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Implications of microbiota and bile acid in liver injury and 
regeneration

Hui-Xin Liu, Ryan Keane, Lili Sheng, and Yu-Jui Yvonne Wan
Department of Medical Pathology and Laboratory Medicine, University of California, Sacramento, 
CA

Summary

Studies examining the mechanisms by which the liver injures and regenerates usually focus on 

factors and pathways within the liver, neglecting the signaling derived from the gut-liver axis. The 

intestinal content is rich in microorganisms as well as metabolites generated from both the host 

and colonizing bacteria. Via the gut-liver axis, this complex “soup” exerts an immense impact on 

liver integrity and function. This review article summarizes data published in the past 30 years that 

have demonstrated the signaling derived from the gut-liver axis in relation to liver injury and 

regeneration. Despite many correlative findings, the intricate networks of pathways involved along 

with a scarcity of mechanistic data urgently require nutrigenomic, metabolomics, and microbiota 

profiling approaches to provide a deep understanding of the interplay between nutrition, bacteria, 

and host response. Such knowledge would better elucidate the molecular mechanisms that link 

microbiota alteration to host physiological response and vice-versa.

Keywords

gut-liver axis; gut dysbiosis; nuclear receptor; bile acid receptor; FXR; probiotic; prebiotic; partial 
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Introduction

A unique feature of the liver is its extraordinary regenerative ability. Liver regeneration is 

crucial for restoration of function following injury and an understanding of the underlying 

mechanisms would be of therapeutic value in liver disease treatment and transplantation. 

Liver regeneration is an orchestrated biological process that includes sequential changes in 
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gene expression, growth factor production, and tissue remodeling. Following liver resection, 

hepatocytes, which are not terminally differentiated, exhibit substantial proliferative 

capacity. Many mitogens, cytokines, and growth factors, which are involved in liver 

regeneration, have been identified and extensively reviewed [1–16]. In addition to the 

presence of growth factors and mitogens, active metabolism is required to generate the 

energy and precursors for biosynthesis of macromolecules necessary for cell proliferation 

and tissue remodeling during liver regeneration. Because nuclear receptors play a crucial 

role in hepatic metabolism, their actions in liver regeneration have been extensively studied 

in recent years as well [17–27]. However, liver regeneration research has typically focused 

on signaling pathways intrinsic to the liver, overlooking those derived from the gut. The 

current review details the signaling within the gut-liver axis and summarizes the interactions 

between microbiota and bile acids (BAs) in maintaining gastrointestinal health and 

impacting liver injury and regeneration.

The relationship between gut microbes, liver injury, and liver regeneration

The gut microbiota refers to the 100 trillion bacteria that reside in the human gastrointestinal 

tract (GI), and is now often referred to as its own organ [28]. Over the past decade, an 

exponential amount of research into the human microbiome, termed “the forgotten organ”, 

has shifted our perspective on the influence of the hostmicrobiome relationship in the 

pathogenesis of human diseases [29]. In addition, gut microbiota affects intestinal signaling 

and enterohepatic circulation of BAs, a growing body of evidence supports that the gut 

microbiota may promote liver regeneration and health.

Bacterial endotoxin and liver regeneration

Endotoxin lipopolysaccharides (LPS) are the major components of the outer membrane of 

Gram-negative bacteria. LPS have three components: O-antigen, core oligosaccharide, and 

lipid A. O-antigen is exposed on the outer surface of the bacterial and recognized by host 

antibodies. In contrast, the lipid A is conserved, and those hydrophobic fatty acid chains 

anchor the LPS into the bacterial membrane. Through toll-like receptor 4, the receptor of 

LPS, lipid A activates mammalian immune system with production of inflammatory 

mediators that lead to septic shock [30]. Chemically, LPS do not have O-antigens and only 

have the lipid A and oligosaccharide core, and LPS administration is frequently used to 

induce liver injury for in vivo study of hepatic regeneration and function. While this would 

initially appear to indicate that bacteria negatively influence liver regeneration, evidence 

indicates that endotoxin is necessary for liver regeneration. Gut-derived endotoxin 

administered both before and after partial hepatectomy (PHx) induced hepatic DNA 

synthesis and release of several hepatotrophic factors such as insulin [31]. Conversely, 

hepatic DNA synthesis in mice was impaired when gut-derived endotoxin was prevented 

