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Abstract

This paper examines the naive Bayesian model and
extensions of it to account for the effects of base rate
neglect and inverse base rates. These are human
categorization phenomena in which base rate information
appears to be ignored. The naive Bayesian classifier
accounts for a subset of the phenomena observed in base
rate experiments. An extension to the model is examined
that uses structure in the data sets resulting from features
shared between categories.

Introduction

The base rate of a category is the probability of occurrence
of an instance of that category. Humans appear to be
sensitive to the base rates of categories in training and
testing data sets. In some circumstances the more times a
category appears, the more likely humans are to predict its
occurrence. However, in other experimental settings,
categories with smaller base rates appear to be preferred to
categories with larger base rates.

Base rate neglect refers to a categorization phenomenon in
which a feature that occurs proportionally in two categories
appears to be associated with the less probable category (i.e.,
lower base rate). Human categorization performance
suggests that the higher base rates of the more probable
categories are being ignored. Gluck and Bower (1988)
showed apparent base rate neglect in a medical categorization
task. The participants were trained to predict a common and
a rare disease given a symptom set of four symptoms sl to
s4.

The probability of the rare disease occurring was 0.25 and
the probability of the common disease occurring was 0.75.
The symptom probabilities given the rare disease were 0.69,
0.46, 0.35, and 0.23 for symptoms sl to s4, respectively.
The probabilities given the common disease are in the
reverse order. Since the probability of sl is 0.345, using
Bayes formula the probability of the rare disease given sl is
0.5. However, when asked to predict disease given a cue of
sl, participants predicted the rare disease 0.67 of the time.
Collectively, the pool of participants tend to over-estimate
the probability of the rare disease given the symptom.

The inverse base rate phenomenon can be described as
follows. Suppose one feature is only identified with a high
base rate category and another feature is identified with a low
base rate category. When a cue is given in which both
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features are together and the participant is asked to categorize
the cue, the participant will tend to respond with the lower
base rate category.

Base rate neglect and inverse base rate phenomena have
apparently struck investigators as surprising because these
phenomena seem counter to a tacit, appropriate decision
procedure. Thus, this paper investigates the ability of one
such procedure, the naive Bayesian classifier and extensions
to fit experimental data by Kruschke (1996).

Bayesian Models

The naive Bayesian classifier is a popular machine learning
technique, which often outperforms competing learning
strategies Langley, Iba, & Thompson (1992). Bayesian
classifiers have also been used to account for many
categorization phenomena (Anderson, 1991). Thus, it seems
natural to examine the ability of these classifiers to fit
experimental data on base rate neglect and inverse base rate
effects.

Naive Bayesian Model

The Bayesian model is a probabilistic classifier, which
assigns a probability to an object's membership in each of a
set of contrast categories. Assuming the categories partition
the instance space, Bayes’ theorem (Eq. 1) is used to assign
the probability that an instance, represented as a feature
vector, FJ _p, is a member of class Cj:

e, ) FEEE) X

where P(Cj) is the base rate of class Cj. In the naive
Bayesian classifier, the features of an instance are assumed
to be independent for each category, which gives the
simplification expressed in Equation 2.

P(F1..|C.}=]'[]P{F,|C,) 7))
Thus, the naive Bayesian classifier assigns probabilities
using Equation 3.

P(C, )1:[ P(F,F.) (3)
PCIF.)= Y PCITP(Fl

The base rate phenomena discussed above pose a problem
for a naive Bayesian model of human categorization. The
model uses base rates in its calculation and in light of the
inverse base rate effect an obvious modification would be to
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remove the base rate term from the model. A difficulty with
this approach is that base rates appear to be used for some of
the cues in the test set. Removing base rates would cause a
misfit for such cues. Also, some cues seem to use base rate
in a more biased fashion than a naive Bayesian clussificr.
Modifying the naive Bayesian classifier to use even more
base rate information has the difficulty of not accounting for
the inverse base rate effect. These difficulties suggest the
need for a model that finds a middle ground between ignoring
and over using base rates.

