rooms, and the evolution of the 5 room
temperatures is described as:

T = 0, T + 4Tl 4w + BT,40.0167, i € {1,3}

7 7

j—;(t+1) — bzz,-z—'z(t) + nwft) + 6Tei + O‘Olgi(t)7 i€ {2’ 4’ 5}

where a;; = (1 —2n— 5 — yugt)), bii = (1 —2n— f), and wl@ = Ti(f)l + Yﬁ)l (with Ty = T5
and Ty = T1), and the parameters n = 0.3, § = 0.022, v = 0.05, T,; = —1, T}, = 50.

We consider a safety specification that requires the temperature of each room to maintain in
the safe set [18.8,21.2] for at least 8 time steps. We partition the state space with grid size
0.4 in each dimension, and use the grid size (0.05,0.05) for the input space U = [0, 1] x [0, 1].
Similar to the previous benchmark, NNSynth trains a neural network with two layers and
ten neurons per hidden layer using 935 trajectories. With I set to 7, NNSynth used only
49 local control actions (out of 441 total control actions) to compute the abstraction and
synthesize a controller. As shown in Table 2.1, NNSynth achieves a satisfaction probability
of 95% and 108 x speedup compared to AMYTISS. In Figure 2.3, we sample 100 initial states
and present the evolution of the 5 state variables, which are all maintained within the safe

set for at least 8 steps under the abstraction-based controller provided by NNSynth.

Experiment #3: 5-d Road Traffic Network. This example considers a road traffic

network divided into 5 cells, and state variables x; denote the number of vehicles per cell [82].

81

The 5-d road traffic network is modeled as:

TV TV
2 = (1= D20 4 T80 4 6y 4 0.7

Ly Ls
l'gt—H) _ (1 _Tu q)l_l(t) + Tvi—lwlgt) + 0‘7%@7 ic {2’ 4}
L; Ly
x:(f“) =(1-— @)a:gt) + Ewét) + 8u§t) + O.7§3(,t)
Ls Lo
2 = (1 - %)mét) + %w?) +0.7¢"
Ly Ly

2@ = xgt_)l (with zp = x5). Given the state space X = [0, 10]°, the input space

where w
U = [0,1]?, a noise co-variance matrix ¥ = diag(0.7,0.7,0.7,0.7,0.7), and a probability cut-
off le—4, we are interested in designing a control strategy that keeps the number of vehicles
per cell in a safety set [0,10] for at least 7 steps. To show the scalability of NNSynth, we
partition the state space and the input space into |)?| = 12500 and |ﬁ| = 10000 abstractions,
respectively. This leads to a problem complexity in the order of 10® control-action pairs. As

shown in Table 2.1, NNSynth was able to solve this problem in 367.7 seconds achieving more

than 60x speedup compared with AMYTISS.

2.5.2 Further Insights

Beyond the performance evaluation, we conducted experiments to gain insights on the
interaction between neural network training and abstraction-based controller synthesis. In
particular, we aim to understand two questions: (i) how does the flexibility in the system
augmentation (parameterized by I) help to discover the abstraction-based controller, and

(ii) how does the abstraction-based controller help the neural network training?

Experiment #4: Effect of the parameter / on performance. To answer the first
question, we vary the number of local actions that are considered at each abstract state.

To that end, Table 2.2 shows the result of running NNSynth with different values of 1. We

82

report the probability of satisfying the specifications at the end along with the execution

time.

In the 2-d robot case, the satisfaction probability grows from 55% to 96% by increasing
the number of local state-control action pairs from 4 to 100. This shows that the neural
network by itself is far away from the optimal control policy even if it is sufficiently trained.
The reason behind this could be the neural network training is stuck at a local optimal. As
favorable to NNSynth, abstraction-based controller synthesis can move away from the local
optimal and further leads to better controllers, such as the one with satisfaction probability

96% in the 2-d robot example. Similar pattern is observed in the other benchmark.

Experiment #5: Effect of lifting the abstraction controller to a neural network
on performance. Now, consider the second question. We train the neural network for
50 epochs in each iteration and compare the satisfaction probabilities for the synthesized
controllers after each iteration in Table 2.3. After five iterations of training, synthesizing a
controller, lifting to a NN, and retraining, the NN receives a total of 250 epochs of training.
For comparison, we also record the base case where we train a neural network for only one
iteration but with 250 epochs (the same total number of epochs as that accumulated over

five iterations) but without lifting from the abstraction controller to the NN.

In the 2d Robot benchmark, the base case of 1 iteration with 250 epochs, the resulting
controller achieved a 54% probability of satisfying the specifications. On the other side, with
several iterations of neural network training, controller synthesis, and lifting the controller
to a neural network, the resulting controllers improve over iterations. By the end of the
5th iteration, the neural network accumulates 250 epochs (same as the base case), but the
resulting satisfaction probability increases to 90%. This is a clear evidence that lifting the

synthesized controller to a neural network helps with the overall training of neural networks.

83

Table 2.2: Numerical results for Experiment #4.

Benchmark Number of local control- Satisfaction Execution time
action pairs (I x I) Probability Ve [s]
4 55% 21.4
2-d Robot 16 81% 23.5
49 90% 31.2
100 96% 48.1
4 65% 106.2
5-d Room Temp. 16 94% 210.3
49 95% 324.0
100 95% 630.9

Table 2.3: Numerical results for Experiment #5.

Benchmark Iteration

Total training epochs

Satisfaction Probability Vi,

number at the end of iterations at the end of iterations
(base case) 1 250 54%
1 50 30%
2 100 64%
2-d Robot 3 150 82%
4 200 88%
5 250 90%

84

Chapter 3

DoS-Resilient Multi-Robot Temporal

Logic Motion Planning

In this chapter, we present an efficient multi-robot motion planning algorithm for missions
captured by linear temporal logic (LTL) specifications, in the presence of bounded distur-
bances and denial-of-service (DoS) attacks against the communication between robots and
base stations. Given an LTL formula v, our goal is to construct robot trajectories, and associ-
ated control strategies, to satisfy ¢ and continuously establish communication paths between
robots and base stations despite the DoS attacks and the disturbances on the robot states.
Our approach combines and extends results from robust control and efficient motion planning
via satisfiability modulo convex programming (SMC). We first compute a feedback controller
that rejects the disturbance together with a perturbation of the DoS-free workspace that ac-
counts for the worst-case disturbance scenario. On the perturbed workspace, we formulate
the planning problem as a feasibility problem over Boolean and convex constraints, respec-
tively capturing the DoS-resilient mission constraints and the constraints on the nominal,
disturbance-free, robot dynamics. Numerical results show the effectiveness of our algorithm

in providing DoS-resilient plans that are robust to disturbances and support the execution

85

of complex missions.

3.1 Introduction

As multi-robot systems are increasingly being considered for a variety of mission-critical
and safety-critical applications (e.g., monitoring, disaster relief, healthcare), accounting for
the security implications of these technologies becomes key [61]. In fact, the specific nature
of these multi-agent, networked autonomous systems, as well as their complexity, expose
them to a set of unprecedented threats. Attacks may range from passive eavesdropping
of the communication channel for data interception, to active communication jamming for
disrupting legitimate transmissions, or the injection of malicious robots in the swarm [177,
59, 94]. Devising effective methods to account for these threats since the early stages of
the design process, rather than undesirably or expensively retrofitting existing designs, is an

open challenge.

A major difficulty for providing security guarantees about these systems stems from the
need to reason about the tight integration of discrete abstractions (e.g., high-level tasks,
intermittent links) with continuous trajectories and lower-level dynamics [61, 105]. This
integration can soon become daunting for complex, high-dimensional systems, since a vast
hybrid, discrete/continuous space must be explored while accounting for complex geometries,
motion dynamics, safety, and temporal goals. The difficulties are further exacerbated by the
uncertainties, as in the majority of real-world scenarios, due to internal noise sources, model
errors, and unknown or adversarial environments. In this chapter, we address these chal-
lenges by focusing on the resilient multi-robot motion planning problem for complex missions
captured by a high-level formal language, and in the presence of bounded disturbances and

denial-of-service (DoS) attacks against the communication between robots and base stations.

86

Recent work has proposed defense mechanisms for multi-robot systems that can guaran-
tee resilience to communication spoofing attacks [57, 114]. Security mechanisms against
communication-jamming attacks have also been studied based on game-theoretic approaches [172,
88, 170] or multi-objective optimization [109]. Differently from these efforts, we consider a
mission specified by a linear temporal logic (LTL) [106] formula 1); we then aim to automati-
cally generate dynamically-feasible robot trajectories, and associated control strategies, that
satisfy 1) and guarantee continuous communication between robots and base stations despite
the disturbance and the adversarial environment. To do so, we combine and extend results
from robust control [112], which separate the concerns of disturbance rejection and trajectory
planning, with a satisfiability modulo convex programming (SMC) approach [132, 133, 131],

which efficiently reasons about the combination of discrete and convex constraints.

SMC was previously applied to solve reach-avoid and LTL motion planning problems, show-
ing more than two orders of magnitude improvement in execution time with respect to
state-of-the-art techniques based on the RRT (Rapidly-exploring Random Trees) and EST
(Expansive Space Trees) methods on high-dimensional problems [132, 133, 131]. In this
chapter, we propose a novel SMC encoding that enables directly encapsulating DoS-resilience
constraints within the planning problem, by effectively capturing a notion of communication-
based adjacency, in addition to physical adjacency, between workspace locations. Further,
we introduce a robust L'TL motion planning formulation that can efficiently account for dis-
turbances in the robot system states. While LTL has shown to be capable of expressing a rich
set of specifications (e.g., safety, progress, response, surveillance, and monitoring) and sup-
port algorithmic control synthesis for a variety of applications in robotics and autonomous
systems [149, 73, 42, 165, 98, 122], traditional formulations of LTL motion planning do not
effectively account for disturbances on the robot trajectories, and tend to become imprac-
tical, especially in the presence of adversarial environments. Numerical results show the
effectiveness of our approach in providing DoS-resilient plans that are robust to disturbances

and support the execution of complex missions [141].

87

3.2 Problem Formulation

-
&=

Figure 3.1: (Left) Pictorial representation of a workspace that contains a team of three
robots, two base stations, and three jamming radars. The mission is to move at least one of
robots to reach the goal location while maintaining communication between all the robots
and at least one base station. (Middle) Any communication link that passes through a
jamming area is considered under DoS attack. (Right) The workspace is perturbed (yellow)
to account for disturbances and a coarse-grain discretization of the free space is computed.

In this section, we introduce models for the robots and the adversarial environment. We
consider a team of robots that move in a workspace YW C R? where d can be 2 or 3,
corresponding to a 2-dimensional or 3-dimensional workspace, respectively. We use |a| to
denote the infinity norm of vector a. Given two sets S; C R™ and Sy C R", the Minkwoski
(vector) sum is defined by S; @S, = {s1+s3|s1 € S1, 55 € S}, the Pontryagin (geometric) set
difference is S1© Sy = {s|s®S, C S;}. For a constant o € [0, 1] and a set S C R, we denote
by aS the set {as|s € S}. A closed hyperball in R” of radius r € R is denoted by B(r) =
{z € R"||z| < r}. For two points wy, wy € W, we denote by L£(wq,ws) the set of points that
lie on the line connecting w; and wy, i.e., L(wy, wy) = {w]jw = sw; + (1 — s)wq, 0 < s < 1}.

We formulate the Denial-of-Service (DoS) resilient motion planning problem as follows.

3.2.1 Robot, Environment, and Threat Models

We assume that the workspace WV contains a set of N; adversarial communication-jamming
radars. As shown in Fig. 3.1, each radar has an effective jamming radius causing a DoS for

any communication passing through it. We denote by J, = {w € W|w € {ji} & B,,} the

88

subset of the workspace affected by the kth jamming radar where j, € W is the position of
the jamming radar and 7, € R is its jamming radius. We suppose that the location j; and
radius r; of each jamming radar are known, and leave the case of uncertain jamming radar

position and radius for future work.

We then consider a team of N mobile robots operating in this adversarial environment.

The mobile robots obey the following motion models:

where ! € X C R™ is the state of the ith robot at time ¢t € N, u! € Y C R™ is the ith robot
input at time ¢, selected from the space of admissible controls U, T is the ith robot initial

state, and ¢! € © C R"™ is the bounded disturbance on the ith robot at time ¢.

Each robot in the team needs to establish communication, at all times, with one or more
base stations in a set of Np stationary base stations (e.g., to receive mission updates.) We
denote by B; € W the location of the ith base station. The communication between base
stations and robots can take place directly (single hop) or indirectly (multi-hop) through
other robots. Throughout this chapter, we assume a line-of-sight communication model,
in which two nodes (robots or base stations) can communicate whenever the straight line

connecting them does not pass through a DoS region.

3.2.2 Temporal Logic Specification

In addition to maintaining communication with the base stations at all times, the team must
perform a mission that is defined over a set of regions of interest. We assume that the regions
of interest are polytopes and partition the workspace as W = [J] W, where {W,,... , W, } is

a set of non-overlapping regions. For robot R;, we can associate to each of the above regions

89

a Boolean proposition in the set IT* = {x%,... 7'}, where 7r§- evaluates to one (true) if robot
R; is in region W, and zero (false) otherwise. We then denote by hyy i : W — II* the map
from each point w € W to the proposition 7T§» € II* that evaluates to one at w for robot R;.
Moreover, a subset of the state variables of each robot, describing its position (coordinates),
is also used to describe W. Therefore, we denote as hy_,yy : X — W the natural projection

of the state z* onto the workspace W, and by hy_,: the map from the state space of robot

R; to the set of propositions II?, obtained after projecting the state onto the workspace, i.e.,

hx (1171) = hWﬁHi(hXeW(xi))-

We express the specification for a multi-robot mission using linear temporal logic (LTL) [106].
LTL formulas can compactly describe temporal orderings of events along the robots’ trajec-
tories and express a rich set specifications (e.g., safety, progress, response, surveillance, and
monitoring) to capture complex tasks [149, 73, 42, 165, 98, 122]. Let I = Uf;l IT* be the
set of propositions associated with the workspace regions for all robots, as defined above.
We consider formulas over a set of atomic propositions ¥, where o(m) € 3 is a Boolean or
pseudo-Boolean predicate over II. From atomic propositions in >, any LTL formula can be

generated according to the following grammar:

V=0 | 2y | Y1 Aha | 1 Vby | L U Py | Y1 R o,

where g, 91,19 are LTL formulas. Based on the above grammar, we can define false and
true such that false = ¥ A =) and true = —false. From the temporal operators until
(U), and release (R), we can derive additional temporal operators, for example, eventually
(¢) and always (O), i.e., G = true U ¢, and Ty = false R . We refer the reader to
the literature (e.g., [20]) for the formal semantics of LTL. Defining the atomic propositions
as Boolean or pseudo-Boolean predicates over II allows us to express complex multi-robot
behaviors like “either robot R; or R, must be in W;,” via the proposition oy := 7l V 72, or

“at least one robot must be in W,” using the proposition oy := Zfiﬁ mh > 1.

90

3.2.3 DoS-Resilient Motion Planning Problem

Despite the power of LTL in capturing complex missions, traditional formulations of LTL

motion planning do not account for disturbances on the robot trajectories, which tends to

be impractical, especially in the presence of adversarial environments, since disturbances can

force some of the robots (or the communication links) to enter the DoS regions, leading to

a mission failure. In this chapter, we generalize the classical formulations to account for the

uncertainty stemming from disturbances as follows.

Definition 3.1 (Trajectory). A system trajectory is a tuple including the following infinite

Sequences:

X = XoX 1 X5... is a sequence of sets of system states where X; = (X?,...,XtNR)

includes all possible states of all the robots at time t,

W= poptifia - - . 18 a control policy, where p! : R™ — R™ is the control law for the ith

robot at time t and p; = (12, ... ,,uivR) is the set of control laws for all the robots at
time t,
A = AgAiAy ... is a sequence of sets of valuations over T, where Ay = {\\ =

hy_mi(zh),xt € X}, 1 <1 < Ngr} is the set of all possible valuations for all the possible

states of all the robots at time t,

& = {&&& ... |& € =i} is a set of sequences of valuations over X where Z, =
{o:(A\t)|A\e € Ay, 05 € B} represents the truth assignments of all the Boolean and pseudo-

Boolean predicates associated with the state set X; and propositions A;.

Robot j is considered in the i¢th robot’s communication neighborhood at time ¢ if there

exists a line that connects 7 and 7 and does not pass through any jamming area J, with

1 < k < N;. However, due to disturbances, the robot states are no longer uniquely defined

91

at each time. Instead, they can take any value within the sets X} and Xg. Therefore, we

define the set of DoS-free communication neighborhoods as follows.

Definition 3.2 (DoS-Free Multi-hop Communication Neighborhood). Given a system tra-
jectory, the DoS-free, h-hop, communication neighborhood Cf;’t(h) of the ith robot at time t

can be recursively defined as:

Cf”,t“‘) = {]U € {17 o 7NR}7‘C(hX—>W(xIZf)7hX%W(:Ei)) € Jk7
Vike{l,...,N;},Vaie X\ Val e X)), (3.2)

Cl(h) = {4l € CL(1).¥ k& CL(h—}.h > 1. (33)

Definition 3.3 (DoS-Free Base Station Communication Neighborhood). Given a system
trajectory, the set of base stations C’Z’t(h) for which robot i can establish a DoS-free, h-hop

communication at time t can be recursively defined as:

Ci (1) ={jlj e {1.....Ng}, L(hxow(x}), Bj) & iV k€ {1... . N,},V x; € X/}
(3.4)

Cho(h) = {jli € C,(1).V k€ Cpy(h = 1)}, h > 1 (3.5)

Definitions 3.2 and 3.3 require a communication link to be established between two robots
(or a robot and the base stations) regardless of the disturbance. Moreover, because of the
disturbance, there may not exist a single valuation over the atomic propositions in 3 at each
time in a trajectory. We therefore require that all the possible valuations in the trajectory

satisfy the LTL specification as follows.

Problem 3.1 (Centralized DoS-Resilient Motion Planning). Given a set of Ng robots whose
individual dynamics are governed by (3.1), a set of Np stationary base stations, a mission
specification captured by the LTL formula 1, synthesize a system trajectory that satisfies the

following constraints:

92

Initial state constraint: zi =7}, Vi€ {l,...,Ng},

State constraints: X; C X, VteNVie{l, ..., Ng},

Input constraints: pi(xl) eU, Ve X;VteNVie{l,...,Ng},

Dynamics constraints: f(xi, pi(z}) @O0 C X;,,, Vaie X[VteNVie{l,...,Ng},
LTL constraints: (£,0) =¢ V& €g,

Collision avoidance constraints: ¥Vt € N,V i,5 € {1,...,Nr},i # j, |hx_w(z}) —
haw(z])| > €, with € € R, ¥V 2t € X!V 2] € X7,

DoS resilience constraints: Up", be(h) #0, VteNVie{l,...,Ng}.

3.3 Satisfiability Modulo Convex Programming (SMC)-

based Motion Planning

We resort to the Satisfiability Modulo Convex Programming (SMC) framework [132, 133, 131]
to devise a motion planning algorithm that solves Problem 3.1. SMC-based motion planning
is an iterative method that relies on encoding the planning problem, for a fixed horizon L,
as a monotone SMC formula ¢ over Boolean and convex constraints, respectively capturing

the mission constraints and the robot physical constraints.

As shown in Alg. 10, our motion planner consists of three steps. First, as an offline step, we
generate a perturbation of the workspace by inflating the DoS jamming areas to account for
the worst-case disturbance scenario. Details on how to compute the perturbed workspace
and the associated guarantees are given in Sec. 3.4. Next, we translate both the LTL mission
specification and the DoS-resilience constraints into a conjunction of Boolean constraints over
the workspace propositions. Details on the generation of these constraints are provided in

Sec. 3.5.