from reaching the liver [32]. In addition, conditions that eliminate bacteria or reduce 

endotoxin could inhibit DNA synthesis following 67% liver resection. Those conditions 

include gut sterilization using neomycin and cefazolin, reduction of endotoxin and BAs 

using cholestyramine, and neutralization of the lipid A portion of circulating endotoxin by 

polymyxin B [32]. Endotoxin tolerant rats as well as Gram-negative bacteria deficient rats 

all demonstrated impaired DNA synthesis in response to PHx [32]. Furthermore, LPS could 
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rescue both germ-free and LPS-resistant mice from delayed liver regeneration [33]. The 

observed LPS-induced hepatocyte proliferation may result from augmentation of hepatocyte 

growth factor (HGF) activity. Treatment of rats with a combination of LPS and HGF 

increased JNK and AP-1 DNA binding, possibly through c-JUN and STAT3 up-regulation 

[34]. LPS-HGF modulation of hepatocyte proliferation indicates potential contribution from 

the gut microbiota to the liver regeneration program.

Although endotoxin has been shown to induce hepatocyte proliferation, it is important to 

note that not all endotoxin-releasing bacteria are beneficial for liver regeneration. In mice, 

orthotopic liver transplantation was associated with increased hepatic inflammation and 

increased portal endotoxin levels after surgery, often leading to liver injury and rejection 

[32]. However, when Bifidobacterium, Lactobacillus, Bacteroides, and Eubacterium was 

increased and Enterobacteriaceae was reduced, portal LPS levels and Kupffer cell activation 

decreased, which was beneficial for preventing liver injury found in rats after orthotopic 

liver transplantation [35]. These findings suggest differential effects of specific bacteria on 

liver regeneration. This is also supported by experiments using antibiotic treatment. It has 

been shown that norfloxacin treatment did not affect DNA synthesis and hepatic ornithine 

decarboxylase activity 24 hours after 70% liver resection in a rat model. Thus, selective 

bowel decontamination with norfloxacin does not seem to change hepatocyte proliferation 

[36]. A recent study showed that ampicillin-sensitive bacteria were associated with normal 

liver regeneration [37]. The number of CD1d-dependent natural killer T (NKT) cells was 

increased in antibiotic-treated hepatectomized mice, and these NKT cells were overly 

activated to produce elevated interferon-γ. NKT cells deficiency or antibody blockade of the 

CD1d-NKT interaction increased hepatocyte proliferation, which improved liver 

regeneration. Moreover, increased Kupffer cells were observed in antibiotic-treated mice, 

which had elevated interleukin 12 (IL-12) to activate hepatic NKT cells. Interleukin-12p40 

deficiency or treatment with anti-IL-12 antibody reduced NKT cell activation and restored 

liver regeneration in antibiotic-treated mice [37]. Together, mild bacterial translocation with 

specific bacteria and subsequent endotoxin release is essential to stimulate liver 

regeneration, but sustained dysbiosis has a negative impact on liver regeneration.

Probiotics

Emerging evidence indicates that the presence of several key bacterial species, mainly 

Lactobacillus, Bifidobacterium, and Bacteroides species, influences liver injury and 

regeneration. Carbon tetrachloride-induced cirrhosis was linked to a decreased microbial 

diversity [38]. In addition, a high proportion of Bifidobacterium animalis was also positively 

correlated with elevated IL-10 expression, which reinforces the hepatoprotective effects of 

Bifidobacterium species [38]. Additionally, Bifidobacterium infantis has been implicated in 

modulating colonic microbial diversity and reducing fecal endotoxin levels [39]. Decreased 

abundance of these species, particularly Bifidobacterium species, can exacerbate hepatic 

injury and impede regeneration [40]. Hepatic ischemia/reperfusion (I/R)-induced injury 

resulted in reduced density of Lactobacillus, Bifidobacterium, and Bacteroides and 

increased density of Enterococus and Enterobacteriaceae [41]. Probiotic treatment reduces 

liver injury and examples are listed below. Lactobacillus rhamnosus treatment improved 

liver function and reduced inflammation in an alcohol-induced liver injury in mice [42, 43]. 
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A combination of Bifidobacterium infantis, Lactobacillus gasseri, and Lactobacillus 

plantarum relieved colorectal inflammation and tumor-associated hepatic injury [44]. This 

probiotic treatment in combination with blueberry husks ameliorated dextran sulphate 

sodium-induced colonic damage to an even greater extent in rats [44]. Lactobacillus 

salivarius or Pediococcus pentosaceus prevented D-galactosamine-induced rat liver injury 

as evidenced by reduced total bilirubin as well as colon and liver abnormalities, decreased 

bacterial translocation and increased IL-10 [45]. Moreover, Pediococcus pentoseceus, 