Cue-Validity-Weighted Bayesian Model

A model that finds middle ground is the cue-validity-
weighted Bayesian model. It uses the structure between
categories to influence categorization. The cue validity
measure, P(CglF;) is used to express the structure in the data
set. It does this by relating categories that share features.
When a shared feature occurs in a test instance, cue validity
expresses the feature’s relative weighting between the
categories in which it occurs. When novel instances occur,
this relative weighting may be used to aid in classification.

P(CJH p(c]e,)P(F|c.) @)

S PG ITACIE )

The cue-validity-weighted Bayesian classifier (Eq. 4)
weights features according to cue validity. This results in
shared features biasing the classification in the direction of
the category in which it occurred most frequently. If the
feature value F; occurs in the test instance and in the
category k, then the probability of that feature given the
class is multiplied by the cue validity. Otherwise, the cue-
validity-weighted Bayesian classifier behaves like a naive
Bayesian classifier. See discussions on cue validity in
Rosch & Mervis (1975) and Hampton (1979).

There are different kinds of features being used by the
classifier. Features that have a high cue validity are
predictive features. If P(CglF;)=1.0, then the feature is
perfectly predictive. Features that have a high probability
given the category are predictable features. If P(F{ICy)=1.0,
then the feature is perfectly predictable. The weighting of
the model has the effect of fully using perfectly predictive
features and making shared features more strongly predict
the category in which they occurred more frequently. The
cue-validity-weighted Bayesian formula is a way of
mathematically formalizing the impact of structure in the
data set due to shared features.

Experiment 1

Kruschke’s (1996) Experiment 1 consisted of two phases: a
training phase and a testing phase. The participants were
given eight training trials per block for fifteen blocks for a
total of 120 trials. After each training trial, they were given
accuracy feedback. The training data set, presented in Table
1, consisted of four disease categories (Cqc, Car, Ches
andCp,) and six symptoms or features (i.e., fac, far fbe for
Pa, and pp). Two of the discase categorics (i.e., Cgqe and
Cpc have a higher frequency of occurrence than the other two
categories (i.e., Cgp and Cpy), thus the “"c" versus "r"
subscript for common and rare, respectively.
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Each category can be predicted using one of four “perfect”
features: fgc, far. fbe, and fpr, respectively. For instance,
skin-rash is the perfect common predictor, fg¢, for category,
Cy since P(Cgelfac)=1.0. Two of the features, p, and pp,
arc called “imperfect” predictor features. They are imperfect
because they occur in two discase categories, but they still
inform categorization (e.g., P(Cgelpg) > P(Cge)). The
imperfect features can be used to distinguish the two
category groups a and b. For example, ear-ache occurs in
group a’s rare and common disease categories, but Ear-ache
does not occur at all in Cp¢ or Cpy-.

Table 1. Training stimuli used in Exp. 1 (Kruschke, 1996)

Dis. Symptoms/Features Freq.
Car Skin-rash (fz-) Ear-ache (pg) 45
Cor Backpain (fgy), Ear-ache (pg) 15
Che Sore-muscles (f5-), Dizziness (pp) 45
Chy Stuff-nose (f,), Dizziness (pp) 15

During the testing phase participants were required to
diagnose nine novel combinations of six symptoms. The
nine symptom-combinations were repeated four times for a
total of 36 test items. Table 2 presents the diseases chosen
by the subjects for these novel combinations (i.e., cues).

