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ABSTRACT OF THE DISSERTATION

Higher Fitting Ideals of p-adic Realizations of Abstract 1-Motives and

a Special Case of the Breuil-Schneider Conjecture
by

Robert Allen Snellman Jr.
Doctor of Philosophy in Mathematics

University of California San Diego, 2017
Professor Cristian Popescu, Chair

Professor Claus Sorensen, Co-Chair

Part I: Starting with a rational odd prime p > 2 and a cyclic extension F/Q
whose Galois group has order coprime to p, Kurihara’s conjecture [24] gives an explicit
description of all higher Fitting ideals of large p-power quotients of the classical Iwasawa
module X, over correspondingly large p-power quotients of the classical Iwasawa algebra
A = Zp[[T]]. The generators of these higher Fitting ideals are, essentially, special values
of equivariant L-functions. A complete proof of Kurihara’s conjecture was recently given
by Popescu-Stone in full generality [41]. This dissertation conjectures a generalization of
Kurihara’s conjecture to so-called “semi-nice” extensions F/k where F' is CM and k is
totally real. In particular, this generalized conjecture specializes to Kurihara’s original
setting with k = Q and F' a CM field given by the fixed field of F' by the kernel of an odd
Dirichlet character x of order coprime to p, such that y is not the Teichmiiller character
w. Under certain hypotheses a proof of the generalized conjecture is given, away from the
Teichmiiller component. The methods of proof employed for the generalized conjecture

are similar to those used by Popescu and Stone in their proof of Kurihara’s conjecture.

X



Part II: From a potentially semistable representation p of the absolute Galois
group of a p-adic field L/Q,, Breuil and Schneider [4] construct a locally algebraic
representation BS(p). The Breuil-Schneider conjecture asserts the equivalence between
BS(p) carrying a GL,-invariant norm, and the existence of a certain (¢, N')-module with
admissible filtration. In the indecomposable case, an unconditional proof of BS(p) was
given by Sorensen [40]. Assuming Sorensen’s result for subrepresentations and quotient

representations of p, we prove BS(p) is true under some additional hypotheses on p.
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Chapter 1

Basic Notions in Number Theory

In this section we give a brief overview of certain fundamental topics in algebraic

number theory. Proofs of these results can be found in [28], [22], and [46].

1.1 Number Fields

A number field k is a finite field extension of the rational number field Q, the
degree of the extension is denoted n = [k : Q], whereby k£ may be viewed as an n-
dimensional Q-algebra. The set of Q-algebra embeddings of k into the complex numbers

C, denoted Homg(k, C), has two types of embeddings
Definition 1.1. Let 0 € Homg(k,C), then
e Ifo(k) CR CC, then o is called a real embedding of k.
o Ifo(k) ¢ R, then o is called a complex embedding of k.

Post composing any complex embedding ¢ € Homg(k,C) with complex con-
jugation ¢ € Aut(C) yields another complex embedding ¢ o 0 € Homg(k, C), therefore,
when talking about complex embeddings of a number field one talks about pairs of com-
plex embeddings. The standard decomposition of n = [k : Q] in terms of the number of
real embeddings of k, denoted r1, and the number of pairs of complex embeddings of k,
denoted 7o, is n = r1 + 2rs.

The field k contains a subring called the ring of integers of k, denoted Oy, given
by

Or={a€k: f(a) =0 for some monic f(z) € Z[x]}.



The subring Oy, is a Dedekind domain, hence any nonzero ideal a C O factors uniquely
(up to units and permutation of factors) into the product of prime ideals.

The group of fractional ideals of k, denoted Ij, consists of all finitely generated
Op-submodules of k, and is viewed as the free abelian group on the prime ideals of Oy

so that any fractional ideal b € I}, can be written uniquely as

b=]]»"
=1

where, for all 1 <4 < m, p; is a prime ideal of O and 0 # n; € Z. If p is a prime ideal
of Oy, then
pl={zck:apC O}

Considering the homomorphism

(]5ka—>[]€

z— () = 20,

whose image is P, and whose kernel is O, we obtain the fundamental short exact

sequence

1 — Of y kX y I, Cl, —— 0

where Cly := Ij/ Py is the ideal class group of k. One can show, wither with Minkowski’s
theory of numbers or an idelic topological argument, that Cly is a finite abelian group.

The order of Cly, is called the class number of k and denoted hy.
1.2 Completions
Let k& be a number field
Definition 1.2. A wvaluation on k is a function v : k — R U {oco} satisfying
i.) v(0) = 00

ii.) v(zy) = v(x) + v(y) for all x,y € k

iii.) v(z +y) > min{v(z),v(y)} for all z,y € k. We call a valuation v discrete of rank

one if it takes values in Z U {oo}.



For our purposes we only discuss valuations which are discrete of rank one,
and simply call them valuations of k. If v is a valuation of k, then the valuation ring

associated to v is

Oy ={zx€k:v(x)>0},

which has a unique maximal ideal

m, = {x €: v(x) > 0}.

The residue field associated to v is

K(v) = Oy /my,

and is a finite field of cardinality Nwv.
A nonarchimedean absolute value | - | of k is an absolute value which satisfies

the strong triangle inequality

|z + y+ < max{|z], |y|}

for all z,y € k. Given a nonarchimedean absolute value | - | of k, we obtain a discrete

rank one valuation of k£ by defining

o(z) = —log Jo],
for x € k, where log(0) := —oo. Conversely, if v is a discrete rank one valuation of k,
then defining
el i= g,

for all z € k, where 0 < ¢ < 1, yields a nonarchimedean absolute value of k. In this
way, one obtains a correspondence between nonarchimedean absolute values and discrete
rank one valuations of k.
If (0) # p C O is a prime ideal we obtain a discrete rank one valuation on k
by defining
my, if 2O = p™ 1 where (I,p) =1

vp(z) =
oo, ifx=0.



Considering equivalence classes of absolute values and valuations on k, we obtain the

following one-to-one correspondences

{Nonarchimedean absolute values on k}/ ~

!

{Discrete rank one valuations on k}/ ~

!

{Nonzero prime ideals p C O}

We will call an equivalence class of nontrivial absolute values of k a prime of
k, and denote primes of a field by v or w. The nonarchimedean primes are called finite
primes and the archimedean primes are called infinite, and correspond to the real and
complex embeddings of k. Each prime of k£ contains an absolute value with a standard

normalization. Let x € k*, then the standard normalizations are

i.) If v corresponds to a real embedding o of k, then |z|, = |0(2)]co-

ii.) If v corresponds to a complex embedding o of k, then |z|, = |o(z)|%.
iii.) If v is a finite prime, then |z|, = Nv=*(®).
These normalizations give the product rule

Lemma 1.1. For all z € k* we have

H|$|v =1,
v

where the product is taken over all normalized absolute values of k.

If v is a prime of k, then the completion of k with respect to the absolute value
corresponding to v, is denoted k,. The following is a classification of completions of

number fields
Proposition 1.2. Let k be a number field,

o Ifv is a finite prime of k, then k, is a locally compact field and is a finite extension

of Qp where (p) = m, NZ is the prime lying below m,,.

e [fv is an infinite prime of k, then ki, is isomorphic to either R (if v is a real prime)

or C (if v is a complex prime).



1.3 Galois Extensions of Number Fields

Let F/k be a Galois extension of number fields with G = Gal(F/k). If v is a

finite prime of k£ with corresponding prime ideal p, C Oy, then

g
poOF = H‘Bf’,
i=1
where, for all 1 < i < g, B; is a prime ideal of O lying above p,. Let w; be the prime of
F corresponding to the prime ideal F3; C O and denote the residue field associated to w;
by k(w;) = O /%B;, which is a finite field extension of x(v). We choose to denote primes
by v,w in order to limit notation, although one should keep in mind the underlying

prime ideals. The exponents e; are called the ramification indices, and the integers

fi = [r(wi) = £(v)]

are called the inertial degrees. Since F'/k is Galois f := f1 = fo = ... = f; and
e:=-e = ey = ... = ey We call the prime v unramified if e = 1, totally ramified if
e = g, and completely split if e = f = 1.

Since the Galois group G acts transitively on the primes of O lying above
v, if w is a prime of F' lying above v, the deomposition and inertia groups of w are
Gy ={0€G:o(w)=w}, and I, := {0 € G : o(z) = z (mod w) for all z € Op},

respectively. These subgroups give an important short exact sequence

1 I, Gy Gal(k(w)/k(v)) — 1. (1.1)

The extension x(w)/k(v) is a finite cyclic extension of degree f whose Galois group is

generated by the arithmetic Frobenius ¢,, namely
Gal(k(w)/k(v)) = (@y : z > zV7).

By exactness of (1.1)
Guy/ 1, ~ Gal(k(w)/k(v)).

Since Gal(k(w)/r(v)) is cyclic of order f, there is a unique coset oI, of G, which lifts ¢,,.
We call any representative of this unique coset a Frobenius associated to w and denote it

by oy in general, or Frob,, if we view w as a prime ideal. In general o,, depends on the



inertia subgroup I,,, however, if the prime v is unramified i.e. I, = {1}, then o, € Gy
is the unique element whose restriction to x(w) is ¢,
The properties of the Frobenius can be found in [22], but for the sake of com-

pleteness we record them here.

Lemma 1.3. Let F/k be a Galois extension of number fields, v a prime of k, and w,w’

primes of ' lying over v. Then, there exists T € G such that
Gy = TGyt ! and O = TOWT L.

Lemma 1.4. Let F/E/k be extensions of k such that F/k and E/k are Galois. Let v be
a prime of k with u a prime of E lying over v and w a prime of F' lying over u. Then,

via the Galois restriction map resg : Gal(F/k) — Gal(E/k)
oy =resg(oy).

Lemma 1.5. Let E/k and F/k be Galois extensions of k. Let v be a prime of k with
w a prime of EF lying above v. Then, via the injective map Gal(EF/k) — Gal(E/k) x
Gal(F/k)

ow — (resg(ow), resp(ow)).
In particular, lemma 1.5 shows that a prime v splits completely in a compositum exten-
sion if and only if v splits completely in each constituent of the compositum. Further-

more, since #G,, = ef, a prime v of k splits completely in an extension F', if and only

if the Frobenius element o, (for any w|v) is trivial.

1.4 Group Rings and Group Characters

Let G be a finite abelian group and R a commutative ring with unit 1.

Definition 1.3. The group ring associated to R and G is

RG] = {ZCLUJICLUER},

oceG

with ring operations addition and multiplication.



Example 1. Let G = (o) be cyclic of order n and R = 7. Consider the elements
r=14+0+0>+.. . +o"! and y=1—o.
Then,
rty=(0+c+o*+... +o" H+(1l-0)=1+0*+... 40"}

and

ry=(14c+0?+... 40" H1-0)=1-0"=0.
In particular, the group ring R[G] is not an integral domain in general.

Definition 1.4. Let G be a finite abelian group. The character group of G is
G ={x:G — C* : x is a homomorphism},

with group operation x (o) = x(o)¥(0), for all o, € G.

We will view characters y € G as being extend to a homomorphism of the group
ring R[G] via
X <Z aafr) =Y asx(o).
oeG celG
The following orthogonality relations play an important role in character decompositions

of modules over group rings
Lemma 1.6 (Orthogonality Relations). Let G be a finite abelian group, then

i.) For x,¢ € @,

1L if x =1
|(1;,| S xe o) =y =4 N
oelG 07 Zf X 7& ’l/)
ii.) For o, € G,
1, if o=
,1(;| S e ) = s =4 T
xel 0, if o #T.

Associated to each y € G is an element e, which plays the role of a projection operator.



Definition 1.5. Attached to each x € G is the idempotent element

1 _ 1
ey = @l Z x(o ™o € @R[G].

oelG

Lemma 1.7. For R and G as above
i.) oey = x(o)ey for allo € G.
ii.) exey = 0(x,¥)ey for all x,v € G.

iii.) P(ey) = 0(x,¢) for any e, € R[G] and ¢ € G.

iv.) Zele.

€@
1.5 Character Decomposition of Modules

Let R and G be defined as in section 1.4. We now outline the relationship
between the elements e,, for x € @, and decompositions of R[G]-modules M. Proofs of

the below statements can be found in [32].

Definition 1.6. Let M be an R[G]-module and x € G. The x-isotypic component of
M, or x-component of M is

MX:={me M :om = x(o)m for all 0 € G}.
If x = eym for some m € M, then
ox =oe,ym = x(0)e,ym = x(o)z.

Conversely, if x € MX then

1 . 1
exT = — x(c™ox = — T =z
=g 2 X0 e = e

oeG ceG

Therefore,

MX =e, M,

and we have the following character decomposition of M
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Lemma 1.8. If M is an R[G]|-module, then the map m — (eXm)Xe@ gives the deocm-
position

M:@MX.

xe@G
1.6 Zeta Functions and L-Functions

Let F'/k be a finite abelian extension of number fields of Galois group G. Let
S be a finite set of primes of k satisfying S O Syam(F/k) U Soo, where Sy, denotes the
infinite primes of k. Since S contains the ramified primes of k, any v ¢ S is necessarily
unramified, and therefore has a unique Frobenius automorphism o, € G,. To simplify

notation we abbreviate the above information by (F/k, S).

Definition 1.7. Let (F/k,S) be as above, and let x € G. The S-imprimitive (or S-

incomplete) L-function associated to x is given as the Euler product

Ls(x,s) := H(l — x(oy)No=%)71,
vgS
It is well known that Lg(y,s) converges uniformly and absolutely on compact subsets of
the half plane Re(s) > 1, and therefore defines a holomorphic function on that half-plane.
Moreover, Lg(x,s) admits meromorphic continuation to the entire complex plane with
a simple pole at s = 1 if y = 1, where 15 denotes the trivial character of G.
Alternatively, one can write the S-imprimitive L-function as the following

Dirichlet series

x(v)
Ls(x,s) =Y s
v S
where x(v) = x((py, F/k)) for p, the prime ideal of O corresponding to the prime v
of k, and (-, F/k) is the Artin homomorphism associated to the extension F/k. The

importance of these L-functions is illustrated in the following examples

Example 2. 1. If y =1g and S = Sy then we obtain the Dedekind zeta function of
k,
G(s) =[] = No™)~"

v

This function admits meromorphic continuation to the whole complex plane with a
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simple pole at s = 1, whose residue is given by the analytic class number formula

271 (27‘(’)7"2 Rihy

lim (5 — 1)Gi(s) = -

9

where 11,19, R, hi, di., and wy denote the number of real embeddings, pairs of
complex embeddings, regulator, class number, discriminant, and number of roots of

unity in the field k, respectively.

2.If K =k =Q and S = Soc = {00}, then we obtain the familiar Riemann zeta

function
=1
_ _ —S\—
SO IR ) (I
n=1 D
The G-equivariant, S-imprimitive L-function combines all of the above L-functions into

one all encompassing function allowing for the consideration of all characters at once,

rather than one at a time.

Definition 1.8. Let (F/k,S) be as above, then the G-equivariant, S-imprimitive L-
function associated to the data (F'/k,S) is Op) s : C — C[G] where

G)F/k: SiSs Z LS ,S €X.
xEG

The function ©p/; g is a meromorphic function on C with the property that for any

yeG
XOpms(s) =x | D Ls(@™, s)ey
ved

= Z Ls(™", 8)x(ey)
wGG

= Z Lg(v (x,¥) by property #ii.) of lemma 1.7
ved

= Ls(x"',).

It is often useful to express ©p/; g in terms of partial zeta functions. In fact, a deep
result of Deligne-Ribet, which was proved independently by Cassou-Nogues, gives a

“rationality” statement about certain values of ©p/; 5 at non-positive integers.
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Definition 1.9. Let (F/k,S) be as above, then the S-incomplete partial zeta function
associated to the data (F/k,S) is (s : G x C — C where

Cs(s,0) = Z Nzl)—s'

vgS
(mF%@:J

One quickly verifies the following relationship between (g and Lg
Lemma 1.9. For (F/k,S) as above, we have the following
1. Ls(x;8) = Xgea x(0)Cs (s, 0)
2. (s(s,0) = ﬁ er@ x(e™HLs(x,s).
Proof. See [32, p.265]. O

With the partial zeta function defined, we have an alternative definition of Oy g, which

is equivalent to the original definition in definition 1.8

Lemma 1.10. With (F'/k,S) as above, we have

Op/k,s(s) = Z Cs(s,0)0 1

oceG

Proof. The proof makes use of the fact that two elements f,g € C[G] are equal if and
only if x(f) = x(g) for all x € @, which follows from the character decomposition of
C[G]. Therefore, let x € G, then

XD Ls(@ ™ s)ey = Y Ls(v™,s)x(ey)

Vel e
= Z Ls(¥™1,5)0(x,v) by property 3 of lemma 1.7
e
= Ls(x7 1, ).
Alternatively,

X ¢slso)o™) =D x(o " )¢s(s,0)

ceG oeG

= Ls(x71,s) by property 1 of lemma 1.9. O
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A first step towards an integrality statement for special values of (g was ac-

complished by Klingen and Siegel

Theorem 1.11 (Klingen-Siegel). Let (F/k,S) be as above. For all o € G and all
n € Z>1

CS(l —TL,O') € @

The final step towards an integrality statement for special values of (g was

proved by Deligne-Ribet and independently by Cassou-Nogues

Theorem 1.12 (Deligne-Ribet, Cassou-Nogues). Let (F/k,S) be as above. Forallo € G
and all n € Z>q
wi¢s(1 - n, o) € Z.

Therefore, using the alternate definition of © /4, ¢ we obtain that Wl((n e Frk,s(1—
n) € Z[G]. This integral element is called the Stickelberger element associated to
(F/k,S).

We will be interested in defining a T-modified version of the above equivari-
ant L-function ©p/, g. This T-modified L-function appears in the equivariant main
conjecture of Popescu and Greither and establishes a link between special values of L-
functions and Fitting ideals of p-adic 1-motives. We therefore postpone the definition of

the T-modified L-function until the section on p-adic 1-motives.

1.7 Main Theorems of Class Field Theory

One of the most important achievements in 20th century mathematics was
the rigorous development of (abelian) class field theory for abelian extensions K/k of
local and global fields. There are many approaches to the study of class field theory,
namely, ideals, ideles, central simple algebras, and group cohomology (specifically Tate
cohomology) to name a few, and each approach has its own advantage depending on the
context. Our brief treatment will focus on the ideal and idelic formulations, ultimately
leading to the main theorems of global class field theory and the introduction of the local
Artin map for local fields. We will ultimately use the appendix of [45] (written by Karl
Rubin) to formulate the main theorems of class field theory, however, other excellent

resources on this material are [27], [2], [22], [39], [7], [28], and [13].
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1.7.1 Main theorems in terms of ideals

Let S be a finite set of finite primes of a number field k. Denote Ij, g the free
abelian group generated by prime ideals p ¢ S, therefore, any element a € Ij g can be

written uniquely as
¢
a=]]w"
i=1

where, for alli =1,2,...,¢, p; ¢ S and n; € Z. The S-units of k are given by
ks :={x € k™ :(x) C Iys} ={x € k™ :ordy(z) =0 for all p € S},
and we have a natural map

ks — Ik75

which gives rise to the important exact sequence

1 Uy, ks I s Cl, —— 0

where Cl denotes the ideal class group of k.

A modulus m of k (or replete divisor of k following [28]) is a formal product

_ n
m= Hpvv>
v

where
0, if v complex
Ny =4q0or1, ifwvreal
> 0, if v finite

Therefore, any modulus m = mymy; where m, is the product of corresponding infinite
primes of m and my is an integral ideal of 0. Given a modulus m of k£ with m given as

a the product above, define

kw1 :={x € k™ : 2, > 0 for all v real, and z, € Z/ITE””) for all v finite }
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where Ué"“) = 1+ ppv. Denoting Ijm = Ij,s where S := {p prime : pjms}, we have a

natural map

kml —L_>Ikm

) 5

which gives rise to

Cn = Ik,m/b(km,l)a

the ray class group of ¥ modulo m.

If K/k is a finite abelian extension of number fields, we let N/, denote the
norm associated to this extension, and recall that if 8 C Ok is a prime ideal with
p =P N Ok, then N (B) = p/K/k where fr/k =[Ok /B : Or/p] is the residue degree.
If § is a modulus of k, we let m" be the modulus of K consisting of primes lying above
those in m. We let Frob, € Gal(K/k) denote the (unique) Frobenius automorphism
corresponding to an unramified finite prime p C Op. If S is a finite set of primes of k

such that S O Syam(K/k), then the global Artin map associated to K /k is
wK/k : Ik,S — Gal(K/k)

where, if a = ngl p. € I g, then

¢
1/1K/k(a) = HFI‘Ong
i=1
With the above notation in prime, we are now ready to state the main theorems of
(global) class field theory.

Theorem 1.13. [45, Theorem 1, p.898] Let K/k be a finite abelian extension. Then

there exists a modulus m of k such that
o A prime p ramifies in K/k if and only if p|m.

o If M is another modulus of k with m|9N, then there is a subgroup H with t(kon 1) C

H C I 9n such that the global Artin map induces an isomorphism

Ik7gm/H =~ Gal(K/k:)
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In fact, H = t(kan,1) N/ (I om)

Theorem 1.14. [45, Theorem 2, p.8398] Let m be a modulus of k and H a subgroup of
I m with t(km1) C H C Iy wm. Then there exists a unique abelian extension K /k with ram-
ification occurring at primes p|m (if ramified at all), such that H = t(kwn1)Ng/i(Ixm)
and

Im ~ Gal(K/k).