Lactococcus raffinolactis, and Lactobacillus paracasei 19 inhibited bacterial translocation 

after liver resection in rats, and induced hepatocyte mitosis which was delayed by colonic 

anastomosis [46]. Combined Bifidobacterium longum, Lactobacillus acidophilus, and 

Enterococcus faecalis treatment in rats that underwent orthotopic liver transplantation 

protected against liver damage and acute rejection, and altered the intestinal and colonic 

microbiota by increasing the density of Lactobacillus and Bifidobacterium species [47]. The 

treatment of synbiotics consisting of four different lactic acid producing bacteria 

(Pediacoccus pentosaceus, Leuconostoc mesenteroides, Lactobacillus paracasei, and 

Lactobacillus plantarum) plus four bioactive fibers (β-glucan, inulin, pectin, and resistant 

starch) improved liver function after liver resection in human [40]. Treatment with the Linex 

containing Lactobacillus and Bifidobacterium alleviated hepatic injury and restored liver 

function in chronic liver disease patients by increasing Bifidobacterium, Lactobacillus, and 

Escherichia abundance [48]. Treatment with Lactobacillus paracasei F19 restored gut 

microbiota diversity and mitigated liver inflammation and necrosis caused by I/R [41]. 

Furthermore, Bifidobacterium treatment before I/R reduced endotoxemia, bacterial 

translocation, and inflammation, and improved intestinal barrier function, which can be 

potentially beneficial for liver regeneration [42]. Lactobacillus casei treatment has also been 

shown to mitigate chemical-induced colonic barrier injury and prevent excessive bacterial 

translocation [49]. Taken together, the conservation of gut microbiota, at least certain 

species, is consequentially implicated in mucosal homeostasis, which prevents the 

progression of pathologies.

The effects of bile acids on liver regeneration

There is a great metabolic demand during liver regeneration and BA-mediated intestinal 

nutrient absorption is essential for proper liver regeneration. However, the concentration of 

BAs is important in determining whether they are proliferative or cytotoxic. The 

hydrophobic nature of BAs allows them to act as a detergent for lipid absorption, but the 

same hydrophobic property can damage cell membranes. The signal transduction of BAs is 

primarily mediated through G-protein coupled bile salt receptor (TGR5), and farnesoid x 

receptor (FXR) [50–52].

Bile acid overload impairs liver regeneration

Because there is a fine balance between BAs being cytotoxic or proliferative, much research 

has focused on factors that alter the ratio of BA to liver volume. Hepatic resection leads to a 

drastic increase in the ratio of BA to liver volume, overloading the remaining liver with BAs 

[23, 27, 53]. This sudden spike in hepatic BAs after liver resection can cause devastating 

cytotoxicity due to increased oxidative stress and cell membrane permeability. There are 
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several hepatoprotective mechanisms, mainly regulated through BA receptors and 

transporters, in place to prevent BA overload and thus additional liver injury, which are 

illustrated and explained in Figure 1. It has been shown that TGR5 or FXR knockout (KO) 

in mice have enlarged total BA pool size, increased inflammation, and impaired liver 

regeneration [23, 24]. Sequestration of BAs through cholestyramine treatment or suppressed 

inflammation by Kupffer cell depletion alleviated the delayed liver regeneration seen in 

TGR5 as well as FXR KO mice [23, 24]. Two-thirds PHx leads to a 2.5-folds increase in BA 

secretion along with 3-folds increased mRNA expression of multidrug resistant protein 2 

(Mdr2), which aids in preventing BA overload [54, 55]. Additionally, the mRNA levels of 

other BA transporters, bile salt export pump (Bsep) and multidrug resistance protein 3 

(Mrp3) are up-regulated in the first 48 hours after PHx, indicating the important 

cytoprotective effects of tightly regulated BA homeostasis [54]. BAs, through small 

heterodimer partner (SHP) nuclear receptor, and fibroblast growth factor 15 (FGF15) down-

regulate cholesterol 7α-hydroxylase (CYP7A1) and sterol 12α-hydroxylase (CYP8B1) 

expression, thus prohibiting BA synthesis for 48 hours after liver resection [56]. 