Table 2. Observed choice proportion for Exp. 1

Example Cue Cac Ca Cbhe Chr
Symptom(s)
Ear-ache Pa 75 .17 .05 .03
Skin-rash fﬂ:‘ 93 .03 .03 .00
Backpain fao- 04 91 .02 .03
Skin-rash + fac + far 35 .61 .02 .01
Backpain
Earache + Skin- _ pa +fac + far .58 40 .01 .00
rash + Backpain
Earache + Pa+ foe 41 08 47 .05
Sore-muscles
Ear-ache + Pa + fbr 22 .09 .03 .67
Stuffy-nose
Skin-rash + fac +fbr 35 .03 .06 .56
Stuffy-nose
Ear-ache + Skin-  pg +fac+fpr 72 .04 .04 21

rash + Stuffy-nose

These results indicate that there are inverse base rate
effects. Kruschke's (1996) inverse base rate effects replicate
the phenomena reported by Medin & Edelson (1988). The
inverse base rate effect is observed when the cue f¢ + far is
presented and participants collectively favor the rare disease,
Car (61%) over the common disease, Cge, (35%). This is
the inverse of the 25% to 75% base rates of these rare and
common categories.

The inverse base rate effect diminishes with the addition of
the imperfect feature in the cue pg + fac + far- This cue is
placed in common category, Cge, 58% of the time and in
rare category, Cgp, 40% of the time. The presence of the



imperfect feature makes the cue’s choice proportion closer to
the base rates of these categories, 75% and 25%,
respectively.

The imperfect symptom (pg) by itself gives choice
proportions that are consistent with base rates, with it being
placed in common category, Cge, 75% of the time and in
rare category, Cgr, 17% of the time.

In cues pitting the imperfect predictors against the perfect
predictors, the rare perfect features influenced the choice
more than common perfect predictors. For example, the rare
disease, Cpy, is predicted more often by the cue, pg + fir,
instead of diseases Cye or Cgqr. An inverse base rate effect
also occurs when the cue consists of a group "a" imperfect
predictor, paired with a group "b" perfect predlclor for a rare
category, pg + fpr- In this case, it is placed in common
category, Cg¢, 22% of the time and in rare category. Cpy,
67% of the time. Hence, it seems that some cues are
predicting diseases in inverse proportions of what base rates
by themselves would predict, and other cues are predicting
disease in proportion to the base rates.

Modeling Phenomena in Experiment 1

Bayesian models are “trained” from the 120 instances used to
train subjects in Experiment 1. The instances are
represented as a six dimensional vector of values along
binary dimensions (i.e., "present” or "absent") corresponding
to each feature. The probabilities for the features are
approximated from frequencies of the features in the training
data. The frequency of a feature given a category is one plus
the number of times a feature occurs in a category over one
plus the number of instances in a category. The addition of
one to the numerator and the denominator is used to avoid a
probability of zero if the feature has never occurred in the
category.

Naive Bayesian Model

Overall, the naive Bayesian model uffcrs a reasonable fit to
the results from Experiment | (r2 = 0.76, and root mean
squared deviation (RMSD) = 0.16). Comparing Tables 2
and 3, it becomes cvident that the naive Bayesian classifier
fits a subset of the effects, and it is the performance
involving the effects with imperfect features that the model
fails to capture.

Table 3. Modeled choice proportion for Experiment |

Model Cue-Validity-Weight

Bayesian
Che CprlCae Cor Che Chr
S1 .49 00 .001.75 .24 .00 .00

Bayesian

Cue Coee Cor

g
fac 99 00 .00 .00|.99 .00 .00 .00
7 00 1.0 .00 .000.00 L0 .00 .00
fotfor  1.27 73 .00 .00 |.27 .73 .00 .00
+fet e ].51 49 00 .00 ].76 .24 .00 .00
patfoc |21 .58 21 .00 |.31 .28 41 .00
patfor 115 42 00 42 |.18 .16 .00 .66