In particular, for any modulus m of k, there exists a field extension Ly, /k (Ly, is called
the ray class field modulo m) such that the global Artin map gives an isomorphism
Crm ~ Gal(Ln /k).

The classical application of these theorems is given as follows, choose the mod-
ulus m = Oy, and the subgroup H = t(km 1), then, I; w = I} so Theorem 1.14 gives an
everywhere unramified, abelian extension K/k such that Gal(K/k) ~ Ij/u(k*) = Cli.
This unique field K is called the Hilbert class field of k and often denoted Hy. In fact,
Hj, is the maximal, abelian, everywhere unramified extension of k, where maximality is

a consequence of uniqueness.

1.7.2 Main theorems in terms of ideles

Let k be a number field. The group of ideles of k is the restricted product

!/
Jp 1= H (kS Uy) == {(xy)y : 7y € U, for almost all v},
v
where the product is taken over all primes v of k£ (both finite and infinite). If S is a finite

set of primes of k, then the S-ideles of k are

Trs = [[ B > T tho-
veS vgS
Is S’ C S then Jy g C Jig, and therefore, we view J, = Jg Jr,s. We topologize Jj
be letting Jj, g have the product topology, and then defining Ji g to be open in Jj (it
is important to note that this topology is not the topology induced from the product
topology). With this topology, Ji becomes a locally compact topological group.

We embed £* in Jj via the diagonal embedding = — (x,z,...) and view kX C
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Ji. With this identification, the idéle class group of k is then defined to be
Cy := Ji /K™,

and is a generalization of the classical ideal class group Cl; in the following sense. We

have a surjection

Q : Jp — Clp
() — [ pereete

v
finite

with ker o = k* [[, Uy, therefore,
Cl ~ Jo/k* [ [ tho-
v
Since k* C k* [[, Uy, we have a surjection
Ck — Clk.

If K/k is a finite extension and w is a prime of K lying over a prime v of k,
then the local norm maps Ny Jhy K., — k, allow us to define a norm map at the

level of ideles Ny, : Ji — Ji, namely

N((zw)w) = (JT Nrcwpo (@))o.

wlv

With the above norm map, we can now formulate the idelic version of the main theorems

of global class field theory.

Theorem 1.15. [/5, Theorem 11, p.405] Let K/k be a finite abelian extension, then
there is an isomorphism

A prime p is unramified in K/k if and only if Uy C k* N/ J k-

Theorem 1.16. [/5, Theorem 12, p.405] If H is an open subgroup of finite index in
Ji with k* C H, then there exists a unique finite abelian extension K/k such that
H =Fk*NgJK.



Chapter 2

Conjectures of Rubin, Stark, and

(Gross

This section outlines two conjectures, the Rubin-Stark conjecture, and a gen-
eralization of a conjecture of Gross. Gross originally formulated his conjecture in [17],
however, we will follow the treatment found in [15] for the generalization of Gross’s con-
jecture needed in this manuscript. We adopt the same notation in [15] albeit slightly

modified to coincide with the notation in this thesis.

2.1 Evaluation Maps

Let R be a commutative ring with 1 and M an R-module. Denote the R-
module dual of M by M* := Homp(M, R), and let r € Z>¢. For any R-algebra S denote
SM = S ®g M. For any ¢ € M* there is an R-linear homomorphism at the level of

exterior powers

r r—1
o AM— A\ M,
R R

defined on elementary wedges by

T

S my Amg AL Amy) =D (=1 G(m)my AL AT AL Ay,
1=1

18
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where the m;-term is omitted. Therefore, for all 0 < 7 < r, there is an R-linear homo-

morphism
r % r—1i
AM @r AM — A\ M (2.1)
R R R
given on elementary wedges by
(P1 A AP @ (my A.. Amy) »—>q§7(f_i+l)o...o¢§r)(m1/\.../\mr).
In the case i = r, the map in (2.1) is the determinant

oo 0d (mi AL Amy) = det(i(my)i).

We illustrate this in the simple case 1 = r = 2.

Example 3. Ifi =1r =2, then the map in (2.1) is

(61 A d2) @ (my Ama) = S0 (6 (my A my))
= 03" (d1(m1)mz — d1(ma)my)
= ¢1(m1)P2(ma) — d1(ma)p2(m1)

$1(m1)  ¢1(m2)
P2(m1)  ¢2(m2)

= det

Let K denote the total ring of fractions of R, so that K is the localization
of R at the multiplicative set consisting of nonzero divisors. There is an R-module

homomorphism

Homp(M, R) — Homg (KM, K) (2.2)
b Ty 2,
s s

Therefore, there is an R-module homomorphism

ET:/T\M®/T\KM—>K,
R R



20
given by
B1A . AG) @ (maA...Amy) =D o o (my AL Amy) = det(yhi(my)i),

where 1); corresponds to ¢; under (2.2).

Definition 2.1. For R, M, and r as above, we define
Lr(M,r):= {(—: € /T\KM CE (01N ANPp) ®€) € R, forall ¢1,...,¢, € M*}
K
If R = Z|[G], then any element € € Lzg(M,r) yields a Z[G]-linear evaluation map
evVZIGl,e : /T\ M* — Z[G],
Ale)

given on elementary wedges by

v (91 A Ad)(e) = ¢ 0.0 gl (e).

Originally, Rubin [33] constructed his regulator (henceforth called the Rubin-Stark reg-
ulator) for Z[G] modules, and refers to evzigl,e as a determinant pairing associated to
particular modules. In order to establish a link between the Rubin-Stark conjecture and
a conjecture of Gross we will need a version of the Rubin-Stark regulator amenable to
R[G]-modules, for arbitrary commutative Z-algebras R.

The reader is referred to [15] for more details of the following constructions.
Let R be a commutative ring with 1 and G a finite abelian group. Then there is a ring

isomorphism

R®7Z|G] ~ RG] (2.3)

a®xr—ax.
For any finitely generated Z[G]-module M there is an R[G]-module

Mp, := Homgg) (M, R[G]),
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which can be viewed in terms of the following R[G]-module isomorphism

M* @y R ~ M}, (2.4)

dRarr 1 :m— ap(m).

Combining (2.3) and (2.4) gives an R[G|-evaluation map

1®evZ[G] €

eVR[G],e

The connection between the Rubin-Stark conjecture and a conjecture of Gross will involve
a Z>o-graded commutative ring R given by powers of augmentation ideals associated to
Galois groups of prescribed field extensions. It is this connection which will allow us to
prove the generalized version of Kurihara’s conjecture for p-adic realizations of abstract

1-motives.

2.2 Idempotents

Let F/k be a finite abelian extension of Galois group G = Gal(F'/k) where F is
CM and k is totally real. Let S be a finite set of primes of k such that S O Syam (F/k)USe0
and let Sp denote the primes of F' lying above those in S. We first define the modules
which play an important role in defining the Rubin-Stark regulator.

Let Yg denote the free abelian group on the set Sg so that

Yg = @ Zw.

wESE

Let aug : Yg — Z be the augmentation map, i.e. the Z-linear map sending any o € G to

1. We have a short exact sequence of Z[G]-modules

aug

1 Xs Ys Z 0

where

oceG oeG
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and Z is endowed with the trivial G-action.
The S-units (or more appropriately the Sp-units) are denoted Ug and are de-
fined by
Us ={x € F* :ordy(z) =0 for all w ¢ Sp},

i.e. Ug consists of those nonzero elements of F' whose principal ideal is only divisible by
primes in S. Let T be a finite set of primes of k disjoint from S such that, if T denotes
the set of primes of F' lying above primes in 7', then F%F is torsion-free. The set T gives

a subgroup Ug r of Ug given by
Usr={zxe€Us:xz=1 (modw) for all w € Sp}.
The classical S-modified Dirichlet logarithm map Ag : Ug — Xg is given by

M) = = 3 loglulyw

wESE

where u € Ug is not a root of unity. Tensoring the above map with Q gives an isomor-

phism of Q[G]-modules
QUs ~ QX5s.

Let x € G, then since the order of vanishing rsy of Ls(x,s) at s =0 is

. #{ve S:x(Gy) ={1}}, if x # 1g;
S7 =
Y us—n, iy = 16

we quickly see that for if xy and x’ are conjugate under the action of the absolute Galois
group Gg := Gal(Q/Q), then

7/."517X = TS’X,.

Therefore, letting ng\r ={x € G :rg, =1} we define

The equivalence of orders of vanishing between conjugate characters shows eg, € Q[G]
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is an idempotent. We therefore have a decomposition of 1 € Q[G] via

The importance of using the idempotents eg, is due to the fact that the eg,Q[G]-modules

es,rQXs and eg,QUg are free of rank r.

2.3 The Rubin-Stark Conjecture

Let r € Z>o. In addition to S O Siam(F/k) U Sx we additionally assume
S D {vi,...,v.} where the v; are distinct primes of k, all of which split completely
in F. Furthermore, we assume |S| > r + 1 so that there exists vo € S~ {v1,...,v.}.
Let wg, w1, ...,w, be primes of F' lying above vy, v1,...,v,, respectively, and form the

(r+ 1)-tuple W = (wp, w1, ..., wy).
Lemma 2.1. For all 1 <i <7, the Z[G]-module generated by w; is free of rank 1.

Proof. Since v; splits completely in F, its decomposition group G,, = {1}. The lemma

then follows from the isomorphisms Z[|G|w; ~ Z|G/G,,| ~ Z|G]. O

The above result yields the direct sum decomposition of Xg

Xs >~ Xg for,.0) @ (@ Z[G)(w; — wo)) ~ (2.5)
i=1
Tensoring (2.5) with Q[G] and passing to the es gRQ[G]-component gives the eg,Q[G]-

isomorphism

GS,TQXS ~ @ 6577«@[61] (wi - ’wo)

i=1
of the free eg,Q[G]-module eg,QXg. Consider now the free eg,Z[G]-submodule of
esrQXg generated by the basis elements z; := eg,(w; —wp). The basis {z;}i=1,._, gives
a canonical generator eg 27 A. .. Az} of the rank 1 eg,Q[G]-module A[ Lo (es,QXs)".

This canonical generator is then used to define the Rubin-Stark regulator Ryy.

Definition 2.2. The Rubin-Stark regulator is

Ry :eg, /\ QUs — e5,QX5g,
Q[G]
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given by

Rw(eszur A .. Auy) = eveg oxs(As(esrur Ao Aup) @ (espT] Ao Axy)).

*

More explicitly, using the relation x (ui) = esp(— D pec log \uﬂwja_l), the formula for
Ry s
Ry (esrui A ... ANuy) = eg,det (— Z log |ufwjg—1) :
oceG

For our purposes, we will consider the Rubin-Stark regulator on a subgroup of the S-
unit group. Let Usy = {x € Us : « = 1 (mod w) for all w € T}, then Ugsr is a
subgroup of Ug of finite index, hence QUs 1 = QUg, where instead of Ag we consider the
corresponding Dirichlet regulator Ag 7 on Ug . Consequently, for any eg,ui A...Au, €

es,r /\EMG] QUs,r the Rubin-Stark regulator Ry, has value
Rw(esrur A ... Auy) = eves’rQXS(S\g,T(e&rul AN uy) ® (esrxy AL A xy)).

Definition 2.3. For (F/k,S,T,r) as above, Rubin’s lattice is

Asr={eces, \ QUsr: (@D o...0¢")(e) € ZG] for all 61, ..., ¢, € Uiy
Q[C]

Recall that © ;5 7 is a holomorphic function and therefore has a Taylor series expansion

about s = 0,

= 0552 (0)
Or/k,s,7(s) = Z /#8"-
n=0 ’

The Rubin-Stark conjecture gives a conjectural link between values of Ry at certain

elements of Ag7, and G);f)k s 7(0).
Conjecture 2.2 (Rubin-Stark). For (F/k,S,T,r) as above, there exists a unique ele-
ment est € Ag 1 such that

Ri(esr) = 04, 57(0).

The unique element eg 7 is called the Rubin-Stark element associated to (F/k,S,T,r).
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2.4 Augmentation Ideals

Gross’s conjecture applies to a triple of field extensions L/F/k where F/k is
a finite abelian extension satisfying the Rubin-Stark conjecture, and L/k is an abelian

extension. Let G = Gal(L/k), I' = Gal(L/F), and G = Gal(F/k). Associate to I' are

two tpes of augmentation ideals.

Definition 2.4. The augmentation ideal I(I") associated to T is the kernel of the sur-

jective Z-linear augmentation map

given by sending v € I' to 1 and extending Z-linearly. Therefore, sits in the short exact

sequence of Z[I']-modules

0 —— I() — Z[I =52 —— 0

where 7 is endowed with the trivial I' action.

Remark. For our purposes the extension L/F will always be finite, however, it is impor-
tant to mention that one can define augmentation ideals for infinite abelian extensions
L/F simply by taking projective limits of augmentation ideals associated to the finite
subextensions F' C F' C L, where the limit is taken with respect to Galois restriction

maps associated to the extensions.

Definition 2.5. Given L/F/k,G,T, and G as above, the T'-relative augmentation ideal
Ir of Z|G] is the kernel of the projection Z[G] — Z[G] induced by the Galois restriction
map G — G ~G/T.

In [15] the Z-graded commutative unital rings

R(I) := P 1@/ 1™ Rr:= /gt

n>0 n>0
are considered along with important relationships between R(I") and Rr.
Lemma 2.3. [31, p. 92] With notation as above the following hold

i.) It = @, cq 61(I)" where 6 € G denotes a lift of o via Galois restriction.
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ii.) For any n € Z>q, there is a Z[G]-module isomorphism

L)1) @7 Z[G) ~ It/ Ip
[®0 6L
where i denotes the class of « € I(I')" in I(T)"/I(T)"*, and 6 € G denotes a lift
of o via Galois restriction.

iii.) There are Z|G]-graded isomorphisms

R(D)[G] ~ R(T") ®7 Z[G] ~ Rr.

2.5 A Generalization of Gross’s Conjecture

The notation (L/F/k,S,T,r) will denote the following data
i.) reZ>o
ii.) L/k is abelian with Galois group G = Gal(L/k)
iii.) G = Gal(F/k)
iv.) I' = Gal(L/F)

v.) S is a finite set of primes of k satisfying S O Siam(r/k) U Sec U{v1, V2, ..., v}, Where,

for each 1 <4 < r, v; is a finite prime of k£ which splits completely in F.
vi.) For each i € {1,...,r} we fix a prime w; of F lying over v;.

vii.) T is a finite set of primes of k satisfying T'NS = @& and if T}, denotes the primes of

L lying above those in 7', then L;L is torsion-free.

viii.) The data (F/k, S, T,r) satisfies the Rubin-Stark conjecture, in particular there is a

unique element eg 7 € Ag 7 satisfying
R ( =0\ (0
€s7) F/k,S,T )-

For eachi € {1,...,7} we let k,, and F,,, denote the completions of k and F' with respect

to the normalized absolute values associated to the primes v; and wj;, respectively, and
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consider the following extensions

L —— LF,
/ /

F—— F,,

of ]

Since v; splits completely in F', the decomposition group G, = {1}, therefore G, (L/F) =
Gy, (L/k). We identify Gal(Lfy,/Fw,;) = Guw,(L/F) = G,,(L/k). Composing the Artin
reciprocity map associated to the extension LF, /F,,, with the inclusion G, (L/F) — T,
we get a morphism

pu; : Fyy, — T
Corresponding to p,,, Gross makes the following definitions

Definition 2.6. Foralli € {1,...,r} and w;|v; as above, define the following Z|G)-linear
homomorphisms

wwi : US,T ﬂ) R(F)[G] % RI‘

where

¢w1(u) = Z (pwm— 1)0'_1.
oeG

—

Notice that py, (u%) € T, 50 (pu, (u®)—1) € I(T'), and (pu, (u?) — 1) € I(T)/I1(T")? C R(T).
Letting es7 € Agr be the unique Rubin-Stark element for (F/k,S,T,r), we obtain an

evaluation map ev., .. gr) such that

Vegr R Gy A+ A duw,) € (1) /(D)) [G].

Therefore, composing ev.y,. pr) with the isomorphism ¢ : R(T)[G] = Rr gives an

evaluation map eve, .. g, such that

eVeg Ry (Vwy Ao Ay, ) € [17;/_71731‘

Definition 2.7. For (L/F,k,S,T,r) as above and W = (wqg,w1,...,w,), the Gross



requlator Ry, Gross 15 the Z|G]-regulator
RW,Gross : AS,T — I{:/[;'H’
given by
RW,Gross(GS,T) = €Veg r,Rr (wwl ANIAN wwr)-
The generalization of Gross’s conjecture [17] is then formulated as follows
Conjecture 2.4. Let (L/F/k,S,T,r) be as above, then the following hold
i.) Or/k,s7(0) € If

ii.) Rw,Gross(€s,1) = O 1,57(0) (mod I1Fh).

28



Chapter 3

p-adic Realizations of Abstract

1-Motives

We introduce the notion of abstract 1-motives and their p-adic realizations as
defined in [15]. These objects will play a similar role to the classical Iwasawa module

considered by Kurihara in his original conjecture.

Definition 3.1. An abstract 1-motive M := [L LN J] consists of the data
i.) A free abelian group L of finite rank

ii.) A divisible abelian group J of finite local corank

iii.) A group homomorphism 6 : L — J.

In order to mimic the construction of p-adic Tate modules, which will turn out to be
our p-adic realizations of abstract 1-motives, we need to make sense of torsion points
of abstract 1-motives. Let n € Z>; and consider the following commutative diagram of

exact sequences

0 J[n] JX" L —— [ —— 0
H | L
0 J[n] J—" s J 0

where J x7 L = {(j,1) € J x L : §(I) = nj} is the fibre product of L and J, and the
maps from J x7 L to J or L are the projection maps given by the definition of the fibre

product of abelian groups.

29
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Definition 3.2. For an abstract 1-motive M = [L LN J], and n € Z>1, the n-torsion
points of M are defined by

Min] := (J x? L) ®z Z/n’.

Applying the functor * — * ®z Z/nZ to the exact sequence

0 > J[n] Jx} L —— L ——0

we get the exact sequence

0 > J[n] Mn| —— L®y Z/nZ —— 0.

For integers n|m, we have the diagram

0 J[m] M[m]| —— L ®z Z/mZ —— 0
m l lid@w (3.1)
0 > J[n| » M[n| —— L®z Z/nZ —— 0
where 7 : Z/mZ — Z/nZ is the natural projection, 7 : J[m] — J[n] is the multiplication

by ™ map, and M[m] = M|n] is (j,1) ® 1 (4,1 ® 1. Restricting to the case where

m and n are powers of a prime p € Z inspires the following

Definition 3.3. For p € Z a prime, the p-adic realization of the abstract 1-motive
M=IL LN J] is
Ty (M) = lim M[p").
n

For m,n powers of a prime p € Z, taking projective limits in (3.1) gives an exact sequence

of Zy-modules
0 — T,(J) — Tp(M) —— L ®z Z, — 0. (3.2)

The p-adic realizations of abstract 1-motives of interest to us are those arising from
classical arithmetic data. We briefly introduce these arithmetic objects, and explain

how they lead to the p-adic realizations of interest.
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3.1 Generalized Class Groups

Iwasawa used the term “Z,-field” in reference to infinite Galois extensions K
of a number field, whose Galois group is isomorphic to (Z,, +). We similarly adopt this
terminology in what follows. Let K be a Z,-field and let v be a finite prime of K. Inside
the prime v is the canonically normalized valuation ord, : K — I',, where I';, is the
value group of the valuation. If the prime v lies above the p-adic valuation of Q, then
r, = Z[%], however, if¢ # p is prime and v lies over an ¢-adic prime of Q, then I', = Z.

Our exposition will rely heavily on finite sets of primes of certain fields, there-
fore, to set notation we make the convention that if k is a finite extension of a number
field, a finite set of primes of k will be denoted with roman Sy or T}, where the subscript
carries the obvious meaning. However, if k is an infinite extension of some number field,
then we will use script notation Sy, or Ty, for our sets of primes. When treating definitions
for fields which can either be number fields or Z,-fields, we will use the script notation
for finite sets of primes of the field.

Let K be either a number field or a Z,-field. By definition, the divisor group
of K is

Divg = @ I, v.
finite
Let S be a finite set of primes of K such that & D S,,, where S, is the set of primes of K
which extend the p-adic valuation of Q. Let 7 be a finite set of primes of K satisfying
T NS =@. The T-modified divisor group of K is then

Divg 7 = @ Iy - v.
veT

finite
The T-units of K are defined to be
K7 :={z € K* :ordy(x) >0 for all v € T}.

There is a divisor map divg : K7 — Divg 7 given by

divg(z) = Z ord,(x) - v,
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whose kernel is given by
Uk, :={x €Uk :ordy(x —1) >0 for all v € T}.

The generalized ideal class group associated to K and T is

c  Divgr

which behaves well under finite extensions of K, namely, if M /K is a finite extension of
fields (either number fields or Z,-fields), and S, Tk are finite sets of primes of K with
S, Tar the corresponding primes of M extending those in Sk and Tk respectively, then

there is a natural injective homomorphism of abelian groups

Divg s, — Divars,,

v Z e(w|v)w

w|v

where e(w|v) is the ramification index of w|v. This homomorphism descends to a map

of generalized ideal class groups
CK,TK — CM7T]V[7 (33)

which, in general, is not injective.