Consistently, CYP7A1 is inhibited by HGF [57]. Such inhibitory feedback can prevent BA-

induced toxicity, hepatocyte apoptosis, and liver damage.

Bile acid and gut bacteria-derived signaling are essential for liver regeneration

Although excess BAs can cause liver injury and impair liver regeneration, BAs have also 

been shown to be critical for proper restoration of liver mass and function. Plasma BAs 

levels were positively correlated with liver regenerative response in rabbits following portal 

vein embolization [58]. An initial expansion in BA pool size accelerated the regenerative 

process, which indicates that while excess levels may inhibit regeneration, BAs potentiate 

hepatocyte proliferation [24]. PHx-induced liver regeneration was markedly delayed in rats 

when BA pool size was contracted by cholestyramine, a BA sequestrant [59]. Surgical and 

genetic disruptions of normal BA enterohepatic circulation and influx into the liver severely 

attenuated liver regeneration after PHx in mice [60]. PHx accompanied by ileal resection 

resulted in diminished liver regeneration capability, most likely due to loss of BA 

reabsorption in the ileum [61]. These findings highlight BA circulation through the gut-liver 

axis as an important regulatory component of the liver regeneration program. Taken 

together, both the injurious and proliferative effects of BAs on hepatocytes emphasize the 

importance of appropriately maintaining BA homeostasis to facilitate liver repair.

The role of BA signaling during liver regeneration has been reviewed [62]. For the 

thoroughness of this review, we briefly cover the role of FXR-associated pathways in 

regulating liver regeneration. In addition to regulating BA homeostasis, FXR controls lipid 

and glucose metabolism [63] (Fig.1). FXR whole body KO mice exhibited a delayed liver 

regeneration due to dysregulated BA synthesis [24]. Intestinal FXR was also found to 

facilitate liver regeneration through up-regulation of FGF15 in mice (FGF19 in humans) 

[64]. FGF15 is an ileal-secreted enterokine that is induced by FXR to inhibit BA 

overproduction [65]. Additionally, intestinal FXR KO impeded liver regeneration as a result 

of insufficient FGF15 activity which was rescued by administration of exogenous FGF15 

[21]. As such, FGF15 KO mice suffered significantly higher lethality rates after liver 

resection due to hepatic failure relative to wild type mice [64, 66]. Furthermore, hepatocyte-
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specific FXR KO mice also show delayed liver regeneration from inactivation of CYCLIN 

D and suppressed HGF-mediated signaling [67]. In addition to the vital role of BA 

circulation through the gut-liver axis, cytokine and paracrine signaling molecules generated 

from the liver and intestine including tumor necrosis factor α (TNFα), IL-6, and FGF15/19, 

and HGF impact liver regeneration as well [68]. HGF treatment reduces inflammation and 

promotes colonic epithelial regeneration, potentially preventing translocation of harmful 

microbes and metabolites across the intestinal mucosa [69]. Treating mice with glucagon-

like peptide 2 also accelerated PHx-induced liver regeneration [70]. Taken together, liver 

regeneration is regulated by the enterohepatic circulation of BAs as well as cytokines and 

growth factors.

The interplay between the gut microbiota and bile acid homeostasis

Gut microbiota modulates bile acid production

Hepatic as well as microbial enzymes are responsible for the synthesis of various BAs (Fig. 

2). There is a species difference in BA profiles [71, 72]. In human, cholic acid (CA) and 

chenodeoxycholic acid (CDCA) are primary BAs [72]. However, in mice, α-muricholic acid 

(α-MCA) and β-MCA are the major primary BAs [72]. These primary BAs are sterol 

compounds synthesized from cholesterol and conjugated with mainly glycine in human or 

taurine in mice [73]. Primary BAs enter the intestinal lumen and undergo deconjugation, 

dehydroxylation, epimerization, and oxidation using bacterial enzymes [72]. Conjugation 

increases the aqueous solubility of BAs and renders them largely impermeable to the 

intestinal epithelium, thus preventing them from exiting the intestinal lumen. The conversion 

of primary to secondary BAs deoxycholic acid (DCA) and lithocholic acid (LCA) is also 

mediated via bacterial enzyme 7α-dehydroxylase [73]. Therefore, the composition of BAs in 

germ-free and conventional rats is drastically different; specifically, germ-free rats have 

elevated taurine-conjugated BAs and reduced secondary and glycine-conjugated BAs [74]. 