Sfac+ fhr 27 .00 .00 .731.27 .00 .00 .73
patfac+ fpr ] 99 .00 .00 .00 ].99 .00 .00 .00
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The naive Bayesian classifier performs in similar ways to
the participants on the main effect of inverse base rates. The
ambiguous cue fge + far is predicted to be associated with
the rare disease. This occurs because there are two
“mismaltching” features for the common category: pg
which is missing and fgzr which never occurred in the
common calegory. The rare category also has two
mismatching features, but the category is smaller so the
mismatches do not count as much as in the common
category (Anderson, 1990). The following are numerators
for the naive Bayesian classifier for the categories Cg¢ and
Car (Cpe and Cpyr have small numerators due to four
“mismatches” each):

Common Category
P(Cnc)Pt—pnICx)P(fxlCnc)P(I'.lrICm)P(ﬂPbK:ac”’(—-fbcICu)Pt—{thx)

(120146I XdéI X%I J 120*46

versus Rare Category
P(Cy P(—py N)P(faclcm}P{fwlCM}P{-pb!C&r)P(—.fbciC,,)P{»‘fb,JCH]

(120)[16)(161 I )[:g) Fﬂl:lg

The 45/120 is the base rate for the common category and
the 15/120 is the base rate for the rare category. 1/46
represents a mismatch while 46/46 or 16/16 represents a
match of a feature that occurs in every instance of a
category. The difference in the numerators, due to the
mismatches, causes the naive Bayesian classifier to choose
the common, Cg¢, and the rare, Cgqp, 27% and 73%,
respectively.

When the cue contains the imperfect feature pg + fge + far
the naive Bayesian classifier predicts the common disease
and rare disease equally. The reason for this is that each
category mismatches on only one feature, (i.e., fgr for Cge
and fge for Cgp). With only one mismatch the numerators
are equal. The computations for these two cues are similar
to those that Anderson (1990) made in accounting for
inverse base rates in Medin & Edelson’s data set.

For the imperfect feature alone, the naive Bayesian model
predicts the common disease and rare disease equally;
although, humans predict in proportion to the base rates of
the two diseases. This occurs in the model because both
categories mismatch on only one cue (i.e., fge for Cqc and
far for Cqy). The match for the imperfect feature and the
mismatch for the perfect feature for both categories gives the
following numerators in the naive Bayesian classifier:

Common Category
P(Cx)P{pnICac]P(—‘fxlcac}P{v\ffo)P(*fb!CadP(ﬁfbc!Cw}P(—w

(ol ieelelie)-

versus Rare Category
P(Cyr)P(poICar Pi—fo m}P{—f,ulCar)P[—pbK:m)F(—\fbcharJP(—fmJC”)

[120)( )( IIGI I;Z ] 120

This causes the rare and common dlseases to be predicted
equally which is not what the participants predicted. They
chose the common 75% of the time and the rare 17% of the
time for the imperfect predictor alone.

The naive Bayesian classifier predicts cue pg + fhe to be
put into Cqr 58%, Cge 21%, and Cpe 21%. This occurs
because the cue maltches on one feature and mismatches on



two features for each of these categories. The mismatches
effect the common categories more than the rare categories.
The rare category gets predicted more because of the
mismatches. This effect is not observed in the participant's
choice proportions. The participants choose C, 8%, C -
41%, and Cp¢ 47%.

For the cue p, + fpr the naive Bayesian classifier equally
predicts the rare category, Cgy, 42%, the rare category, Chy,
42%, and the common category, Cg¢, 15%. This occurs
because the cue matches on one feature and mismatches on
two feature on Cyc, Cqr and Cpy. The mismatch effects
the common category the most and splits the choice
proportion between the two rare categories.

An obvious modification to model inverse base rates with
a variant of the naive Bayesian model is to remove the
contribution due to base rate. This model was examined and
over compensates for the inverse base rate effects. It causes
too many of the cues to exhibit inverse base rate behavior.