To solve these constraints, SMC uses an efficient Boolean satisfiability (SAT) solver to find a

93

Algorithm 10 SMC-BASED MOTION PLANNER
Input: P:= W, J, B, 1LY, f,0,To, X, U, €,1)
Input: Disturbance rejection factor

Step 1: Compute the tube set and the workspace perturbation
(Q, na) := CompuTE-RCI(f,0, X, fU)

(J* W, _ W,) = PERTURB(J, Q, W)

(W*, Adj,, Adj.) :=PARTITION(W, J*, 4% W;ZHF)

Step 2: Use SMC to plan the nominal trajectory
Initialize horizon: L :=1;
while Trajectory is not found do
[P, L]|p := ENCODE-D1s-PLAN(W*,B, 11, ¥, Adj,, Adj., 9, L)
I[P, L]|c := ENCODE-CON-PLAN(W*, f, To, X, (1 — B)U, €, L)
(STATUS, 2,v) := SMC.SOLVE(|[P, L]|p, |[P, L]|c);
if STATUS == UNSAT then
Increase horizon: L := L+ 1;
end if
end while
Step 3: Trajectory Tracking
At each time step, apply the input u; = vy + po(x: — 2¢)

candidate sequence of workspace regions that satisfies the mission and DoS constraints while
ignoring the robot dynamics, input, and state constraints. A convex solver is then used to
check the feasibility of the candidate path. If both the Boolean and the convex constraints are
satisfied, a valid trajectory is returned, consisting of the proposed plan and the corresponding
nominal state and control input trajectories. Otherwise, the proposed high-level sequence
is marked as infeasible and new candidate plans are generated until either a feasible one is
found, or no trajectory is feasible for the current horizon length L. A prominent feature of
SMC is the generation of compact infeasibility certificates, i.e., “succinct explanations” that
can capture the root causes for the infeasibility of a plan and rule out the largest possible
number of invalid plans for the SAT solver to accelerate the search. This iterative procedure
was shown to be more than two orders of magnitude faster than state-of-the-art sampling

based techniques for high-dimensional state spaces [131].

Finally, we compute a feedback control law that can track the nominal trajectory generated

using the SMC approach and the perturbed workspace. This control law will be used to

94

address disturbances during system operation. Details on the computation of the feedback

law are provided in Sec. 3.6.

3.4 Robust Controlled Invariant Sets and Workspace

Perturbation

Given the robot dynamics (3.1), a feedback controller that rejects the disturbance 6 and
forces the trajectories governed by (3.1) to evolve inside the state constraint set X can be
characterized by the notion of robust controlled invariant set contained inside X [17]. A
set Q C X is a robust controlled invariant (RCI) set for the system (3.1) if there exists a

feedback controller g : 2 — U such that, for every x; € €2, the following holds:
f(l’t,[LQ(lL't)) + Qt € Q, i Qt € @,\V/ t e N.

In other words, if the system state starts in €2, then it will stay in €2 in spite of the disturbance.
Moreover, when f is piecewise affine, we can effectively separate the goals of disturbance

rejection and trajectory planning [121].

Given a design parameter 5 € [0, 1], a disturbance-free state trajectory zo, z1,..., and an
open-loop control trajectory vy, vy, ... such that, for all ¢, z;41 = f(z,v) and v, € (1 — B)U,
we can find a robust controlled invariant set {15 and a corresponding feedback law pq,
that ensure pq,(z¢) € BU and z, € 2, © Qg for all £. In other words, the RCI set €2 can
be regarded as a “tube,” regulated by pq,, around a nominal (disturbance-free) trajectory
20, 21, - - -, determined by vg, vy, In what follows, we will restrict our attention to piecewise
affine robot dynamics for which algorithms that synthesize polytopic RCI sets are already
available in the literature [119, 112, 121]. For simplicity, we also drop the subscript § from

the RCI notation.

95

In our case, rejecting disturbances translates into designing a tube that lies entirely in the
jamming-free region of the workspace. We call such a tube an Q-perturbation (inflation) of
the nominal trajectory. We then observe that computing an €2-perturbed trajectory that lies
in the jamming-free space can be rather translated into the problem of computing a nominal
(ideal) trajectory that lies in a modified space in which the jamming area and the workspace
regions are, instead, perturbed. To derive this perturbation of the space, we proceed as

follows.

Given the LTL formula v, we denote by W, 1 the set of (jamming-free) workspace regions
whose corresponding atomic propositions appear asserted (without negation) in v, and by
Wy, — the set of workspace regions whose corresponding atomic propositions are negated in
1. We assume that a region can be either asserted or negated in v, and therefore W, ; and
Wy, — are disjoint sets. We then “inflate” by {2 the jamming areas and the workspace regions
W, that need to be avoided, and “shrink” by €2 the workspace regions WJ which must be

traversed. Formally, we obtain:

J ={J®Q|ke{l,...,N,}}

Wi_=WaQWeWw, .} W, ={WeoQ|Wew,,}

3.5 Synthesis of DoS-Free Nominal Trajectories

As pictorially shown in Fig. 3.1, we start by over-approximating the 2-perturbed jamming
areas J; using a set of polyhedra, which originates a coarse, multi-resolution, discretization
of the free space. Unlike grid-based methods, where the workspace is discretized using a grid
(or mesh) of (small) uniform resolution, the coarse-grained abstraction used in this chapter
avoids state explosion. This decomposition procedure is similar to the ones previously pro-

posed for triangular [11] or polygonal [36] representations. We denote by Wy, Wi, .. . WX

96

the set of regions obtained after discretization, r* being the total number of regions.

Based on this partition, we compute two adjacency functions, denoted by Adj, and Adj. that
correspond, respectively, to the physical adjacency and communication adjacency relations
between the regions. In particular, two regions W; and W; are said to be physically adjacent,
written Adj,(W;, W;) = 1, if the polyhedra W} and W share one facet; otherwise, we write
Adj,(W;,Wy) = 0. Similarly, W} and W; are communication adjacent if we can connect

any point of W} with any point of W} without passing through a jamming area, that is,

1 if L(w,wy) € T, YEke{l,...,N;}LV (w;,w;) € Wi x Wr
Adj (W W) = e : :

0 otherwise

We use these notions of adjacency to encode the mission and DoS-resilience constraints as

follows.

3.5.1 Encoding Mission and DoS-Resilience Constraints

For each robot, region, and time, we introduce a Boolean variable 7r§-7t which evaluates to one
if and only if robot ¢ is in region W} at time ¢. Similarly, for each base station and region,
we introduce a Boolean variable KJ; which evaluates to one if and only if base station i is in
region W, since base stations are stationary and their locations do not change with time.
We use these decision variables along with the physical adjacency function Adj, to translate
the high-level, discrete planning constraints into a conjunction of Boolean constraints using
the Bounded Model Checking (BMC) encoding technique for LTL model checking. We refer
the readers to the literature [20] for details on the Boolean encoding of LTL specifications.

In the remainder of this section, we report the encoding of the communication constraints.

We introduce a set of Boolean variables of the form r,(i, j, h), each evaluating to one whenever

97

robot ¢ can establish an h-hop DoS-free communication with robot j, and zero otherwise.
Similarly, a Boolean variable b,(i, j, h) evaluates to one whenever robot i can establish an
h-hop DoS-free communication with base station j. We then capture the communication

constraints as follows.

Adjacency Constraints. We encode single-hop communication adjacency as the conjunc-

tion of the following constraints:

Vte{0,...,L}Vijef{l,. .. NeknmGj1) < \/ [, A |\ w.]|, (36

k=1 E'eNc(3)
where N, (i) = {j € {1,... 7" }Adj.(W;,Wj) = 1} is the set of indexes marking the regions
that are communication adjacent (neighbors) to region W}. Similarly, for the base stations,

we obtain

vte {0,...,L},Vie{l,...,Ng},Vje{l,...,Ng}:

r¥*

b(i, 5, 1) <\ {mn |\ =] |- (3.7)

k=1 k' €N ()

Transitivity Constraints. To encode multi-hop communication, we generate the following

constraints:

vt e {0,...,L},Vi,j € {l,...,Ngh,Vh e {1,..., Ng}:

Nr
VoV Gilik) Arilk, j, ha)) < r(is g h) (3.8)
k=1 h1,h2€{1 NR}

hi+ho=h

98

and conjoin them with the following ones:

vte {0,...,L},Vie{l,...,Ng},Vje{l,...,Ng},Vh € {1,...,Np}:

Ngr
VoV @il k) Abi(k, G b)) < bili, G h). (3.9)
k=1 hy,ha€{l,.,Ng}

hi+ha=h

DoS-Resilience Constraints. Finally, the constraints below ensure that each robot is

connected with at least one base station, by either a single or multi-hop communication link:

L Ng Ng

Vie{l,....Ng}: AV V blijhn). (3.10)

t=0 j=1 h=1

3.5.2 Nominal Trajectory Planning

As discussed in Sec. 4.5, we use a SAT solver to find a high-level, candidate sequence of re-
gions that satisfy the Boolean formula encoding the LTL specification and the DoS-resilience
constraints. It is possible to represent this trajectory, which is infinite in general, with a fi-
nite sequence of the form p = (pop1 ... pr—1)(pk - .. pr)*, consisting of a prefix pop; ... pPr_1

and a loop sequence py ... pr, that repeats indefinitely, as denoted by the superscript w [20].

Given the system piecewise affine dynamics f, the state and control constraint sets X and
(1—/)U, the robot initial state Ty, the high-level candidate path p, the margin € for collision
avoidance, and the {2-perturbed workspace regions associated with p, checking the feasibility
of the candidate path, generating the nominal state trajectory z{, zi, ... for each robot, or
providing succinct infeasibility certificates, whenever such state trajectories do not exist, can

all be cast as convex programs [132, 131].

99

3.6 Tracking of the Nominal Trajectory

The final step is to compute the control law for tracking the nominal trajectory zg, 21, ... by
summing the nominal open-loop control input v; and the feedback control law pq(z; — 2)
for all ¢t € N. Algorithm 10 summarizes the proposed SMC-based robust motion planning

procedure. Its correctness guarantees are stated below.

Theorem 3.2 (Correctness of Algorithm 10). Algorithm 10 is sound, that is, all trajectories

resulting from its execution are solutions of Problem 3.1.

Proof Sketch. Soundness of Alg. 10 directly follows from the separation between distur-
bance rejection and trajectory planning (see, e.g., [121, Theorem 5.4]), the soundness of the
SMC-based motion planning algorithm (for the nominal trajectory) [131, Theorem 4.2], the
construction of the perturbed sets J*, Wy _, Wy ., and the soundness of the DoS-resilience
encoding in (3.10), i.e., the fact that, if (3.10) holds, then there exists a communication path

between each robot and at least one of the base stations at each time. O

3.7 Results

T T T T2

y [m]
y [m]
y [m]
y [m]

x [m] x [m] x [m] x [m]

Figure 3.2: Workspace showing the initial position of the robots, the base stations, and
the jamming areas (red boxes) along with the three trajectories subject to (OO (7 = 1)) A
(OO (73 + 72 + 75 = 1)). Actual trajectories (green for R1, black for R2, and blue for R3)
are plotted on top of the nominal trajectories (dashed red).

100

We implemented Alg. 10 in PYTHON on top of the SATEX solver [133], using Z3 [35] as
a SAT solver and CPLEX [64] as a convex optimization solver. All the experiments were

executed on an Intel Core i7 2.3-GHz processor with 16 GB of memory.

To illustrate the capabilities of our algorithm in a multi-robot scenario under generic LTL
specifications, we consider a team of 3 robots, R1, R2, R3, and one base station operating
in the workspace represented in Fig. 3.2 (top left). We assume robot dynamics captured by
chains of integrators, one chain for each coordinate of the workspace, and a sampling time
of 0.5 s. The upper bound on the disturbance is 0.2 m on the robot position (coordinates)
and zero on the higher-order states. Red boxes denote the DoS areas of the three jamming
radars. Initial positions are shown in Fig. 3.2 (top left). The mission is specified by the LTL
formula ¢ := (OOG(77 = 1)) A (OO (w3 + 735 + w3 = 1)) which requires that R3 visit region m

infinitely often, and that any of the robots visit location 7, infinitely often.

Figure 3.2 shows the nominal trajectories 252425 ..., ¢ € {1,2,3}, for the double integrator
case (dashed red lines) along with the actual robots’ trajectories xjziz} ... (green for R1,
black for R2, and blue for R3) for a realization of the disturbance from a random uniform
distribution over the set of admissible disturbances. Figure 3.3 reports snapshots of the three
robots at different times along with the nominal trajectories and the corresponding RCI sets.
The planner strategically positions R1 to guarantee communication with the base station at
all times. As R3 approaches the first goal, R2 is positioned to operate as an intermediate hub
between R3 and R1, thus creating a 2-hop link between the base station and R3. Similarly,
when R3 reaches the second goal, R2 is also moved to provide the necessary communication
path for R3. The overall computation of the RCI set, the nominal trajectory, and the

feedback law took around 3 s, 534 s, and 20 ms, respectively.

Table 3.1 reports the execution time of the three steps in Alg. 10 for a basic reach-avoid
specification as the number of robots and the number of integrators (per robot) in the chain,

hence the number of state variables, increase in the presence of one and two base stations.

101

y [m]
@

y [m]

Figure 3.3: Snapshots of the nominal trajectories and the corresponding RCI sets, subject

x [m]

x [m]

to (OO(m3 = 1)) A(OQ (7l + w2 + 73 = 1)).

Table 3.1: Execution time for the workspace in Fig. 3.2.

7# RCI [s] One Base Station Two Base Stations
robots| states
Bool SMC [s] 1o [ms] # Bool SMC [s] lg [ms]
variables variables
4 2.878 36 92.99 10.2 108 175.64 11.5
2 6 3.265 42 223.04 134 126 199.81 13.6
8 3.780 42 88.98 18.5 126 1175.96 18.8
4 2.878 108 210.06 10.2 240 411.73 11.5
3 6 3.265 126 347.89 13.4 280 474.17 13.6
8 3.780 126 818.69 18.5 280 1328.92 18.8
4 2.878 240 565.31 10.2 450 647.16 11.5
4 6 3.265 280 645.01 13.4 525 2685.97 13.6
8 3.780 280 1597.51 18.5 525 2373.67 18.8

The table also reports the number of Boolean variables needed to encode the DoS-resilience

constraints.

102

Part 11

Neural Network Verification and

Architecture Design

103

Chapter 4

Formal Verification of Neural Network

Controlled Autonomous Systems

In this chapter, we consider the problem of formally verifying the safety of an autonomous
robot equipped with a Neural Network (NN) controller that processes LiDAR images to
produce control actions. Given a workspace that is characterized by a set of polytopic
obstacles, our objective is to compute the set of safe initial states such that a robot trajectory
starting from these initial states is guaranteed to avoid the obstacles. Our approach is to
construct a finite state abstraction of the system and use standard reachability analysis
over the finite state abstraction to compute the set of safe initial states. To mathematically
model the imaging function, that maps the robot position to the LIDAR image, we introduce
the notion of imaging-adapted partitions of the workspace in which the imaging function is
guaranteed to be affine. Given this workspace partitioning, a discrete-time linear dynamics of
the robot, and a pre-trained NN controller with Rectified Linear Unit (ReLU) nonlinearity,
we utilize a Satisfiability Modulo Convex (SMC) encoding to enumerate all the possible
assignments of different RelLUs. To accelerate this process, we develop a pre-processing

algorithm that could rapidly prune the space of feasible ReLU assignments. Finally, we

104

demonstrate the efficiency of the proposed algorithms using numerical simulations with the

increasing complexity of the neural network controller.

4.1 Introduction

From simple logical constructs to complex deep neural network models, Artificial Intel-
ligence (Al)-agents are increasingly controlling physical/mechanical systems. Self-driving
cars, drones, and smart cities are just examples of such systems to name a few. However, re-
gardless of the explosion in the use of Al within a multitude of cyber-physical systems (CPS)
domains, the safety and reliability of these Al-enabled CPS is still an under-studied problem.
It is then unsurprising that the failure of these Al-controlled CPS in several, safety-critical,

situations leads to human fatalities [164].

Motivated by the urgency to study the safety, reliability, and potential problems that can rise
and impact the society by the deployment of Al-enabled systems in the real world, several
works in the literature focused on the problem of designing deep neural networks that are
robust to the so-called adversarial examples [46, 41, 27, 138, 97, 100, 118]. Unfortunately,
these techniques focus mainly on the robustness of the learning algorithm with respect to
data outliers without providing guarantees in terms of safety and reliability of the decisions
made by these neural networks. To circumvent this drawback, recent works focused on
three main techniques namely (i) testing of neural networks, (ii) falsification (semi-formal

verification) of neural networks, and (iii) formal verification of neural networks.

Representatives of the first class, namely testing of neural networks, are the works reported
in [104, 151, 163, 145, 89, 159, 90, 137, 175, 146] in which the neural network is treated as a
white box, and test cases are generated to maximize different coverage criteria. Such coverage

criteria include neuron coverage, condition/decision coverage, and multi-granularity testing

105

criteria. On the one hand, maximizing test coverage gives system designers confidence that
the networks are reasonably free from defect. On the other hand, testing does not formally

guarantee that a neural network satisfies a formal specification.

To take into consideration the effect of the neural network decisions on the entire system
behavior, several researchers focused on the falsification (or semi-formal verification) of au-
tonomous systems that include machine learning components [37, 153, 176]. In such falsi-
fication frameworks, the objective is to generate corner test cases that forces a violation of
system-level specifications. To that end, advanced 3D models and image environments are
used to bridge the gap between the virtual world and the real world. By parametrizing the
input to these 3D models (e.g., position of objects, position of light sources, intensity of
light sources) and sampling the parameter space in a fashion that maximizes the falsifica-
tion of the safety property, falsification frameworks can simulate several test cases until a

counterexample is found [37, 153, 176].

While testing and falsification frameworks are powerful tools to find corner cases in which the
neural network or the neural network enabled system may fail, they lack the rigor promised
by formal verification methods. Therefore, several researchers pointed to the urgent need of
using formal methods to verify the behavior of neural networks and neural network enabled
systems [79, 129, 128, 84, 85, 126]. As a result, recent works in the literature attempted the

problem of applying formal verification techniques to neural network models.

Applying formal verification to neural network models comes with its unique challenges. First
and foremost is the lack of widely-accepted, precise, mathematical specifications capturing
the correct behavior of a neural network. Therefore, recent works focused entirely on verifying
neural networks against simple input-output specifications [68, 39, 23, 117, 38, 108]. Such
input-output techniques compute a guaranteed range for the output of a deep neural network
given a set of inputs represented as a convex polyhedron. To that end, several algorithms that

exploit the piecewise linear nature of the Rectified Linear Unit (ReLU) activation functions

106

(one of the most famous nonlinear activation functions in deep neural networks) have been
proposed. For example, by using binary variables to encode piecewise linear functions, the
constraints of ReLLU functions are encoded as a Mixed-Integer Linear Programming (MILP).
Combining output specifications that are expressed in terms of Linear Programming (LP),

the verification problem eventually turns to a MILP feasibility problem [38, 152].

Using off-the-shelf MILP solvers does not lead to scalable approaches to handle neural net-
works with hundreds and thousands of neurons [39]. To circumvent this problem, several
MILP-like solvers targeted toward the neural network verification problem are proposed.
For example, the work reported in [68] proposed a modified Simplex algorithm (originally
used to solve linear programs) to take into account ReLU nonlinearities as well. Similarly,
the work reported in [39] combines a Boolean satisfiability solving along with a linear over-
approximation of piecewise linear functions to verify ReLLU neural networks against convex
specifications. Other techniques that exploit specific geometric structures of the specifica-
tions are also proposed [55, 169]. A thorough survey on different algorithms for verification
of neural networks against input-output range specifications can be found in [168] and the

references within.