Among BAs, CDCA has the highest binding affinity to FXR [75]. In mice, tauro-β-MCA (T-

β-MCA) is an inhibitor of FXR [76]. These findings point to the possibility that intestinal 

bacteria not only regulate BA deconjugation, but also BA synthesis through FXR.

A cross-sectional study of patients with cirrhosis showed elevated primary BAs and 

Enterobacteriaceae and diminished 7α-dehydroxylating bacteria including 

Lachonospiraceae, Ruminococcaceae, and Blautia [77]. Mice treated with antibiotics 

consisting of bacitracin, neomycin, and streptomycin had increased tauro-CA (TCA) and T-

β-MCA and reduced secondary BAs, which indicated the diminished intestinal 7α-

dehydroxylating bacteria [78]. In addition, antibiotic treatment also suppressed Fgf15 

expression and increased Cyp7a1 expression, which indicated the regulation of microbiota 

on BA synthesis [78]. This modulation of intestinal FXR and BA synthesis carries many 

potential implications for liver regeneration, and requires further investigation. Additionally, 

total and fecal secondary BA levels were diminished in patients with cirrhotic livers with 

Enterobacteriaceae and Ruminococcaceae growth positively correlating with CDCA and 

DCA levels, respectively [77]. Moreover, in cirrhotic patients who consumed alcohol, 

analysis of fecal and serum BA levels, serum endotoxin and stool microbiota revealed 

increased mRNA levels of inflammatory cytokines as well as secondary hydrophobic BAs 
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[79]. Such elevation in cytotoxic secondary BAs may compromise intestinal epithelial 

integrity and contribute to dysbiosis, which in turn impairs liver regeneration. Taken 

together, these findings implicate the gut microbiota in modulating the production and 

composition of BAs.

Bile acids modulate the gut microbiota

While intestinal bacteria modulate BA synthesis, BAs can mutually influence the gut 

microbial population. In a FXR-dependent manner, conjugated BAs can exert antimicrobial 

effects in the digestive tract [76]. Consequently, FXR KO mice exhibited higher densities of 

ileal bacteria and compromised epithelial barrier integrity [80]. This effect was also 

observed in mice with biliary obstruction and reversible by administration of a FXR agonist 

[80]. Conversely, hydrophobic, taurine-conjugated BAs enhanced the growth of sulfate-

reducing gut bacteria, leading to a “leaky gut” with increased antigen and bacterial 

translocation, cholelithiasis, carcinoma, inflammatory bowel disease, and colorectal cancer 

[81, 82]. Moreover, a low-fat diet supplemented with TCA, promoted changes in mouse-

host BA composition, which can markedly alter conditions for gut microbial assemblage, 

resulting in dysbiosis and disrupted immune homeostasis. However, an increase in intestinal 

T-β-MCA caused by tempol, an antioxidant, reduced the colonic population of 

Lactobacillus, decreased bile salt hydrolase activity in the feces, and inhibited the intestinal 

FXR signaling [83]. This evidence suggests that the gut microbiota, as an “organ”, is 

capable of adapting to dynamic changes in intestinal environment. Exogenous 

administration of CA up-regulated bacterial 7α-dehydroxylation-mediated DCA production 

and altered the gut microbiota population with increased abundance of Firmicutes over 

Bacteroidetes in rat [84]. In addition, exogenous CA increased pathogenic Clostridia and 

Erysipelotrichi populations, which can lead to colitis and cirrhosis [85]. Overall, it appears 

that factors influencing either the BA composition or gut microbial diversity may also 

significantly impact on liver function and regeneration.

The influence of GI disease on liver injury and regeneration as mediated by 

gut bacteria

Because hepatic regeneration is dependent on signaling mediators derived from the GI tract, 

diseases or pathologies that disturb the normal intestinal environment, particularly the gut 

microbiota, could interfere with liver regeneration. Subsequently discussed are studies that 

have shown a correlation between GI diseases, alterations in the gut microbiota, and hepatic 

injury as well as regeneration.