Our interest will be in the p-part of Cx 1;. which we denote

JK,TK = CK,TK X7, Zp.

If K is a Zy-field, the classical p-invariant conjecture of Iwasawa states that if px = 0

then
Jr T (@p/Zp)/\K )

where Ag is the Ag-invariant of Iwasawa theory. We will assume the vanishing of the
Iwasawa p-invariant in our construction of our p-adic realizations.
If K is of CM-type, i.e. K is a Zy-field extension of a CM number field, then

K carries a unique complex conjugation automorphism, which we denote j. Under the



33
action of j we can decompose the module Jg 7 as

_ g +
KT = e © T e

where J?E T = (%) JK, 13 denotes the f-eigenspace of Jg 75 under the action of j.

In particular, j acts by —1 on Jg -, and therefore we can view Jyr -~ Jr 75 /(1 + j).

The last fact needed before defining our p-adic realizations is the following
Lemma 3.1. [15, Lemma 2.8] Let K be a Zy,-field and T a finite, non-empty set of finite
primes in K disjoint from S,. Then,

1. If p =0, then Jg 1 is a p-torsion, divisible, abelian group of finite local corank.

2. If K is of CM-type, p an odd prime, T j-invariant, and px = 0, then Jy - is a

p-torsion, divisible, abelian group of finite local corank.

3.2 p-adic Realizations of Abstract 1-Motives Associated
to Arithmetic Data

Let p be an odd prime, K a Z,-field, S a finite set of primes of K with S O S,
and T a finite set of finite primes of K satisfying T NS = &. Assuming px = 0 we
associate to the data (K,S,7T) the 1-motive

Ms7 = [Dive(S~S,) 2 Tk 7]

From Lemma 3.1, Ji, 7 is a torsion, divisible, abelian group of finite local corank, and
Divig (SN Sp) is a free abelian group of finite rank #(S\S,). The group homomorphism
§ maps D € Divg(S~\'S,) to 8(D) := D® 1 € Jg 7 := Cr.7 @7 Ly, where D denotes

the class of the divisor D in Ck 7. From (3.2) we have an exact sequence of Z,-modules
0 — T,(Jk,7) — Tp(Ms, 1) —— Divg (S \ Sp) ®z Z, — 0. (3.4)

The above construction applies to any Z,-field K. We will primarily be inter-
ested in the special case when K is the cyclotomic Zy-extension of a CM number field,
the constructions of which we briefly describe.

Let p be an odd prime and F/k a finite abelian extension of number fields of

Galois group G = Gal(F/k) where F' is CM and k is totally real. Let pipoc := pipoo (F)



34

denote the set of p-power roots of unity in an algebraic closure F of F, and consider the
infinite extension F'(y,e)/F. This is a Galois extension with Gal(F'(up=)/F) ~ AxT'p,
where A is a finite group of order coprime to p, and I'r ~ (Zy,,+). The cyclotomic
Zp-field of F', denoted Fi, is the subfield of F'(up~) fixed by the action of A, therefore,
F/F is a Galois extension with Galois group I'r := Gal(F/F) ~ (Zp,+). Since the
only closed subgroups of Z, are either {0} or p"Z, for some n € Z>(, by infinite Galois
theory we have an infinite sequence of intermediate extensions of Fi,/F. More precisely,
for any n € Z>g, if we let v denote a topological generator of I'z, there is a unique

intermediate field F' C F},, C F4, such that
i.) Ty = Gal(Fuo/Fp) = (47")
ii.) F,/F is Galois with Galois group Gal(F,,/F) = I'r /T, in particular,[F,, : F| = p™.

The extension F, /k is Galois and we denote Gp = Gal(F4 /k). The above is summarized

in the following field diagram

With notation as above let S and T be finite sets of primes of k£ such that
SDOS5,and T NS =a. For n € Z>p, let S,,T, and S, ) denote the sets of places of F},
lying above those in S, T, and S), respectively. Let Sr and Tr denote the sets of places
of Fi lying above those in S and T'. Since S, T}, and S, , are all I'p/I';,-invariant we
have natural Z,[I'r /I';]-module structures on Jg, 7, and Divg, (S, \ Spp). The classical
Iwasawa algebra A := Z,[[I'p]] = Hm Zp|I'r/T'y] maps surjectively onto Z,[I'r/T",] and

therefore Jg, 7, and Divg, (S, \ Syp) carry A-module structures. The natural maps

JFn,Tn — JFn+17Tn+1 and DiVFn (Sn AN Smp) — DiVFn+1 (Sn—H AN Sn+17p)
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are A-linear, hence we obtain natural A-module structures on
‘]Foo,TF >~ hgrl JFan and DiVFoo (S N Sp) >~ ligDiVFn(Sn AN Sn’p).
n n

In particular, the exact sequence of (3.4) is exact in the category of A-modules. Fur-
thermore, the Gp-invariance of Sy and Tp make (3.4) exact in the category of Z,[[Gr]]-
modules. Lastly, since F' is CM, and therefore F,, is CM, and the sets Sg,Tr are
Gp-invariant, and j-invariant (here j is the unique complex conjugation automorphism

of Gr), the exact sequence in (3.4) gives two exact sequences of Z[[Gr]]-modules, namely
0 — T,(Jg7)¥ —— T,(Ms 1)t —— Divg(S\Sp)T ®2Z, —— 0. (3.5)

3.2.1 Equivariant Main Conjecture in Iwasawa Theory

To the data (F'/k, S) above we associated the G-equivariant L-function ©p/, g :
C — CIG] defined in Definition 1.8. For our purposes we introduce a modified version
of Op/i . Letting T' be a finite set of primes of k such that T'N.S = & and, if T denotes
the set of primes of F' lying above those in 7', then F;F is torsion free, the T-modified

G-equivariant L-function is defined as

Definition 3.4. Let (F/k,S,T) be as above. The T-modified, S-imprimitive, G-
equivariant L-function associated to the data (F/k,S,T) is Op/, 57 : C — C[G] given
by

OF/k,s,1(5) == Op/.s(5)0r(s)

where

or(s) == [J(1 = Nv' o 1),

veT

is a holomorphic C[G]-valued function.

If T contains two primes of different residual characteristic then, for all m €
Z>1, we have

Op/k,s,r(1 —m) € Z[G].

Our primary interest will be the case when m = 1.

If Fo / F is the cyclotomic Z,-extension of the CM field F', with Gp = Gal(Fuo /k),
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then for all n € Z>¢ we can construct the equivariant L-function
@Fn/k7SFn7TFn :C — (C[Gal(Fn/k)]

If T" is chosen to contain two primes of different residual characteristic, and m = 1, then

for all n € Z>o we have
@Fn/k,SFnyTFn(O) € Z[Gal(Fy, /k)] C Zp|Gal(F,/k)].

Via Artin inflation, the O, /x5, 75 (0) form a coherent sequence in the equivariant

Iwasawa algebra Z,[[Gr]], whereby we denote the limit
05y = 05 (0) = (O, k.5p, T, (0))n € im Z,[Gal(Fy /)] = Z,[[Gr]].

The equivariant main conjecture in Iwasawa theory, proved by Popescu and Greither, is
then given as follows
Theorem 3.2. [15, Theorem 5.6] For (F/k,S,T,p) as above, and assuming pur = 0, the

following equality of ideals in Zy|[Gr]]~ holds

Fit%p[[gF”—(Tp(MS,T)i) = (@E;,(;)—)



Chapter 4

A Generalized Conjecture for
p-adic Realizations of Abstract

1-Motives

4.1 Fitting Ideals and Kurihara’s Conjecture

We give a brief exposition of Fitting ideals, a comprehensive treatment of Fit-
ting ideals can be found in [30]. Let R be a commutative Noetherian ring and M a

finitely presented R-module with presentation

rm 1

R" M 0. (4.1)

Choose bases of R™ and R" so that the R-module homomorphism f is given by an n xm
matrix A. Associated to the presentation in (4.1) is an increasing stabilizing sequence

of ideals of R
Fit%(M) C Fitp(M) C ... CFity *(M) CFith(M)=R=R...

where Fit%(M ) is the ith Fitting ideal of M, which is the ideal of R generated by
determinants of all (m — i) x (m — ¢) minors of the matrix A. The inclusive nature of
these ideals follows from elementary cofactor expansion. The definition of Fitting ideal
does not depend on the chosen presentation, nor does it depend on the chosen bases. The

following lemma is found in [26] and contains the properties of Fitting ideals relevant to

37
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this manuscript.

Lemma 4.1. Let M, M’', and M" be finitely presented R-modules, then the following
hold

i.) If M — M’ then
Fit% (M) c Fit%(M').

i.) If 0 = M — M — M" — 0, then
Fit%(M")Fit%(M") C Fitg(M).
iii.) If Anmgp(M) = {r € R : rM = 0} denotes the annihilator of M, then

Fit} (M) C Anng(M).

For rings R which are principal ideal domains (PIDs), the following example

illustrates how Fitting ideals classify modules up to isomorphism.

Example 4. Suppose R is PID and M is a finitely generated R-module. From the

fundamental theorem of finitely generated modules over a PID, we have an isomorphism
M~R"®R/a1R® R/aaR® ... D R/a,R,
where ay|az|...|an. In general, if m >0, i.e. M is not torsion, then
Fithh(M) =0

for all0 < i < m. Therefore, in what follows we assume M is a finitely generated torsion

R-module, and therefore, by the fundamental theorem
M ~R/atR®R/asR® ... ® R/a,R,

where ai|az]|. .. |ay.
Since the definition of Fitting ideals does not depend on the chosen presentation,

nor on the chosen bases, we let

Rr L g

~
<
o
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be the presentation of M such that the matrixz A, corresponding to the R-module mor-
phism f, is diagonal
a1

a2

an
By definition, Fit%(M) is the ideal of R generated by all (n — 0) x (n — 0) minors of A.
Since there is only one such minor

Fit% (M) = (a1as . . . ay).

Remark. Observe Fit%h (M) C (a,) = Anng(M) illustrating the third property of lemma
41,

By definition, Fith(M) is the ideal of R generated by all (n — 1) x (n — 1) minors of A,

consequently
) aiay...a _
Fith(M) = <12n:1§z§n>.
a;
However, for any 1 <i<n
A Gnp,
aijag...a;...0p = 0a1a2...0p—-1* —,
a;

where * denotes the omission of the ith term, and ‘;—T: € R due to the divisibility relations

amongst the invariant factors. Therefore,
Fith(M) = (a1as . ..an_1).
Continuing in this manner, for all 0 <i <n — 1 we obtain
Fithy, (M) = (atas . . . an_;)

and for alli>n
Fith,(M) = R.
Therefore, knowing the Fitting filtration of M over a PID R yields the invariant factors

of M and therefore determines the isomorphism class of M.

In general, if R is a commutative Noetherian ring with unit and M and N are
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two finitely presented R-modules such that, for all ¢ > 0
Fith(M) = Fit}(N),

is it necessarily true that M and N are isomorphic as R-modules? Unfortunately, the
answer to this question is no in general. If all Fitting ideals of two R-modules M and N
are equal, then the two R-modules are said to be quasi-isomorphic, or pseudo-isomorphic,
denoted M ~ N. Unfortunately, the converse to the above is false, namely, there exist

quasi-isomorphic R-modules whose Fitting ideals are not equal, as illustrated below.

Example 5. Let A = Z,[[T]] be the classical one-variable Iwasawa algebra. Let m =
(p,T) denote the unique maximal ideal of A and consider the two A-modules M = A/mA
and N = 0. Since M ~ TF,, the finite field with p-elements, M and N are quasi-

isomorphic, denoted M ~ N. However, computing Fitting ideals,
FitQ (M) = m # A,
whereas, for all 1 > 0
Fith (N) = A.
Therefore, quasi-isomorphism is not sufficient to ensure equality of Fitting ideals.

For the ring A the notion of quasi-isomorphism can be detected locally as given

by the following lemma

Lemma 4.2. Let X andY be two finitely generated torsion A-modules, then the following
hold:

i.) X ~Y if and only if X, ~ Y, for all height one primes p € Spec(A).
ii.) If ht(p) = 1, then A, is a PID.

iii.) If M and N are finitely generated torsion R-modules where R is a PID, and
Fitiy(M) = Fitiz(N) for alli >0, then M ~ N as R-modules.

In particular, if M and N are two finitely generated torsion A-modules such

that, for all 7 > 0
Fity (M) = Fit} (N),
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then, for all height one primes p € Spec(A)
Fit}y (M) = Fity (Ny)
and therefore, by property three of Lemma 4.2 (since A, is a PID), we have
My, ~ Ny,
hence by the first property of lemma 4.2
M~ N

as A-modules.

With the establishment of the definitions and properties of Fitting ideals, we
now formulate Kurihara’s conjecture. The original statement of the conjecture may be
found in [24], but for the reader’s convenience we recall the statement here. Let p > 2
be prime and x an odd Dirichlet character of order coprime to p such that x(p) # 1
and x # w where w is the Teichmiiller character. Let F' := @ker(X) be the fixed field
determined by x and let Fi/F be the cyclotomic Z,-extension of F' with Galois group
Lp. Setting Ay, := A} = Z,(x)[[Gal(Fx /F)]], the x-component of the classical Iwasawa

module X3 over A, is given by

where the projective limit is taken with respect to the norm maps.

Conjecture 4.3 (Kurihara). Let r € Z~q and fiz N > 0 large, then for any i >0
Fit)h ova (X5 /PVXE ) =77,

where ' is the ideal of A generated by @}‘,OO/Q(O) and 6, .., (©F__(0)) where

(i.) L/Q ranges over all abelian fields satisfying LN Fso = F and

Gal(L/Q) ~ Gal(F/Q) x Gal(L/F),
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and
Gal(L/F) ~Z/pNZ x ... x Z/p" 7

T

(ii.) (i1,12,...,1,) ranges over integers satisfying i1 + ia + ... + i, < i.

The case ¢ = 1 was resolved by Kurihara using Euler systems methods, however, a full
proof of the conjecture was recently given by Popescu and Stone [41, Theorem 4.6] using

different methods.

4.2 Semi-nice Extensions and Homological Algebra

For our generalization of Kurihara’s conjecture to p-adic realizations of abstract

1-motives, we will be interested in certain classes of abelian extensions.

Definition 4.1. Let F/k be a finite abelian extension of number fields of Galois group
G such that F' is CM and k is totally real. Let p > 2 be prime and j € G the unique
complex conjugation automorphism of F, then the extension F/k is called semi-nice if

the following conditions hold
’L) Cly ®z Zp = {1}
ii.) j € Gy for all v € Spam(F/k) U Sk p.
We now establish some important homological algebra properties of finite Z,[G]-
modules M, where G is a finite abelian group, and use these properties to establish
relationships between our p-adic realizations of abstract 1-motives and modified Iwasawa

modules in semi-nice extensions. The ideas can be traced back to work of Popescu-

Greither found in [15].

Lemma 4.4. Let G be a finite abelian group and M a finite Z,|G]-module satisfying
pdz, M < 1. Let MV = Homg,(M,Qp/Z,) denote the Pontrjagin dual of M, made
into a G-module via the covariant G-action, (o - f)(x) = f(ox) for allo € G, © € M,
and f € MY. Then, for alli >0

Fity 11(M") = Fitz, ¢ (M).
Proof. Consider the exact sequence of Z,[G]-modules with trivial G-action,

0 Ly, Qp Qp/Z, — 0. (4.2)
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Applying the left exact functor * — Homgz, (M, *) to (4.2), we get the long exact sequence

0 —— HomZP(M, Lp) —> HomZp(M, Qp) — HomZP(M, Qp/Zy)

Exty (M,Z,) —— Exty (M,Q,)

(4.3)
Since M is finite Homgz, (M, Z,) = Homgz, (M,Q,/Z,) = 0, and since Q, is a divisible
Zy-module, Extz, (M, Q,) = 0, therefore, the long exact sequence in (4.3) becomes the

short exact sequence

0 —— Homgz, (M,Q,/Zy) — Extz,(M,Z,) —— 0 (4.4)
showing that we have an isomorphism
MY ~ Exty (M, Z). (4.5)

in the category of finite Zp|G]-modules. Since M is finite and pdy ;oM < 1, we have a

presentation

0 — Zy[G]®" —2 Z,[G]®" M 0. (4.6)

Letting {e1,e2,...,e,} be a basis for the left-most Z,[G|®" and {f1, fa, ..., fn} a basis
for the middle Z,|G]®™ in (4.6), set A = (aj;) for the n x n matrix of a with respect to

these chosen bases where .

a(e]-) = Z aijei.

i=1
Applying the contravariant functor * — Homgz, (*,Zj,) to the sequence in (4.6) gives the

long exact sequence

0 —— Homg, (M, Z,) —— Homg, (Z,[G]*",Z,) —*— Homg, (Z,|G)®", Z

Vv
)

(4.7)
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However, Zy[G]®" is a free Zy,-module, and M is finite, therefore
Exty (Z,[G*",Zp) =0.  and  Homg,(M,Z,) = 0. (4.8)

Combining (4.5) and (4.8) with the long exact sequence in (4.7), and utilizing the canon-

ical Zp|G]-module isomorphism

Homyz, (Z[G]*", Zp) = Homg, (6)(Zp|G]*", Z,|G))

Y QT Z oo™ a)o,
oeG

we obtain the short exact sequence

0 —— Homg, (¢)(Zp[G], Z,[G])®" —“— Homy, (¢)(Z,[G], Z,[G])®"
l (4.9)
MY s 0.

Using the notation

Zy|G]" = Homy, 1c(Zp|G], Zy|G]),
the short exact sequence in (4.9) becomes

*

0 —— (Z,[G))®" —2 (Z,[G))®" MY 0. (4.10)

We now compute the matrix for a* : (Z,[G]*)®" — (Z,[G]*)®" with respect to the dual
bases {f{, f5,..., [x} and {e}, €5, ..., e} }, respectively.

By definition a*(¢) = ¢ o a for any ¢ € Homy, ¢ (Zy[G]®", Zy[G]), hence, for
fixedl1 <i<n

o (fi)(ej) = fi (ale)))
=f (Z aijfi)
i=1
= aij.

Therefore, the ith column of the matrix associated to a* is the ith row of the matrix
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for «, consequently, the matrix for a* is A”. Since there is a one-to-one correspondence

between determinants of minors of A and AT, we have for all i > 0
Fity 1(M") = Fitz, ¢ (M). O
4.3 Linking T,(Ms7)” and X,
Let (F/k,S,T,p) be as above with G := Gal(F/k). We use the notations
Cr, = (Clg, 7 ®2 Zp)~ and Jr = hQCFmT.
From the definition of T),(Mgs 1) we have the short exact sequence
0 — T,(Jr)” —— Tp,(Ms7)” —— (Div(S \ Skp) ®z Zp)~ — 0.

Since each of the above modules are Z,-free, applying the Z,-module functor *

Homgz, (,Z,) gives the short exact sequence
0 —— ((DIV(S N Skp) ©22p)" )" —— ((Ms,7)7)" —— (Tp,(Jr)7)" —— 0.

From here we obtain the following two lemmas
Lemma 4.5. If j € G, for all v € Sram \ Skp and pp =0, then T,(Ms 7)™ ~T,(Jr)”.

Proof. For any v € Sram \ Sk,p fix some w(v)|v in Fy, then

(DV(S~ i) @2 Z)" = @D Z,lG] w()
vESN Sk p
= @ G/ )
vESNSk,p

however, by assumption j € Gg, for all v € S\ S; ), and therefore j simultaneously
acts via +1 and —1 on (Div(S \ Sy p) ®z Zy,)~, therefore (Div(S \ Sy ,) ®z Z,)~ = {0}.

From the fundamental exact sequence above, we obtain the result
Ty(Msr)™ = T(Jr) " O

Lemma 4.6. If j € G, for allv € Sy, and p =0, then T,(Jr)” ~ X .
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Proof. Let T' = (v) and set v, = v*" which is a generator of Gal(F../F},). We always

have the exact sequence

X; 2% Xp —— Cpyp —— 0 (4.11)

however, since X, has no nonzero finite submodules, (4.11) is actually a short exact

sequence

0 Xy = X —— Cpop —— 0 (4.12)

Taking Z,-module duals of (4.12) we obtain
0 —— Cp o — (X7 2 (X7) — Extl (CrornZy) —— 0 (4.13)

where Ext%p(X:F ,Zp) = 0 since we are assuming u = 0. Moreover, Cp, 7 is finite,

therefore, C, 7 = 0, hence (4.13) gives the short exact sequence
0 —— (Xp)* — (X7)* — Extg (Cr,1,2Zp) — 0. (4.14)
In (4.5) we have the isomorphism
Exty (Cr,.1,Zp) ~ C}, 1, (4.15)
therefore, combining (4.14) and (4.15)
(X7)" /(1 =) (X7)" = Cp,
and therefore,

lim(X7)"/(1 = 7)" (X7)" = lm O, . (4.16)

n

However, consider the diagram

A2 ()T —— (X7)"/( =) (K7) —— 0

| |

0 —— (X7 0 ()t —— (X)) /(1= ) (Xp)* —— 0

00— (X7)

where the map (X)* — (X} )* is given by multiplication by 1;1221 . Since 11717::1 em”
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where m = (p,y) C A is the maximal ideal, taking projective limits and using N,>om" =

0 gives

hence

(X7)" = Um(X7)"/(1 = )" (X7)" =~ im O, 1. (4.17)

From the definition of the p-adic realization of 1-motives we have

Tp(Jr)" = Homzp(JT, Qp/Zy)

= Homzp (hgl CFn,Tv @p/Zp)

~ @Homzp(CFn,Ta Qp/Zyp)

— 1&1 C}y/*an, (4.18)
therefore, combining (4.17) and (4.18) we obtain the isomorphism

(Tp(Jr) )" = (X7)"

Since the Z,-module duals are isomorphic, taking the second Z,-module dual yields the
desired isomorphism

Tp(Jr)” ~ X;. O
Corollary 4.7. If j € G, for all v € Stam U Sk, and p = 0, then
Tp(./\/lgg')_ ~ Tp(JT)_ ~ Xr.
Proof. This is simply a combination of lemmas 4.5 and 4.6 above. O
Since T)(Ms,73-)~ is finitely presented, consider the presentation
0 —— Z,[[Gr))®" — = Z,[[GF]|*" — T,(Ms,.7:)” —— 0

where bases are chosen so that the determinant of the matrix representing ¢ is 9‘(50072(0).
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Taking I',,-coinvariants gives the sequence
0 —— Dy Zl[Grlppm fi —— DBy Zpl[Grllppmvi — (Cli, 7 ®2 Zp)~ —— 0

where the f; and v; are chosen such that the determinant of @ is ©g,, 7,,(0), the classes

of the v; generate (Clg,, 7 ®z Z,)~, and such that the inclusion
n n

B 2,165 fi = D ZolGF 7 vi,
i=1 i=1

is the divisor map div : (F, 7®z%Z,)” — Divp,, 7. Alternatively, one can see the elements

fi,..., fn as those elements of F;, whose divisors are supported on vy, ..., V.