Unfortunately, the input-output range properties are simplistic and fail to capture the safety
and reliability of cyber-physical systems when controlled by a neural network. Recent works
showed how to perform reachability-based verification of closed-loop systems in the presence
of learning components [166, 65, 3]. Reachability analysis is performed by either separately
estimating the output set of the neural network and the reachable set of continuous dynam-
ics [166], or by translating the neural network controlled system into a hybrid system [65].
Once the neural network controlled system is translated into a hybrid system, off-the-shelf
existing verification tools of hybrid systems, such as SpaceEx [53] for piecewise affine dy-
namics and Flow* [29] for nonlinear dynamics, can be used to verify safety properties of the

system. Another related technique is the safety verification using barrier certificates [154].

107

In such approach, a barrier function is searched using several simulation traces to provide a

certificate that unsafe states are not reachable from a given set of initial states.

Differently from the previous work—in the literature of formal verification of neural net-
work controlled system—we consider, in this chapter, the case in which the robotic system
is equipped with a LiIDAR scanner that is used to sense the environment [140]. The Li-
DAR image is then processed by a neural network controller to compute the control inputs.
Arguably, the ability of neural networks to process high-bandwidth sensory signals (e.g.,
cameras and LiDARs) is one of the main motivations behind the current explosion in the use
of machine learning in robotics and CPS. Towards this goal, we develop a framework that
can reason about the safety of the system while taking into account the robot continuous

dynamics, the workspace configuration, the LIDAR imaging, and the neural network.

In particular, the contributions of this chapter can be summarized as follows:

1- A framework for formally proving safety properties of autonomous robots equipped with
LiDAR scanners and controlled by neural network controllers.

2- A notion of imaging-adapted partitions along with a polynomial-time algorithm for pro-
cessing the workspace into such partitions. This notion of imaging-adapted partitions plays
a significant role in capturing the LiDAR imaging process.

3- A Satisfiability Modulo Convex (SMC)-based algorithm combined with an SMC-based
pre-processing for computing finite abstractions of neural network controlled autonomous

systems.

108

4.2 Problem Formulation

The symbols N, R,R* and B denote the set of natural, real, positive real, and Boolean
numbers, respectively. The symbols A, -~ and — denote the logical AND, logical NOT,
and logical IMPLIES operators, respectively. Given two real-valued vectors x; € R" and
1y € R™, we denote by (71, 22) € R™T the column vector [z7, 2T]T. Similarly, for a vector
r € R", we denote by x; € R the ith element of . For two vectors x1,xo € R™, we denote
by max(xy,x2) the element-wise maximum. For a set S C R", we denote the boundary and
the interior of this set by 05 and int(S), respectively. Given two sets Sy and Sy, f : S] = S
and f: .57 — S5 denote a set-valued and ordinary map, respectively. Finally, given a vector

z = (z,y) € R? we denote by atan2(z) = atan2(y, z).

4.2.1 Dynamics and Workspace

We consider an autonomous robot moving in a 2-dimensional polytopic (compact and convex)
workspace W C R% We assume that the robot must avoid the workspace boundaries W
along with a set of obstacles {Oy,...,0,}, with O; C W which is assumed to be polytopic.
We denote by O the set of the obstacles and the workspace boundaries which needs to be
avoided, i.e., O = {OW,O04,...,0,}. The dynamics of the robot is described by a discrete-

time linear system of the form:

2D = Az® 4 By®), (4.1)

where (/) € X C R™ is the state of robot at time ¢ € N and u® C R™ is the robot input.
The matrices A and B represent the robot dynamics and have appropriate dimensions. For
a robot with nonlinear dynamics that is either differentially flat or feedback linearizable,

the state space model (4.1) corresponds to its feedback linearized dynamics. We denote by

109

r (I(f,)) Processed

—
Preprocess LiDAR Image
LiDAR
Image

LiDAR Image
d(x(t))
Control ¢ : :
input u() v
Output Hidden Hidden Input
layer layer 2 layer 1 layer

Figure 4.1: Pictorial representation of the problem setup under consideration.

((x) € R? the natural projection of = onto the workspace W, i.e., ((z®) is the position of

the robot at time ¢.

4.2.2 LiDAR Imaging

We consider the case when the autonomous robot uses a LiDAR scanner to sense its envi-
ronment. The LiDAR scanner emits a set of IV lasers evenly distributed in a 27 degree fan.
We denote by Ol(igar € R the heading angle of the LiDAR at time ¢t. Similarly, we denote by
o = efii}ar + (i —1)%, with i € {1,..., N}, the angle of the ith laser beam at time ¢ where
QY) = Ql(i'gar and by) = (th), e ,9%)) the vector of the angles of all the laser beams. While
the heading angle of the LiDAR, Gl(igar, changes as the robot pose changes over time, i.e.,
Ql(igar = f(x®) for some nonlinear function f, in this chapter we focus on the case when the
heading angle of the LiDAR, Ql(igar, is fixed over time and we will drop the superscript ¢ from
the notation. Such condition is satisfied in several real-world scenarios whenever the robot

is moving while maintaining a fixed pose (e.g. a quadrotor whose yaw angle is maintained

constant).

For the ith laser beam, the observation signal r;(z®) € R is the distance measured between

110

the robot position ¢(z®) and the nearest obstacle in the 6; direction, i.e.:

ri(a?) = min min [- @), st atan2 (= - (")) = 6. (4.2)

In this chapter, we will restrict our attention to the case when the LiDAR scanner is ideal
(with no noise) although the bounded noise case can be incorporated in the proposed frame-
work. The final LIDAR image d(x(t)) € R?V is generated by processing the observations

r(x®) as follows:

d;(z¥) = (Ti(fb(t)) cos 6, ri(z) sin 0:) d(z'V) = (dl(x(t)), . .dN(x(t))) . (4.3)

4.2.3 Neural Network Controller

We consider a pre-trained neural network controller fyy : R*Y — R™ that processes the
LiDAR images to produce control actions with L internal and fully connected layers in
addition to one output layer. Each layer contains a set of M, neurons (where [€ {1,...,L})
with Rectified Linear Unit (ReLU) activation functions. ReLLU activation functions play an
important role in the current advances in deep neural networks [77]. For such neural network

architecture, the neural network controller u® = fxx(d(z®)) can be written as:

h'® = max (0, WOd(z®) + w’),

h*® = max (0, Wint® 4 wl) ,

RO = max (0, Wttt 4 wL_l) ,

u® = WERE® 4ot (4.4)

111

where W' € RM>Mi-1 and w! € RM are the pre-trained weights and bias vectors of the

neural network which are determined during the training phase.

4.2.4 Robot Trajectories and Safety Specifications

The trajectories of the robot whose dynamics are described by (4.1) when controlled by the
neural network controller (4.2)-(4.4) starting from the initial condition 2y = 2(®) is denoted
by 7z, : N — R™ such that 7,,(0) = zo. A trajectory n,, is said to be safe whenever the

robot position does not collide with any of the obstacles at all times.

Definition 4.1 (Safe Trajectory). A robot trajectory n., is called safe if ((ng, (t)) € W, (04, (1)) &
0;, VO, € O, Vt € N.

Using the previous definition, we now define the problem of verifying the system-level safety
of the neural network controlled system as follows:

Problem 4.1. Consider the autonomous robot whose dynamics are governed by (4.1) which
is controlled by the neural network controller described by (4.4) which processes LiDAR im-
ages described by (4.2)-(4.3). Compute the set of safe initial conditions Xsape C X such that

any trajectory 1y, starting from xo € Xape 15 safe.

4.3 Framework

Before we describe the proposed framework, we need to briefly recall the following definitions

capturing the notion of a system and relations between different systems.

Definition 4.2. An autonomous system S is a pair (X,0) consisting of a set of states X

and a set-valued map 6 : X == X representing the transition function. A system S is finite

112

Partition the
workspace into
imaging-adapted
sets

Use SMC to
compute a finite
state abstraction

N,
Q unsafe
1

=
]

{insafe unsafe

Compute the
set of safe states

Compute the
predecessors of
the unsafe states

unsafe unsafe

Figure 4.2: Pictorial representation of the proposed framework.

if X is finite. A system S is deterministic if 6 is single-valued map and is non-deterministic

if not determanistic.

Definition 4.3. Consider a deterministic system S, = (X4, 04) and a non-deterministic

system S, = (X3, 0p). A relation Q@ C X, X X, is a simulation relation from S, to Sy, and

we write S, K¢ Sy, if the following conditions are satisfied:

1. for every x, € X, there exists x, € Xy, with (x,, 1) € Q,

2. for every (x4, xp) € Q we have that z!, = §,(x,) in S, implies the existence of x|, € dp(xy)

in Sy satisfying (), x;) € Q.
Using the previous two definitions, we describe our approach as follows. As pictorially
shown in Figure 4.2, given the autonomous robot system Sxy = (X, dnn), where o :
x+— Az + Bfxn(d(z)), our objective is to compute a finite state abstraction (possibly non-
deterministic) Sz = (F,dx) of Syn such that there exists a simulation relation from Sy to
Sr, i.e., Syn <@ Sr. This finite state abstraction Sx will be then used to check the safety

specification.

113

The first difficulty in computing the finite state abstraction Sr is the nonlinearity in the
relation between the robot position ((z) and the LiDAR observations as captured by equa-
tion (4.2). However, we notice that we can partition the workspace based on the laser angles
01,...,0y along with the vertices of the polytopic obstacles such that the map d (defined
in equation (4.3) which maps the robot position to the processed observations) is an affine
map as shown in Section 4.4. Therefore, as summarized in Algorithm 11, the first step is
to compute such partitioning W* of the workspace (WKSP-PARTITION, line 2 in Al-
gorithm 11). While WKSP-PARTITION focuses on partitioning the workspace W, one
needs to partition the remainder of the state space X (STATE-SPACE-PARTITION,
line 5 in Algorithm 11) to compute the finite set of abstract states F along with the simula-
tion relation () that maps between states in X and the corresponding abstract states in F,

and vice versa.

Unfortunately, the number of partitions grows exponentially in the number of lasers N and
the number of vertices of the polytopic obstacles. To harness this exponential growth, we
compute an aggregate-partitioning W' using only a few laser angles (called primary lasers
and denoted by 6,). The resulting aggregate-partitioning YW’ would contain a smaller number
of partitions such that each partition in W represents multiple partitions in W*. Similarly,

we can compute a corresponding aggregate set of states F' as:

s={seF|Irew,weW, (s e}

where each aggregate state s’ is a set representing multiple states in F. Whenever possible,
we will carry out our analysis using the aggregated-partitioning W (and F’) and use the
fine-partitioning WW* only if deemed necessary. Details of the workspace partitioning and
computing the corresponding affine maps representing the LiDAR imaging function are given

in Section 4.4.

114

Algorithm 11 VERIFY-NN(X, dnN)

1:
2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

Step 1: Partition the workspace
(W*, W) = WKSP-PARTITION(W, O, 6, 0,)

Step 2: Compute the finite state abstraction Sr
Step 2.1: Compute the states of Sr
(F,F',Q) = STATE-SPACE-PARTITON(W*, W)
for each s and s’ in F do
7. ADD-TRANSITION(s, s')
end for
Step 2.2: Pre-process the neural network
for each s in F do
Xs={xeX|(x,s) €Q}
CEs; = PRE-PROCESS(Xs, dnN)
end for
Step 2.3: Compute the transition map ér
for each s in F and s’ in ' where s € s’ do
Xs={xeX|(z,s) € Q}
Xog ={xeX|(x,8") €Q, Vs* €5}
StaTus = CHECK-FEASIBILITY (X;, Xy, onn, CEs)
if STATUS == INFEASIBLE then
for each s* in s’ do
0r. REMOVE-TRANSITION(s, s*)
end for
else
for each s* in s’ do
Xy ={x e X | (z,8) € Q}
STATUS = CHECK-FEASIBILITY(X,, Xy, onn, CEs)
if STATUS == INFEASIBLE then
0r. REMOVE-TRANSITION(s, s*)
end if
end for
end if
end for

The state transition map dr is computed as follows. First, we assume a transition exists
between any two states s and ¢ in F (line 6- 7 in Algorithm 11). Next, we start elimi-
nating unnecessary transitions. We observe that regions in the workspace that are adjacent
or within some vicinity are more likely to force the need of transitions between their corre-
sponding abstract states. Similarly, regions in the workspace that are far from each other are
more likely to prohibit transitions between their corresponding abstract states. Therefore,

in an attempt to reduce the number of computational steps in our algorithm, we check the

115

Algorithm 12 (Continue Algorithm 11)VERIFY-NN(X, dxn)

1: Step 3: Compute the safe set
2: Step 3.1: Mark the abstract states corresponding to obstacles and workspace
boundary as unsafe

FO ={seF|IxeX:(x,8) €Q, ((z) € O;,0; € O}

unsafe

Step 3.2: Iteratively compute the predecessors of the abstract unsafe states
STATUS = FIXED-POINT-NOT-REACHED
while STATUS == FIXED-POINT-NOT-REACHED do
k k—1 k—1
‘Funszfe = ‘FunsafokUIPRE(funsafc>
if ‘Funsafe == "runsafo then
STATUS = FIXED-POINT-REACHED
end if
10: end while
11 Feafe = f\]:unsafe
12: Step 3.3: Compute the set of safe states
13: Xaage = {2 € X | I3 € Fange : (x,8) € Q}
14: Return Xg g

transition feasibility between a state s € F and an aggregate state s’ € F'. If our algorithm
(CHECK-FEASIBILITY) asserted that the neural network dyn prohibits the robot from transi-
tioning between the regions corresponding to s and s’ (denoted by X, and Xy, respectively),
then we conclude that no transition in = is feasible between the abstract state s and all the
abstract states s* in ¢’ (lines 15-21 in Algorithm 11). This leads to a reduction in the number
of state pairs that need to be checked for transition feasibility. Conversely, if our algorithm
(CHECK-FEASIBILITY) asserted that the neural network oy allows for a transition between
the regions corresponding to s and s, then we proceed by checking the transition feasibility
between the state s and all the states s* contained in the aggregate state s* (lines 24-28 in

Algorithm 11).

Checking the transition feasibility (CHECK-FEASIBILITY) between two abstract states entails
reasoning about the robot dynamics, the neural network, along with the affine map repre-
senting the LiDAR imaging computed from the previous workspace partitioning. While the

robot dynamics is assumed linear, the imaging function is affine, the technical difficulty lies

116

in reasoning about the behavior of the neural network controller. Thanks to the ReLLU acti-
vation functions in the neural network, we can encode the problem of checking the transition
feasibility between two regions as formula ¢, called monotone Satisfiability Modulo Convex
(SMC) formula [134, 135], over Boolean and convex constraints representing, respectively,
the ReLU phases and the dynamics, the neural network weights, and the imaging constraints.
In addition to using the SMC solver to check the transition feasibility (CHECK-FEASIBILITY)
between abstract states, it will be used also to perform some pre-processing of the neural
network function dyy (lines 10-12 in Algorithm 11) which is going to speed up the process
of checking the the transition feasibility. Details of the SMC encoding and the strategy to

check transition feasibility (CHECK-FEASIBILITY) are given in Section 4.5.

Once the finite state abstraction S and the simulation relation) is computed, the next
step is to partition the finite states F into a set of unsafe states Funsare and a set of safe

states Fafe using the following fixed-point computation:

{seFl|IreX: (x,5) €, ((x) €0;,;0;, €O} k=0

k _
‘Funsafe - 1
]:unsafe sc L,CJ_I PRE(S) k>0
unsafe
: k
Funsafe - kh—>m funsafe? fsafe =F \ funsafe'
oo

where the F0 _ . represents the abstract states corresponding to the obstacles and workspace

boundaries, F¥ with k& > 0 represents all the states that can reach F° in k-steps, and

unsafe unsafe

PRE(s) is defined as:

PRE(s) = {s' € F | s € 3x(s')}.

The remaining abstract states are then marked as the set of safe states Fi.. Finally, we

can compute the set of safe states Xape as:

Xeafe = {CE cX | ds € Fate (1375) € Q}

117

These computations are summarized in lines 2-13 in Algorithm 11.

4.4 Imaging-Adapted Workspace Partitioning

We start by introducing the notation of the important geometric objects. We denote by

RAY(w, #) the ray originated from a point w € W in the direction 6, i.e.:
RAY(w,0) = {w' € W | atan2(w’ — w) = 0}.
Similarly, we denote by LINE(wy,ws) the line segment between the points w; and ws, i.e.:
LINE(wy,ws) = {w' e W | w' =vw; + (1 — v)wq, 0 <v < 1}
For a convex polytope P C W, we denote by VERT(P), its set of vertices and by EDGE(P)

its set of line segments representing the edges of the polytope.

4.4.1 Imaging-Adapted Partitions

The basic idea behind our algorithm is to partition the workspace into a set of polytopic
sets (or regions) such that for each region R the LiDAR rays intersects with the same
obstacle/workspace edge regardless of the robot positions ((x) € R. To formally characterize
this property, let O* = [J, . O: be the set of all points in the workspace in which an obstacle
or workspace boundary exists. Consider a workspace partition R C W and a robot position
((z) that lies inside this partition, i.e., {(x) € R. The intersection between the kth LiDAR

laser beam RAY(((z),0;) and O* is a unique point characterized as:
Zhce) = argmin ||z — ((x)]|2 s.t. 2z € RAY(((x),0;) N O*. (4.5)
zeW

118

By sweeping ((x) across the whole region R, we can characterize the set of all possible

intersection points as:
LiR) = | Zrcw- (4.6)
((x)ER

Using the set L£;(R) described above, we define the notion of imaging-adapted partitions as

follows.

Definition 4.4. A set R C W is said to be an imaging-adapted partition if the following

property holds:

Lr(R) is a line segment Vk € {1,...,N}. (4.7)

Figure 4.3 shows concrete examples of imaging-adapted partitions. Imaging-adapted parti-

tions enjoy the following property:

Lemma 4.2. Consider an imaging-adapted partition R with corresponding sets L1(R), ..., Ly(R).

The LiDAR imaging function d : R — R*N is an affine function of the form:

dp(C(2)) = PrrC(7) + Qrr, d=(di,...,dn) (4.8)

for some constant matrices P, r and vectors Qi r that depend on the region R and the

LiDAR angle 6.

Proof. Consider an arbitrary LiDAR laser with an angle 6, and arbitrary robot position

((z) € R. The LiDAR image dj, can be written as:

di = 2k ¢(2) (R) —((z) (4.9)

where 2zj ¢(2)(R) is defined in (4.5). It follows from the fact that R is an imaging-adapted

119

partition that the set £,(R) is a line segment. Let ag, b, € R? be the vertices of this line
segment, i.e., (ax, by) = VERT(L,(R)) and recall that z; ¢(,)(R) satisfies 2y ¢(2)(R) € Lik(R)
and hence 2 ¢()(R) lies on the line segment LINE(ay, b,). Therefore there exists a 14, such

that:

¢ (R) = (1 = vi)ar + vby (4.10)

where 0 < v, < 1. It follows from the definition of zj ¢(z)(R) in (4.5) that z; () (R) also lies

on RAY(((x), ;) and hence:

Z9 — T2

tan(fy) = (4.11)

)
21 — 1

where (21, 22) are the two elements of 2 ¢(,)(R) € R C R? while (21, x2) are the correspond-

ing two elements of ((z) € R C R? Substituting (4.10) in (4.11) yields:

(1 — Vk)az + I/kbg — X9

tan(6;,) =
an(0) (1 —wvp)ag + vgag — x4

(4.12)

where (a1,a2) = ap and (by,be) = by are the two elements of aj and by, respectively. By

solving (4.12) for vy, we conclude that:

= Ay (@) + b (113
(-~
1 0, = /2 or 3m/2
_bz—ag
A, =
tan(0)) 1 otherwise,
L _a27b2+(b17a1)tan(9k)fa2 a27b2+(b17a1)tan(0k)

0 O = m/2 or 3m/2

k
az—az tan(0y)
L a27b2+(b1 7(11) tan(@k)

otherwise,

120

1
%

Figure 4.3: (left-up) A partitioning of the workspace that is not imaging-adapted. Within
region R, the LiDAR ray (cyan arrow) intersects with different obstacle edges depending
on the robot position. (left-down) A partitioning of the workspace that is imaging-adapted.
For both regions Ry and Rs, the LIDAR ray (cyan arrow) intersects the same obstacle edge
regardless of the robot position. (right) Imaging-adapted partitioning of the workspace used
in Section 4.6.

where A,, and b,, are constants that depends on the values of the constants ay, by, and 6.