Compromised colonic epithelial barrier

Intestinal pathologies are linked to factors involved in liver injury or regeneration. For 

example, small bowel resection in piglets caused gut microbiota dysbiosis, which resulted in 

significant BA dysregulation and harmful clinical outcomes including steatorrhoea, 

persistent diarrhea, liver injury, and impaired regeneration. Small bowel resection also 

interrupted FXR-mediated signaling pathways, which are essential for liver regeneration 

[86]. Increased intestinal permeability in alcoholic patients was positively correlated with 

severity of cirrhosis in alcoholic patients. A “leaky gut” caused endotoxemia in rats and 
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humans and contributed to alcohol-induced hepatic cirrhosis and dysfunction [87]. 

Furthermore, nonalcoholic fatty liver disease in rats was associated with compromised 

intestinal barrier integrity and elevated LPS [88]. Knockout toll-like receptor 4, an important 

modulator of innate immune response to LPS, resulted in aggressive onset of colitis and 

subsequent bacterial translocation to mesenchymal lymph nodes [89].

Sepsis-induced liver and colonic epithelial damage could be ameliorated by probiotic 

VSL#3, which restored the diversity of the intestinal microbiota [90]. This study showed 

that administration of a peroxisome proliferator-activated receptor gamma (PPARγ) 

inhibitor completely abolished the anticipated probiotic benefits, suggesting that VSL#3 

treatment may promote liver regeneration through a PPARγ-mediated pathway. 

Interestingly, liver regeneration was found to be accelerated in liver-specific PPARγ-null 

mice on a normal diet, but impaired when mutant mice suffered diet-induced fatty liver, 

suggesting that PPARγ inhibition may be detrimental in a state of intestinal dysbiosis [91]. 

Bioactive peptide factors from Bifidobacterium infantis were also shown to improve 

epithelial cell barrier function and reduce inflammation, implying a potential pathway 

through which certain beneficial bacteria may enhance liver regeneration by protecting 

against hepatic damage [92]. Metabolic pathways may also exert a hepatoprotective effect 

following liver injury. Parenteral administration of glutamine after liver resection 

dramatically increased liver regeneration by promoting hepatic alanine uptake and intestinal 

glutamine metabolism. Protein synthesis in colonic epithelium was increased, whereas 

bacterial translocation and endotoxin levels were greatly reduced [93]. This improvement in 

intestinal epithelial barrier function may shield the liver from excessive endotoxemia after 

liver resection.

Liver disease and alterations of gut microbiota

Hepatic diseases have been linked to altered microbial diversity in the intestines that may 

create a positive feedback cycle that exacerbates hepatic injury and impede liver 

regeneration. Alcoholic liver disease patients generally had contracted Bacteroides species 

and expanded Proteobacteria species. [94]. This gut dysbiosis was also correlated with 

elevated serum endotoxin, likely from excessive bacterial translocation [94]. The presence 

of endotoxemia along with reduction in Bacteroides density is expected to negatively impact 

liver regeneration. The study of liver steatosis, alcoholic and non-alcoholic, has proven 

valuable to illuminating the downstream consequences of gut microbiota alterations. 

Nonalcoholic steatohepatitis provokes an innate immune response, which stimulates hepatic 

inflammation through cytokines such as TNFα [95]. Obesity-induced nonalcoholic 

steatohepatitis also perturbed gut microbiota composition by decreasing total microbial 

diversity, most likely by Bacteroidetes species contraction [96]. Hepatic lipid contents in 

patients with choline deficiency have also been shown to affect gut microbial diversity [97]. 

Treatment with a combination of five Chinese herbs (Compositae : Polygonacease : 

Zingiberaceae : Clusiaceae : Rubiaceae = 13 : 7 : 7 : 7 : 7) was found to promote growth of 

short chain fatty acid producer Collinsella while improving steatosis in rats [98]. This 

altered gut microbiota associated with steatosis, particularly diminished Bacteroidetes 

abundance, may indicate gut dysbiosis and propagation of further hepatic injury. Other 

etiologies, such as GI diseases, can also influence hepatic injury through modulation of the 
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gut microbiota. In a rat model of irritable bowel syndrome, administration of Lactobacillus 

casei and Bifidobacterium lactis either before or after irritable bowel syndrome induction 

alleviated inflammation and apoptosis in both the colon and liver [99]. Together, there is an 

intimate relationship between hepatic metabolism, microbiota, and liver injury as well as 

regeneration.