4.4 Totally Ramified Extensions

Let p > 2 be a prime, F//k an abelian extension where F' is CM and k totally
real, and fix some large positive integer N > 0. We prove the existence of finite primes

X of k and cyclic extensions of k£ with prescribed ramification in the following lemma.

Lemma 4.8. Let (F,k,p) be as above and let hyp := #(Cly ®z Zy). If hip = 1 then
there exist infinitely many finite primes A of k with associated cyclic extensions k(\)*/k

satisfying

i.) Gal(k(\)*/k) ~Z/pNZ.

ii.) k(N)*/k is totally ramified at A and contains no unramified subextensions.
iii.) k(A)*/k and F/k are linearly disjoint.
Proof. Consider the extensions

N

The Tchebotarev density theorem applied to the Galois extension MF/k, as-

serts the existence of infinitely many unramified primes of & which split completely in
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MF. Let X be a finite unramified prime of k which splits completely in M F/k, and
denote X and A" primes above )\ in K and M, respectively. Furthermore, denote U, and
k(A) the units and residue field associated to A, respectively. Since A splits completely
in M/k the completions satisfy My» = Ky = ky. Since My» = k,\(,upN,O;I/pN) and
Ky = kx(u,v) we see p,n C Uy C ky and O;l/pN C Uy C ky. Letting ¢ denote the
prime of Q lying below A and using that A splits completely in M/k we have ¢ # p.

) is an (-group, the decomposition Uy = Kk(A)* X Z/l)(\l) shows

Since p,~n C k(A) and U;\l
ppn C K(A)*. Since £(A)* is cyclic and contains pi,,v, it must contain a unique subgroup
of order p"V. Since ¢ # p and Z/{/gl) is an /-group, the multiplication by p? map is an

(1)

automorphism of U,”’, whereby

N
Uﬁ’N ~ k(A x Llf\l).
The inclusion ka C L{fN provides a natural surjection
N oV
UnJUP O — U JUIUP = (N SN

N
Furthermore, since x(\)*/k(A)*" is a p-group, we have a surjection at the level of
p-primary parts

N

U/ UD OF) @ Ty — k(N (V)

N
and since k(A\)*/k(\)*"  contains a unique subgroup of order p”, the same holds true
for (Un/ UV OF) ®7 Z,.

Consider the short exact sequence

kX H Z/{»U J J
0 y r . y 0 (419
b (HU# uvxuﬁ“) k> (Hv;é)\ Uy XUS)) kX1, Us (4.19)
where
Jk
——— ~ (]
k* 11, Us k
and
J,
‘ ~ Clg,r

b (Tt < 2")

are the ideal class group of k and ray class group of k of conductor T := {\}, respectively.



50

We denote by k(A) the ray class field of & of conductor T' so that

Ji
X (T oy U x UM
v#EA Y A

Cly,r ~ ~ Gal(k(\)/k).

In (4.19) we have

P IL U Uy U
~ ~
B (Mot < UY) R U < T U Nl U0

Therefore, (4.19) becomes

\ u)\ N
Applying the the functor * — * ®z Z, to (4.20) gives the short exact sequence

0 (M(%AOX> ®z Ly — Clyr ®z Ly —— Cly ®z Z,, —— 0, (4.21)
A k

whose accompanying field diagram is

k() (p)
U/ UV 022,
H[gp)
Clk,T®ZZP
Clk®zzp
k

where k(\)(®) is the fixed field of k()) by the non-p-part of Clpr and H is the p-
Hilbert class field of k. The assumption hi, = 1 ensures the cyclic quotient group
K(A)*/K(N) X" Contains a subgroup of order at least p™. Without the assumption, the
global units O} could potentially reduce the order of our desired cyclic subgroup to a
power of p which is less that N. Since (U /Z/I)(\I)ka) ®z, L, contains a cyclic subgroup of
order pV, we let k(\)* denote the subfield of k(\) such that Gal(k(\)*/k) ~ Z/pN7Z. We
therefore see that the chosen A of k satisfies the desired properties. O
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4.5 Tchebotarev Density Constructions

The Tchebotarev density theorem will play a key role in this section, therefore

we recall its statement for a general Galois extension K/k.

Theorem 4.9 (Tchebotarev Density). Let K/k be a finite Galois extension with
G = Gal(K/k) and let C C G be a conjugacy class in G. Then, the set of unrami-
fied primes p C Oy, satisfying C, = C has density I%' Here C, = [Frobyp| denotes the
G-conjugacy class of Froby for some (any) Blp.

Lemma 4.10. Let A/B/C be a triple of Galois extension of number fields with
G := Gal(A4/C) and H = Gal(A/B) < G. For any h € H, there exist infinitely many
primes Aa in A such that Froby, = h where Froby, € G.

Proof. Let h € ‘H and let C}, denote the G-conjugacy class of h in G. The Tchebotarev
density theorem applied to the Galois extension A/C gives infinitely many primes X',
of A such that [Frob)\/A] = C). Let o € G satisfy UFlrobXAf1 = h, and observe that
UFrobXAU_1 € H, since H < G. Applying lemma 1.3 we see Frob,y, = aFrob/\;xa_l,

and o)\, is a prime of A in the same G-orbit as A’,. Therefore, letting Ay := o\, we see
Froby, = Frob,,, = oFroby 0! = h. O

We now apply lemma 4.10 to the following field diagram of Galois extensions

of number fields
K
/ \
H M
\ . /

B
where £ is a CM extension of the totally real B, H is the Hilbert class field of £, and H/E
and M /& are linearly disjoint. We set K = HM and assume /B is Galois. Via Galois
restriction we identify Gal(K/M) = Gal(H/E). If o € Gal(H/E) we let & € Gal(/ M)
denote its unique lift. Let Clg denote the ideal class group of £, then the Artin map of
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class field theory gives a Gal(€/B)-equivariant isomorphism
p:Clg — Gal(H/E).

For any ideal class ¢ € Clg let o, := p(c), where o, is the product of the Frobenii
associated to the fractional ideal ¢ representing the class c. We lift o, to &, € Gal(K/ M)
via Galois restriction. The Tchebotarev density theorem, applied to the extension K/B,
ensures the infinitude of unramified primes ‘B of K satisfying [Froby| = [o¢], where
[[] denotes Gal(K/B)-conjugacy classes. Let P’ be such an unramified prime. Since
Gal(K/M) < Gal(K/B), we can choose a prime P of K such that [Frobyp] = [Frobgy]
and Frobg = &, as elements. Let p := 3 N B be the prime of B lying below ‘B. Since
o, € Gal(K/M) we have
resp(Froby) = id,

and therefore p splits completely in M /B. Furthermore, if p’ is a prime of H lying below
B, then
resy (Froby) = Froby = o,

but Frob, = p(p), therefore

p(c) = ac = Froby = p(p),

and therefore, from bijectivity of p, © = p as ideal classes. Consequently, the linear
disjointness of the above Galois extensions facilitated the construction of a prime p of £
which splits completely in M /E and whose ideal class is equivalent to a pre-determined
class ¢. Let p := p N B be the prime of B lying below p. From section 4.4, there is a
cyclic extension B;/B which is totally ramified at p, and which contains no unramified
subextensions.

Let ¢1,...,¢ be given ideal classes of Clg and suppose p1,...,p,_1 are primes

of B such that for each 1 < k <r —1,
i.) px splits completely in MBy, ,, ,/B
ii.) pr = & as ideal classes.

where the subscript p; ... pr_1 denotes the compositum with the field

Bpl-upkq = Bm .- 'Bpkfl’



93

To construct the prime p, satisfying
i.) p, splits completely in MBy, ,._,/B
ii.) p, = ¢ as ideal classes,

we consider the diagram

and apply the Tchebotarev density theorem to K, . _,/B to obtain an unramified
prime B, of ICy, _p,_, such that, if p(¢c,) = o, with &, € Gal(Ky, p,_, /My, p._.), then
Frobg, = 0., as elements. Letting p, :=*B, N B

S VRN (Frobg, ) = id,

and therefore p, splits completely in both By, . _,/B and M/B. Since By, p, /B is
totally ramified at py for all 1 < k < r — 1, the complete splitting of p, in By, p,_,
ensures p, is distinct from py,...,p,—1. Furthermore, if p/. denotes a prime of Hpy.opry

lying below ,., then
p(cr) = oc, = Froby, = p(pr),

hence ¢, = ﬁr as ideal classes.

The specific Frobenius conditions of splitting and equality of ideal classes as-
sociated to the primes pi,...,p, are specific to our desired situation. However, one
could just as easily impose different Frobenius conditions on the pi,...,p, since the
linear disjointness of the above extensions would ensure that the various conditions are
simultaneously satisfied. We will impose different Frobenius conditions on primes lying
in certain extensions, however, the argument that these conditions are simultaneously

satisfied is the same as above.
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4.5.1 Specific Tchebotarev Conditions

Let p > 2 be a prime and let L/k be a finite abelian extension of number fields
where k is totally real, L is CM, and G’ := Gal(L/k) = A x P where A has order coprime
to p and P is the p-primary component of G’. We are particularly interested in the case
when L is a layer in the cyclotomic Z,-extension of an abelian CM extension field F'
over k. Let S D Sram(L/k) U Sk, U Ss and T a finite set of finite primes of £ such that
TNS =@ and Ly, is torsion free. We let G, := Gal(L/k) where the subscript m is

suggestive that L = F,,, the m-th layer in the cyclotomic Z,-extension of F.

Let r € Z>1 and fix N > 0, and consider ideal classes v1, ..., 0, € (Clp r®z%Zy)~
o~ —~ N
and elements fq,..., f, € (L;/L;p )~ as in section 4.3 above. For each i =1,2,...,r,

let f; be a lift of f; to (L7)~, and set F = {(fi")l/pN ci=1,2,...,r, forall o € G'},
~ pN
with F denoting reduction of F under the projection (L})~ — (L7 /L7 )~.

~ N
Lemma 4.11. The set F forms a Z/p~ Z-linearly independent subset of (L;/L;p ).

Proof of Lemma 4.11. Suppose flalfg% . .jf;an =1, and lift this relation to (L)~ so
that there is a g € (L})~ with f{ f52 ... fon = gP" . Applying the divisor map yields

Z a;div(f;) = deiv(g),
=1

and therefore p™div(g) € DL, Zy[Gm] v; so that div(g) € D, Zy[Gm] vi, and there-
fore g € (L} ®z Zp)~, so
9=l

Therefore,

gpN — f{?Nﬁlng& ) ..f,IZNﬁ" — f1041f2042 o fom

n

and by uniqueness, a; = pV §; for all 1 < i < n, whereby &; = 6, giving the desired linear

independence. O

For each 0 € G' and 1 < i < r we have extensions L(,~, (fi")l/pN)/L(upN),
such that L(p,~,F) is the compositum of all of these extensions. The linear inde-
pendence of the set F ensures that these intermediate extensions are all linearly dis-

joint, and therefore, we can apply our general Tchebotarev argument to the extensions

Lpyn, F) /Ly, (7)) /L(pyn) for all 0 € G and 1 <4 < .
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We aim to show the existence of finite primes A1,..., A, of L, which satisfy
certain Frobenius conditions. We utilize the same subscript notation as in 4.6.1 to

denote composita of fields with totally ramified fields constructed from the A;.

Proposition 4.12. With (L/k,S,T,p) as above and r € Z>i1, there exist primes
AL, Ao, ...y A of L satisfying the following

1. For each 1 <i<r, if \; := NNk, then \; splits completely in L(ptpN )ng o xis -
2. For each 1 <1 <r, we have 3\\1 =; as elements of (Clp 1 ®z Z,)~.

3. Foreach1l <1i<r, the prime \; is inert in L,y (fie)l/pN)Al...)\i_l/L(HpN)Al...Ai_l
and splits completely in L(p,n, (f,:)l/pN),\lmAFl/L(upzv),\lm)\ifl foralll <k <r
with k # 1 and for alle # 7 € G'.

The proof of the proposition will proceed by induction on the number of primes.

Proof of Proposition 4.12. To construct the prime A1 we consider the following field di-

agram
N, X 1/pN
HL(HPN,O; ? ) Hg’ (/,Lpzv,(’),;< g ,]:)
H
* 1/pN A 1/pN
Hﬁ (:upN) L(:upNa(le< ! ) L(MPN,O; ! 7~F)
% &
P,* <z
my L(pp) —Z—— L{jipe, F)
H
L
Gy
G/
k

where HY" is the subfield of the T-ray class field of L such that ¢ := Gal(H?"™/L) =
(Clpr ®z Zp)~. The superscript -* denotes the need to pass to the non-Teichmiiller
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component of . in order to ensure disjointness of the extensions H}™ (u,~)/L(p,v)
and L(MPN,Ogl/pN)/L('LLpN). If e,(Clyr ®z Z,)~ = {0}, then we would not need to
restrict to the non-Teichmiiller component.

Step 1: We first justify the labeling of Galois groups in the above diagram by showing
the linearly disjointness of the associated extensions. Let j € G’ denote the unique
complex conjugation automorphism of L, and let G’y := Gal(L(u,~)/k). Then j acts on

Gal(L(u,~)/L) via lift and conjugation, i.e., considering the exact sequence

1 —— Gal(L(u,~)/L) » Gy G

~
—_

we lift j € G’ to j € G'y, and set

joo=joi,

for any o € Gal(L(u,~)/L). However, since G’y is abelian, we have j - o = 1 for all
o € Gal(L(u,n~)/L), ie. Gal(L(u,~)/L) lives on the +-eigenspace for the action of
j. However, by definition of (Clyr ®z Z,)~, the action of j is by —1. Therefore, the
extensions H7™ /L and L(u,~)/L are linearly disjoint. We let HY"(p,~) := H?" L(j,v)
and identify

Gal(HY* () L)) 5 52,

via Galois restriction.
N
The two extensions L(u,~, kaup )/ L(ppn ) and L(pu,n , F)/L(p,n) are Kum-

mer extensions, and therefore come endowed with perfect G'y-equivariant pairings, namely
w1/ X X wp™
Ga'l(L(:u’pNv Ok )/L(NpN)) X Ok /(Ok N L(:u‘pN) ) — :U’pNa

and

pN
Gal(L(ppn, F)/L(ppn ) x (F)/((F) O L{ppn ) ) — papn
The above pairings give isomorphisms

1/pN
)

Gal(L(y, OF " ) /L () = Hom(OF /(OF O L) ), i)
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and

Gal(L {1y, F)/ Ly ) = Hom((F) /(F) 0 Ly ) ), i),

respectively. Writing Gy = A’y x P}, where the order of A’y is coprime to p > 2 and
Py is the p-primary component of Gal(L(u,~)/k), we have a natural action of A’y on

each Hom-set above, namely

(6 f)(x) :=38f(6 " a),

for all 0 € Ay, and f and x in the respective Hom-sets above. However, since any § € A’y

N
fixes k, and therefore Oy, we see that Ay acts on Hom (O} /(O N L(pyn )" ), ppn) by

(0 f)(z) =0f(x) = w(d)f(2),

where w : Ay, — Z; is the Techmiiller character associated to A’y. Furthermore, the

action of jy € A’y on Hom((F)/((F) N L(,upN)XpN),,upN) is given by
Un - ) = jnflne) = w(in)f(—z) = —f(-z) = f(z),

N
and therefore, jy acts as +1 on Hom((F)/((F) N L(p,n)*" ), pn) and acts as —1 on
N N
Hom(O; /(OF NL(pyn )" ), ppn ), therefore, the two extensions L(j,n kal/p )/ L(ppn)
and Ly~ , F)/L(p,v ) are linearly disjoint. As before, we let

1/pN 1/PN
)

L(pyn, O F) = Ly, F)L(ppn , OFF

denote the compositum of the two extensions, and identify
Xl/pN ><1/17N ~
Gal(L(uy . OF " F)[L(up 05 ) =5 2

via Galois restriction.
N
Let G := Gal(H}"™" (p,~, C’);l/p ,F)/k) and choose a prime £; in

N
HY™ (ppn (’),fl/p , F) whose Frobenius o, satisfies the following

e or, = 0y, where o, is the Frobenius associated to the ideal class v via the Artin

map.

° I‘eSL(#pN)<£1) =id.
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. <reSL(upN,(ff)1/PN)(£1)> = Gal(L(u,n~, (ff)l/pN)/L(/,LpN))
) reSL(upN,(f{’)l/PN)(El) =idforall2<i<rande#oeG.

Since the extensions in question are all linearly independent, the Frobenius conditions
are satisfied simultaneously. We then let A\; := L N £y, and Ay = kN £, and observe
that A1 splits completely in L(/,LpN) since its Frobenius is trivial. Moreover, XI =71 as

was shown in our general situation in 4.6.1. To show the third condition we consider the

diagram
L(pyn, F)
/ \
L(MpNv(fie)l/pN) CletoeG,2<i<r)
\
k
where

CletoeG 2<i<r):= H Lup,f")l/p)

e£oeG’
2<i<r

denotes the compositum. We now apply the argument in 4.6.1 with the above Frobenius
conditions.

Inductive Step: We now give the inductive step in the construction of the A;.
Suppose A1, Ao, ..., A\;—1 have been constructed. We therefore have linearly independent,

totally ramified cyclic extensions k(A1)*,...,k(X\i_1)* of k of order pV. Letting

o K:=HP" (p,w, Ogl/pN,f),\l...,\i,l
o H=_(HV")\ ay

o M= L, 05 )y

® &= L{{pN)ryhis

e B=kFk
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we apply the argument in 4.6.1 to obtain the desired Frobenius conditions, namely,

choose a prime £; of K whose Frobenius o, satisfies

e o, = 0y, where g, is the Frobenius associated to the ideal class v; via the Artin

map.
. resL(#pN)M“N_l(ﬁi) =id

i <reSL(MpN7(ff)l/pN)([‘i)> = Gal(L(lupNv (fie)l/pN)/L(/'LpN))

® res

Liux (fg)l/pzv)(ﬁi) =idforall2<j#i<rande+#oceG.
ptY Mg

It is important (for linear disjointness considerations) to ensure that for all 1 < i < r the
primes £; do not divide primes in S, T, or primes dividing the f; for all 1 < j <r. This
can be achieved since these sets are all finite and the T'chbotarev density theorem asserts
the existence of infinitely many primes satisfying certain conjugacy conditions. Letting
X\ = LNL; and \; = kN L; we observe that \; splits completely in L(p,~ ), ..n,_, hence
A; splits completely in L(ju,~v) and is distinct from Ay,..., A;_1. Utilizing the general

situation in 4.6.1 we have )TZ = ;. Finally, considering the diagram

L(MpN s F)>\1--~)\i—1

\

1o X1 6#06G’2<]<T))\1)\
L(/“LpN))\l..)\i_l

k

L, (S s .

and using the general argument in 4.6.1 we obtain the desired Frobenius conditions on

L;. O

With the Tchebotarev conditions satisfied, we can now state and prove a large

portion of the generalized conjecture.
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4.6 The Generalized Conjecture and Proof Under Addi-

tional Conditions

Let p > 2 be a prime, r € Z>1, and N > 0 some large fixed positive integer.
Let F'/k be a finite abelian extension of number fields of Galois group G where F' is CM
and k is totally real. Let F../F denote the cyclotomic Zy-extension of F' with Galois
group denoted I'p and let G = Gal(Fix/k). Let Lo/k be a finite abelian extension of
number fields with G := Gal(Ly/k), such that Lg/k satisfies the following

(i.) Lo/k contains no unramified subextensions

(ii.) Go =7Z/pN7Z x ... x Z./p" 7 with fixed generators Gy = (01) X (2) X ... x {0).

T

(iii.) Lo/k is linearly disjoint from Fi/k.