From (4.9),(4.10), and (4.13), we conclude that:

di(((7)) = Per(z) + Qrr (4.14)

with Py r = (by—ax)(A—1I) (where [is the 2 x 2 identity matrix) and Qyr = ax+0b,, (b —ay)
are constants that depends on ag, by, and 6 form which we conclude that di(((z)) is affine.
Note that we added the subscript R to P,z and @)y to emphasize the face that these
constant matrices depends on the region R. Since we picked k arbitrary, we finally conclude

that d({(x)) is also an affine function. O

121

4.4.2 Partitioning the Workspace

Motivated by Lemma 4.2, our objective is to design an algorithm that can partition the
workspace W into a set of imaging-adapted partitions. As summarized in Algorithm 13, our
algorithm starts by computing a set of line segments G that will be used to partition the
workspace (lines 1-6 in Algorithm 13). This set of line segments G are computed as follows.
First, we define the set V as the one that contains all the vertices of the workspace and
the obstacles, i.e., V = (Jo .o VERT(O;). Next, we consider rays originating from all the
vertices in)V and pointing in the opposite directions of the angles 01, ...,0y. By intersecting
these rays with the obstacles and picking the closest intersection points, we acquire the line

segments G that will be used to partition the workspace. In other words, G is computed as:

Gy = {LINE(v,2) |v €V, 2z = argmin ||z — v]|2}
z€RAY(v,0,+m)NO*
N
G- o (1.15)
k=1

Thanks to the fact that the vertices v are fixed, finding the intersection between RAY (v, 6y +

m) and O* is a standard ray-polytope intersection problem which can be solved efficiently [13].

The next step is to compute the intersection points P between the line segments G and
the edges of the obstacles £ = |Jy o EDGE(O;). A naive approach will be to consider all
combinations of line segments in GUE and test them for intersection. Such approach is com-
binatorial and would lead to an execution time that is exponential in the number of laser
angles and vertices of obstacles. Thanks to the advances in the literature of computational
geometry, such intersection points can be computed efficiently using the plane-sweep algo-
rithm [13]. The plane-sweep algorithm simulates the process of sweeping a line downwards
over the plane. The order of the line segments G U £ from left to right as they intersect

the sweep line is stored in a data structure called the sweep-line status. Only segments

122

that are adjacent in the horizontal ordering need to be tested for intersection. Though the
sweeping process can be visualized as continuous, the plane-sweep algorithm sweeps only
the endpoints of segments in GU E, which are given beforehand, and the intersection points,
which are computed on the fly. To keep track of the endpoints of segments in G U £ and
the intersection points, we use a balanced binary search tree as data structure to support
insertion, deletion, and searching in O(log n) time, where n is number of elements in the

data structure.

The final step is to use the line segments G U £ and their intersection points P, discovered
by the plane-sweep algorithm, to compute the workspace partitions. To that end, consider
the undirected planar graph whose vertices are the intersection points P and whose edges
are GUE, denoted by GRAPH(P,GUE). The workspace partitions are equivalent to finding
subgraphs of GRAPH(P, G UE) such that each subgraph contains only one simple cycle . To
find these simple cycles, we use a modified Depth-First-Search algorithm in which it starts
from a vertex in the planar graph and then traverses the graph by considering the rightmost
turns along the vertices of the graph. Finally, the workspace partitions are computed as the
convex hulls of all the vertices in the computed simple cycles. It follows directly from the
fact that each region is constructed from the vertices of a simple cycle that there exists no
line segment in G U £ that intersects with the interior of any region, i.e., for any workspace

partition R, the following holds:

int(R)yne=0 VYeeGuUE (4.16)

This process is summarized in lines 9-18 in Algorithm 13. An important property of the

regions determined by Algorithm 13 is stated by the following proposition.

Proposition 4.3. Consider a workspace partition R that is computed by Algorithm 13 and

LA cycle in an undirected graph is called simple when no repetitions of vertices and edges, other than the
starting and ending vertex.

123

satisfies (4.16). The following property holds for any LiDAR ray with angle 6y:

Jdee& such that Lr(R) Ce,

where Li(R) is defined in (4.6).

Proof. We assume, for the sake of contradiction, that there exist two obstacle edges
LINE(vy, v2), LINE(wy, we) € € with (v1,v3) # (wy,ws) along with rays originating from
points p1, p2 € R such that the intersection points:

a=arg | min |21 =pill, == g i |22 — pall-

satisfy z; € LINE(v1, v2) and 2o € LINE(wy, ws).

Now consider the set P, defined as follows:

Pr={peR|pecRAY(z,6, +7), Vze& LINE(v1,v2)}

It follows from the definition of z; that p; € P;. It also follows from the definition of P
that P, C R. Moreover, it follows from the definition of the set £ along with the fact that
LINE(vy,v9) € & that vy and vy satisfy vy, vy € V. It follows from the definition of the set
G in (4.15) that it contains line segments from the rays originated at elements of the set V.

Hence, there exists v}, v}, vh, v§ such that the line segments LINE(v],v}) and LINE(v}, v))

satisfy:
LINE(v],v]) C RAY(v1,0r +) C Py C R, LINE(v},v]) € G (4.17)
LINE(v), vy) C RAY(vg,0p +m) C Py C R, LINE(vh, v5) € G (4.18)

However, it follows from (4.16) that line segments that are elements of G do not intersect

124

the interior of R. Hence:

3
LINE(v],v]) C R
= LINE(v],v]) C OR (4.19)
LINE(v], v]) Nint(R) = (Z))
)
LINE(vh,v5) C R
= LINE(v5, vy) C OR (4.20)
LINE(vy, vy) Nint(R) = Q))

Similarly, by considering wy, ws, 2o, we conclude that there exists line segments LINE(w], w) C

RAY (w1, 0 + 7) and LINE(w), w) C RAY (v, 0 + 7) are elements of G and satisfy:

LINE(wy,w]) C IR, LINE(wy, wy) C IR (4.21)

It follows from Euclidean geometry that any polygon in R? can have at maximum two edges
that are “parallel”. It also follows from (4.19)-(4.21) that LINE(v], v)), LINE(v}, vf)), LINE(w], wY),
and LINE(w), w)) are edges of R. However, it follows from the definitions of the four line
segments that they are subsets of rays that share the same angle, and hence they are all par-
allel. Hence we conclude that LINE(v], v}) = LINE(w], w]) and LINE(v}, v)) = LINE(w), w})

from which it is direct to conclude that (vy,v9) = (wy,ws), a contradiction.

We conclude this section by stating our first main result, quantifying the correctness and

complexity of Algorithm 13.

Theorem 4.4. Given a workspace with polytopic obstacles and a set of laser angles 0y, . .., 0,

then Algorithm 13 computes the partitioning R4, ..., R, such that:

1. W - U::l ,R,l',

125

2. R; is an imaging-adapted partition Vi=1,...,r,

3. d:R; — R?N is affine Vi=1,...,r.

Moreover, the time complezity of Algorithm 13 is O(M log M +1log M), where M = |GUE|

s cardinality of GUE, and I is number of intersection points between segments in GUE.

Algorithm 13 WKSP-PARTITION (W, 0,6.6,)

1: Step 1: Generate partition segments
3: for ke {l,...,N} do
4: Use a ray-polygon intersection algorithm to compute:
Gr = {LINE(v,2) |[v eV, z = argmin |z — vl]l2}
z€RAY(v,0+m)NO*
5: end for
6: G = Ukee Ok, g = Ukeep Ok
7: Step 2: Compute intersection points
8: P = PLANE-SWEEP(GUE), P’ = PLANE-SWEEP(G' UE)
9: Step 3: Construct the partitions
10: CycCLES = FIND-VERTICES-OF-SIMPLE-CYCLE(GRAPH(P,GUE))
11: CycLEs’ = FIND-VERTICES-OF-SIMPLE-CYCLE (GRAPH(P', G’ UE)).
12: for c € CYCLES do
13: R = CoNVEX-HULL(c)
14: W*ADD(R)
15: end for
16: for c € CycLES' do
17: R’ = CoNVEX-HULL(c)
18: W.ADD(R/)
19: end for
20: Return W*, W/
4.5 Computing the Finite State Abstraction

Once the workspace is partitioned into imaging-adapted partitions W* = {R4,..., R,} and

the corresponding imaging function is identified, the next step is to compute the finite state

126

transition abstraction Sy = (F,dx) of the closed loop system along with the simulation
relation (). The first step is to define the state space F and its relation to X. To that
end, we start by computing a partitioning of the state space X that respects W*. For
the sake of simplicity, we consider X C R™ that is n-orthotope, i.e., there exists constants

z;,T; € R;i=1,...,n such that:

X:{$6Rn’§1§$z<f“ Z:L,n}

Now, given a discretization parameter ¢ € R™, we define the state space F as:

T —

F=A{lkiky... k) €N 1<k <rl<hk <% ;-3 . n) (4.22)

€

where r is the number of regions in the partitioning WW*. In other words, the parameter € is
used to partition the state space into hyper-cubes of size € in each dimension i = 3,...,n.
A state s € F represents the index of a region in W* followed by the indices identifying
a hypercube in the remaining n — 2 dimensions. Note that for the simplicity of notation,
we assume that z; — z; is divisible by € for all ¢ = 1,...,n. We now define the relation

Q C X X F as:

Q={(zx,s) e X x F|s=(ki,ksy...,kn),x = (C(x),23,...,2n),

C(ZE) S Rkl,gi + 6(]{?1 - 1) S x; < xZ,; + Gki7i = 3, PN ,n}. (423)
Finally, we define the state transition function dr of S as follows:

(K1, kS, k) € 0r((Ky ks, ... ky)) if
dr = ({(z),x3,...,2,) € Riy,x; + €(k; — 1) < x; < z; + €k,
x’ = (C(x/)7$gy s al‘;z) € Rkivii + E(k:; - 1) < $; <z;+ Ekz/'7

127

It follows from the definition of dz in (4.24) that checking the transition feasibility between
two states s and s’ is equivalent to searching for a robot initial and goal states along with a
LiDAR image that will force the neural network controller to generate an input that moves
the robot between the two states while respecting the robots dynamics. In the reminder of

this section, we focus on solving this feasibility problem.

4.5.1 SMC Encoding of NN

We translate the problem of checking the transition feasibility in 0z into a feasibility problem
over a monotone SMC formula [134, 135] as follows. We introduce the Boolean indicator
variables bé- withl=1,...,Land j =1,..., M; (recall that L represents the number of layers
in the neural network, while M; represents the number of neurons in the Ith layer). These
Boolean variables represent the phase of each ReLU, i.e., an asserted bé- indicates that the
output of the jth ReLU in the Ith layer is hé = (WA= 4!=1); while a negated bé. indicates

that hg = (. Using these Boolean indicator variables, we encode the problem of checking the

128

transition feasibility between two states s = (ki, ks, ..., k,) and s’ = (K7, k%, ..., k) as:

Ja,2/ € R u e R™ decR*™, b, 0, t") e BM x RM x RM 1 € {1,...,L}

subject to:

((x) ERyy N xy+elk;—1) <z <z;+e€ky, i=3,...,n (4.25)
AN (2') € Ry Ny +e(ki —1) <o <y +eky, i =3,...,n (4.26)
Nz’ = Az + Bu (4.27)
Ady, = Pyr, C() + Qrry, s k=1,...,N (4.28)

L
(=) o (Ao) o
=2

A (u = WERE + wL) (4.30)

A /L\/<b§. — [(R =) A (85 > 0)] (4.31)

1=1j=1

A /L\/< —b — [(h = 0) A (2 < 0)] (4.32)

1=1j=1

where (4.25)-(4.26) encode the state space partitions corresponding to the states s and s';
(4.27) encodes the dynamics of the robot; (4.28) encodes the imaging function that maps the
robot position into LiDAR image; (4.29)-(4.32) encodes the neural network controller that

maps the LIDAR image into a control input.

Compared to Mixed-Integer Linear Programs (MILP), monotone SMC formulas avoid using
encoding heuristics like big-M encoding which leads to numerical instabilities. The SMC
decision procedures follow an iterative approach combining efficient Boolean Satisfiability
(SAT) solving with numerical convex programming. When applied to the encoding above,
at each iteration the SAT solver generates a candidate assignment for the ReLLU indicator
variables bé. The correctness of these assignments are then checked by solving the corre-

sponding set of convex constraints. If the convex program turned to be infeasible, indicating

129

a wrong choice of the ReLLU indicator variables, the SMC solver will identify the set of “Irre-
ducible Infeasible Set” (IIS) in the convex program to provide the most succinct explanation
of the conflict. This IIS will be then fed back to the SAT solver to prune its search space
and provide the next assignment for the ReL U indicator variables. SMC solvers were shown
to better handle problems (compared with MILP solvers) for problems with relatively large

number of Boolean variables [135].

4.5.2 Pruning Search Space by Pre-processing

While a neural network with M ReLUs would give rise to 2 combinations of possible
assignments to the corresponding Boolean indicator variables, we observe that only several
of those combinations are feasible for each workspace region. In other words, the LiDAR
imaging function along with the workspace region enforces some constraints on the inputs
to the neural network which in turn enforces constraints on the subsequent layers. By
performing pre-processing on each of the workspace regions, we can discover those constraints
and augment it to the SMC encoding (4.25)-(4.32) to prune combinations of assignments of

the ReLU indicator variables.

To find such constraints, we consider an SMC problem with the fewer constraints (4.25), (4.28)-
(4.32). By iteratively solving the reduced SMC problem and recording all the IIS conflicts
produced by the SMC solver, we can compute a set of counter-examples that are unique for
each region. By iteratively invoking the SMC solver while adding previous counter-examples
as constraints until the problem is no longer satisfiable, we compute the set R-CONFLICTS
which represents all the counter-examples for region R. Finally, we add the following con-

straint:

Vo e (4.33)

cER-CONFLICTS

130

to the original SMC encoding (4.25)-(4.32) to prune the set of possible assignments to the
ReLU indicator variables. In Section 4.6, we show that pre-processing would result in several

orders of magnitude reduction in the execution time.

4.5.3 Correctness of NN Verification Algorithm

We end our discussion with the following results which assert the correctness of the whole
framework described in this chapter. We first start by establishing the correctness of com-

puting the finite state abstraction S along with the simulation relation () as follows:

Proposition 4.5. Consider the finite state abstraction Sy = (F,dr) where F is defined
by (4.22) and o7 is defined by (4.24) and computed by means of solving the SMC' for-
mulas (4.25)-(4.33). Consider also the system Syy = (X,dnn) where ony : x — Ax +
Bfyn(d(z)). For the relation Q defined in (4.23), the following holds: Snyv =S¢ Sr.

Recall that Algorithm 11 applies standard reachability analysis on S to compute the set of
unsafe states. It follows directly from the correctness of the simulation relation () established
above that our algorithm computes an over-approximation of the set of unsafe states, and
accordingly an under-approximation of the set of safe states. This fact is captured by the

following result that summarizes the correctness of the proposed framework:

Theorem 4.6. Consider the safe set Xsop. computed by Algorithm 11. Then any trajectory

Nz with n;,(0) € Xyape is a safe trajectory.

While Theorem 4.6 establishes the correctness of the proposed framework in Algorithm 11,
two points needs to be investigated namely (i) complexity of Algorithm 11 and (ii) maximality
of the set Xyupe. Although Algorithm 13 computes the imaging-adapted partitions efficiently
(as shown in Theorem 4.4), analyzing a neural network with ReLU activation functions

is shown to be NP-hard. Exacerbating the problem, Algorithm 11 entails analyzing the

131

neural network a number of times that is exponential in the number of partition regions. In
addition, floating point arithmetic used by the SMC solver may introduce errors that are
not analyzed in this chapter. In Section 4.6, we evaluate the efficiency of using the SMC
decision procedures to harness this computational complexity. As for the maximality of the
computed Xy set, we note that Algorithm 11 is not guaranteed to search for the maximal

Xsafe .

4.6 Results

We implemented the proposed verification framework as described by Algorithm 11 on top
of the SMC solver named SATEX [124]. All experiments were executed on an Intel Core i7

2.5-GHz processor with 16 GB of memory.

4.6.1 Scalability of the Workspace Partitioning Algorithm

As the first step of our verification framework, imaging-adapted workspace partitioning is
tested for numerical stability with increasing number of laser angles and obstacles. Table 4.1
summarizes the scalability results in terms of the number of computed regions and the
execution time grows as the number of LiDAR lasers and obstacle vertices increase. Thanks
to adopting well-studied computational geometry algorithms, our partitioning process takes
less than 1.5 minutes for the scenario where a LiDAR scanner is equipped with 298 lasers

(real-world LiDAR scanners are capable of providing readings from 270 laser angles).

132

Table 4.1: Scalability results for the WKSP-PARTITION Algorithm

Number of | Number of | Number of | Time
Vertices Lasers Regions [s]

8 111 0.0152

8 38 1851 0.3479

118 17237 5.5300

8 136 0.0245

10 38 2254 0.4710

118 20343 6.9380

8 137 0.0275

38 2418 0.5362

12 120 23347 8.0836

218 76337 37.0572

298 142487 86.6341

4.6.2 Computational Reduction Due to Pre-processing

The second step is to pre-process the neural network. In particular, we would like to answer
the following question: given a partitioned workspace, how many ReLU assignments are
feasible in each region, and if any, what is the execution time to find them out. Recall that
a ReLU assignment is feasible if there exist a robot position and the corresponding LiDAR

image that will lead to that particular ReLU assignment.

Thanks to the IIS counterexample strategy, we can find all feasible ReLLU assignments in
pre-processing. Our first observation is that the number of feasible assignments is indeed
much smaller compared to the set of all possible assignments. As shown in Table 4.2, for a
neural network with a total of 32 neurons, only 11 ReLLU assignments are feasible (within the
region under consideration). Comparing this number to 232 = 4.3F9 possibilities of ReL.U
assignments, we conclude that pre-processing is very effective in reducing the search space

by several orders of magnitude.

Furthermore, we conducted an experiment to study the scalability of the proposed pre-
processing for an increasing number of ReLLUs. To that end, we fixed one choice of workspace

regions while changing the neural network architecture. The execution time, the number of

133

Table 4.2: Execution time of the SMC-based pre-processing as a function of the neural
network architecture.