Summary and future directions

It is well recognized that diet and nutrition play a significant role in the etiology of 

metabolic diseases and that affects tissue injury and repair. However, the precise 

mechanisms by which diets affect our health status and outcomes, particularly in the GI 

system, are poorly understood. Despite the exponential growth in marketing of synbiotics 

and probiotic products, there is a lack of established mechanistic links between gut 

microbiota alterations and physiological responses from the host. The current summary 

provides promising evidence, which indicates intestinal bacteria and BAs cross talk within 

the gut-liver axis and jointly regulate nutrient absorption, liver metabolism, and 

inflammatory processes. Thus, BA and bacteria-mediated signaling within the gut-liver axis 

is crucial for proper execution of injury response and repair, such relationship is summarized 

in Figure 3. It is critical to gain insights into how nutrient-host and microbiota-host 

interactions influence an individual’s predisposition to injury and tissue repair. Due to the 

intricate networks of implicated pathways as well as scarcity of available information, it 

seems that nutrigenomic, metabolomics, and microbiota profiling approaches are warranted 

to provide a better understanding regarding the impact of the aforementioned factors in 

influencing liver function and healing.
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Abbreviations

BAs bile acids

GI gastrointestinal tract

LPS lipopolysaccharide

PHx partial hepatectomy

HGF hepatocyte growth factor

NKT natural killer T

IL interleukin

I/R ischemia/reperfusion

TGR5 G-protein coupled membrane receptor

FXR farnesoid x receptor
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KO knockout

Mdr2 multidrug resistance 2

Bsep bile salt export pump

Mrp3 multidrug resistance protein 3

SHP small heterodimer partner

FGF15 fibroblast growth factor 15

CYP7A1 cholesterol 7α-hydroxylase

CYP8B1 sterol 12α-hydroxylase

TNFα tumor necrosis factor α

CA cholic acid

CDCA chenodeoxycholic acid

MCA muricholic acid

DCA deoxycholic acid

LCA lithocholic acid

T-β-MCA tauro-β-muricholic acid

TCA tauro-cholic acid

PPARγ peroxisome proliferator-activated receptor gamma
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Key Points

• Microbiota and bile acids within the gut-liver axis are crucial in regulating 

metabolism and inflammatory processes, and thus are important for liver injury 

and liver regeneration.

• There exists a “gut-liver axis” that facilitates bidirectional communication 

between intestinal microbes and hepatic bile acid metabolism. In one direction, 

the gut microbiota plays a pivotal role in regulating bile acid homeostasis while 

on the other end, bile acids influence gut microbiota composition.

• Because hepatic regeneration is dependent on signaling mediators derived from 

the gastrointestinal tract, diseases or pathologies that disturb the normal 

intestinal environment, particularly the gut microbiota, interfere with liver 

regeneration.

• Despite the exponential growth in marketing of synbiotics and probiotic 

products, there is a lack of established mechanistic links between gut microbiota 

alterations and physiological responses from the host. The summarized data 

provide promising evidence that bile acids and microbiota jointly regulate 

nutrient absorption, hepatic metabolism, and inflammatory processes thus 

maintain the health of gut and liver.
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Fig. 1. Bile acid homeostasis and its downstream effects on carbohydrate and lipid metabolism
Hepatic cholesterol through cholesterol-7α-hydroxylase (CYP7A1) and sterol 12α-

hydroxylase (CYP8B1) is converted to bile acids (BAs). BA transporters are involved in the 

secretion of BAs from the liver into the duodenum, flowing back through the ileum and 

reabsorbed by the liver. Farnesoid x receptor (FXR) and its targets are involved in the 

enterohepatic recycling of BAs. FXR-induced small heterodimer partner (SHP) inhibits BA 

synthesis by down-regulating CYP7A1 and CYP8B1 expression. Additionally, intestinal 

FXR induces fibroblast growth factor 15 (FGF15) expression, which in turn represses 

CYP7A1 through fibroblast growth factor receptor 4 (FGFR4) and β-Klotho-mediated 

signaling. Regarding lipid and carbohydrate metabolism, hepatic FXR activation induces 

gluconeogenesis and represses lipogenesis through SHP [100, 101]. Intestinal BAs also 

activate G protein-coupled bile acid receptor (TGR5) to increase production and secretion of 

glucagon-like peptide-1 (GLP-1), an incretin hormone that promotes insulin sensitivity, and 

thereby improves glucose disposition [102, 103]. CYP7A1, cholesterol-7α-hydroxylase; 