Let L = LoF denote the compositum of Ly and F, and let Lo, /L denote the cyclotomic
Zy-extension of L with Galois group denoted I';, and let G, = Gal(Loo/k). Let Sy and
T}, denote finite sets of primes of k such that Si D Siam(Lo/k) U Sk and Tj; NSy, = @,
where Siam(Lo/k) denotes the set of primes of k which ramify in Ly, and Sj, denotes
the set of primes of k lying above the p-adic valuation of Q,. Let S;, (resp. 71) denote
the set(s) of primes of Lo lying above Sy (resp. Tj). Since Lo/k is linearly disjoint
from Fo./k we identify Gal(L/F) and Gal(Lo/Fs) with G via Galois restriction. The

underlying field diagram of interest is

Foo Leo
I'p ‘ I'p
F-% 7
a| |
kS 1,

Associated to the data (Foo /k, SF, Tr) and (Loo /k, S1, T1,) we have the p-adic realizations
of abstract 1-motives T),(Ms, 7;,)” and Tp(Ms, 75)” . Since Sy, T}, consist of primes of
k, and Si O Sram(Lo/k), we have S;, D Sram(Loo/Fxo) and S, Ty, are Go-invariant. The

generalized conjecture is then stated as follows

Conjecture 4.13. Let (F/k,S,T,p,r) be as above with F/k a semi-nice extension, and
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fix N > 0 a large positive integer. If u =0, then for any i > 0

Fity, 16,9 oV 2z, figp)- (LpMsp70) " /PN Tp(Msp,73) ") = 77,

where F' is the Zp||Gp]| ™ -ideal generated by Op_ x(0) and &, ;, (1 /x(0)) where

i.) L ranges over all abelian fields such that L N Foo = F and

Gal(L/k) ~Z/pNZ x ... x Z/p"Z,

~~
T

ii.) (i1,12,...,1,) Tanges over integers satisfying iy + ...+ i, <.

It should be mentioned that one inclusion of conjecture 4.13 holds only under the p = 0

assumption.

Theorem 4.14. Let (F/k,S,T,p) be as in chapter 3. If u =0, then for alli >0

gi g FltZZp[[gF”_/pNZp[[gF]]_ (Tp(MSF,TF)i/pNTp(MSFyTF)7) )

where F' is given in conjecture 4.183.

Proof of Theorem 4.14. We have a natural morphism of 1-motives, Ms, 7. = Ms, 77,
which induces a natural Z,-module homomorphism T,(Ms, 7:) — Tp(Ms, 75 )%°.
Considering the minus-parts of the above p-adic realizations, and invoking [15, Prop.

4.2], we have a Z,-module isomorphism
Ty (Msp,7e) ™ = (Ty(Ms,,1) ) (4.22)
Furthermore, since T),(Ms, 7, )~ is Go-cohomologically trivial [15, Thm 4.6]
Tp(Ms, 1), = Tr(Msp,7) ™ (4.23)
and therefore, combining (4.22) and (4.23), we obtain a Z,-module isomorphism
(Tp(Msy,73) ) = (Ty(Ms, 7))o

Let Ap := Z,[[GF]] ~ Z,|G][[I'F]] and Ap, := Z,[[Gr]] so that the linear disjointness of
Lo/k and Fy/k gives A, = Ap[Go]. We let Ay := Z,[G]7[[I'r]] and A} = AL[Go].
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Corresponding to our choice of generators Gy ~ (01) X ... x (0,) is the canonical iso-
morphism
Ap[S1,...,S
A —s rlfi...... ) (1.24)
((Si+1)P" —1:i=1,...,7)
g; — ;{—I-\l

Consider the augmentation exact sequence

0 s I, A7 55 A

~
o

(4.25)

where aug is the augmentation map and I(Gp) := (¢ — 1 : 0 € Gp) is the augmentation
ideal of Gy. View Ay in A} via aug|, = id so that there is a splitting A} ~ AL ®I(Go).
The finite generatedness of the A z-module (T,(Ms; 77)7)a,, along with sequence (4.25)

combine to give the diagram

N
>

0 Y » (AR)®" —— (T,(Ms,,7.) ), —— 0

ﬂ.:aug@n /

where 77 1Y) =Y @ I(Go)®", and the sequence
0 —— 7 HY) —— (AD)®" —— (Tp(Ms,7.) g, — 0 (4.26)

is exact. Applying the second property of Lemma 4.1 to (4.26)

Fith (Tp(Ms,72) )as) © ZFiti\;((Tp(MsL,TL)_)Go)I(Go)i- (4.27)
=0
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The first property of Lemma 4.1 applied to the Gp-coinvariants surjection

TP(MSLJ'L )_ - (TP(MSL,TL )_)Go

gives

Fit) ((T(Ms, 7)) € Fity - (Ty(Ms, 72) 7 )eo), (4.28)

and therefore, combining (4.27) and (4.28)
Fit} - (T,(Ms, 7,)~ ZFIV Ty (Ms,,7) 7 )Go) 1 (Go)'. (4.29)
L

The data (Loo/k,SL, Tr, p) satisfies the hypotheses of the Equivariant Main Conjecture
of Popescu-Greither [15, Thm. 5.6, namely

Fit)_ (T)(Ms,.7:)7) = (057, (0)), (4.30)
where @‘(SOLO)T (0) := @(LO:O) keS0T (0) is the equivariant p-adic L-function associated to the

data (Leo/k,SL, T, p). Combining (4.29) and (4.30) yields

SL TL ZFW Ty (Ms, 7.) 7 )ao) I(Go)'. (4.31)

Using properties of Fitting ideals under surjective ring morphisms, and using the notation

Tp(Ms, 7))~ /(") = Ty(Msp) ™ /P Ty(Msym) ™

we obtain

Fit) v (Ty(Ms,7,)" ZFmA o (B(Ms, 7)™ /Y )T

Using the projection form of the main conjecture with é\L = @(LO:O) Si T (0) modulo p¥,

®L € FItA T/pNAL ( p(MSL,TL)_/(pN))7



therefore, since é\L ceA;/ N A}, we have

n
_ . .
CYED D Oiig,.in(OL)ST . ST,
=0 i1 +i2+...+ir=1

but, on the other hand é\L edt, Fitj\;/pNA; (Ty(Ms, 7.)~/(pN)) I, hence

61 = > > firrin(O1)SI ... S

=0 i1+...+ir=0
with
firveir €FI o (T (M) ™/ M) 1

for all i1,...,4, < p". By uniqueness of coefficients, we therefore obtain

8iy.ir(OL) € Fiti\}/pNA; (Tp(Ms, 1) /(™)

for all ¢ and for all 41 + i3 + ...+ %, = i. Therefore

F - Fit%p[[gF]]f/psz[[gF]]f (TP(MSFyTF)_/pNTp(MSFvTF)_) :

Under additional hypotheses we can prove a large part of conjecture 4.13 namely

64

Theorem 4.15. Let (F/k,S,T,p,r) be as above with F/k a semi-nice extension, fix a

large N > 0, and let w be the Teichmiller character. Then, for any i > 0

Fit?

where F' is the Zy|[Gp]| ™ -ideal generated by O /x(0) and &, ..., (O /x(0)) where

i.) L ranges over all abelian fields such that L N Foo = F and

Gal(L/k) ~Z/p"Z x ... x Z/p"Z,

T

ii.) (i1,12,...,14,) ranges over integers satisfying i1 + ...+ i, < .

Zp[[GF]~ /PN Zp[[GF])~ ((1 - ew)TP(MSFﬂ'F)_/pN(l - 6w)Tp(M$F,TF)_) = ﬁia
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In particular, the Teichmiiller component is the only component of the con-
jecture left to prove. As mentioned in the Tchebotarev density section, the reason for
restricting to the non-Teichmiiller component was solely due to the necessity of linear
disjointness of certain field extensions. Therefore, the Teichmiiller condition in Theorem
(4.15) is a consequence of the proof technique. Before giving the remaining inclusion of

Theorem 4.15 we need a lemma from linear algebra which can be found in [41].

B
Lemma 4.16. Let £ = be an n X n matrix with entries in a commutative
C D
ring R, where A is a d x d matriz. Let E = Adj(E) denote the adjugate (classically
- - w X
adjoint) of E, so that EE = det(E)I,, and write E = where W is a d x d
Y Z

matrix. Then,

det(W) = det(E)?* det(D).

Proof. The proof uses the following trick, let £ = (e; ;) and consider the integral domain
Zlz;j : 1 < 1,7 < n] where the z; ; are formal variables which specialize to the e; j-entries
via the ring homomorphism ) : My, (Z[z; ;]) = M, (R) given by ¥((x;;)) = (ei;). Then

) A B 5 w X\ . .
proving such a result for £ = and £ = in My, (Z[x; ]), would yield
C D y Z

the result for F and E after applying . By definition EE = det(E)I,, and therefore
AW + BY = det(E)1, and CW+DY =0.
Setting Q = det(D).A — BDC we see
OW = det(D) det(E)1q,
whereby, taking determinants gives
det(Q) det(W) = (det(D) det(E))<. (4.32)
A matrix computation shows

I; BD\[Q o0 I; 0 det(D)A det(D)B
0 Inq) \O IL,_4) \C D C D
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therefore, taking determinants yields
det(D) det(Q) = det(D)? det(E). (4.33)
Multiplying (4.32) by det(X) and combining the result with (4.33) we obtain
det(D)% det () (det(D) det(£)?~L — det(W)) = 0,
in the integral domain Z[z; ;]. Since det(D), det(€) # 0, we conclude
det(W) = det(£)471 det(D). (4.34)
Applying the homomorphism v to (4.34) gives the desired result
det(W) = det(E)?! det(D). O

Proof of the reverse containment in Theorem 4.15. The reverse containment will be given
by induction on the degree of the Fitting ideal. The finitely generated Z,[[Gr]]~-module
Tp(Ms,. 1)~ has projective dimension Pde[[gF]}*Tp(MSF,TFV < 1. We therefore

choose a presentation
0 —— (Zp[[Gr]] )" —= (ZlIGF]]7)®" —— Tp(Msp,7)” —— 0 (4.35)

where bases are chosen such that the matrix representing the map ¢ has determinant
equal to @go;)TF (0). We let 'y, := T'/T?" denote the Galois group of the finite extension
Fn/F in the cyclotomic Z,-extension of F. Taking I'"" -coinvariants in (4.35) we obtain

the exact sequence

0 —— By Zpl[Grllmm fi —— Dy ZplIGFIppm i
l (4.36)

(CanuT ®Z Zp)i — 0

where the v; and f; are chosen as follows. If x1, ..., x, are generators for T,,(Ms, 75) ",
for each 1 < ¢ < n, let y; denote the image of z; in (Clp,, 7 ®z Z,), hence the y; are
generators of (Clp,, r ®z Zp). For each 1 < i < n, we choose v; a fractional ideal of

F,, 1 such that v; is completely split over £, i.e. if u; = v; Nk, then u; splits completely
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in Fy,,, and such that the class of v; in (Clg,, 7 ®z Zp)~ is y;. We choose fi,..., fm €
(Fm,1 ®7 Zyp)~ such that

e The map ¢ : @; Zy[[GF]lpm fi — @iy Zp[[GF]]pmui 18 the Zp[[GF]]m-
linearization of the divisor map div : (Fy, 1 ®z Zp)~ — Divg,, . Therefore,

we now label the map t as div.
e If A:= (ay;) is the matrix representing the map div, then det A = ©p,_ 1, 57(0).

e The set {f;}i=1,. m consists of precisely those elements of (F,, r ®z Z,)~, whose

images under div lie in the Z,[[GF]],m-span of the v;.

The idea of the proof is induction on the degree of the Fitting ideal. Since

Fit?\;’/pNA; (TP<MSF7TF)_/(pN)) = 907

the base of our induction is true. Therefore, we fix 1 <1¢ < n, and assume

Fitj\_};l/pNA; (TP(MSF,TF)_/(pN)) C yi—17

we then use this to show Fitj\;/pNA; (T,(Ms, 1)~/ (pN)) € Fi. Therefore, consider an

(n—1) % (n—1) minor A,,_; of A. After a suitable linear transformation, we may assume

that our (n — i) x (n — 4) minor sits in A as follows:

The result of Popescu-Greither on the Brumer-Stark conjecture [15, Thm. 5.6]
shows that ©p, /i s7(0) annihilates (Clf,, r ®z Zp)~, and therefore, for each 1 <i <n

we have

O, /k,5,7(0)vi = div(g;)

for some g; € (Fy 1 ®z Zy)~. Since div(g;) € @;; Zy[[GF]lmvi, and by the choice of
{fi}i=1,....n, we have g; € @?:1 Zp[[gFprm fi, and therefore, we write

n
9i = E a;j fj,
j=1
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and let
X

*

X =

)

[ (n—i)x (n—9)

where X; is the upper-left i x i minor of X. Since AX = O, /k,s,7(0)In and O, /1. s7(0)

is a nonzero divisor, we obtain the relation

*

X=4,

where A" is the adjugate matrix of A. The linear algebra lemma (4.16) gives a relation-

ship between det(X;) and det(A4;), namely
det(X;) = Op,, /5.57(0) " det(4;).

Recall in section 4.4 that in our construction of our finite abelian extensions of k, con-
taining no unramified subextensions, we chose primes \; of k, which split completely in a
certain extension, and such that if )\Z\S\Z is a prime of Iy, lying above 5\2-, then the classes
of \; and v; are the same in the class group. Since \; and v; have the same ideal class,
we get

div(g(\i)) = OF,, /k,5,7(0) A,

for a unique element g(\;) € (Fin1r ®z Zp)~ and for all 1 <4 < n. In what follows we

let O, == OF,, /k,5,7(0). The relationship between the g; and g()\;) is given as follows:

div(g()‘i)) = On\;
= @mvi + @m(Az — Uz’)
= div(g;) + O div(&;)

= div(g:i£2™)
where & € (Fy, 1 ®z Zp)~ is such that \; — v; = div(§;), therefore
g()\l) = gifem. (4.37)

We will need to compute wedge products of the g();) and therefore, for ease of notation,
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it will be helpful to consider (4.37) as given additively, namely
g()‘z) = gi + Oné;.

The following computations are quite arduous due to the complicated formulae associated
with wedge product manipulations. We first provide details for the general computation,
then illustrate the general case with a simple example where the computations are easy
to carry out by hand.

Computing g(A1) A ... A g(\;) we obtain

gA) A AgN) = )\ (9 + Omés)
k=1
= Z ok wy
k=0

where

wo=g1N...Ng;
7

W= gA.AGA. NG
k=1

w2 = Z glA'--A£i1/\---/\‘giz/\“-/\gi
1< <ig<e

wi =& AN...N&

where, for all 1 < k < 4, the elements §;, replace the corresponding g;, . We illustrate

this with a quick example.

Example 6. Let i = 3 so we have

g(A1) A g(A2) A g(As) = (g1 + Omé1) A (92 + Oméa) A (g3 + Omés)
=1 NG2NG3+Om(grAga A&+ g1 AE2Ags+ & AgaAgs)
+OL (G ANENEGE+E NG AN +E N A gs)
+ O NGNS
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and

wo=g1Ng2Ngs3

wi=g1Ng2NE&+ g AN ANgGs+EAg2Ags

we =91 N NG +E NG NE+E N Ags
=& N NG

therefore, in the notation above, we have
g(A1) A g(A2) A g(As) = Z@k W

Returning to our general computation of g(A1)A...Ag();), we now expand the g1 A...Ag;

term using the relations
n
gk = Z ak;j fj,
j=1

namely,

n
GIN. NG = Zaufy -Azaijfj
j=1

=det(Xi)fiNfa Ao A fit Z ity fin N N i
1<j1 <. <gp<i
(J1501) #(1,2,...57)
where the ¢;,, . ;, are determinants of 7 x ¢ minors of X, which, via (4.16) will be related

to certain powers of ©,, multiplied by determinants of (n — i) X (n — i) minors of A.

Putting all of this together, we have

gA) AN oA gN) =det(X) i NN fi Z Cirygndin N N fy
1<51<.. <9<t
(j1’~~~»jk)7£(1727"'7i)

+ Opwi + @,anz +...+ @fnwi (4.38)

Recall that the primes \; of F},, were chosen so that
o )\, ~v;in (Clij X7 Zp)_

o If 5\1 = \; Nk, then 5\1 splits completely in F,.
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e The maps ¢, associated to \; satisfy

(Z/pNZ)[G x D] 7)%, if i = j,
{0}, if i #j

d))\i(fj) €

Considering the extension F,,/k with S,, = Sram(Em/k) U {A1,..., A}, and observing
that
@mg()q) VANPIWA g()\z) = @inegm7T, (4.39)

where €g,, 7 is the Rubin-Stark element associated to the data (F,/k, Sy, T), we apply
the Rubin-Stark regulator to the element ©,,9(A\1) A ... A g(\;), and invoke injectivity

of the regulator on the minus-side, to obtain
Rs,, (©mg( M) A ... Ag(\)) = OLT

Multiplying equation (4.38) by ©,, we obtain

@mg()\l) VANPRAN g()\z) =0, det(Xi)fl AN ¥
+ O Z Cirygindin N N f

1<j1 <. < <i
(j17~"’jk)7é(172’“-7i)

+ 02w + 03wy + ...+ 0y, (4.40)

and substituting (4.39) into the left-hand-side of (4.40), we have

@inegmj =0,, det(XZ-)fl AN &
+ O Z Cirygndin N N [

1<j1 <. < <i
(j1’~"»jk)7é(1727~~~7i)

+ 02wy + 03wy + ...+ 01, (4.41)

We now utilize the following relations which are direct consequences of (4.16)
° det(Xi) = @%1 det(ZZ-)

. R 1—1 . . . . . . o o .
® Cji...jr = O dj . . j whered; . is a determinant of an (n — ) x (n —4) minor
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of A.

Applying these relations to (4.41), we obtain

@inesm,T = @:n det(Zi)fl VANAN fZ
+®fn Z ity Sin N - N S

1< << <i
(‘7177]]@)#(172777’)

4+ 0! w4+ 0% wo+ ...+ 01w, (4.42)

and since O, is a nonzero divisor, cancelling it yields the relation

€S, T = det(Ai)fl AN ¥
+ > djyjufin N oo N fi
1<1 <. < <i

(jh"'vjk)#(lgw-"i)

+wp+wy ...+ Onw;. (4.43)

We now consider the field diagram

Fraina.
Fr Fo, e Fr Fma,
Hy H; 1
Hy \ /
Fn,
k

where we denote H := Gal(Fy, \,n,..0,/Fm), and aim to apply the generalization to

Gross’s conjecture to the triple of fields Fj, x,..x,/Fm/k. Gross’s regulator is given by

RGross - ¢A1 AN (Z))\ia

and takes values in I}I/I?I. We let ©),..\, := Op, /k.s,,7(0) denote the special value

i
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associated to the extension F, x, .»,/k where S, = SU{A1,...,\;}. The generalization

of Gross’s conjecture then states

RGrOSS(GSm7T) = 9/\1“.)\2' (mOd I}-}H)

Therefore, applying Gross’s regulator to (4.43) we obtain

Ox.n  (mod Tifh) = Raross(det(Ai) f1 A ... A fi)

+ Raross( Z iy i N N f)
1</ <. <gp<i
(jlr“:jk)#(l’2:~"7i)

+ RGross(UJl +wy+...+ @mwi)) (4.44)

where we have used linearity of the regulator. By definition of Rgross We have

Raross(det(Aq) f1 A+ A fi) = det(Ai)(da, Ao AGA) (LA - A fi)
= det(ox, (fi))jk=1.2.....

= Ui1ug ... U;

where uy, := ¢y, (fx) € (Z/pNZ)|G x Tyy]7)*. Now, the second regulator term in (4.44)
is zero due to the wedge products involved and the properties of the ¢, , namely, each
summand will have a determinant containing a row consisting entirely of zeros, and
therefore, the determinant will be zero. The computation of the final regulator term will

require some work. We illustrate the computation with w;. Since

%
W= g1A AN Agi,
k=1

applying Rgross = ¢, A ... A @y, we get a sum of determinants of matrices all of which
have 7 — 1 columns involving ¢,, evaluated against some g;, and precisely one column

consisting of some ¢, evaluated against the ¢;, for example
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aiiuy apuz ... Q13U
((25/\1 A---A¢A¢)(91 AN oNGi—1 /\fz) = det

Aj—11U1  Gi—-12U2 ... Q515U

O (&1)  da(&2) . on (&)

since ¢y, (g9;) = ajrui. Expanding this determinant along the i-th row, we see that
RGross(w1) is simply a linear combination of determinants of certain (i —1) x (¢—1) minors
of X, which, via (4.16) are related to determinants of (n — (¢ —1)) x (n — (¢ — 1)) minors
of A, i.e. elements in Fitj;l/pNA; (T,(Ms, 1)~ /(pY)). Tt’s important to note that the
(1—1) x (i —1) minors of X are coming from the (i — 1) x ¢ block matrix of X (denoted
Xi_1 above), consisting of the first i — 1 rows and first 7 columns of X. Therefore, the w;
computation isn’t capturing the entirety of Fit;; oA (T,(Ms, 1)~/ (pY)), this is since
we only computed the Gross regulator on wy, as we further compute the Gross regulator
on the various wy, we obtain linear combinations of determinants of all (i — 1) x (i — 1)
minors of X, and therefore, all (n — (i — 1)) x (n — (i — 1)) minors of A, i.e. we capture
the entire Fitting ideal Fitﬁ\;/pNA; (T, Msp 1)~/ (V).