Number Total Number of Number of Time
of Hidden | Number Feasible Counter- [s]
Layers of Neurons | ReLU Assignments | examples
32 11 60 2.7819
72 31 183 11.4227
92 58 265 18.4807
102 68 364 43.2459
152 101 540 78.3015
172 146 778 104.4720
202 191 897 227.2357
1 302 383 1761 656.3668
402 730 2614 1276.4405
452 816 4325 1856.0418
502 1013 3766 2052.0574
552 1165 4273 4567.1767
602 1273 5742 6314.4890
652 1402 5707 7166.3059
702 1722 6521 8813.1829
22 3 94 1.3180
42 19 481 10.9823
62 35 1692 53.2246
82 33 2685 108.2584
2 102 58 5629 202.7412
122 71 9995 739.4883
142 72 18209 2098.0220
162 98 34431 6622.1830
182 152 44773 12532.8552
32 5 319 5.7227
3 47 7 5506 148.8727
62 45 72051 12619.5353
4 22 9 205 10.4667
42 5 1328 90.1148

generated counterexamples, along with the number of feasible ReLLU assignments are given in
Table 4.2. For the case of neural networks with one hidden layer, our implementation of the
counterexample strategy is able to find feasible ReLLU assignments for a couple of hundreds
of neurons in less than 4 minutes. In general, the number of counterexamples, and hence
feasible ReLLU assignments, and execution time grows with the number of neurons. However,
the number of neurons is not the only deciding factor. Our experiments show that the depth
of the network plays a significant role in affecting the scalability of the proposed algorithms.
For example, comparing the neural network with one hidden layer and a hundred neurons
per layer versus the network with two layers and fifty neurons per layer we notice that both
networks share the same number of neurons. Nevertheless, the deeper network resulted in
one order of magnitude increase regarding the number of generated counterexamples and
one order of magnitude increase in the corresponding execution time. Interestingly, both

of the architectures share a similar number of feasible ReLU assignments. In other words,

134

Table 4.3: Execution time of the SMC-based pre-processing as a function of the workspace
region. Region indices are shown in Figure 4.3.

Region Number of Number of | Time
Index Feasible Counter- s]
ReLU Assignments | examples

A2-R3 33 2685 108.2584
Al4-R1 55 4925 215.8251
A13-R3 7 1686 69.4158
Al-R1 25 2355 99.2122
AT-R1 26 3495 139.3486
Al12-R2 3 1348 54.4548
A15-R3 25 3095 121.7869
A19-R1 38 4340 186.6428

similar features of the neural network can be captured by fewer counterexamples whenever
the neural network has fewer layers. This observation can be accounted for the fact that
counterexamples that correspond to ReLUs in early layers are more powerful than those

involves ReLUs in the later layers of the network.

In the second part of this experiment, we study the dependence of the number of feasible
ReLU assignments on the choice of the workspace region. To that end, we fix the architecture
of the neural network to one with 2 hidden layers and 40 neurons per layer. Table 4.3
reports the execution time, the number of counterexamples, and the number of feasible
ReLU assignments across different regions of the workspace. In general, we observe that the

number of feasible ReLLU assignments increases with the size of the region.

4.6.3 Transition Feasibility

Following our verification streamline, the next step is to compute the transition function of
the finite state abstraction 0z, i.e., check transition feasibility between regions. Table 4.4
shows performance comparison between our proposed strategy that uses counterexamples
obtained from pre-processing and the SMC encoding without preprocessing. We observe that

the SMC encoding empowered by counterexamples, generated through the pre-processing

135

Table 4.4: Performance of the SMC-based encoding for computing d as a function of the
neural network (timeout = 1 hour).

Number of | Total Number Time [s] Time [s]
Hidden Layers | of Neurons (Exploit Counter- | (Without Counter-
examples) examples)

82 0.5056 50.1263

102 7.1525 timeout

1 112 12.524 timeout

122 18.0689 timeout

132 20.4095 timeout

22 0.1056 15.8841

42 4.8518 timeout

62 3.1510 timeout

82 2.6112 timeout

2 102 11.0984 timeout

122 3.8860 timeout

142 0.7608 timeout

162 2.7917 timeout

182 193.6693 timeout

32 0.3884 388.549

3 47 0.9034 timeout

62 59.393 timeout

phase, scales more favorably compared to the ones that do not take counterexamples into
account leading to 2-3 orders of magnitude reduction in the execution time. Moreover, and
thanks to the pre-processing counter-examples, we observe that checking transition feasibility

becomes less sensitive to changes in the neural network architecture as shown in Table 4.4.

136

Chapter 5

Two-Level Lattice Neural Network
Architectures for Control of

Nonlinear Systems

In this chapter, we consider the problem of automatically designing a Rectified Linear Unit
(ReLU) Neural Network (NN) architecture (number of layers and number of neurons per
layer) with the guarantee that it is sufficiently parametrized to control a nonlinear sys-
tem. Whereas current state-of-the-art techniques are based on hand-picked architectures
or heuristic based search to find such NN architectures, our approach exploits the given
model of the system to design an architecture; as a result, we provide a guarantee that the
resulting NN architecture is sufficient to implement a controller that satisfies an achievable
specification. Our approach exploits two basic ideas. First, assuming that the system can
be controlled by an unknown Lipschitz-continuous state-feedback controller with some Lip-
schitz constant upper-bounded by Koy, we bound the number of affine functions needed
to construct a Continuous Piecewise Affine (CPWA) function that can approximate the un-

known Lipschitz-continuous controller. Second, we utilize the authors’ recent results on a

137

novel NN architecture named as the Two-Level Lattice (TLL) NN architecture, which was
shown to be capable of implementing any CPWA function just from the knowledge of the
number of affine functions that compromises this CPWA function. We evaluate our method
on designing a NN architecture to control an inverted pendulum shows the efficiency of the

proposed approach.

5.1 Introduction

Multilayer Neural Networks (NN) have shown tremendous success in realizing feedback con-
trollers that can achieve several complex control tasks [22]. Nevertheless, the current state-
of-the-art practices for designing these deep NN-based controllers are based on heuristics and
hand-picked hyper-parameters (e.g., number of layers, number of neurons per layer, train-
ing parameters, training algorithm) without an underlying theory that guides their design.
For example, several researchers have studied the problem of Automatic Machine Learning
(AutoML) and in particular the problem of hyperparameter (number of layers, number of
neurons per layer, and learning algorithm parameters) optimization and tuning in deep NN
(see for example [103, 14, 101, 7, 110] and the references within). In this line of work, an iter-
ative and exhaustive search through a manually specified subset of the hyperparameter space
is performed. The best hyperparameters are then selected according to some performance

metric without any guarantee on the correctness of the chosen architecture.

We focus on the fundamental question of how to systematically choose the NN architecture
(number of layers and number of neurons per layer) such that we guarantee the correctness
of the chosen NN architecture in terms of its ability to control a nonlinear dynamical system.
In particular, we seek to use knowledge of the underlying control problem to guide the design

of NN architectures [50].

138

Our approach exploits several insights. First, state-of-the-art NN utilizes Rectified Linear
Units (ReLU), which in turn restricts the NN controller to implement only Continuous
Piecewise Affine (CPWA) functions. As is widely known, CPWA function is compromised
of several affine functions (named local linear functions), which are defined over a set of
polytypic regions (called local linear regions). In other words, a ReLU NN—Dby virtue of its
CPWA character—partitions its input space into a set of polytypic regions (named activation
regions), and applies a linear controller at each of these regions. Therefore, a NN architecture
dictates the number of such activation regions in the corresponding CPWA function that is
represented by the trainable parameters in the NN. That is, to design a NN architecture,
one needs to perform two steps: (i) compute (or upper bound) the number of activation
regions required to implement a controller that satisfy the specifications and (ii) transform
this number of activation regions into a NN architecture that is guaranteed to give rise to

this number of activation regions.

To approach the first step, namely counting the number of the required activation regions, we
assume the existence of an unknown robust Lipschitz-continuous, state-feedback controller
with some Lipschitz constant upper-bounded by K., that is capable of controlling the
system while meeting the specifications. Without the knowledge of such controller, other
than the upper bound on its Lipschitz constant K .., we can upper-bound the number of
activation regions needed to approximate this controller by a CPWA function while still

meeting the same specifications.

Next, we build on recent results obtained by the authors on a novel NN architecture named
Two-Level Lattice (TLL) NN architecture [48]. Unlike other NN architecture for which
the number of activation regions is unknown a priori, the TLL-NN architecture enjoys the
property that it is parametrized directly by the number of its activation regions. That is, once
the number of activation regions is computed using the existence of such an unknown robust

Lipschitz-continuous controller, a TLL-NN architecture can be directly generated from this

139

knowledge. Such NN is then guaranteed to be sufficiently parametrized to implement a
CPWA function that approximates the unknown Lipschitz-continuous controller, providing

a systematic approach to design such architecture for NN controllers.

5.2 Abstract Disturbance Simulation

We will denote by N, R and R* the set of natural numbers, the set of real numbers and the
set of non-negative real numbers, respectively. For a function f: A — B, let dom(f) return
the domain of f, and let range(f) return the range of f. For a set V € R”, let int(V') return
the interior of V. For € R", we will denote by ||z|| the infinity norm of x; for x € R™ and
e > 0 we will denote by B(x;¢€) the ball of radius € centered at x as specified by ||-||. For
f:R" = R™ ||flls will denote the essential supremum norm of f. Finally, given two sets

A and B denote by B# the set of all functions with domain A and range B.

5.2.1 Dynamical Model

In this chapter, we will consider a continuous-time nonlinear dynamical system specified by

the ordinary differential equation (ODE):

@(t) = f(x(t), u(t)) (5.1)

where the state vector z(t) € R™, and the control vector u(t) € R™. Formally, we have the

following definition:

Definition 5.1 (Control System). A control system is a tuple ¥ = (X,U,U, f) where

o X C R" 15 the compact state space;

140

o U C R™ is the compact set of admissible (instantaneous) controls;

o U C UR" is the space of admissible open-loop control functions — i.e. v € U is a

function v : R™ — U; and

o f:R"xU — R"™ is a vector field specifying the time evolution of states according to

(5.1).

A control system is said to be (globally) Lipschitz if there exists constants K, and K, such

that for all z, 2’ € R™ and u,u’ € R™:
1f (@, u) = f@')| < Kollw — 2| + Kullu — /]| (5.2)

In the sequel, we will primarily be concerned with solutions to (5.1) that result from instan-
taneous state-feedback controllers, ¥ : X — U. Thus, we use (,,y to denote the closed-loop
solution of (5.1) starting from initial condition zy (at time ¢ = 0) and using state-feedback
controller W. We refer to such a (,,¢ as a (closed-loop) trajectory of its associated control

system.

Definition 5.2 (Closed-loop Trajectory). Let 3 be a Lipschitz control system, and let W :
R"™ — U be a globally Lipschitz continuous function. A closed-loop trajectory of ¥ under
controller ¥ and starting from xo € X is the function (yyp : RY — X that uniquely solves

the integral equation:

Capw(£) = 0 + / £ (Cont (0, U (o (0)) o (5.3)

It is well known that such solutions exist and are unique under these assumptions [69]. We
will only consider feedback controllers for which X is positively invariant under feedback, i.e.

range(Crow) X

141

For any given feedback controller, ¥, the open-loop control functions created by its trajec-

tories may not be elements of &. Thus, we make the following additional definition:

Definition 5.3 (Feedback Controllable). A Lipschitz control system 3 is feedback control-
lable by a Lipschitz controller ¥ : R™ — U if the following is satisfied: Vo (g € U, Vo € X.
A Lipschitz control system is called feedback controllable if it is feedback controllable for each

globally Lipschitz feedback controller.

In this chapter, we will henceforth consider only feedback controllable Lipschitz control
systems. We conclude this subsection by defining the (sampled) transition system embedding

of a feedback-controlled system that is inspired by the work in [174].

Definition 5.4 (7-sampled Transition System Embedding). Let ¥ = (X,U,U, f) be a feed-
back controllable Lipschitz control system, and let ¥ : R" — U be a Lipschitz continuous

feedback controller. For any T > 0, the T-sampled transition system embedding of 3 under

U is the tuple S;(Xw) = (X7, Uy, sg—) where:

e X = X is the state space;

o Uy = {(V o Gu)ltepor] - o € X} is the set of open loop control inputs generated by

U-feedback, each restricted to the domain [0, 7]; and

o ..—C X, xU; x X, such that x 2\:_) ' iff

both w = (¥ o (pu) e, and 2’ = Cou(T).

5.2.2 Abstract Disturbance Simulation

In this subsection, we propose a new simulation relation, which we call abstract disturbance
simulation, as a formal notion of specification satisfaction for metric transition systems. Ab-
stract disturbance simulation enforces a notion of specification that is robust to perturbation

of the state, and this will facilitate solving the main problem in this chapter.

142

Abstract disturbance simulation is inspired by robust bisimulation [80] and especially distur-
bance bisimulation [91], but it abstracts those notions away from their definitions in terms
of control system embeddings and explicit modeling of disturbance inputs. In this way, it is
conceptually similar to the technique used in [174] and [107] to define a quantized abstrac-
tion, where deliberate non-determinism is introduced in order to account for input errors.

As a prerequisite, we introduce the following definition.

Definition 5.5 (Perturbed Metric Transition System). Let S = (X,U,s+) be a metric
transition system where X C Xy for some metric space (Xyr,d). Then the 0-perturbed
metric transition system of S, &°, is a tuple &° = (X, U, &) where the (altered) transition

relation, —, 18 defined as follows:

T g 2 iff F2" € X st d(z’,2)) <0 and x 5 2. (5.4)

Note that &° has identical states and input labels to S, and it also subsumes all of the tran-
sitions therein, i.e. & C o—>. However, the transition relation for &° explicitly contains
new nondeterminism relative to the transition relation of S. This nondeterminism can be
thought of as perturbing the targets state of each transition in S; each such perturbation be-
comes the target of a (nondeterministic) transition with the same input label as the original

transition.

With this definition in hand, we can finally define an abstract disturbance simulation between

two metric transition systems.

Definition 5.6 (Abstract Disturbance Simulation). Let S = (Xs,U,) andT = (X7, Ur, +—
) be metric transition systems whose state spaces Xg and Xg are subsets of the same met-
ric space (Xyr,d). Then T abstract-disturbance simulates S under disturbance §, written

S Zap, T if there is a relation R C Xg X Xp such that

143

1. for every (xz,y) € R, d(z,y) < €;
2. for every x € Xg there exists a pair (x,y) € R; and

3. for every (z,y) € R and x o ' there exists a y — y' such that (2',y') € R.

Remark 5.1. <4p, corresponds with the usual notion of simulation for metric transition

systems. Thus, S <up; T < &° =up, T.

5.2.3 ReLU Neural Network Architectures

In this chapter, our primary focus will be on controlling the nonlinear system defined in
(5.1) with a state-feedback neural network controller NN : X — U, where AN denotes a
Rectified Linear Unit Neural Network (ReLU NN). Such a (K-layer) ReLU NN is specified
by composing K layer functions (or just layers). A layer with i inputs and o outputs is
specified by a (0 x i) real-valued matrix of weights, W, and a (0 x 1) real-valued matrix of
biases, b, as follows: Ly : R — R°, 2z — max{Wz + b,0}. where the max function is taken
element-wise, and # £ (W, b) for brevity. Thus, a K-layer ReLU NN function as above is
specified by K layer functions {Lyu) :i = 1,..., K} whose input and output dimensions are

composable: that is they satisfy i, = 0,1 : 1 = 2,..., K. Specifically:

NN(:B) = (LG(K) 9] L9<K71) O0--+0 L9(1>)($). (5.5)

When we wish to make the dependence on parameters explicit, we will index a ReLLU function

AN by a list of matrices © = (1), ... 9T 1,

Specifying the number of layers and the dimensions of the associated matrices 0@ = (W® p(0))

IThat is © is not the concatenation of the () into a single large matrix, so it preserves information about
the sizes of the constituent §().

144

specifies the architecture of the ReLU NN. Therefore, we will use:

Arch(@) = ((TL, 01)7 (12, 02), cee (iK—h OK—l); (1](7 m)) (56)

to denote the architecture of the ReLU NN AMNg.

Since we are interested in designing ReLLU architectures, we will also need the following result
from [48, Theorem 7], which states that a Continuous, Piecewise Affine (CPWA) function,
f, can be implemented exactly using a Two-Level-Lattice (TLL) NN architecture that is

parameterized exclusively by the number of local linear functions in f.

Definition 5.7 (Local Linear Function). Let f : R — R™ be CPWA. Then a local linear

function of f is a linear function ¢ : R™ — R™ if there exists an open set O such that

Ux) = f(z) for allx € O.

Definition 5.8 (Linear Region). Let f : R™ — R™ be CPWA. Then a linear region of f is

a the largest set R C R™ such that f has only one local linear function on the interior of *R.

Theorem 5.2 (Two-Level-Lattice (TLL) NN Architecture [9, Theorem 7]). Let f : R* — R™
be a CPWA function, and let N be an upper bound on the number of local linear functions
in f. Then there is a Two-Level-Lattice (TLL) NN architecture Arch(© ") parameterized
by N and values of @JT\—,LL such that: f(x) = N%;LL(I'). In particular, the number of linear

regions of f is such an upper bound on the number of local linear functions.

Finally, note that a ReLU NN function, AN, is known to be a continuous, piecewise affine
(CPWA) function consisting of finitely many linear segments. Thus, NN is itself necessarily

globally Lipschitz continuous.

145

5.3 Problem Formulation

We can now state the main problem we will consider in this chapter. In brief, we wish
to identify the architecture for a ReLLU network to be used as an instantaneous feedback
controller for the control system X: this architecture must have parameter weights that

allow it to control X up to a specification that can be met by some other, non-NN controller.

Despite our choice to consider fundamentally continuous-time models, we formulate our main
problem in terms of their (7-sampled) transition system embeddings. This choice reflects
recent success in verifying specifications for such transition system embeddings by means of
techniques adapted from computer science; see e.g. [148], where a variety of specifications are
considered in this context, among them LTL formula satisfaction. Thus, our main problem

is stated in terms of the simulation relations in the previous section.

Problem 5.3. Let 6 > 0 and K., > 0 be given. Let X be a feedback controllable Lipschitz
control system, and let Sspee = (Xspec, Uspec,ssﬁ) be a transition system encoding for a
specification on . Finally, let T = 7(f, Ky, Ky, Kcont, 0) be determined by the parameters

specified.

Now, suppose that there exists a Lipschitz continuous controller W : R™ — U with Lipschitz

constant Kg < Koon: such that:

ST(Z‘I/) jADg Sspec~ (57)

Then the problem is to identify a ReLU architecture, Arch(©), with the property that there

exists values for © such that:

ST(Z./W\@) jADo Sspec' (58)

146

One of the primary assumptions is that there exists a controller ¥ which satisfies the speci-
fication, Sgpec. We use this assumption largely to help ensure that the problem is well posed.
For example, this assumption ensures that we aren’t trying to assert the existence of NN
controller for a system and specification that can’t be achieved by any continuous controller
— such examples are known to exist for nonlinear systems. In this way the existence of a
controller ¥ subsumes any possible conditions of this kind that one might wish to impose:

stabilizability or controllability for example.

Moreover, there is a strong conceptual reason to consider abstract disturbance simulation in
specification satisfaction for such a W. Our approach to solve this problem will be to design
a NN architecture that can approximate any such ¥ sufficiently closely. However, ANg
clearly belongs to a smaller class of functions than W, so an arbitrary controller ¥ cannot,
in general, be represented exactly by means of NNg. This presents an obvious difficulty
because instantaneous errors between ¥ and ANg may accumulate by means of the system

dynamics, i.e. via (5.3).

5.4 ReLU Architectures for Nonlinear Systems

Before we state the main theorem of the chapter, we introduce the following notation in the

form of two definitions.

Definition 5.9 (Vector Field Bound, K). Let K £ maxX,exucv||f(z,u)|, which is well

defined because X x U s compact and f is continuous.

Definition 5.10 (Extent of X). The extent of the compact set X is defined as:

A .
ext(X) = Jmax gle%?(wk(x) gnel)rflwk(x)) (5.9)

where () is the projection of x onto its k™ component.

147

The main result of the chapter is the following theorem, which directly solves 5.3.