CYP8B1, sterol 12α-hydroxylase; BAs, bile acids; FXR, farnesoid x receptor; SHP, small 
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heterodimer partner; FGF15, fibroblast growth factor 15; FGFR4, fibroblast growth factor 

receptor 4; TGR5, G protein-coupled bile acid receptor; GLP-1, glucagon-like peptide-1.
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Fig 2. Bile acid synthesis as mediated by hepatic and intestinal bacteria enzymes
There are two pathways responsible for bile acid (BA) synthesis in the liver. In the classic 

pathway, the rate-limiting step in BA formation is conversion of cholesterol to 7α-

hydroxycholesterol by cholesterol 7α-hydroxylase (CYP7A1). Multiple sequential steps that 

modify the steroid nucleus and side chain produce two primary BAs, cholic acid (CA) and 

chenodeoxycholic acid (CDCA). The main enzymes in those modification steps are 3β-

hydroxy-Δ5-C27-steroid dehydrogenase (HSD3B7), sterol 12α-hydroxylase (CYP8B1), 

Δ4-3-oxosteroid-5β-reductase (AKR1D1), 3α-hydroxysteroid dehydrogenase (AKR1C4), 

and sterol 27-hydroxylase (CYP27A1). Through the alternative pathway, cholesterol is 

converted into CDCA and the key enzymes involved are CYP27A1 and 25-

hydroxycholesterol 7-α-hydroxylase (CYP7B1). Free primary BAs are conjugated through 

two reactions. First, using BA-CoA synthase (BACS), BA-CoA is generated. Next, BA-

CoA:amino acid N-acyltransferase (BAT) amidates BA-CoA with either a taurine or a 

glycine. In the intestines, 7α-dehydroxylation of CA and CDCA converts the primary BAs 
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into secondary BAs including deoxycholic acid (DCA) and lithocholic acid (LCA), 

respectively. The known bacterial species possessing 7α-dehydroxylation activity are 

members of the Firmicutes phylum (Clostridium and Eubacterium) [104]. The taurine or 

glycine conjugated BAs are catalyzed by bile salt hydrolases (BSHs) to become free BAs. 

BSH can be detected in bacterial genera including Bacteroides, Bifidobacterium, 

Clostridium, Lactobacillus, and Listeria [105]. Free BAs can be oxidized by hydroxysteroid 

dehydrogenases (HSDHs). For example, CA can be converted into 3-dehyhydrocholic acid, 

7-dehyhydrocholic acid, and 12-oxochenodehydrocholic acid by 3α-HSDH, 7α-HSDH, and 

12α-HSDH, respectively, and further converted into isocholic acid, 7-epicholic acid, and 12-

epicholic acid by 3β-HSDH, 7β-HSDH, and 12β-HSDH, respectively. HSDHs are expressed 

by Firmicutes phylum members, including Eubacterium, Peptostreptococcus, and 

Ruminococcus [106]. BAs, bile acids; CYP7A1, cholesterol 7α-hydroxylase; CA, cholic 

acid; CDCA, chenodeoxycholic acid; HSD3B7, 3β-hydroxy-Δ5-C27-steroid dehydrogenase; 

CYP8B1, sterol 12α-hydroxylase; AKR1D1, Δ4-3-oxosteroid-5β-reductase; AKR1C4, 3α-

hydroxysteroid dehydrogenase; CYP27A1, sterol 27-hydroxylase; CYP7B1, 25-

hydroxycholesterol 7-α-hydroxylase; BACS, BA-CoA synthase; BAT, BA-CoA:amino acid 

N-acyltransferase; DCA, deoxycholic acid, LCA, lithocholic acid; HSDH, hydroxysteroid 

dehydrogenase.
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Fig. 3. Overview of the interplay between bile acid dysregulation and gut dysbiosis in the context 
of liver and GI pathologies
The gut and the liver are intimately associated, and there is continuous bidirectional 

communication between these organs through bile acids, hormones, inflammatory 

mediators, and products of digestion and absorption. A variety of liver diseases affect the 

bile acid profile, which contributes to gut dysbiosis and intestinal pathogenesis. Similarly, 

intestinal diseases lead to dysbiosis and change the bile acid profile that in turn affect 

metabolism and inflammatory response in the liver.
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