When 2 < k < 4, the value of the Gross regulator on wy will lie in a smaller
Fitting ideal. More precisely, Rgross(wk) will be a linear combination of elements of
Fitj\;(f;;/)\; (T,(Msp 1)~ /(p")). The reason for this is as follows, for 2 < k < i, the
determinant involved in Rgross(wg) will contain k rows given by evaluations of the ¢)’s
against the elements £&. When computing the determinant cofactor expansion along
one of the rows given by &-evaluation gives us a linear combination of determinants
of matrices of size ¢ — 1, all of which now contain at least one row consisting of &-
evaluations. Performing a second cofactor expansion along another £-evaluation row,
would subsequently give us another linear combination of determinants of matrices of
size ¢ — 2. Continuing in this way, we find that once we have expanded along all &-
evaluation rows, we end up with a linear combination of determinants of (i — k) x (i — k)
minors of X, which, via (4.16) are really determinants of (n — (i — k)) x (n — (i — k))
minors of A, and therefore in Fiti\;k/pNA; (T,(Ms, 1)~/ (pM)).

We are now ready to put everything together to finish the computation in (4.44),
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but first we need to apply the projection
T Iy /T — Iy /T, + ...+ 1),
where m(Oy,.x,) = 01,1,..,1(Ox, .2, )-

Applying 7 to both sides of (4.44) and using 7 0 Rgross = 5/\1 Ao A 5/\1_, we

obtain

urus . . . u; det(4;) € Fith;l/pNA; (Tp(MsF,TF)_/(PN)) + (Om,011,..,1(Ox; . 0,))

c F (4.45)

where we are using our induction hypothesis Fitj\_;/pNA; (T, Msp. 1)~ /(PN)) ¢ Fi-L.
Via appropriate linear transformations, one can take any (n —¢) X (n — i) minor of A,
and place it in the position of our A;, and therefore, applying the same computations
above, the determinant of any (n — ) x (n —4) minor of A is contained in .%#*, that is to

say,

Fiti\;/pNA; (TP(M8F7TF)_/(pN)) c.7". O

Using the above notation we now provide an example illustrating the above

computation for the case i = 2.

ai; a2

Example 7. Let A = as a9 so that

* Xn,Q

AX = 0,,I, where I, is the n x n identity matriz. Our two primes of Fy, are A1, \a,

with associated elements

g(A1) = g1+ On& and 9(A2) = g2 + O,

where

n n
= ayf; and  g=) ayf;.
=1 j=1



We therefore have

g(M1) A g(X2) = (g1 + Omér) A (g2 + Oméa)
= g1 ANg2+Omgi Ao+ Onél Aga+ 026 NG

where

n n
GINGa = aiifj A azf

=1 =1
= ap1a2fi A fo +apazifo A f1 + Z cijfi N fj
i<j
(1,5)#(1,2)
= (a11a22 — ai2a21) f1 A fa + Z cijfi N fj
i<j
(1,5)#(1,2)

ail a2
= det ANf+ D cifing

a1 a2 i<j

(4,5)#(1,2)

SO

air  a
g(M) A g(Aa) = det Jinfa+ Z cijfi N fj
az1 a2 i<j

(1,9)#(1,2)
+Omg1 A g+ Omél Aga+ 02,61 Ao

Multiplying by ©,, and using the relation ©,,g(M\) A g(\2) = 2 €s,, T, we get

ai;p a2
@znggm,'f = 0,, det

ANfa+Om D cifinf

1<)
(4,5)#(1,2)

+O2g1 N+ 026 Aga+O3E NG

a1 a2

76
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ail a2

Applying (4.16) det = O, det(A,,—2) and c;j = O,,d;j, therefore

az21 a2
O €5, = On det(Ap o) i A fa+05 > dyfi N

1<)
(6,5)#(1,2)

+ 02,01 Né+ 0281 N g+ 02,61 N

whereby, since O, is a nonzero divisor, we can cancel ©2, on both sides giving

€s,,,7 = det(Ap—2) fi A fo + Z dijfi N\ [
i<j
(6,5)#(1,2)

+ 1 AN+ & Age+ Ok A& (4.46)

We now consider the field extensions

and let w2 I /13 — 1'121,/(1%,1 +1'12{2) be the natural projection. We apply the generalized
Gross conjecture to the triple Fy, x,x,/Fm/k with the special value ©y,y, associated to

Foana/k. The composite T o RGross = 5)\1 /\E/\Q, applied to (4.46) gives

01,1(Oxns) = (D, A Dx,)(det(An—2) f1 A f2) + (dx, A, )( Z dij fi N f5)
i<j
(4,5)#(1,2)

+ (Dx, Adry) (g1 Ao+ &1 A ga+ Opéi AEa). (4.47)
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We now compute each term individually,

o _ — Ox, (f1)  &x,(f1)
det(A,,_ =det(A,,_9)det [ "™ o
(O A O (detlidn-2) i 1 J2) = detlAn-2) det (ml(fz) %Q(fz))

_ 0
= det(A,_2) det u1
0 u9

= ujug det(A,_2).

(Dx, N Day)( Z dijfi N f) = Z dij(Pa, N O, (fi AN ff)
(6:3)201,2) (5.5)20,2)

O (fi) D, (i)
= di-det _ _
ZKJ- ! (ml(fj) qza?(fj))
(1.)#(1.2)

=0

since (i,7) # (1,2) there is at least one column in each Onlfi) - Ox(f) which is
O, (f5) Dx,(f5)

zero, hence each determinant is zero.

Finally, we have

(fx, AN Pr)(g1 Ao+ & Aga+ & NE)
= (fx, N Dxy) (g1 A E2) + (Dx, A Dx,)(E1 A g2) + Oy, A dy,) (€1 A &2)

~ det @\1(91) %)\2(91) + det %)\l(él) @\2(51) L0, det %,\1(51) %)\2(51)
Dx, (§2) Dy, (E2) bx, (92) D, (92) Pr, (§2) Dy, (&2)

= det | MUY M2 0 e Ox (61) Dx,(61) 4O, det @1(51) %AQ(&)
O (€2)  Dr,(E2) apiur Aty on (E2) B, (€2)

= Bra11 + Braiz + B3az1 + Brazz + F50.,

where

Bi = u1¢y, (&)
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Bo = —usdy, (&2)

B3 = —u1¢y,(&1)

B = uagy, (&1)

B5 1= 65, (£1)0r, (€2) — D1, (§2)Pr, (1)

and the elements ai1,a12,a91,a9 are thought of as determinants of 1 X 1 minors of

ai; a _
e , and therefore related to determinants of (n —1) X (n— 1) minors of A, i.e.
a a2
elements of Fit? (T,(Ms, 1)~ /(p™)).

Ar /PN A
Putting the above computations together and solving for det(A,_2) in (4.47),

we see

det(zn—Q) S Fit}\—/pNA— (TP(MSF,TF)i/(pN)) + (Om, 51,1(®>\1)\2)>
F F
C T+ (Om,01,1(Or1n,))

c #2.

The above computations may seem particular to the positioning of A,_s, however, if B
is any other (n — 2) x (n — 2) minor of A, a suitable linear transformation (row and
column swaps in this case) will place B in the position of our original A,_o. These row
and column swaps only affect the sign of the determinant, hence they don’t affect our
desired inclusion result. Applying the A,_o computations to the newly located minor B,
we obtain

det(B) € .72

Therefore, since B was an arbitrary (n — 2) x (n —2) minor of A, we obtain our desired

inclusion, namely

Fiti;/pNA; (TP(MSF,TF)_/(pN)) c .7



Part 11

80



Chapter 5

Preliminary Notions

Part two of this manuscript will have some differing notation in comparison
with part one, however, all such differences will be noted to avoid confusion. This
section will be devoted to establishing the tools used in the proof of our special case of

the Breuil-Schneider conjecture.

5.1 Fundamental notions in p-adic Hodge theory

Let L/Q, be a finite field extension and view L inside an algebraic closure Q,
of Qp, so that G, := Gal(@p/L) is the absolute Galois group of L. One of the goals
of p-adic Hodge theory is to study p-adic representations of Gy, which are continuous
homomorphisms p : G, — GL(V') where V is a finite dimensional K vector space for
K a finite extension of Q,. We denote the category of p-adic representations of G, by
Rep@p(GL)~

When studying Repr(G 1) it is useful to study certain subcategories which lie
in functorial equivalence with semi-linear algebraic categories. The information from the
objects in the semi-linear algebraic category can then be used to understand properties
of the original object in the subcategory of Repr(G ). We give a brief outline of some
of the subcategories of interest along with the general philosophy for constructing such
functorial equivalences between said subcategories. The ensuing account follows that in
[5] and should be thought of as an axiomatic approach to Fontaine’s period rings.

Let F be a field, G a group, B a domain as an F[G] algebra with C' = Frac(B),
and E = BC.

81
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Definition 5.1. We say B is (F,G)-regular if C¢ = BY and if 0 # b € B is such that
Fb is G-stable, then b € B*.

If Vec%n denotes the category of finite dimensional E vector spaces, then given an (F, G)-

regular B, we define a functor
Dp : Repp(G) — Veci?,

by
Dg(V) := (BorV)°.

In general, it is known that dimg Dp(V) < dimp V', however, if equality holds, then the
representation V' is called B-admissible. If one restricts to the subcategory Repg(G) of
B-admissible representations, then the functor Dp is exact and faithful.

In the notation of the above formalism, and for our study of the category
Repr(G L), we let G = G, and F = Q,. Fontaine then constructs period rings By,
Bar, Beris, and Bgt, which play the role of B above, and which give rise to the sub-
categories of Repg (Gr) consisting of Hodge-Tate Repng(G 1), de Rham Repgp{(G L)
crystalline Reprf;S(G 1), and semistable Repf(‘)fp(G 1) representations, respectively. One
can find the precise definitions of Hodge-Tate, de Rham, crystalline, and semistable
representations of G, in [5] and [10].

Each of the above subcategories comes endowed with a functor Dyr, Dgr, Deris,
and Dg, which, depending on the subcategory of interest, takes values in a certain
semi-linear algebraic category. The semi-linear algebraic category of interest will be
the category of (¢, N)-modules MODy, /1, which will be described in more detail in the
section on the Breuil-Schneider conjecture. The final definition we will need in this

section is that of a potentially semistable p-adic representation of G .

Definition 5.2. A p-adic representation V of G, is semistable if there exists a finite
Galois extension L' /L such that V' becomes semistable when viewed as a representation

OfGL/.

Fontaine’s semistability conjecture, which was first proved by Berger and then again by
Andreé-Kedlaya-Mebkhout, characterizes those potentially semistable representations of

Gr.

Theorem 5.1 (Berger, Andre-Kedlaya-Mebkhout). A p-adic representation V' of Gy, is
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potentially semistable if and only if it is de Rham.

5.2 The Local Langlands Correspondence

One of the main tools needed to address the smooth side of the Breuil-Schneider
conjecture is the local Langlands correspondence. Before stating the correspondence, we
provide descriptions of the mathematical objects involved.

Let F' be a nonarchimedean local field with residue field kr, and let gp := |kp|.
Fix algebraic closures F of F' and kr of kr, and denote the absolute Galois group of F
by Gr := Gal(F/F).

Definition 5.3. The Weil group of F' is the topological group
W(F/F) := {0 € Gp : 0 induces ®" on kr for anyn € Z, },

where ®(x) = 297 is the arithmetic Frobenius of Gal(kp/kp), and the topology on
W (F/F) is given by declaring the inertia subgroup I C Gp to be open in W(F/F),
where Ir is given the profinite topology from Gp.

The subgroup W (F/F) is dense in G and contains the inertia subgroup Ir C Gp. We

will often view W (F/F) as sitting in the following topological short exact sequence

1 Ir Gr — 4 7 0
1 Ip W(F/F) —— 7Z —— 0

Fixing an algebraically closed field K of characteristic zero, we have the important notion

of a Weil-Deligne representation of W (F/F), namely

Definition 5.4. A Weil-Deligne representation of W (F /F) with coefficients in K is a
triple (r, N, V') consisting of

1. a finite dimensional K-vector space V
2. a continuous homomorphism r : W(F /F) — GL(V) with open kernel

3. an endomorphism N : V — V satisfying

7“(0)]\77’(0')_1 = ]Art;l (o)|pN
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~

where Artp : FX = W(EF/F)2 is the reciprocity map of local class field theory,
normalized by sending a uniformizer mp of F to the geometric Frobenius Frp €
Gal(kp/kF).

We call a Weil-Deligne representation (r, N, V) Frobenius semisimple, if r is
semisimple as a representation of W(F/F). If (r,N,V) is not Frobenius semisimple,
then its Frobenius semisimplification is (r, N, V)¥=55 = (r% N, V) where r* denotes the
semisimplication of 7. Recall that r* is the W (F/F)-representation on V whose Jordan-
Holder components are the same as r, i.e. % = ®i20 Vi/Viy1 where V;/V; 41 is simple
for all 4. Notice that r satisfies the same N-conjugation relation as does r. An alternate
yet equivalent construction of 7 comes from the Jordan decomposition of 7(¢), where ¢
is a lift of the geometric Frobenius ®. Applying Jordan decomposition to r(¢) € GL(V)
gives s,u € GL(V') such that r(¢) = su = us, where s is semisimple and w is unipotent.
Following Deligne [8, p.570], one defines 7% by the formula r%°(¢"c) = s"r(o), for any
ne€Zando € Ip.

Our statement of the local Langlands correspondence will follow that of Harris-
Taylor [18, p.2]. Following their notation, for each n € Z>; we let Irr(GL,,(F')) denote the
classes of irreducible admissible representations of GL,,(F') over K, and let WDRep,, (F)
denote the classes of n-dimensional, Frobenius-semisimple Weil-Deligne representations

of W(F/F) over K.

Theorem 5.2 (Local Langlands Correspondence). Let ¢ : F' — C* be a nontrivial
additive character. For each n € Z>1, a local Langlands correspondence for F is a

sequence of bijections
recy, : Irr(GL,,(F)) — WDRep,,(K)

satisfying the following
1. If 7 € Ter(GLy(F)) then reci(m) = 7 o Art !
2. If m € Irr(GL,,, (F)) and my € Irr(GLy,, (F')) then

L(my X ma,s) = L(recy, (1) ® recy,(m2), s)

€(m1 X Mo, 9, 5) = €(recn, (1) ® recn, (2), ¥, 5)
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3. If m € Irr(GL,,(F)) and x € Irr(GL1(F)) then

recy, (T ® (x o det)) = recy(m) @ recy (x)

4. If m € Irr(GL,(F)) and ® has central character x, then det(recy (7)) = rec,(x).

5. If m € Irr(GL,,(F)) then rec,(m") = recy,(m)".

5.3 Algebraic Induction

Let GG be a linear algebraic group over K. Traditionally one usually works over
an algebraically closed field, however in [21], Jantzen considers the more general case
of K being a commutative ring with unit. By a G-module we mean a module M over
the group ring K[G]. Given a G-module M and a closed subgroup H < G, we obtain
a natural H-module structure on M simply by restricting the G-action to the subgroup

H < G. In this way one obtains the restriction functor
res% : Modg — Mody,

where Modg and Mody denote the categories of G and H-modules respectively. From
this construction it is natural to ask whether one can reverse the process, i.e. given an
H-module M, can one construct a functor from Modz to Modg which behaves nicely

3 G
with respect to resp?

Definition 5.5. Let H < G be a closed subgroup and M a finitely generated H-module.
The set IndgM, given by

md$M = {f: G — M : f is algebraic and f(hz) = hf(z) for allz € G and h € H},

is a G-module under the left G-action of right translations, namely (yf)(x) = f(xy) for
all z,y € G. We call IndgM the induction of M from H to G.

From this definition we obtain the functor
Indg : MOdH — MOdG

which is related to the restriction functor resg via Frobenius reciprocity
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Lemma 5.3 (Frobenius Reciprocity). Let H < G be a closed subgroup of G and M an

H-module, then for each G-module N we have an isomorphism

Homg (N, Ind% M) = Homp (resG N, M).

In particular, Indg is right adjoint to resg. The following properties of the functor

Ind$ can be found in [21] and will be used throughout our proof of a special case of the

Breuil-Schneider conjecture.

Lemma 5.4. 1. If H < H' < G are groups and M is an H-module, then
nd$ M ~ Ind$, (Indg’M) .
2. Let M be a G-module, then there is a canonical isomorphism

M ~IndSM.

3. Let G, H, and G’ be groups such that G' acts on G and H is stable under the action
of G'. If M is a H x G'-module, then we have an isomorphism of G x G'-modules

Ind§ M ~ Ind$*%, M.

4. If G, G', H < G, and H < G’ are groups and M an H-module and M’ an
H'-module, then

(Ind§ M) @ (Ind$, M") =~ Ind%*G, (M @ M).



Chapter 6

A Special Case of the

Breuil-Schneider Conjecture

6.1 The Breuil-Schneider Conjecture

In their paper [4], Christophe Breuil and Peter Schneider formulate a deep
conjecture associated to de Rham representations. Our treatment of a special case of
the Breuil-Schneider conjecture will utilize similar notations used in loc. cit. We briefly
recall the statement of the general conjecture.

Let p be a rational prime number and L/Q, and K/Q, finite field extensions
satisfying [L : Q] = |Homgq, (L, K)|. We call L the base field and K the coefficient
field, and view both fields as living in an algebraic closure @p of Qp. Let q := p! denote
the cardinality of k7, (the residue field of L), and let Ly denote the maximal unramified
subfield of L. We let ord, denote the additive p-adic valuation on Q,, normalized so that
ord,(p) = 1. For any extension F/Q, we let W(Q,/F) denote the Weil group of F.

Let n € Z>5 and set G,, :== GL,(L). Let L'/L be a finite Galois extension of L
with maximal unramified subfield Lj,. Let pf" denote the cardinality k L (the residue field

of Lj) and assume [Lj : Q,] = | Homg, (Lj, K)|. There is an equivalence of categories

where UNRAMFr denotes the category of finite unramified extensions of a local field F,
and FINy,, is the category of finite extensions of the perfect residue field of F'. The above

87
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equivalence yields an identification of Galois groups
Gal(F'/F) ~ Gal(kp /kF),

for finite unramified extensions F’/F. In our case, we have the identification
Gal(L}/Qy) ~ Gal(kry /F,),

and let ¢, : Ly — Lj, denote the Frobenius of Lj, corresponding the arithmetic Frobenius
® € Gal(ky, /Fp). We can now give a brief description of the following two important
categories WDy, ,;, and MODy, .

We denote by WDy, the category of Weil-Deligne representations over K,

whose objects are triples (r, N, V') where

e 7: W (Q,/L) — GL(V) is a continuous representation whose restriction to W (Q,/L’)

is unramified.

e V/ is a finite dimensional K-vector space endowed with the discrete topology. Con-

sequently, continuity of r is equivalent to ker(r) being open.

e N is an endomorphism of V satisfying the third property of definition 5.4, implying
N is nilpotent.

We denote by MODy,/;, the category of (¢, V)-modules whose objects are quadruples
(¢,N,Gal(L'/L), D) where

D is a free L6 ®q, K module of finite rank.

¢ : D — D is a Frobenius, that is, an L ®g, K-linear bijection satisfying

¢((lp @ k) - d) == (¢o(lp) @ k)(d),

for all Iy € Lj),k € K, and d € D.
e N:D — Disan Ly®q, K-linear (nilpotent) endomorphism satisfying N¢ = ppN.

e D carries an action of Gal(L’/L) which commutes with the actions of ¢ and N,
and such that
o((lo ® k) - d) = (o(lp) @ k)o(d)
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for all I, € L,k € K,d € D, and o € Gal(L'/L).

There are exact functors

WD : MODL//L — WDL’/L

and

MOD : WDL’/L — MODL//L

which provide an equivalence of categories. We briefly describe the construction of WD
since it will be used in our proof of a special case of the Breuil-Schneider conjecture. A
detailed description of WD can be found in [4] and [11].

Let (¢, N,Gal(L'/L), D) be an object in MODy,/, and fix some embedding

o( : Ly = K. Corresponding to the isomorphism

0@, K= ] K (6.1)

1.y
oo Ly—K

Iy @k — (00(l0)k)os: 5K
we have the decomposition

D~ ] D (6.2)

06 :L6(—>K
where

D, =(0,...,0,1,,,0,...,0)D
0 0

is a K-vector space. Setting V := Dy and restricting N to the finite dimensional K-
vector space V' we obtain a nilpotent K-linear endomorphism of V', which, by abuse of

notation, we denote by N. To construct r : W(Q,/L) — GL(V) we consider the diagram

Qp

AN

W(Qp/L)CGal(@y/L) L

A(L' /L)
L

Qp
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where Galois restriction gives a surjective morphism
resy : Gal(Q,/L) — Gal(L'/L).

For each w € W(Q,/L) we let @ := resy/(w) and define r(w) := @ o ™), where
a(w) € fZ is the unique integer such that the image of w in Gal(F,/F,) is the a(w)-th
power of the arithmetic Frobenius x + aP. Then, r(w) € Endg(V), and the triple
(r,N, V) is an object of WDy,/r,. It is shown in [8] that the above construction does not
depend on the choice of embedding oy, : L, — K.