Theorem 5.4 (ReLU Architecture). Let § > 0 and Koot > 0 be given, and let ¥ and Sgpec

be as in the statement of 5.53. Finally, choose a p > 0 such that:

1% K, —
K, j-———— e " 5Reomk < §, 5.10
a 6’[(cont'lC ‘ ()
and set:
. 1 and < , (5.11)
_6-me~/€ _6'Kcont

(which depend only on f, K, Ky, Ken and d).

If there exists a Lipschitz continuous controller W : R™ — U with Lipschitz constant Ky <

K on: such that:
57-(2\1/) j.AD(; Sspec- (512>
Then a TLL NN architecture Arch(©y") of size:

L

has the property that there exist values for © " such that:
ST(ENA{_)TLL) jADO Sspec- (514)
N

Proof Sketch:

The proof of 5.4 consists of establishing the following two implications:

e Approximate controllers satisfy the specification: There is an approximation accuracy,

148

u, and sampling period, 7, with the following property: if the unknown controller
U satisfies the specification (under ¢ disturbance and sampling period 7), then any
controller (NN or otherwise) which approximates ¥ to accuracy p will also satisfy the

specification (but under no disturbance). This implication is shown in 5.10 of 5.5.

e Any controller can be approximated by a CPWA with the same fixed number of linear
regions: If unknown controller ¥ has a Lipschitz constant Ky < Kcon, then ¥ can be
approximated by a CPWA with a number of regions that depends only on K., and

the desired approximation accuracy. This implication is shown in 5.13 of 5.6.

We will show these results for any controller W that satisfies the assumptions of 5.4. Thus,
these results together show the following implication: if there exists a controller ¥ that sat-
isfies the assumptions of 5.4, then there is a CPWA controller that satisfies the specification.
And moreover, this CPWA controller has a at most a number of linear regions that depends

only on the parameters of the problem and not the particular controller W.

The conclusion of the theorem will then follow directly from 5.2 [48, Theorem 7]: together,
they specify that any CPWA with the same number of linear regions (or fewer) can be

implemented exactly by a common TLL NN architecture.

5.5 Approximate Controllers Satisfy the Specification

The goal of this section is to choose constants p > 0 and 7 > 0 such that any controller
T with ||T — Ul < p/3 satisfies the specification S;(Xv) =<ap, Sspec. The approach
will be as follows. First, we confine ourselves to a region in the state space on which
the controller ¥ doesn’t vary much: the size of this region is determined entirely by the
approximation accuracy, i, and the bound on the Lipschitz constant, K ... Then we confine

the trajectories of ¥y to this region by bounding the duration of those trajectories, i.e. 7.

149

Finally, we feed these results into a Gronwall-type bound to choose p. In particular, we
choose p small enough such that the error incurred by using T instead of ¥ is within the
disturbance robustness, . From this we will conclude that T satisfies the specification as

claimed whenever || T — V|| < /3. A more detailed road map of these steps is as follows.

e Let u be an approximation error. Then:
1. Choose n = n(u) such that a Lipschitz function with constant Ko doesn’t vary
by more than /3 between any two points that are 2n apart.

2. Choose 7 = 7(p) such that ||z —&,,(7)| < n for any continuous open-loop control

v (use the fact that ||f]| is bounded).

3. Use a) and b) to conclude that || T((or(t)) — V(Cow(f))]] < |1 — V|00 + 24/3 for

t€0,7]

4. Assume ||T — V||, < p/3. Choose p = p(9) such that a Gronwall-type bound

satisfies:

1Gor (7(1) = Gow (T | < Ko o 7(p) - 570 < 6. (5.15)

Conclude that if | T — V|| < /3, then: S.(Xv) <up, &+(Xw) =ap, Sspec-

Now we proceed with the proof. We first formalize Steps i), 4) and 4ii) in the next three

propositions.

Proposition 5.5. Let pn > 0 be given, and let U be as above. Then there exists an n = n(u)

such that:

le =2l <2n = [|¥(z) — W) < p/3. (5.16)

150

Proposition 5.6. Let > 0 be given, and let n = n(p) be as in the previous proposition.
Finally, let 3 be as specified in the statement of 5.4. Then there exists a T = 7(u) such that

for any Lipschitz feedback controller Y :

[z — Gr(@®)|| <n=mn(u) VYtel0,r] (5.17)

Proof. Since f is continuous on the compact set X x U, it is bounded, and let IC be this

bound as stated in 5.9. Then by (5.3) we have

|z — Cx ()| = H/O f(Gr(0), T(¢er(0)))do (5.18)
< [WGl TGt do (519)
< /t Kdo = Kt. (5.20)
0
Hence, choose 7 = 7(u) < % and the conclusion follows. O

Proposition 5.7. Let > 0 be given. Let X and ¥ be as in the statement of 5.4; let n = n(u)
be asin 5.5; let T = 7(p) be asin 5.6; and let T : R™ — U be a Lipschitz continuous function.

Then:

vt e [0,7] [[T(Car(t) = W(Gu(®))| < 1T = ¥l +20/3 (5.21)

Proof. By the triangle inequality, we have:

= [T(Gr (1) = V' (Gr (1) + ¥(Gar (t) — U(z) + W(z) — U(Gu(t))]]

< (G () = (Car (O + (WG (8)) = V()| + [W(z) — ¥(Gu(®))]. (5.22)

151

The first term in (5.22) is bounded by ||T — ¥||,. Now consider the second term. By 5.6,

|Cax (t) — || < m; thus, by 5.5 we conclude that || W((x(¢)) — ¥(x)|| < /3. The final term

is likewise bounded by /3 for the same reasons. Thus, the conclusion follows.

To prove Step iv) we first need the following two results.

[]

Proposition 5.8 (Gronwall Bound). Let ¥ and ¥ be as in the statement of 5.4, and let T

be as in the statement of 5.7. If:
1T (CGr(t) = ¥(Cu@)| <& VE€]0,7]
then: |Cox(t) — Cou(t)|| < Ky - k-t - et Yt € [0, 7].
Proof. By definition and the properties of the integral, we have:

-y / F(Cor(0), TG (0))) — F(Cou(£), U(Cow(£)))do |

/ 1 (o (0), T (e (0))) — F(Cou (£), W' (G (1)) 1o

S KIHCCCT<O—) _C:c‘l/<0—)H +Ku"{ do.

The claimed bound now follows directly from the Gronwall Inequality [69].

Lemma 5.9. Let X, ¥ and Y be as before. Also, suppose that ' > 0 is such that:

1% K, —
Ku N ——C L Y G S)
a G'I(C(mt'lC t

IF T = Ulloe < /3, then: |[Cor (7(1)) = Caw(T(1)]| < 0.

152

(5.23)

(5.24)

(5.25)

Proof. This is a direct consequence of applying 5.7 to 5.8. [

The final result in this section is the following Lemma.

Lemma 5.10. Let X, VW and Y be as before, and suppose that p > 0 is such that:

% K,— B
Ky, pu-——— "Rk < §. 5.26
: 6 - Kcont K ‘ ()
If|T = Vo < /3, then for 7 < gt—r we have:
S (Xr) 2up, 6-(Zw). (5.27)

And hence: S-(Xv) 2ap, Sspec-

Proof. By definition, S;(3y) and &,(Xy) have the same state spaces, X. Thus we propose
the following as an abstract disturbance simulation under 0 disturbance (i.e. a conventional

simulation for metric transition systems): R = {(z,z)|z € X}.

Clearly, R satisfies the property that for all (x,y) € R, d(z,y) < 0, and for every x € X,
there exists an y € X such that (z,y) € R. Thus, it only remains to show the third property

of 5.6 under 0 disturbance.

In particular, let (z,x) € R, and suppose that x ;r% = Cr(7). lfx giﬂ 2/, then we have
shown that R is an abstract disturbance simulation under 0 disturbance. But by definition,
o Cew(7), and by 5.9, ||z’ — 2”|| < §. Thus, by definition of &, (Xy), x iﬁf x' as

Sy

required. O

153

5.6 CPWA Approximation of a Controller

The results in 5.5 showed that any controller, T, whether it is CPWA or not, will satisfy the
specification if it is close to ¥ in the sense that || T — V|| < p/3 (where p is as specified
therein). Thus, the main objective of this section will be to show that an arbitrary ¥ can
be approximated to this accuracy by a CPWA controller, Tcpwa, subject to the following
caveat. It is well known that CPWA functions are good function approximators in general,
but we have to keep in mind our eventual use of 5.2: thus, we need to approximate any such
U by a CPWA with the same, bounded number of linear regions. Thus, our objective in this
section is to find not just a controller Ycpwa that approximates W to the specified accuracy,
but one that achieves this objective using not more than some common, fixed number of
linear regions that depends only on the problem parameters (and not the function W itself

which is assumed to be unknown except for a bound on its Lipschitz constant).

With this objective in mind, our strategy will be to partition the state space X into a grid of
sup-norm balls such that no ¥ can vary by much between them: indeed we will use balls of
size n, as specified in 5.5. Thus, we propose the following starting point: inscribe a slightly
smaller ball within each n ball of the partition, and choose the value of Y¢pws on each such
ball to be a constant value equal to W(z) for some x therein. Because we have chosen the size
of the partition to be small, such an Ypyw, will still be a good approximation of ¥ for these
points in its domain. Using this approach, then, we only have to concern ourselves with
how “extend” a function so defined to the entire space X as a CPWA. Moreover, note that
this procedure is actually independent of the particular ¥ chosen, despite appearances: we
are basing our construction on a grid size n that depends only on the problem parameters,
and the construction will work no matter what particular value W(x) has within each grid

square.

The first step in this procedure will be to show how to extend such a function over the

154

largest-dimensional “gaps” between the smaller inscribed balls; the blue region depicted in
5.1 is an example of this large-dimensional gap for X C R? (the notation in the figure will
be explained later). This result must control the error of the extension so as to preserve
our desired approximation bound, as well provide a count of the number of linear regions
necessary to do so; this is 5.12. This result can then be extended to all of the other gaps
between inscribed balls to yield a CPWA function with domain X, approximation error /3,

and a known number of regions; this is 5.13.

In order to prove our first lemma of this section, we need a couple of definitions to help with

the terminology.

Definition 5.11 (Face). Let C' = [0, 1]" be a unit hypercube of dimension n. A set FF C C

is a k-dimensional face of C if there exists a set J C {1,...,n} such that |J| =n —k and

Vee F .\ mx) e {0,1}. (5.28)

JjeJ

Let Z,(C) denote the set of k-dimensional faces of C, and let .F(C) denote the set of all

faces of C' (of any dimension).

Remark 5.11. A k-dimensional face of the hypercube C = [0,1]" is isomorphic to the

hypercube [0, 1]*.
Definition 5.12 (Corner). Let C = [0,1]". A corner of C is a 0-dimensional face of C.
Lemma 5.12. Let C' = [0,1]", and suppose that T'. : Fo(C) — R is a function defined on
the corners of C. Then there is a CPWA function I' : C'— R such that:

o Va € Zy(C).I'(z) =T.(x), i.e. T extends T, to C;

o I' has at most 2"~* - n! linear regions; and

o forall x € C, mingezyc) I'e(z) < T'(2) < maxzezyc) Le().

155

Proof. First, we assume without loss of generality that the given function I'. takes distinct

values on each element of its domain.

This is a proof by induction on dimension. In particular, we will use the following induction

hypothesis:

e There is a function Ty : UX_.%(C) — R such that for all F € .%,(C), I'x|s has the
following properties:
— it is CPWA
— it has at most 27! - k! linear regions; and

— for all z € F: min, ¢ z 7 Le(®) < Ti(z) < max,c 5) Te().

We start by showing that if the induction hypothesis above holds for k, then it also holds

for k + 1.

To show the induction step, first note that for any face F' € %, 1(C), all of its faces are
already in the domain of T'y. That is U¥_,.%;(F) C dom(T;). Thus, we can define 'y, by
extending I'y to int(F') for each F' € Z;,1(C). Since these interiors are mutually disjoint,
we can do this by explicit construction on each individually, in such a way that the desired

properties hold.

In particular, let F' € Z#,,1(C), and let v be the midpoint of F', i.e. the k-cube isomorphism

of vis [3,...,3]. vis clearly in the interior of F, so define:
1
T (v) = Fo] > Ti(x) (5.29)
0 z€Fo(F)

and note that the corners of F' are also corners of C' Thus, ['y;1(v) is the average of all of the

corners of the k + 1-face that contains it. Now, extend 'y, to the rest of int(F") as follows:

156

let b € UF_|.Z;(F) and define:

This definition clearly covers int(F'), and it also satisfies the requirement that:

F min L.(z)<T < r 31
Vo€ F min o(z) < k+1(x)_$£§é) () (5.31)

because the induction hypothesis ensures that each b is on a face of F', and the corners of
a face of F' are a subset of the corners of F'. Thus, it remains to show the bound on the
number of linear regions. But from the construction, 'y | has one linear region for linear
region of 'y, on a k-face of F. Since the k + 1-face F has 2 - (k + 1) k-faces, we conclude by

the induction hypothesis that 'y, 1| has at most:

2-(k+1)- 2"t gl =2% . (k+1)! (5.32)

linear regions. This completes the proof of the induction step.

It remains only to show a base case. For this, we select k& = 1, i.e. the line-segment faces
of C'. Each 1-face of C has only two corners and no other faces other than itself. Thus, for
each ' € Zy(C) we can simply define I'y | to linearly interpolate between those two corners.
[y | is thus CPWA, and it satisfies the required bounds on its values. Moreover, I'1|r has
exactly 2171 . 1! = 1 linear region. Thus, the function I'; so defined satisfies the induction

hypothesis stated above. [

Definition 5.13 (n-partition). Let n > 0 be given. Then an n-partition of X is a reqular,
non-overlapping grid of n/2 balls in the sup norm that partitions X. Let X .ene denote the

set of centers of these balls, and let Xpoe = {B(xe;n/2)|x. € Xeent} denote the partition.

Definition 5.14 (Neighboring Grid Center/Square). Let X4 be an n-partition of X, and

157

let B(xe;n/2) € Xpare. Then a neighboring grid center (resp. square) to x. is an zl, € X,
(respectively B(zl;n/2) € Xpart) such that B(zl;n/2) shares a face (of any dimension) with

B(z;n/2). The set of neighbors of a center, ., will be denoted by N (x.).

Lemma 5.13. Let n = n(u) be chosen as in 5.5, and let ¥ be as before. Then there is a
CPWA function Yepya : R® — U such that:

o [Yorus — U)o < & and

o Yorwa has at most

- (m . ;%) . (extf]m)n (5.33)

linear regions.

Proof. Our proof will assume that U C R, since the extension to m > 1 is straightforward
from the m = 1 case. The basic proof will be to create an n-partition of X, and define
Tepwa to be constant on p - n/2 < n/2 radius balls centered at each of the grid centers in
the partition; we will then use 5.12 to “extend” this function to the rest of X as a CPWA

function. In particular, for each x. € X, we start by defining;:

Yepwa(x) = VU(z.) VYo € Bz p-n/2). (5.34)

Then we will extend this function to the rest of X, and prove the claims for that extension.

To simplify the proof, we will henceforth focus on a particular x., and show how to extend
Yepwa from B(z.; p-n/2) to the “gaps” between it and each of the neighboring balls, B(x; p-

n/2) for x!, € N'(x.). To further simplify the proof, we define here two additional pieces of

158

(ze

notation. First, for each z, € X, and each k € {1,...,n} define a function w) as follows:

W™ {=1,0,+1} — 27

W0 () = p3, mul(e) + pY]

w41 s [m(e) + Py, Ti(ze) + 4 + (1= p)g]

!

w](fC) Pl m(ae) — 3 — (1= p)g, me(xe) — p

(NI

Then, define the function:

R@) . {—1,0,1}" — 2&"

RE) s Wl (1(0)) x Wi (12(1)) X - x Wl (m,(0)),

and let 0 = (0,...,0) € {—1,0,1}". Also, define dim(¢) as the number of non-zero elements

in ¢.

Now let z. € X, be fixed. Using the above notation, the ball B(z.; p-n/2) is given by:
B(xe p-n/2) = R'*(0), (5.35)

Similarly each of the “gaps” between R(*<)(0) and its neighbors, R (0) for 2/, € N (x.),

are the hypercubes: R(#)(1) for + € {—1,0,1}"\{0}, and hence:

U RE() = X\ | B(lip-n/2). (5.36)

zc€Xc,0e{—1,0,1}""\0 xLeXe

This notation is illustrated in two dimensions in 5.1.

The first step is to show that Ycpwa can be extended from the constant-valued region,
R@)(0), to each of its neighbors, R@)(:), in a consistent way as a CPWA. To do this,

first note that R(*<)(0) has 2" neighboring regions with indices +' € {—1,+1}", and each of

159

R@((0,+1))

RE)(0)

RE((~1,-1))7

—
pen

n

Figure 5.1: Illustration of R(*<) notation for X C R2?. For z, as labeled, the regions
REI((—1,-1)), R@)((0,+1)) and R@)(0) are shown in blue, red and light gray, respec-
tively.

these regions intersects a different R(#<)(0) for /. € N(z.) at each corner, but is otherwise
disjoint from them. Thus, 5.12 can be used to define a CPWA on each such R (/) in a
way that is consistent with the definition of Yepws on the R(*<)(0). These definitions are
also consistent with each other, since these regions are disjoint. Moreover, this procedure
yields the same extension when started from 2, € N (z.) instead of z. (by the symmetric
way that 5.12 is proved). Thus, it remains only to define Yepw,s on regions with indices of the
form «/ € {—1,0, +1}"\{—1,+1}" U {0}. However, each such R (,") intersects 2n~dm{")
regions with indices of the form ' € {—1,+1}", and each of those intersections is a dim(¢")
face of the corresponding R(*)(+/). But on each such dim(.”) face, Yepws is defined and
agrees with I'giym(y from the construction in 5.12. Finally, since I'gim(») (and hence Yepwa)
is identical up to isomorphism on each of these dim(/”) faces, Tcpwa can be extended on to
R (1) by isomorphism between the dim(.”) nonzero indices, and Yepwa as defined on one
of the dim(¢”) faces of R(®<)(:/). Finally, the symmetry of this procedure and 5.12 ensures

that this assignment will be consistent when starting from some z/, € N (z.) instead of z..

Next, we show that for this Yepwa, |[|[Yepwa — V|| < p/3. This largely follows from the
interpolation property proven in 5.12. In particular, on some R®)(1), Tepwa takes exactly the

same values as some ['qinm(,) constructed according to 5.12, where the interpolation happens

160

between dim(¢) points in V £ {U(2") |z, € N(x.) U {x.}}. Thus,

Ve e REI() min U(y) < Yopwa(®) < max ¥(y). (5.37)
yev yev

Let z € R (1) be fixed temporarily, and suppose that Yopwa (z)—¥(x) > 0 and max,cy ¥(y)—

U(x) > 0. Then:

[Tepwa () =W (2)] = Yepwa () — V() <max W(y)—¥(z) = |max ¥(y)— ¥ (z)| <

yev yeVv

wl=

(5.38)

where the last inequality follows from our choice of n from 5.5, since |y — x| < 2n for all
y € V. The other cases can be considered as necessary, and they lead to the same conclusion.

Hence, we conclude ||Yopwa — Vlloo < /3, since our choice of center z. and ¢ was arbitrary.

Now we just need to (over)-count the number of linear regions needed in the extension Vepya-
This too will follow from the construction in 5.12. Note that on each R®) (1), Tepwa has the
same number of linear regions as some ['giy(,) that was constructed by 5.12, which by the

same lemma has 24™®)~1. dim(¢)! regions. Thus, we count at most:

22k:—1

i (Z) A O g) (5.39)

k=1

linear regions. Finally, since we need this many regions for the neighboring regions of a
single grid square, we obtain an upper bound for the total number of regions by multiplying

(5.39) by the number of grid squares in the partition, (eXtSX))” (then by the m, in the

multi-dimensional output case). [

161

a1 (rad)
d/s)
u (N-m)

25 (ra

Figure 5.3: States and inputs of the inverted pendulum with initial condition [—0.4,1.0]"

5.7 Numerical Results

We illustrate the results in this chapter on an inverted pendulum described by the following
model:

1 T

flxy, zo,u) = |29 %sin(ml) — 3 + Elcos(xl)u

where x; is the angular position, z, is the angular velocity, and control input w is the
torque applied on the point mass. The parameters are the rod mass, m; the rod length, [;
the (dimensionless) coefficient of rotational friction, h; and the acceleration due to gravity,
g. For the purposes of our experiments, we considered a subset of the state/control space
specified by: z; € [-1,1], 22 € [—1,1] and u € [—6,6]. Furthermore, we considered model
parameters: m = 0.5 kg; [= 0.5 m; h = 2; and ¢ = 9.8 N/kg. Then for different choices
of the design parameters u, we obtain the following sizes N for the corresponding TLL-NN
architecture along with the corresponding 7, n and the that is required for the specification

satisfaction:

In the sequel, we will show the control performance of a TLL-NN architecture with 400 local

linear region. While there are a number of techniques that can be used to train the resulting

162

7 0 T n N
0.35 | 0.8694 | 0.0098 | 0.583 | 235
0.3 | 0.5287 | 0.0083 | 0.5 | 320
0.25 | 0.3039 | 0.0069 | 0.417 | 460
0.2 | 0.1610 | 0.0056 | 0.334 | 720
0.15 | 0.0749 | 0.0042 | 0.25 | 1280
0.1 | 0.0275 | 0.0028 | 0.167 | 2880

Table 5.1: Dependence of NN parameter on partition parameters

NN, for the sake of simplicity, we utilize Imitation learning where the NN is trained in a
supervised fashion from data collected from an expert controller. In particular, we designed
an expert controller that stabilizes the inverted pendulum; we chose to use Pessoa [93]
to design our expert using the parameter values specified above. In particular, we tasked
Pessoa to design a zero-order-hold controller that stabilizes the inverted pendulum in a subset
Xspee = [—1,1] x[=0.5,0.5]: that is the controller should transfer the state of the system
to this specified set and keep it there for all time thereafter. From this expert controller,
we collected 8400 data points of state-action pairs; this data was obtained by uniformly
sampling the state space. We then used Keras [31] to train the TLL NN using this data.
Finally, we simulated the motion of the inverted pendulum using this TLL NN controller.
Shown in 5.2 and 5.3 are the state and control trajectories for this controller starting from
initial state [0.7,0.5] and [—0.4, 1], respectively. In both, the TLL NN controller met the

same specification that was used to design the expert.

163

Bibliography

1]

A. Abate, D. Ahmed, A. Edwards, M. Giacobbe, and A. Peruffo. Fossil: A software
tool for the formal synthesis of lyapunov functions and barrier certificates using neu-
ral networks. In Proceedings of the 24th ACM International Conference on Hybrid
Systems: Computation and Control, 2021.

J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy optimization. In
Proceedings of the 34th International Conference on Machine Learning, pages 22-31,
2017.

M. E. Akintunde, A. Lomuscio, L. Maganti, and E. Pirovano. Reachability analysis for
neural agent-environment systems. In Proceedings of the Sixteenth International Con-
ference on Principles of Knowledge Representation and Reasoning (KR 2018). AAAI
2018.

M. Alshiekh, R. Bloem, R. Ehlers, B. Konighofer, S. Niekum, and UfukTopcu. Safe
reinforcement learning via shielding. In Proceedings of the 32nd AAAI Conference on
Artificial Intelligence, pages 2669-2678, 2018.

G. Anderson, A. Verma, I. Dillig, and S. Chaudhuri. Neurosymbolic reinforcement
learning with formally verified exploration. In Advances in Neural Information Pro-
cessing Systems, pages 6172—-6183, 2020.

S. Bak, H.-D. Tran, K. Hobbs, and T. T. Johnson. Improved geometric path enu-
meration for verifying relu neural networks. In Proceedings of the 32nd International
Conference on Computer Aided Verification, 2020.

B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing neural network architectures
using reinforcement learning. arXw:1611.02167, 2016.

A. Balakrishnan and J. V. Deshmukh. Structured reward shaping using signal temporal
logic specifications. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 3481-3486, 2019.

O. Bastani, S. Li, and A. Xu. Safe reinforcement learning via statistical model predic-
tive shielding. In Robotics: Science and Systems, 2021.

164

[10]

[11]

[21]

[22]

O. Bastani, Y. Pu, and A. Solar-Lezama. Verifiable reinforcement learning via policy
extraction. In Advances in Neural Information Processing Systems, pages 2499-2509,
2018.

C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J. Pappas. Symbolic
planning and control of robot motion [grand challenges of robotics|. IEEE Robotics &
Automation Magazine, 14(1):61-70, 2007.

C. Belta, B. Yordanov, and E. A. Gol. Formal methods for discrete-time dynamical
systems, volume 15. Springer, 2017.

M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars. Computational geometry:
algorithms and applications. Springer-Verlag TELOS, 2008.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal
of Machine Learning Research, 13(Feb):281-305, 2012.

F. Berkenkamp, A. Krause, and A. P. Schoellig. Bayesian optimization with safety
constraints: safe and automatic parameter tuning in robotics. In Machine Learning.
Springer, 2021.

F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause. Safe model-based reinforce-
ment learning with stability guarantees. In Advances in neural information processing
systems, 2017.

D. Bertsekas. Infinite time reachability of state-space regions by using feedback control.
IEEFE Transactions on Automatic Control, 17(5):604-613, 1972.

A. Bhatia, L. E. Kavraki, and M. Y. Vardi. Sampling-based motion planning with
temporal goals. In 2010 IEEE International Conference on Robotics and Automation,
pages 2689-2696. IEEE, 2010.

A. Bhatia, M. R. Maly, L. E. Kavraki, and M. Y. Vardi. Motion planning with complex
goals. IEEFE Robotics € Automation Magazine, 18(3):55-64, 2011.

A. Biere, K. Heljanko, T. Junttila, T. latvala, and V. Schuppan. Linear encoding
of bounded LTL model checking. Logical Methods in Computer Science, 2(5:5):1-64,
2006.

A. Biere, K. Heljanko, T. Junttila, T. Latvala, and V. Schuppan. Linear encodings
of bounded LTL model checking. Logical Methods in Computer Science, 2(5:5):1-64,
2006.

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, et al. End to end learning for self-driving
cars. arXw:1604.07316, 2016.

R. Bunel, I. Turkaslan, P. H. S. Torr, P. Kohli, and M. P. Kumar. A unified view of
piecewise linear neural network verification. arXiv preprint, 2018.

165

[24]

[25]

Z. Cao, M. Kwon, and D. Sadigh. Transfer reinforcement learning across homotopy
classes. In IEEE Robotics and Automation Letters, 2021.

S. Carr, N. Jansen, and U. Topcu. Verifiable rnn-based policies for pomdps under
temporal logic constraints. In Proceedings of the 29th International Joint Conference
on Artificial Intelligence, page 4121-4127, 2020.

N. Cauchi and A. Abate. StocHy-automated verification and synthesis of stochas-
tic processes. In Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control, pages 258259, 2019.

M. Charikar, J. Steinhardt, and G. Valiant. Learning from untrusted data. In Proceed-
ings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
47-60. ACM, 2017.

S. Chen, M. Fazlyab, M. Morari, G. J. Pappas, and V. M. Preciado. Learning lyapunov
functions for hybrid systems. In Proceedings of the 2/th ACM International Conference
on Hybrid Systems: Computation and Control, 2021.

X. Chen, E. Abrahém, and S. Sankaranarayanan. Flow™: An analyzer for non-linear
hybrid systems. In International Conference on Computer Aided Verification (CAV),
pages 258-263. Springer, 2013.

R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick. End-to-end safe reinforce-
ment learning through barrier functions for safety-critical continuous control tasks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
3387-3395, 2019.

F. Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

R. Choudhury, G. Swamy, D. Hadfield-Menell, and A. D. Dragan. On the utility of
model learning in hri. In Proceedings of the 14th ACM/IEEE International Conference
on Human-Robot Interaction, HRI '19, page 317-325. IEEE Press, 2019.

Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh. A lyapunov-based
approach to safe reinforcement learning. In Advances in neural information processing
systems, pages 8092-8101, 2018.

Y. Chow, O. Nachum, A. Faust, E. Duenez-Guzman, and M. Ghavamzadeh. Lyapunov-
based safe policy optimization for continuous control. In RL/RealLife Workshop in the
36th International Conference on Machine Learning, 2019.

L. De Moura and N. Bjorner. Z3: An efficient SMT solver. In Proc. Int. Conf. Tools
and Algorithms for the Construction and Analysis of Systems, pages 337-340, 2008.

X. C. Ding, M. Kloetzer, Y. Chen, and C. Belta. Automatic deployment of robotic
teams. IEEE Robotics € Automation Magazine, 18(3):75-86, 2011.

166

https://github.com/fchollet/keras

[37]

[41]
[42]

[43]

[44]

T. Dreossi, A. Donzé, and S. A. Seshia. Compositional falsification of cyber-physical
systems with machine learning components. In NASA Formal Methods Symposium,
pages 357-372. Springer, 2017.

S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari. Output range analysis for deep
feedforward neural networks. In NASA Formal Methods Symposium. Springer, 2018.

R. Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In In-
ternational Symposium on Automated Technology for Verification and Analysis, pages
269-286. Springer, 2017.

S. Esmaeil Zadeh Soudjani and A. Abate. Adaptive and sequential gridding procedures
for the abstraction and verification of stochastic processes. SIAM Journal on Applied
Dynamical Systems, 12(2):921-956, 2013.

T. Everitt, G. Lea, and M. Hutter. AGI safety literature review. arXiv preprint, 2018.

G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas. Temporal logic motion
planning for dynamic robots. Automatica, 45(2):343-352, 2009.

G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas. Hybrid controllers for path planning:
A temporal logic approach. In Proceedings of the 44th IEEE Conference on Decision
and Control, pages 4885-4890. IEEE, 2005.

G. E. Fainekos, S. G. Loizou, and G. J. Pappas. Translating temporal logic to controller
specifications. In Proceedings of the 45th IEEE Conference on Decision and Control,
pages 899-904. IEEE, 2006.

M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. Pappas. Efficient and accurate
estimation of lipschitz constants for deep neural networks. In Advances in Neural
Information Processing Systems, pages 11423-11434, 2019.

A. Ferdowsi, U. Challita, W. Saad, and N. B. Mandayam. Robust deep reinforcement
learning for security and safety in autonomous vehicle systems. arXiv preprint, 2018.

J. Ferlez, H. Khedr, and Y. Shoukry. Fast batllnn: fast box analysis of two-level
lattice neural networks. In 25th ACM International Conference on Hybrid Systems:
Computation and Control, pages 1-11, 2022.

J. Ferlez and Y. Shoukry. AReN: Assured ReLU NN Architecture for Model Pre-
dictive Control of LTI Systems. In Hybrid Systems: Computation and Control 2020
(HSCC’20). ACM, New York, NY USA, 2020.

J. Ferlez and Y. Shoukry. Bounding the complexity of formally verifying neural net-
works: A geometric approach. In 60th IEEE Conference on Decision and Control,
pages 5104-5109, 2021.

J. Ferlez, X. Sun, and Y. Shoukry. Two-level lattice neural network architectures for
control of nonlinear systems. In 59th IEEE Conference on Decision and Control, 2020.

167

[51]

[57]

[58]

[61]

[62]

C. Finn, S. Levine, and P. Abbeel. Guided cost learning: deep inverse optimal con-
trol via policy optimization. In Proceedings of the 33rd International Conference on
Machine Learning, 2016.

J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and C. J.
Tomlin. A general safety framework for learning-based control in uncertain robotic
systems. IEEE Transactions on Automatic Control, 64(7):2737-2752, 2018.

G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,
A. Girard, T. Dang, and O. Maler. Spacekx: Scalable verification of hybrid systems.
In International Conference on Computer Aided Verification (CAV), pages 379-395.
Springer, 2011.

C. R. Garrett, T. Lozano-Perez, and L. P. Kaelbling. Ffrob: Leveraging symbolic
planning for efficient task and motion planning. The International Journal of Robotics
Research, 37(1):104-136, 2018.

T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev.
Ai 2: Safety and robustness certification of neural networks with abstract interpreta-
tion. In Security and Privacy (SP), 2018 IEEE Symposium on, 2018.

R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verifi-
cation of linear temporal logic. In Proceedings of the 15th IFIP WG6.1 International
Symposium on Protocol Specification, Testing and Verification XV, pages 3-18, 1996.

S. Gil, S. Kumar, M. Mazumder, D. Katabi, and D. Rus. Guaranteeing spoof-resilient
multi-robot networks. Autonomous Robots, 41(6):1383-1400, 2017.

M. Guo, K. H. Johansson, and D. V. Dimarogonas. Motion and action planning under
Itl specifications using navigation functions and action description language. In 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 240-245.
[EEE, 2013.

L. Gupta, R. Jain, and G. Vaszkun. Survey of important issues in uav communication
networks. IEEE Communications Surveys € Tutorials, 18(2):1123-1152, 2016.

M. Hasanbeig, Y. Kantaros, A. Abate, D. Kroening, G. J. Pappas, , and 1. Lee. Rein-
forcement learning for temporal logic control synthesis with probabilistic satisfaction
guarantees. In 58th IEEE Conference on Decision and Control, pages 5338-5343, 2019.

F. Higgins, A. Tomlinson, and K. M. Martin. Threats to the swarm: Security consid-
erations for swarm robotics. International Journal on Advances in Security, 2(2&3),
2009.

K. Hsu, R. Majumdar, K. Mallik, and A.-K. Schmuck. Multi-layered abstraction-
based controller synthesis for continuous-time systems. In Proceedings of the 21st

International Conference on Hybrid Systems: Computation and Control, page 120-129,
2018.

168

[63]

[64]

[65]

[66]

[67]

[71]

[72]

[73]

K.-C. Hsu, V. Rubies-Royo, C. J. Tomlin, and J. F. Fisac. Safety and liveness guar-
antees through reach-avoid reinforcement learning. In Robotics: Science and Systems,
2021.

IBM. Ibm ilog cplex optimizer. www.ibm.com/software/integration/
optimization/cplex-optimizer/, 2012.

R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and 1. Lee. Verisig: verifying safety
properties of hybrid systems with neural network controllers. In Proceedings of the
22nd ACM International Conference on Hybrid Systems: Computation and Control,
pages 169-178, 2019.

P. Jagtap and M. Zamani. QUEST: a tool for state-space quantization-free synthesis of
symbolic controllers. In International conference on quantitative evaluation of systems,
pages 309-313. Springer, 2017.

Y. Jiang, S. Bharadwaj, B. Wu, R. Shah, U. Topcu, and P. Stone. Temporal-logic-
based reward shaping for continuing learning tasks. In Proceedings of the 33rd AAAI
Conference on Artificial Intelligence, pages 7995-8003, 2020.

G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In International Conference on
Computer Aided Verification, pages 97-117. Springer, 2017.

H. K. Khalil. Nonlinear Systems. Pearson, Third edition, 2001.

H. Khedr, J. Ferlez, and Y. Shoukry. Peregrinn: Penalized-relaxation greedy neural
network verifier. In International Conference on Computer Aided Verification, pages
287-300. Springer, 2021.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. In Proceedings of the
31st International Conference on Machine Learning, 2014.

G. Klancar, A. Zdesar, S. Blazi¢, and I. Skrjanc. Wheeled mobile robotics. Elsevier,
2017.

M. Kloetzer and C. Belta. A fully automated framework for control of linear systems
from temporal logic specifications. IFEEE Trans. Automatic Control, 53(1):287-297,
2008.

H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Where’s waldo? sensor-based
temporal logic motion planning. In Proceedings 2007 IEEE International Conference
on Robotics and Automation, pages 3116-3121. IEEE, 2007.

H. Kress-Gazit, M. Lahijanian, and V. Raman. Synthesis for robots: Guarantees and
feedback for robot behavior. Annual Review of Control, Robotics, and Autonomous
Systems, 1:211-236, 2018.

169

www.ibm.com/software/integration/optimization/cplex-optimizer/
www.ibm.com/software/integration/optimization/cplex-optimizer/

[76]

[77]

[78]

[79]

[84]

[85]

[30]

[87]

8]

[89]

[90]

H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu. Correct, reactive, high-level robot
control. IEEE Robotics & Automation Magazine, 18(3):65-74, 2011.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 10971105, 2012.

O. Kupferman and M. Y. Vardi. Model checking of safety properties. Formal Methods
in System Design, pages 19:291-314, 2001.

Z. Kurd and T. Kelly. Establishing safety criteria for artificial neural networks. In
International Conference on Knowledge-Based and Intelligent Information and Engi-
neering Systems, pages 163-169. Springer, 2003.

V. Kurtz, P. M. Wensing, and H. Lin. Robust Approximate Simulation for Hierarchical
Control of Linear Systems under Disturbances. American Control Conference, 2020.

T. Latvala. Efficient model checking of safety properties. In Model Checking Software.
10th International SPIN Workshop, pages 74-88. Springer, 2003.

A. Lavaei, M. Khaled, S. Soudjani, and M. Zamani. AMYTISS: parallelized automated
controller synthesis for large-scale stochastic systems. In International Conference on
Computer Aided Verification, pages 461-474. Springer, 2020.

A. Lavaei, S. Soudjani, A. Abate, and M. Zamani. Automated verification and synthesis
of stochastic hybrid systems: A survey. In Automatica, 2021.

J. Leike, M. Martic, V. Krakovna, P. A. Ortega, T. Everitt, A. Lefrancq, L. Orseau,
and S. Legg. Al safety gridworlds. arXiv preprint, 2017.

F. Leofante, N. Narodytska, L. Pulina, and A. Tacchella. Automated verification of
neural networks: Advances, challenges and perspectives. arXiv preprint, 2018.

A. Liu, G. Shi, S.-J. Chung, A. Anandkumar, and Y. Yue. Robust regression for safe
exploration in control. In Proceedings of Machine Learning Research, 2020.

C. Liu, T. Arnon, C. Lazarus, C. Barrett, and M. J. Kochenderfer. Algorithms for
verifying deep neural networks. arXiv preprint arXiv:1903.06758, 2019.

X. Lu, D. Xu, L. Xiao, L. Wang, and W. Zhuang. Anti-jamming communication game
for UAV-aided VANETSs. In IEEE Global Communications Conf., pages 1-6, Dec 2017.

L. Ma, F. Juefei-Xu, J. Sun, C. Chen, T. Su, F. Zhang, M. Xue, B. Li, L. Li, Y. Liu,
J. Zhao, and Y. Wang. Deepgauge: Comprehensive and multi-granularity testing
criteria for gauging the robustness of deep learning systems. arXiv preprint, 2018.

L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li, Y. Liu, J. Zhao, and
Y. Wang. Deepmutation: Mutation testing of deep learning systems. arXiv preprint,
2018.

170

[91]

[92]

[99]

[100]

[101]

102]

[103]

[104]

K. Mallik, A.-K. Schmuck, S. Soudjani, and R. Majumdar. Compositional Synthesis of
Finite-State Abstractions. IEEE Transactions on Automatic Control, 64(6):2629-2636,
2019.

M. Mazo, A. Davitian, and P. Tabuada. Pessoa: a tool for embedded controller syn-
thesis. In International conference on computer aided verification, pages 566-569.
Springer, 2010.