We now remind the reader of the statement of the Breuil-Schneider conjecture

as given in [4]. Starting with the following
1. an object (r, N, V) of MODy, 1, such that r is semisimple
2. to each embedding o : L — K, an increasing list of n integers, i1, < 2, < ... <
in,aa

a modified version ! of the classical local Langlands correspondence applied to the object
(r,N,V) gives a smooth admissible representation myy(r) of G, := GL,(L). To the
strictly increasing list of n integers i1, < ... < i,, We associate a new increasing

sequence of integers a1, < a2, < ... < ap, wWhere for each 1 <j <n

ajﬁ = —’L'nJrl,j’O- — (j — 1) (63)

Let p, denote the irreducible algebraic representation of G, over K of highest weight
(@1,0,02,4,-..,0n0) relative to the upper triangular Borel B, C G, and let my,(r) be

the irreducible algebraic representation of G,, associated to @),.;., x Po-

Conjecture 6.1 (Breuil-Schneider). With (r, N, V), Tgm(r), and mag(r) as above, the

following are equivalent

i.) The locally algebraic representation BS(r) := mem(r) @k mag(r) admits a G-

variant norm.

i.) There is an object (¢, N,Gal(L'/L), D) of MODy,,y, such that

WD(¢, N, Gal(L'/L), D)¥ = = (r, N, V),

'If r is not generic, then one replaces 7sm (1) with a (possibly reducible) generic representation.
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and a Gal(L'/L)-preserved admissible filtration (Fil'Dys ,);» on Dps (i.e. for sub-
objects, the Newton polygon lies above the Hodge polygon, and they have the same
endpoints) such that, for all embeddings o : L — K

Fil'Dy o /Fil"™ Dy 5 # 0 if and only if i € {i1,,020,- -+ ino}-

It is known that ¢.) implies ¢i.), which was shown by Hu in his thesis [19]. In fact, Hu
showed that ii.) is equivalent to Emerton’s condition [19, p.118]. There are certain cases
in which 4i.) implies i.), some of which can be found in [4, p.19-23], however, in the

indecomposable case, the implication #:.) implies i.) was shown by Sorensen [40].

6.2 A Special Case of BS(p)

The main result of this part of the manuscript is a proof of the following special

case of the Breuil-Schneider conjecture along with a natural generalization

Theorem 6.2. Let L, K be as above, and denote Gr, := Gal(Q,/L). If p : G —
GL,(K) is a potentially semistable representation with subrepresentation py and quotient

representation ps, then, under the following hypotheses
i.) For each o : L — K the Hodge-Tate weights satisfy HT,(p1) < HT,(p2),

ii.) If WD(Dgr(p)) = (r, N, V) and ¢ denotes a lift of the geometric Frobenius, and if
the eigenvalues of r(¢) satisfy {p1, ..y tnys Vny+1y- -« Vny } (here the {p1, ..., pin, }

and {Vn,41,---,Vn,} correspond to the matriz blocks for p1 and pa, respectively),

then‘;—f;&pforalllgkgnl and n; +1 < j < ng,
iii.) p is generic i.e. mem(p) is generic and irreducible,
iv.) For i =1,2 the representations WD(Dgr(p;i)) are indecomposable,
the locally algebraic representation BS(p) admits a Gp-invariant norm.

We briefly note that the condition HT,(p1) < HT,(p2) simply denotes the
increasing nature of the Hodge-Tate weights between the two sets, namely, if HT,(p1) =
{i1o0 <...<ipo}and HT;(p2) = {j1,0 < ... < Jno,o}, then HT;(p1) < HT4(p2) means
Iny,o < J1,0- When both p; and py are characters, this condition is the usual ordinarity

condition for Galois representations.
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Proof of Theorem 6.2. We will utilize the following notations,
Notation: For i = 1,2 let n; = dim(p;) so that n = n; + ny and set G,, := GL, (L),
Gp, = GLp, (L), and G, := GLy,(L), then

e T, will denote the subgroup of diagonal matrices of G,,.
e U, will denote the subgroup of unipotent matrices of G,,.

e B, will denote the Borel subgroup of upper triangular matrices of G, so that

By, ~T, x Up.

e Corresponding to the partition n = ny + ng we let P denote the unique parabolic

subgroup of GG, given by
(Gn; € Gp, fori=1,2 5% = MN,

where N is the unipotent radical and M ~ G, x Gp,.

Algebraic Side of BS(p):

In Repap (Gr) we have the short exact sequence

~
—_

1 P1

hs

P2
Applying Fontaine’s faithful exact functor Dgg gives
0 —— Dar(p1) — Dar(p) — Dar(p2) — 0

in MODy, /. Since morphisms in MODy,,;, preserve filtration degree, the Hodge-Tate
weights of p are sums of the Hodge-Tate weights of p; and ps. Let

HT,(p1) :={i10 < ... <ino} and HT,(p2) == {ji1,0 < -+ < Jnoot

and assume iy, » < j1,,. Associated to HT;(p1) and HT,(p2) are sequences of increasing
integers a1, < ... < ap, s and b1 < ... < by, -, respectively, which are given by (6.3).
Corresponding to these sequences are characters A, : T, — K and u, : 1y, — K defined
by

ar, any 0 by, bng,
Ao(t1yoytn) =177 . tn)! and o (tny1s - stng) =101 5ty
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Using the decompositions By, = 1},, X Uy, and B, = Ty, X Uy,,, we obtain characters

Ao and [lo given by

5‘0’(1)) = )\0' (t)

fio (V) = pio(t')

where b = tu € By, and b = t'u’ € B,,. Due to our assumptions on the Hodge-Tate

weights we obtain irreducible representations

Gny 7 Gno ~
Talg,o(P1) = IndBni)\U and Talg,o(P2) = Indan Ho-

Furthermore, the increasing nature of the Hodge-Tate weights for p; and ps along with

their connection to the Hodge-Tate weights of p give the irreducible representation

Talg,o(p) = Indg: (5\0 ® fiy)-

The decompositions P = (G, X Gp,) X N and B, = (B, X By,) X N, combined with

properties of algebraic induction give

Talg,o (P) = Indgz (5\0' X ﬁa)
~ Ind%r (Indgn Co ® ga))

=~ Tndr (Ind(" <5y o @ )

(Bn, ><Bn2)l><N( o ® fi)

~Tndfr (57 X5 (Vo @ fio)) (6.4)
Furthermore,
Talg.o(P1) © Tatg o (p2) = Indiy" Ay © Tnd}y fiy
~ Ind}y " S5 (Ao @ fig). (6.5)

Combining (6.4) and (6.5)

Talg,o (P) =~ Indgn (Walg,a (Pl) & Talg,o (P2))

Considering all embeddings o : L < K gives an irreducible algebraic representation of
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HO’:L‘—)K GLn(K>, denoted

® Talg,o (P)-

o:L—K
Consider now the connected reductive algebraic group Resy, /g, GL;, over the infinite field
Qp, defined by
(ResL/QpGLn)(A) = GLn(A ®Qp L)

for A any Qp-algebra. We therefore have

(Resp/q,GLn)(@p) = GLn(L)  and  (Respq,GLn)(K) = [ GL.(K).
o:L—K

Using a result in [3, p.220], we see GL,, (L) C [],.;, x GLn(K) is dense, where GL,, (L) —
[1,..— x GLn(K) is embedded diagonally. We therefore let m,5(p) be the irreducible al-
gebraic representation of GL, (L) obtained by restriction of Q) .; .,  Talg,s () to GLy (L).
Smooth Side of BS(p):

Since the representation p is potentially semistable, the subrepresentation pq,
and quotient po, are both potentially semistable. As above, Fontaine’s faithful exact

functor Dggr gives the short exact sequence
0 —— Dar(p2) — Dar(p) — Dar(p2) — 0 (6.6)

in the category MODy//r. Since we will be working with the actual quadruples them-

selves, we let

Darlp) = (6, N, Gal(L'/L), D)
Dar(p1) := (é1, N1, Gal(L'/L), Dy)
DdR(pg) = (¢2, NQ, Gal(L'/L), DQ)

We must now show that the functor WD : MODy,,;, — WDy, preserves exactness of

(6.6). From (6.6) we have an exact sequence

0 » Dy D Dy

Vv
@)

(6.7)

of free Lj ®q, K-modules of finite rank, hence D ~ Dy @& Dy. Corresponding to the

decompositions in (6.1) and (6.2), for each o( : Lj — K, we have the direct sum of
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K-vector spaces
Da(’) =~ D1,06 b D2,0’6' (68)

Letting
WD(p) :

WD(p1) := WD(Dar(p1)) = (r1, N1, V1)
WD(,OQ) = WD(DdR(pQ)) = (T’Q,NQ, ‘/2)

WD(Dgr(p)) := (r, N, V)

where V' := Dg(r), V= Dl,gé, and V5 := DQ,UE) are the K-vector spaces coming from our
chosen embedding oy, (recall that the constructions do not depend on the choice of oy)),

we see from (6.8) that V' ~ V; & V5 and therefore we have exactness of
0 —— WD(p1) —— WD(p) —— WD(p2) —— 0. (6.9)

Since K is flat over K, tensoring (6.9) with K preserves exactness. Therefore we view
the representations in (6.9) as being over K.

Let ¢ € W(Q,/L) be a lift of the geometric Frobenius of Gal(kr/kr). The
action of 7(¢) gives an eigenbasis for V', in which the monodromy operators N, N; and

Ny are related in matrix form by

Ny | *
N =

0 | Ny
where the matrix for r(¢) is

D 0

r(e)=|—+ :
0 | Dp,
where
H1 Vni+1
D,, = and D, =
My Vny

Lemma 6.3. If’;—;;«épforalllgignl andni+1<j<n, then N = ,
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i.e. N = N7 ® Ns.

Proof of Lemma 6.3. Setting N = (c¢;;) we analyze the conjugation relation of the Weil-

Deligne representation (r, N, V) associated to ¢, namely 7(¢)N7(¢) ™t =pN. If 1 <i <

n1 and ny + 1 < j < n, then the (4,7)-th entry of r(¢)Nr(¢)~! is ‘V‘—;cm. Consequently,

the zero matrix r(¢)N7(¢)~! — pN = 0 has (4,7)th entry (% —p)cij = 0. Therefore,
Ny | O

since £t # p for all 1 <4 <njy and ny 4+ 1 < j < n, we obtain N = . O
j 0 | Ny

Returning to the proof of the main result, we apply Lemma 6.3 to our situation and
use additivity of semisimplification of representations over an algebraically closed field
of characteristic zero, i.e.

SS SS SS
ro~ryery,

to obtain

WD (p)F =5 ~ WD (p1)F = & WD(pa)F . (6.10)

Applying the local Langlands correpondence to (6.10) yields smooth irreducible

admissible representations mgm(p), Tsm(p1), and mgm(p2) such that

recy (sm(p)) = WD(P)FisS
recn, (msm(p1)) = WD(p1)"
recn, (msm(p2)) = WD(pg)" ™

and

vecy (o () = 16, (Tan(p1)) © recyy (Ta(p2))-

Furthermore, from [18, p.252]
recn, (Tsm (1)) @ reCn, (Tem (02)) = recy (Tsm(p1) B msm(p2)),
where H is the Langlands sum defined in [18, p. 32]. Therefore

rec, (Tsm(p)) = recy, (Tsm(p1) B msm(p2)),

whereby,
Tsm () = Tsm(p1) B 7sm (p2)
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by the injectivity of rec,. Since p is generic, namely 7sm(p) is generic and irreducible,

Tsm(p) is fully induced [23, p.374]

7"'srn(p) = 7Tsm(pl) i Wsm(pQ) = Indgn (Wsm(pl) & 7I'sm(p2))~

Without the genericity condition on p, one would replace gy (p) by a generic principal
series whose unique irreducible quotient is mgm (p).

Existence of an Invariant Norm for BS(p): From the above computations

BS(p) = Indgn (Walg(pl) by 71'alg(p2)) QK IndIGDn (ﬂ'sm(pl) ® Wsm(92))~

For i = 1,2 we let BS(p;) := maig(pi) @K Tsm(p;) and

L (Walg(l)l)®7ralg(p2))®(7rsm(pl)®7rsm(P2)) - (Walg(l)l)®7rsm(Pl))®(7Talg(P2)®7Tsm(P2))’

the isomorphism given on elementary tensors by (((f®¢) @ (f'®4g')) = (f@f)®(gR7).

Let (f,g) € BS(p), so f € IndJGDn (Taig(p1) ® Talg(p2)) and g € IndJGDn (Tsm (1) @ Tsm (p2))-
Then for any p € P and x € G,

(f ® g)(px) = o(f(px) ® g(px))
up- flx)@p-g(x))
=up- (f(z) @ g(x)))
=p- ((f(z) ® g(x)))

and therefore we obtain a G,-equivariant map

BS(p) — Ind%" (BS(p1) ®@x BS(p2)) (6.11)

(fi9) = 1o(f®@g).

Since mag(p) is an irreducible algebraic representation and mgym(p) is an irreducible
smooth representation, a result of Dipendra Prasad [37, p.126] states that the locally
algebraic representation BS(p) is irreducible, and therefore, since (6.11) is not the zero
map

BS(p) < Ind%" (BS(p1) @ BS(p2)). (6.12)
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To the indecomposable WD(p1), WD(p2), a result of Sorensen [40] yields G,,,-invariant

norms || - ||; on BS(p;) for i = 1,2, respectively. Following [34] we obtain a norm [34,
Proposition 17.4] || - || = || - ||1 ®x || - ||]2 on BS(p1) ® k BS(p2) by defining
full = ing { o sl .

where the infimum is taken over all representations v = Y ;_; v; ® w; where v; € BS(p1)
and w; € BS(p2) for all 1 <4 <r. For i = 1,2 the || - ||; are Gj,,-invariant, therefore the
tensor product norm || - || is Gy, x Gp,-invariant.

We now consider the set C(G,,, BS(p1)®@xBS(p2);]|||co) of continuous functions
f Gy, — BS(p1) ®k BS(p2), such that f(pxr) =p- f(x) for all p € P and all z € G,

and where || - || is the sup-norm

[ flloc == sup [[f(g)I].

g€eGy,

Let G,, act on the left of C(Gy,BS(p1) @k BS(p2);|] - ||s) via right translations, namely

for all 2,0 € G, and all f € IndG"(BS(p1) @k BS(p2)). A priori it is unclear why || - ||o
should be finite, however, the compactness of P\G,, coupled with the G,-invariance (and

therefore P-invariance) of ||- || show that ||- ||« is really defined on the compact quotient

P\G,,, namely

[fllc = sup [|f(Pg)]] < oo,
PgeP\Gr,

for all f € C(Gn,BS(p1) @K BS(p2);|| - ||oo). Any x € G, gives a bijection

P\G,, — P\G,

Pg+— Pgzx
and therefore

lzfll = sup |[f(Pgx)l[= sup [[f(PR)[| = [|flloc-
PgeP\G PheP\G

hence ||| i Gp-invariant. Viewing BS(p) C Ind%" (BS(p1)®@xBS(p2)) C C(Gy, BS(p1) @K
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BS(p2); | - ||ec), restriction of the Gp-invariant norm || - ||~ to the subspace BS(p) gives

a Gp-invariant norm on BS(p). O

The above proof provides the base case for an induction process used to prove a
corollary to the above theorem under a certain modification of the Frobenius eigenvalues
hypothesis. We briefly explain these additional Frobenius eigenvalue assumptions.
Suppose ¢ is a lift of the geometric Frobenius such that (in a suitable basis) the Weil-

Deligne representation (s, IV, V') satisfies

D, 0 0
0 Dy
s(¢) = ’ ,
0
0 0 D,

where, for each 1 <14 <, the D,,, € GL,,(K) is the diagonal matrix

A0 0
: 0
0o ... 0 ,u%i)

If (in the same basis) the nilpotent endomorphism N has matrix form

N,,  * *
N = 0 Np, ’
*
0 0 N,

then our Frobenius eigenvalue conditions are as follows

Hypothesis 6.1 (Frobenius Eigenvalue Hypothesis). For all 1 <i < j <r ifz andy

are elements on the diagonals of Dy, and Dy, respectively, then we assume % #£p.

We are therefore assuming that ordered quotients of eigenvalues of s(¢), occurring in
distinct blocks, are not equal to p. This condition will be necessary for obtaining a direct

sum decomposition of monodromy operators in the following corollary to Theorem 7.2
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Corollary 6.4. Let L, K, and G, be as above. Let p: G — GL,(K) be a potentially

semistable representation of the form

Pn,  * ... *
0 pny
. * p| *

p= : * — — ’
0| pn,
O O pnrfl
0 pn'r
SO
0 P p Pry 0

is exact. If the following hypotheses hold

i.) For each o : L — K

HT;(pn,) < HT5(pny) < ... < HT5(pn,).

ii.) Let WD(Dgr(p)) = (r,N,V) and denote a lift of the geometric Frobenius by ¢.
Suppose the eigenvalues of r(¢) satisfy the Frobenius eigenvalue condition as stated

in Hypothesis 7.1.
iii.) p is generic i.e. wsm(p) is generic and irreducible.
iv.) Fori=1,2,...,r the representations WD(Dgr(pn,)) are indecomposable.
then BS(p) admits a Gr,-invariant norm.

Proof. The proof will proceed by induction on r, in particular, we see that Theorem 7.2
is precisely the base case r = 2.

Notation: For i =1,2,...,r let n; := dim(p,,) so that n = ny +na + ... + n, and set
Gp, = GLy, (L) for all 1 <i <r, then

e T, will denote the subgroup of diagonal matrices of G,,.
e U, will denote the subgroup of unipotent matrices of G,,.

e B, will denote the Borel subgroup of upper triangular matrices of G, so that

By, ~T, x U,.
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e Corresponding to the partition n = n; +no + ...+ n, we let P denote the unique

parabolic subgroup of G,, given by

Ony % *
0 gny ,
P = 2 gn; € Gy, forall 1 <i<r 3 =MN,
*
0 ... 0 gn, )

where N is the unipotent radical and M ~ Gy, X ... X Gy,.
For any o : L — K we have characters A, : T,—p, — K and A\, : T,,, — K given by

an,._q,0

Aty oo stnon,) =177t S

bnr_lJﬁl,a' bnT_1+27U

— bn,o
)\nmg(tnriﬁ_l, - ,tn) = tnr71+1 N 142 oty

where a1, < ass <...<ap, ;o and b, 11, < ... < b, are the increasing sequences
of integers obtained from the Hodge-Tate weights HT(p) and HT(py, ), respectively, given
as in (6.3). From the decompositions By, = Tj,—pn, X Up—p, and B, = T, x U,,,
we inflate A, and A, » to B,,—,, and B,,, and denote the inflations by ig and S\nhg,
respectively. From our assumptions on the Hodge-Tate weights we obtain irreducible
algebraic representations

Talg,o(P) = Indg"_"’“ A, and Talg,o(Pn.) = Indgz: Ay o

— n—mnp

Our induction hypothesis applied to p gives
a G r—1
nqy X Xln,.
Talg,o(p) = IndBnix...xBnT_i <® Walg,a([)m)) )
i=1
and therefore
G G -
ny X XGnyp
Tatgr () ® Fatgr (P, ) = Ind g 00 <® walg,am)) -
i=1

Applying the same computations as in (6.4) and (6.5) to the decompositions P = M x N
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and By, = (Bp, X ... X By, ) x N, we obtain the isomorphism

-

Talg,o (p) = Indg" <® Talg,o (Pn)) . (613)
i=1

Taking the tensor product over all embeddings ¢ : L — K yields the irreducible algebraic

representation of ] x GL,(K), denoted

o:L—

7Talg(/)) = ® 71'ang,cr(p)‘

o:L—K

Again, using the density of the diagonal embedding GL, (L) C [],.; x GLn(K), re-
striction of @),.;. ., Talg,o(p) to GL,(L) gives an irreducible algebraic representation of
GL, (L), which we denote m,,(p).

Smooth Side of BS(p): Applying Fontaine’s functor Dgr to the short exact sequence

0 P p P, 0
gives the short exact sequence

0 —— Dar(p) — Dar(p) — Dar(pn,) — 0. (6.14)
Modifying the standard notation slightly we let

WD(p) :== WD(Dqgr(p)) := (s, N,V)
WD(B) = WD(DdR<B)) = (§7 M7K)
WD(pn,) := WD(Dar(p)) = (sn,, N, Var,.)

so that applying the exact functor WD to (6.14) gives
0 —— WD(p) —— WD(p) —— WD(p,,) — 0. (6.15)

Letting ¢ € W(Qp/L) be a lift of the geometric Frobenius of Gal(kr,/kr), we choose a
basis for V' given by an eigenbasis for s(¢). In this basis N € End(V') has matrix form

N| =
N =
0 | Ny,
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However, restricting the basis of V' to its subspace V, the operator /N has matrix form

Ny, * *
N— 0 Np,
*
0 0 Np,._,
in which case NN has matrix form
N,  * *
N 0  Np,
*
0 0 N,

Lemma 6.5. Assuming the Frobenius eigenvalue hypothesis for s(¢), the matriz for the

monodromy operator N s

N,, 0 0
v |0 N |
0
0 0 N,

hence N = @._; Ny,.

Proof. Since we will need to compute with the non-diagonal upper triangular part of IV,

we write
Nny Anyng oo Ay,
N 0 Ny, :
Anrflfnfr
0 . 0 Ny,

where, for each 1 < i <n,_; and 2 < j < n,, the Ani,nj is a matrix of size n; x n;. We
let Ay, n; = (ar;) where 1 <k <n,_1 and 1 <1 < n,, so the labeling of entries of N will

be written in terms of entries of each submatrix A, ,,;, this allows for simpler notation



104

in the computation. As before, write s(¢) as

Dy, 0 0
0 D,
5(¢) - ’ )
0
0 0 Dy,

w? o 0
(i)
0
Dy, = 2
P 0
o ... 0 Mﬁf}

The conjugation relation s(¢)Ns(¢)~! = pN for (s, N,V) is

an Bn17n2 M Bnl SNy
0 N, .. :
pN =s(¢)Ns() "' =| 7 ,
: T " Bn._in.
0 0 Ny,

(ng)

where, for each 1 <7 <n,_1 and 2 < j < n,, if By, n; = (bk,), then by = ”ij)akJ for
m

all 1 <k <n; and 1 <1 < n;. Equating coefficients and using that for all ifj, k and [

(n;)
(ni)
(M?n,) — 1) ag| = 0,
1) !

the quotient Z fnj) # p, we find

l
and therefore, ap; =0 forall 1 <i<m,_1,2<j5<n,1<k<n,andl <[ < nj,
hence N = @;_; Ny,. O

The short exact sequence of (6.15) along with the decompositions V >~V @&V,

and N = N @& N,,, render an isomorphism

WD(p)¥ = ~ WD(p)* ™ & WD(p,, )" . (6.16)
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By induction, we have the decompositions V ~ @;_; ! Vo, and N = @ ! Ny, whereby

r—1
WD(EF ss @WD pnz)F SS’
=1
and therefore (6.16) becomes
WD(p)F— EBWD (pn,)F. (6.17)
=1

Applying the local Langlands correspondence to (6.17) we obtain smooth irreducible

admissible representations 7sm(p), Tsm(p), and Tsm(pn, ) such that

recy (Tam(p)) = WD(p)" ™™

reCp—n, (Tsm(p)) = WD(B)}LSS

recnr (Wsm (pnr)) = WD(prr)Fiss

From (6.17)

rec, (msm(p)) =~ recn_n, (Wsm(ﬁ)) ® recy, (Tsm(pn, )

=~ reCy (Tsm () B Tsm(pn, )

where H is the Langlands sum defined in [18, p.32]. By our induction assumption

r—1
reCp_n, 7rsm @recnz Tsm (Pn;)),
=1
hence
recn (s (p)) = recy (Hi—; Tom (pn;)) , (6.18)

whereby injectivity of the local Langlands correspondence gives

7I-sm(p) = Hﬂ;:lﬂ-sm (Pni )

As before, since p is assumed generic the Langlands sum is fully induced,

=1

Tsm(p) == B Tsm (pn;) = Indg” <® Wsm(pm)) )
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and therefore the locally algebraic representation of Breuil-Schneider, BS(p) = mai4(p) @k

BS(p) ~ IndG" <<® Talg (Pn; ) QK <® Wsm(pm)>> )
i=1

Existence of an Invariant Norm for BS(p): The proof of the existence of an invariant

Tsm(p), 18

norm on BS(p) follows immediately from the computations given in the proof of Theorem

7.2. In particular, letting

a <® Walg(ﬁﬂ)) “K <® WSTH(Pn)) — ®(7Talg(/)ni) ®K Tsm(Pn,))
i=1 i=1

=1

denote the isomorphism given on elementary tensors by

{A®LR®..0H)®((1R50®..Q8¢))=(fiRgn)®(2®g90)®...®(fr®g),

we construct a map

BS(p) — Ind%" (@ BS(p)> (6.19)

=1

(fla--wfr)'—>Lo(f1®-~®fr)

which satisfies ((f1i ® ... ® fi)(px) =p-1(fi®...® fr)(z) for all p € P and = € G,.
Since Taye(p) and mem(p) are both irreducible and (6.19) is not the zero map, we again

utilize Dipendra Prasad’s result [37, p.126] to obtain the injection

,

BS(p) < Ind%" (@ BS(pm)>. (6.20)
i=1

To the indecomposable WD(p,,,) a result of Sorensen [40] applied to each BS(p,,,) yields

G,;-invariant norms || - ||; for each 1 <7 < r. Again utilizing the result [34, Proposition

17.4], these norms yield a G, x ... X Gy, -invariant norm || - || .= || - |1 ® ... ® || - || on

BS(p) given by

e (1) (r)
full = ing { e 1. 11

where the infimum runs over all representations u = Zgnzl vj(-l) ®...® ’UJ(»T) where
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v§k) € BS(pp,) forall 1 <j<mand1<k<r.

Consider the set C(Gr, @;_1 BS(pn,);|||loc) consisting of continuous functions
equipped with the sup-norm || - ||sc. We give C(Gy, Q:_; BS(pn,); || - ||c) the left G-
action of right translations, and observe that P\G,, is compact. Therefore, for any

€ Gyand f € C(Gn7®§:1 BS(Pm)? H : Hoo)

|z flloo=sup |[[f(Pgz)l|=sup |[f(Ph)]|=Ifll;
PgeP\Gy PheP\Gy,

whereby || - ||sc 18 Gp-invariant. Viewing BS(p) C C(Gn, Q;i_; BS(pn,); || - |loc), the

restriction of || - ||s to BS(p) is a Gjp-invariant norm. O



Chapter 7

Invariant principal ideals in a

p-adic Heisenberg algebra

The work in this chapter came about from an attempt to generalize work of
Peter Schneider and Jeremy Teitelbaum [38] on Schneider’s 2006 ICM conjecture [35,
Conjecture 2.5]. Although a proof in full generality failed, we were able to obtain a
result about a certain graded p-adic Heisenberg group.

Our methods utilize the theory of p-valuable groups, which we briefly describe.

A more thorough and comprehensive treatment can be found in [25] and [36].

7.1 Introduction and Notation

Let G be an abstract group whose identity we denote by 1, and let p € N be
a prime number with additive valuation ord, on Q, normalized so that ord,(p) = 1. A
function w : G — (0, 00] is called a p-valuation if w(1) = oo and, for all g,h € G the

following hold

i) w(g) > p%l

i) w(g™'h) > min(w(g),w(h))
iii.) w([g, h]) = w(g) +w(h)

iv.) w(g?) =w(g) +1

108
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By definition, a p-valuable group is a pair (G, w) consisting of an abstract group G along

with a p-valuation w on G satisfying the above properties. In general, the values of w can

vary widely, however, if G is a pro-p group then the values of w are discrete in (0, co].
Associated to any p-valuable group (G,w) is a filtration given as follows. For

any v € Ry define the subgroups
Gy={9€G:w(g)>v} and G+ ={g9€G:w(g) >0}

The collection {Gy }, is a filtration of G with normal subgroups G+ and abelian quotients

gr,(G) := Gy /G,+. The graded abelian group

grG = @grUG

v>0

is endowed with a p-power operator given on components by

P((9Gyt)w) = <9pG(v+1)+)v~

The operator P endows gr G with the structure of an Fp[P]-module, and the rank of
(G,w) is defined to be the rank of the F,[P]-module gr G. For notational convenience

we set R = IF,[P] for the remainder of this chapter.

Definition 7.1. Let (G,w) be a p-valuable group. We say the elements g1, g2, ..., € G

are an ordered basis if both of the following conditions are satisfied
i.) The map
Ly — G
(1, ) = gyt o grT
s a homeomorphism.
ii.) w(gy" ... g7") = min (ordp(z;) + w(g;))
1<i<lr

If (G,w) is a p-valuable group of finite rank with ordered basis {g1,...,9r},
then {o(g1),...,0(gr)} is an R-module basis of gr G, where o(g) = gG,,4)+ for g € G.
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7.2 A p-adic Heisenberg group

For n € Z>9, the n x n p-adic Heisenberg group H consists of upper triangular

matrices of the form

1 o T3 ... Tip-1 Tin
1 0 0 T2.n
(i) =
1 0 Tn—2n
1 Tn—1,n
1

where 21,2, € Z), for all 2 <7 <n and 2 < 7 < n — 1, with group operation matrix
multiplication.

In [36, p.171] Schneider constructs a p-valuation on the open subgroup G' C
GL,(Qp) where

G :={g€GLn(Qp): flg—1) > pil}

and f: M, (Qp) = Z U {oo} is defined by

flg) = I1;.1};1(01"01;;(%))

for g = (aij) € Mn(Qp). For g € M,(Q,) define w(g) = f(g — 1), then (G,w) is a
p-valuable group. Let ¢ : H — G be defined by

1 prio pPrig ... P Rwiao1 P lmin
1 0 0 P 2o,
(i) =
1 0 pzxn,g,n
1 PTn—1n
1

Then, for any g,h € H, ¢(gh) = ¢(g9)¢(h) and ker ¢ = {1}, therefore, we identify H
with its image under ¢ and view H inside G. Let h € p(H), then
w(h) = min {ordy(z1,) +i—1,ordy(z;n) +n —j}.

2<i<n
2<j<n-1
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is a p-valuation on ¢(H) and therefore on H from the above identification.

Since (H,w) is a p-valuable pro-p group, the values of w are discrete. Therefore
there exists hg € H such that 0 < w(hg) = iréigw(h). By definition, w(h) > 1 for all
h € H, hence, there exists a real number C' satisfying 0 < C' < 1 — p%l. Using this C
we define we := w — C', which defines a new p-valuation on H with the added benefit of

strict inequality on commutators, namely, for any g, h € H

we(lg,hl)

w(lg,h]) —C
w(g) +w(h) - C
w(g) —C+w(h)—C

v

V

we(g) +we(h).

For v > 0, the filtration on (H,w¢) is given by
H,:={h € H :wc(h) > v} and H,+ :={h € H :wc(h) > v},
with associated graded abelian group

gr H = Per,(H).

The Lie algebra structure of gr H is given by the bracket

(] gry(H) x gry (H) = gr(yy0) (H)

(57 77) = [97 h]fl(v-i-v’)7L

where £ = gH,+ and = hH+. In [36, p.173-174] it is shown that [, -] is a well-defined,
biadditive map, compatible with the operator P, such that [£,£] = 0 and [£,n] = —[n, &]
for all £&,n € gr H. Therefore, gr H is a graded Lie algebra over R. Furthermore, for
¢E=gH,+ and n = hH +

we([g, b)) > wolg) +wo(h) > v+,

hence, [{,n] = 0 for all {,n € gr H, whereby gr H is abelian as a Lie algebra over R.
Define E; ; € GL,(Qp) by E; j = I,+(1; j), where I,, is the n xn identity matrix
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and (1;) is the n x n matrix with a one in the (7, j)th entry, and zeroes elsewhere.

Lemma 7.1. For 2 < i <n and 2 < j < n —1, the elements E1; and Ej;, form an
ordered basis of (H,wc).

Proof. Indeed, any h € H can be written as
n—1 n
Lj,n 1,4
j=2 i=2

showing that the continuous map

Y (212,213, s Ty T2my - - -3 Tn—im) — R

is surjective. If ¢)(a) = ¢ (b) in H, then a = b in ZIQJ"_S. This follows simply from the fact
that two n x n matrices are equal if and only if their corresponding coefficients are equal.
Therefore, 1) is a continuous bijection from the compact space ZZ"_?) to the Hausdorff
space H, hence v is a homeomorphism.

Finally, we have

2<i<n

n—1 n
we H E;n H Ei; | = min {ordy(z1,)+i—1,ordp(zjn) +n—j} —C
Jj=2 1=2 2<j<n—1

= min {ord,(z1,)+i—1—-C,ordy(zj,)+n—j—C}
2<i<n
2<j<n—1

= juin {ordp(z1,) +wo(Eri), ordp()n) +wo(Ejn)}
2<j<n—1

proving the lemma. O]

The above lemma shows that gr H has rank 2n—3 as a Lie algebra over R and is generated
by {o(F1:),0(Ejn) :i=2,...,nand j =2,...,n—1}, where o(h) := hH,, )+ for any
heH.

Now that the properties of gr H have been established, we will review similar
properties associated to the graded Iwasawa algebra of H, denoted gr A(H). Proofs of
the details can be found in [36, ch.VI].
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7.3 The graded Iwasawa algebra gr A(H) and universal en-

veloping algebra U(gr H)

Let H be as above, then the Iwasawa algebra of H is

A(H) = lim Z,[H/U]
U<°H

where U <1° H indicates that U is an open normal subgroup of H. For v € R>q, define
Jy to be the smallest closed Z,-submodule of A(H) generated by elements of the form
p'(h1 —1)...(hs — 1) such that I + Y%, we(hi) > v where I,s > 0 and h; € H for all
1 <4 <'s. Defining

Jor = |J T

v'>v

and gr,A(H) = J,/J,+ we have the graded algebra

er A(H) = @D er, A(H)

v>0

over the graded ring

or Z, = @pnzp/p"JrlZp.
n>0

We view the graded ring grZ, as an R-algebra by identifying F,, ~ gr,Z, and mapping
P to p + p°Zy.

Lemma 7.2. The map

R = grZ,

> TP = (anp™ + 0" Zy)n
n

is an isomorphism of R-algebras.

We now discuss Schneider’s exposition of the Lazard isomorphism between the
graded R-algebra gr A(H), and the universal enveloping algebra U(gr H) of gr H. Let
v € Ry and define

Ly :gr,H — gr,A(H)
hoHy e s hy — 1+ J, 4.
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In [36, p.197-198] it is shown that £, is an R-algebra homomorphism, consequently we

obtain an R-algebra homomorphism

L= @ cgrH — grA(H).
v>0
The universal property of universal enveloping algebras gives a homomorphism of asso-
ciative R-algebras v : U(gr H) — gr A(H), whereby, if O is a finite unramified integral
extension of Z, with fraction field K, the Lazard isomorphism is given by extension of
scalars to gr O of the homomorphism . In our case, K = Q, so O = Z,, and since
gr Z, ~ R, extension of scalars is unnecessary, hence the Lazard isomorphism is precisely

the R-algebra isomorphism

Y U(grH) ~grA(H).

Since gr H is an abelian Lie algebra over R generated by {o(E1;),0(Ej,) : 2 <

i <nand 2 < j <n— 2}, the universal enveloping algebra is a polynomial ring
UgrH) = R[X12,X13,. s Xin, Xom, s Xno10] =15,

where, for all <7 <mn and 2 < j < n — 1 the variables X7 ; and X, correspond to the

generators o(E1 ;) and o(Fj ), respectively.

7.4 The Contracting Monoid 7"

Define the set

T = {diag(y1,y2: - - - yn) € Mn(Qp) : ly1lp < l12lp < - < |ynlp}-

Under matrix multiplication, 7" is a monoid (inverses reverse inequalities). Using the

T M

structure of QX, any element ¢t € TV is of the form ¢t = diag(uip™, uop™2, ..., u"p™"),

X
p )
where u; € Z; forall 1 < i < n, and m; > mg > ... > m, are integers. For each

1 < i < n we define the elements
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then any element ¢t = diag(uip™!,...,u,p™") € T decomposes as

n
t = diag(us, . .., un) (H t?iillmi) tme,
=1

We define an action of Tt on gr H by conjugation, namely,
t- (thv+)v = (thvt_le+)va

for any t € T" and any (hyH,+), € gr H. Although 7" is simply a monoid, notice that

the above conjugation makes sense since

Yi
—cZ
yi
for all ¢ < j.

Using the Lazard isomorphism
L:U(grH) ~grA(H),

we now write down explicitly the action of T on the polynomial ring S. For each
2<i<mnand?2<j<n-—2, to explicitly write down the action of 7" on S, it suffices
to write down the action of the generators of 7% on the generators X1 ;, Xj, of S, and
extend R-linearly to all of S.
For uw € T'(Z,) we see
u- X = ZJXJ
where 1 < ¢ < j < n. The action is somewhat more difficult to describe for the non-torus

elements t; € TF. The action of t; is given by

t1 X1, =PXyforall2<i<n
11 Xjn=Xjpforall 2<j<n-1.

The element t, € T" acts trivially, namely tnX;; = X;; for all choices of i and j.
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Finally, for 1 < m < n, the action of t,, is given by

Xl,i if 2 < ) <m
tm X1, =

PXLi ifi>m

and

PX;, if2<j<m
tmXjm .
ij if j>m

7.5 Main Result

Let p be a rational prime number and n € Z>9. Consider (H,w), where H is the
nxn Heisenberg group over the p-adic integers Z,, and w is a p-valuation on H, as defined
in [36, p.169]. Let T+ C GL,(Qp) be the set of diagonal matrices diag(yi,y2,...,Yn) €
GL,(Qp) such that |yi|, < |y2|p < ... < |ynlp, where |- |, is the p-adic absolute value on

1

Qp, normalized so that |p|, = > Under matrix multiplication T is a monoid, which we

call a contracting monoid of GL,(Q,). The Iwasawa algebra of H is

A(H) = lim Z,[H/U],
U<H
where U runs over all open normal subgroups of H. Let R = [F,[P] be a polynomial ring

in the operator P, where

P(h) = P

for all h € H. Then, utilizing Lazard’s theory of p-valuable groups, we construct a
finitely generated R-module grA(H) which can be identified with a polynomial ring over
R in 2n — 3 variables, denoted S = R[X12,X13,...,X1n, Xon,..., Xn_1r], and which

carries a natural action of 77. The main result of this paper is the following

Theorem 7.3. The T -invariant principal ideals I = (f) of grA(H), are precisely those
for which the cyclic R-module Rf is TT -invariant.
7.6 Proof of the main result

Proof. We first show that the T -invariant cyclic R modules, Rf, are determined by

an equality condition on certain coefficients brought about by the action of T on f.
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Consider the cyclic R-submodule Rf of S. By definition, Rf is T -invariant if and only
if forall?€ Rand t € T

t‘(/rf):/r,f7

for some 7’ € R. Since the action of T on S is R-linear, the above relation reads

r(t-f)=1"f.

Since the action of any ¢ € TF on a monomial in S is given by multiplication by some

element of R, we have

r(t-f) = Z T Co (T)M

méeMon(f)

where the ¢, (t) € R are the coefficients determined by the action of TF. Therefore,

T*-invariance of Rf amounts to

Z T Crn (£)m = E ' amm
meMon(f) meMon(f)
which holds if and only if ramcm(t) — r'am, = 0 for all m € Mon(f), and t € T*. Since
R is a commutative domain, and the a,, # 0 for all m € Mon(f), we see that the above
equation is equivalent to rc,,(t) = r’ for all m € Mon(f) and t € T+. Therefore, Rf is
T*-invariant, if and only if the ¢,,(t) are equal for all ¢t € T™.
Now, if the principal ideal I = (f) is such that Rf is a T*'-invariant R-

submodule of S, then for any ¢ € T, we have

t'f:rtfa

for some r; € R, and therefore, t - I C I, showing that I is T -invariant. Conversely,

suppose that I = (f) is T -invariant, then for all ¢ € T, we have

t-f=af

for some ¢ € S. If ¢; ¢ R for some t € T, then ¢; contains at least one nontrivial

monomial term involving at least one variable of S. Therefore, the monomial terms of
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q:f would differ from those monomial terms of f, hence, the equality
rf=t-f=aqf

would not hold. Therefore, for all t € T, we have ¢; € R, and therefore f is precisely a

polynomial for which the cyclic module Rf is T -invariant. O

Originally this work grew from an attempt to generalize to GL3(Z,) the work
of Schneider-Teitelbaum [38, sect. 4] on GLy(Z,). If K is a finite extension of Q, and
G = GL2(Z,) with B C G the Iwahori subgroup of matrices whose reduction modulo
p is lower triangular, and if P,P~,U,U~, and T denote the lower triangular, upper
triangular, lower unipotent, upper unipotent, and diagonal matrices, respectively, then,

given a character y : T — K, we have a finitely generated K[[B]]-module
Ny == K[[B]] @k ey K.

The main result in section four of [38] is the following proposition
Theorem 7.4. [38, Proposition 4.1] If ¢(x) ¢ Ny then N, is a simple K[[B]]-module.

Their approach is to utiilize an equivariant notion of Schikhof-duality, allowing
them to translate the desired irreducibility statement into a statement about a certain
algebra being simple. The algebra in question consists of formal power series in one
variable with bounded coefficients, in particular, the algebra is commutative and a PID.

A rough sketch of their argument is as follows:

e Choose a submodule of your principal series representation and invoke the equivari-

ant version of Schikhof duality to consider the corresponding ideal in the algebra.
e Since the algebra is a PID, this ideal is generated by some power series.

e Using the Weierstrass preparation theorem, one can assume that the generator of

this ideal is a distinguished polynomial.

e Using the actions of the torus of GL(Z,) and the upper triangular unipotent
matrices, one concludes that the generating polynomial has either none or infinitely
many zeroes in the p-adic unit disk. Hence, the ideal is either the whole algebra

or the zero ideal.
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e Invoking Schikhof duality again one concludes that the original submodule was

either trivial or the whole principal series itself.

There are many problems in trying to generalize their results to the GL3(Zp)-

setting, namely

e The algebra is a noncommutative power series algebra in three variables, no longer
a PID, and therefore one cannot assume that the ideal afforded by Schikhof duality

is principal.

e There is no direct analog of the Weierstrass preparation theorem for noncommu-
tative power series rings in multiple variables, so even if the corresponding ideal
were principal, one wouldn’t be able to conclude that the ideal is generated by a

polynomial, thereby ruling out the argument regarding zeroes of polynomials.

For these reasons, we specialized to the n x n Heisenberg group, passed to the
graded Iwasawa algebra, and considered only invariant principal ideals. Understanding
the behavior of ideals in noncommutative Iwasawa algebras is difficult and few results
are known. For more information regarding conjectures and known results the reader is

directed to the papers [20], [1].
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