M. Mazo, A. Davitian, and P. Tabuada. PESSOA: A tool for embedded controller
synthesis. In Proceedings of the 22nd International Conference on Computer Aided
Verification, CAV’10, pages 566-569. Springer-Verlag, 2010.

M. J. Mears. Cooperative electronic attack using unmanned air vehicles. In Proc.
American Control Conference, pages 3339-3347. IEEE, 2005.

G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear regions
of deep neural networks. In Advances in Neural Information Processing Systems, 2014.

S. Mouelhi, A. Girard, and G. Gossler. CoSyMA: a tool for controller synthesis using
multi-scale abstractions. In Proceedings of the 16th international conference on Hybrid
systems: computation and control, pages 83-88, 2013.

L. Munoz-Gonzalez, B. Biggio, A. Demontis, A. Paudice, V. Wongrassamee, E. C.
Lupu, and F. Roli. Towards poisoning of deep learning algorithms with back-gradient
optimization. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, pages 27-38. ACM, 2017.

P. Nuzzo, H. Xu, N. Ozay, J. Finn, A. Sangiovanni-Vincentelli, R. Murray, A. Donze,
and S. Seshia. A contract-based methodology for aircraft electric power system design.
IEEFE Access, 2:1-25, 2014.

M. Palan, G. Shevchuk, N. Charles Landolfi, and D. Sadigh. Learning reward func-
tions by integrating human demonstrations and preferences. In Robotics: Science and
Systems, 2019.

A. Paudice, L. Munoz-Gonzalez, and E. C. Lupu. Label sanitization against label
flipping poisoning attacks. arXiv preprint, 2018.

S. Paul, V. Kurin, and S. Whiteson. Fast efficient hyperparameter tuning for policy
gradients. arXiw:1902.06583, 2019.

P. Pauli, A. Koch, J. Berberich, and F. Allgower. Training robust neural networks
using lipschitz bounds. IEEE Control Systems Letters, 2020.

F. Pedregosa. Hyperparameter optimization with approximate gradient.
arXiw:1602.02355, 2016.

K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated whitebox testing of
deep learning systems. In Proceedings of the 26th Symposium on Operating Systems
Principles, pages 1-18. ACM, 2017.

171

[105]

106]
107]

[108]

[109]

110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

18]

E. Plaku and S. Karaman. Motion planning with temporal-logic specifications:
Progress and challenges. AI Communications, pages 1-12, 2015.

A. Pnueli. The temporal logic of programs. In FOCS, pages 4657, 1977.

G. Pola, A. Girard, and P. Tabuada. Approximately bisimilar symbolic models for
nonlinear control systems. Automatica, 44(10):2508-2516, 2008.

L. Pulina and A. Tacchella. An abstraction-refinement approach to verification of
artificial neural networks. In International Conference on Computer Aided Verification,
pages 243-257. Springer, 2010.

Q. Qingwen, D. Wenfeng, L.. Meiqging, and Y. Yang. Cooperative jamming resource
allocation of UAV swarm based on multi-objective DPSO. In Proc. Chinese Control
and Decision Conference, pages 5319-5325, June 2018.

Y. Quanming, W. Mengshuo, J. E. Hugo, G. Isabelle, H. Yi-Qi, L. Yu-Feng, T. Wei-
Wei, Y. Qiang, and Y. Yang. Taking human out of learning applications: A survey on
automated machine learning. arXww:1810.133506, 2018.

K. Rakelly, A. Zhou, D. Quillen, C. Finn, and S. Levine. Efficient off-policy meta-
reinforcement learning via probabilistic context variables. In Proceedings of the 36th
International Conference on Machine Learning, 2019.

S. V. Rakovic and M. Baric. Parameterized robust control invariant sets for linear
systems: Theoretical advances and computational remarks. [EEFE Transactions on
Automatic Control, 55(7):1599-1614, 2010.

C. E. Rasmussen and C. Williams. Gaussian processes for machine learning. the MIT
Press, 2006.

V. Renganathan and T. Summers. Spoof resilient coordination for distributed multi-
robot systems. In Int. Symp. Multi-Robot and Multi-Agent Systems, pages 135-141.
[EEE, 2017.

A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas, S. Tu, and N. Matni.
Learning control barrier functions from expert demonstrations. In 59th IEEE Confer-
ence on Decision and Control, 2020.

F. Rossi and N. Mattei. Building ethically bounded AI. In Proceedings of the 33rd
AAAI Conference on Artificial Intelligence, pages 9785-9789, 2019.

W. Ruan, X. Huang, and M. Kwiatkowska. Reachability analysis of deep neural net-
works with provable guarantees. arXiv preprint, 2018.

W. Ruan, M. Wu, Y. Sun, X. Huang, D. Kroening, and M. Kwiatkowska. Global
robustness evaluation of deep neural networks with provable guarantees for 10 norm.
arXw preprint, 2018.

172

[119]

120]

[121]

[122]

[123]

[124]
[125]

[126]

[127]

[128]

[129]

[130]

[131]

M. Rungger and P. Tabuada. Computing robust controlled invariant sets of linear
systems. IEEE Transactions on Automatic Control, 62(7):3665-3670, 2017.

M. Rungger and M. Zamani. SCOTS: a tool for the synthesis of symbolic controllers.
In Proceedings of the 19th international conference on hybrid systems: Computation
and control, pages 99-104, 2016.

S. Sadraddini and C. Belta. Formal guarantees in data-driven model identification
and control synthesis. In Proceedings of the 21st International Conference on Hybrid
Systems: Computation and Control (part of CPS Week), pages 147-156. ACM, 2018.

[. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and S. A. Seshia. Automated
composition of motion primitives for multi-robot systems from safe LTL specifications.
In Int. Conf. Intelligent Robots and Systems, pages 1525-1532, 2014.

U. Santa Cruz and Y. Shoukry. Nnlander-verif: A neural network formal verification
framework for vision-based autonomous aircraft landing. In NASA Formal Methods
Symposium, pages 213-230. Springer, 2022.

SatEX. Satex solver. https://yshoukry.bitbucket.io/SatEX/, 2018.

W. Saunders, G. Sastry, A. Stuhlmueller, and O. Evans. Trial without error: Towards
safe reinforcement learning via human intervention. In Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems, pages 2067-2069,
2018.

K. Scheibler, L. Winterer, R. Wimmer, and B. Becker. Towards verification of ar-
tificial neural networks. In Workshop on Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen und Systemen (MBMYV), pages 30—40,
2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms. arXiv:1707.06347, 2017.

S. A. Seshia, A. Desai, T. Dreossi, D. Fremont, S. Ghosh, E. Kim, S. Shivakumar,
M. Vazquez-Chanlatte, and X. Yue. Formal specification for deep neural networks.
arXiv preprint, 2018.

S. A. Seshia, D. Sadigh, and S. S. Sastry. Towards verified artificial intelligence. arXiv
preprint, 2016.

Y. Shoukry, P. Nuzzo, A. Balkan, I. Saha, A. L. Sangiovanni-Vincentelli, S. A. Seshia,
G. J. Pappas, and P. Tabuada. Linear temporal logic motion planning for teams of

underactuated robots using satisfiability modulo convex programming. In 2017 IEEFE
56th annual conference on decision and control (CDC), pages 1132-1137. IEEE, 2017.

Y. Shoukry, P. Nuzzo, A. Balkan, I. Saha, A. L. Sangiovanni-Vincentelli, S. A. Seshia,
G. J. Pappas, and P. Tabuada. Linear temporal logic motion planning for teams of

underactuated robots using satisfiability modulo convex programming. In Proc. IEEE
Conf. Decision and Control, pages 1132-1137, 2017.

173

https://yshoukry.bitbucket.io/SatEX/

[132] Y. Shoukry, P. Nuzzo, I. Saha, A. Sangiovanni-Vincentelli, S. Seshia, G. Pappas, and

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

143

P. Tabuada. Scalable lazy SMT-based motion planning. In Proc. IEEE Conf. Decision
and Control, pages 6683-6688, 2016.

Y. Shoukry, P. Nuzzo, A. Sangiovanni-Vincentelli, S. A. Seshia, G. J. Pappas, and
P. Tabuada. SMC: Satisfiability modulo convex optimization. In Proc. Int. Conf.
Hybrid Systems: Computation and Control, Apr. 2017.

Y. Shoukry, P. Nuzzo, A. L. Sangiovanni-Vincentelli, S. A. Seshia, G. J. Pappas, and
P. Tabuada. SMC: Satisfiability Modulo Convex optimization. In Proceedings of the
20th International Conference on Hybrid Systems: Computation and Control (HSCC),
pages 19-28. ACM, 2017.

Y. Shoukry, P. Nuzzo, A. L. Sangiovanni-Vincentelli, S. A. Seshia, G. J. Pappas, and
P. Tabuada. Smc: Satisfiability modulo convex programming [40pt]. Proceedings of
the IEEE, 106(9):1655-1679, 2018.

S. E. Z. Soudjani, C. Gevaerts, and A. Abate. FAUST 2 : Formal abstractions of
uncountable-state stochastic processes. In International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems, pages 272—286. Springer, 2015.

S. Srisakaokul, Z. Wu, A. Astorga, O. Alebiosu, and T. Xie. Multiple-implementation
testing of supervised learning software. In Proceedings of the AAAI-18 Workshop on
Engineering Dependable and Secure Machine Learning Systems (EDSMLS), 2018.

J. Steinhardt, P. W. W. Koh, and P. S. Liang. Certified defenses for data poisoning
attacks. In Advances in Neural Information Processing Systems, pages 3520-3532,
2017.

X. Sun, W. Fatnassi, U. Santa Cruz, and Y. Shoukry. Provably safe model-based meta
reinforcement learning: An abstraction-based approach. In 60th IEEE Conference on
Decision and Control, pages 29632968, 2021.

X. Sun, H. Khedr, and Y. Shoukry. Formal verification of neural network controlled
autonomous systems. In Proceedings of the 22nd ACM International Conference on
Hybrid Systems: Computation and Control, pages 147-156, 2019.

X. Sun, R. Nambiar, M. Melhorn, Y. Shoukry, and P. Nuzzo. DoS-resilient multi-robot
temporal logic motion planning. In IFEE International Conference on Robotics and
Automation, 2019.

X. Sun and Y. Shoukry. Provably correct training of neural network controllers using
reachability analysis. arXiv preprint arXiv:2102.10806, 2021.

X. Sun and Y. Shoukry. Neurosymbolic motion and task planning for linear temporal
logic tasks. arXiv preprint arXiv:2210.05180, 2022.

174

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

158

X. Sun and Y. Shoukry. NNsynth: Neural network guided abstraction-based controller
synthesis for stochastic systems. In 61st IEEE Conference on Decision and Control,
2022.

Y. Sun, X. Huang, and D. Kroening. Testing deep neural networks. arXiv preprint,
2018.

Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, and D. Kroening. Concolic
testing for deep neural networks. arXiv preprint, 2018.

P. Tabuada. Verification and control of hybrid systems: a symbolic approach. Springer
Science & Business Media, 20009.

P. Tabuada. Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer US, 2009.

P. Tabuada and G. J. Pappas. Linear time logic control of discrete-time linear systems.
IEEE Trans. Automatic Control, 51(12):1862-1877, 2006.

A. J. Taylor, A. Singletary, Y. Yue, and A. D. Ames. A control barrier perspective
on episodic learning via projection-to-state safety. In IEEE Control Systems Letters,
pages 1019-1024, 2021.

Y. Tian, K. Pei, S. Jana, and B. Ray. Deeptest: Automated testing of deep-neural-
network-driven autonomous cars. arXiv preprint arXiv:1708.08559, 2017.

V. Tjeng and R. Tedrake. Verifying neural networks with mixed integer programming.
arXiv preprint arXw:1711.07356, 2017.

C. E. Tuncali, G. Fainekos, H. Ito, and J. Kapinski. Simulation-based adversarial test
generation for autonomous vehicles with machine learning components. arXiv preprint
arXiv:1804.06760, 2018.

C. E. Tuncali, J. Kapinski, H. Ito, and J. V. Deshmukh. Reasoning about safety of
learning-enabled components in autonomous cyber-physical systems. In Proceedings of
the 55th Annual Design Automation Conference (DAC). ACM, 2018.

M. Turchetta, F. Berkenkamp, and A. Krause. Safe exploration in finite markov deci-
sion processes with gaussian processes. In Advances in Neural Information Processing
Systems, pages 4312-4320, 2016.

A. Verma, H. Le, Y. Yue, and S. Chaudhuri. Imitation-projected programmatic re-
inforcement learning. In Advances in Neural Information Processing Systems, pages
15752-15763, 2019.

K. P. Wabersich and M. N. Zeilinger. Linear model predictive safety certification for
learning-based control. In 57th IEEE Conference on Decision and Control, 2018.

K. P. Wabersich and M. N. Zeilinger. A predictive safety filter for learning-based
control of constrained nonlinear dynamical systems. In Automatica, 2021.

175

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172)

J. Wang, J. Sun, P. Zhang, and X. Wang. Detecting adversarial samples for deep
neural networks through mutation testing. arXiv preprint, 2018.

L. Wang, E. A. Theodorou, and M. Egerstedt. Safe learning of quadrotor dynamics us-
ing barrier certificates. In IEEFE International Conference on Robotics and Automation,
pages 2460-2465, 2018.

G. Weiss, Y. Goldberg, and E. Yahav. Extracting automata from recurrent neural
networks using queries and counterexamples. In Proceedings of the 35th International
Conference on Machine Learning, pages 5247-5256, 2018.

L. Wen, J. Duan, S. E. Li, S. Xu, and H. Peng. Safe reinforcement learning for
autonomous vehicles through parallel constrained policy optimization. In IEEE 23rd
International Conference on Intelligent Transportation Systems, 2020.

M. Wicker, X. Huang, and M. Kwiatkowska. Feature-guided black-box safety testing
of deep neural networks. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 408-426. Springer, 2018.

Wikipedia. List of autonomous car fatalities. https://en.wikipedia.org/wiki/
List_of_autonomous_car_fatalities.

T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon temporal logic
planning. IEEE Trans. Automatic Control, 57(11):2817-2830, 2012.

W. Xiang and T. T. Johnson. Reachability analysis and safety verification for neural
network control systems. arXiv preprint arXiv:1805.09944, 2018.

W. Xiang, D. M. Lopez, P. Musau, and T. T. Johnson. Reachable set estimation
and verification for neural network models of nonlinear dynamic systems. In Safe,
Autonomous and Intelligent Vehicles, pages 123-144. Springer, 2019.

W. Xiang, P. Musau, A. A. Wild, D. M. Lopez, N. Hamilton, X. Yang, J. Rosenfeld,
and T. T. Johnson. Verification for machine learning, autonomy, and neural networks
survey. arXiw preprint arXiw:1810.01989, 2018.

W. Xiang, H.-D. Tran, and T. T. Johnson. Reachable set computation and safety
verification for neural networks with relu activations. arXiv preprint arXiv:1712.08163,
2017.

L. Xiao, X. Lu, D. Xu, Y. Tang, L. Wang, and W. Zhuang. Uav relay in vanets against
smart jamming with reinforcement learning. IEEFE Trans. on Vehicular Technology,
67(5):4087-4097, May 2018.

W. Xiao, C. Belta, and C. G. Cassandras. Adaptive control barrier functions. In IEEFE
Transactions on Automatic Control, 2022.

Y. Xu, G. Ren, J. Chen, Y. Luo, L. Jia, X. Liu, Y. Yang, and Y. Xu. A One-Leader
Multi-Follower Bayesian-Stackelberg Game for Anti-Jamming Transmission in UAV
Communication Networks. IEEE Access, 6:21697-21709, 2018.

176

https://en.wikipedia.org/wiki/List_of_autonomous_car_fatalities
https://en.wikipedia.org/wiki/List_of_autonomous_car_fatalities

[173] C. Yun, S. Sra, and A. Jadbabaie. Small relu networks are powerful memorizers: a
tight analysis of memorization capacity. Advances in neural information processing
systems, 2019.

[174] M. Zamani, G. Pola, M. Mazo, and P. Tabuada. Symbolic Models for Nonlinear Control
Systems Without Stability Assumptions. IEEE Transactions on Automatic Control,
57(7), 2012.

[175] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid. Deeproad: Gan-based
metamorphic autonomous driving system testing. arXwv preprint, 2018.

[176] Z. Zhang, G. Ernst, S. Sedwards, P. Arcaini, and I. Hasuo. Two-layered falsification of
hybrid systems guided by monte carlo tree search. IEEFE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2018.

[177] Y. Zou, J. Zhu, X. Wang, and L. Hanzo. A survey on wireless security: Technical
challenges, recent advances, and future trends. Proceedings of the IEEFE, pages 1-39,
2016.

177

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	I Safe Learning for Controller Synthesis
	Neurosymbolic Motion and Task Planning for Linear Temporal Logic
	Introduction
	Problem Formulation
	Assumptions and Information Structure
	Dynamical Model
	Temporal Logic Specification and Workspace
	Neural Network
	Main Problem
	Overview of the Neurosymbolic Framework

	Formal Training of NNs
	Formulation of Formal Training
	NN Weight Projection
	Bounding the Change of Control Actions
	Efficient Computation of the NN Projection Operator

	Neurosymbolic Learning Framework
	Offline Training of a Library of NNs
	Runtime Selection of Local NNs
	Toy Example

	Theoretical Guarantees
	Generalization to Unseen Tasks
	Optimality Guarantee

	Effective Adaptation
	Accelerate by Transfer Learning
	Data-Driven Symbolic Model
	Adaptive Partitioning

	Results
	Controller Performance in Simulation
	Actual Robotic Vehicle
	Scalability Study

	NNSynth: Neural Network Guided Abstraction-based Controller Synthesis for Stochastic Systems
	Introduction
	Problem Formulation
	Dynamical Model
	Temporal Logic Specification
	Main Problem

	NNSynth Framework
	Step 1: NN Training
	Step 2: NN Projection
	Step 3: System Augmentation
	Step 4: Controller Synthesis
	Step 5: Lift to NN

	Theoretical Analysis
	Correctness Guarantee on Specification Satisfaction
	Projection and Lift Error
	Overall Regret

	Results
	Benchmarks and Performance
	Further Insights

	DoS-Resilient Multi-Robot Temporal Logic Motion Planning
	Introduction
	Problem Formulation
	Robot, Environment, and Threat Models
	Temporal Logic Specification
	DoS-Resilient Motion Planning Problem

	Satisfiability Modulo Convex Programming (SMC)-based Motion Planning
	Robust Controlled Invariant Sets and Workspace Perturbation
	Synthesis of DoS-Free Nominal Trajectories
	Encoding Mission and DoS-Resilience Constraints
	Nominal Trajectory Planning

	Tracking of the Nominal Trajectory
	Results

	II Neural Network Verification and Architecture Design
	Formal Verification of Neural Network Controlled Autonomous Systems
	Introduction
	Problem Formulation
	Dynamics and Workspace
	LiDAR Imaging
	Neural Network Controller
	Robot Trajectories and Safety Specifications

	Framework
	Imaging-Adapted Workspace Partitioning
	Imaging-Adapted Partitions
	Partitioning the Workspace

	Computing the Finite State Abstraction
	SMC Encoding of NN
	Pruning Search Space by Pre-processing
	Correctness of NN Verification Algorithm

	Results
	Scalability of the Workspace Partitioning Algorithm
	Computational Reduction Due to Pre-processing
	Transition Feasibility

	Two-Level Lattice Neural Network Architectures for Control of Nonlinear Systems
	Introduction
	Abstract Disturbance Simulation
	Dynamical Model
	Abstract Disturbance Simulation
	ReLU Neural Network Architectures

	Problem Formulation
	ReLU Architectures for Nonlinear Systems
	Approximate Controllers Satisfy the Specification
	CPWA Approximation of a Controller
	Numerical Results

	Bibliography