Cue-Validity-Weighted Bayesian Model

The cue-validity-weighted Bayesian model accounts for 93%
of the variance in the data set (RMSD = 0.09). It behaves as
a naive Bayesian classifier when there are no imperfect
features in the cue. This can be observed in Table 3 for any
cues that do not have imperfect features. Consistent with
the inverse base rate effect and the naive Bayesian classifier,
the cue-validity-weighted Bayesian classifier predicts the rare
disease with higher probability for the ambiguous cue, fz¢ +
Jar.

If an imperfect feature is in the cue, then for categories
with that feature the cue validity is multiplied into the
equation. This moves the choice proportion from the
smaller categories to the larger categories. This predicts the
common disease, Cqe, With 76% of the choice proportion
and the rare disease, Cqr, with 24% for the cue pg + fac +
far- The choice proportion shifts from equally predicting
both in the naive Bayesian classifier to predicting the
common disease because the imperfect predictor was
associated 3 out of 4 times with the common disease. This
result is more consistent with participant choice proportions
than the naive Bayesian classifier.

Given the imperfect cue, p;, by itself the cue-validity-
weighted Bayesian model predicts the common disease, Cge,
75% compared to the rare disease, Cqp, 25%. This occurs in
much the same way as the above cue with the imperfect
predictor. The 45/60 is the common category's cue validity
for the imperfect predictor and 15/60 is the rare category's
cue validity.

Common Category
P(Ca)P(Caclpa)P(pylCac)P(—faclCa)P(—f, ‘Cac)P(“Pb‘Cac)P(“fbclcac)P("fbrlcac)

(el el e)- =

versus Rare Calegory
P(Ca)P(Carlpa)P(p,/Cop JP(—focICar)P(—f I Car) P(—ppICap) P(—fipcICar)P(—fiICap)

(o e e e ieNie ) o

The cue-validity-weighted Bayesian model predicts for the
cue pg + fpc the categories Cyr 28%, Cge 31%, and Cpe
41%. This occurs because the cue validity value associated
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with the imperfect feature shifts some of the choice
proportion from Cgp to Cge.

For the cue pg + fpr the cue-validity-weighted Bayesian
model predicts the rare category, Cg4p, and the rare category,
Cpr. The shift from the category Cg4p related to the
imperfect feature causing the choice proportion to move to
the Cpr.,

In summary, both Bayesian models exhibit inverse base
rate effects. The cue-validity-weighted Bayesian classifier is
equivalent to the naive Bayesian classifier for cues without
imperfect features (since P(CIf)=1.0 for perfect features f
relative to class C). When cues have imperfect features, the
cue-validity-weighted Bayesian classifier provides a better
account of the data.

Experiment 3 (Kruschke, 1996)

Kruschke’s Experiment 3 is similar to Experiment 1 except
that one of the common diseases, Cy,, shares a rare disease's
symptom (pfn; Backpain)- The symptom occurs fifteen
times in both the rare, C nr» and common, Cp, diseases.
This change in the training stimuli increases the complexity
in the data set allowing for a larger number of novel cue
items and the co-occurrence of the inverse and neglect effects
resulting from the same training condition. The n subscript
refers to the neglect condition. The diseases with the i
subscript refer to the inverse condition.

Table 4. Training stimuli used in Exp. 3 (Kruschke, 1996)

Dis. Symptoms/Features Freq.

Cye Skin-rash (f¢), Ear-ache (pp) 30
Skin-rash (fy;¢), Backpain (pfyr), 15
Ear-ache (py)

Cpr Backpain (pf;, ), Ear-ache (p;;) 15

Cic Sore-muscles (f;~), Dizziness (pj) 45

Cir Stuff-nose (fj,), Dizziness (p;) 15

Procedures were similar to Experiment 1, the participants
were again given eight training trials per block for fifteen
blocks for a total of 120 trials. In Experiment 3, the testing
phase occurred after every five blocks instead of only at the
end of the fifteen blocks. The novel test items are given in
the table below as the symptom sets.

As in Experiment 1, the inverse base rate effect was
found. In particular, the cue fj¢ + fjr was categorized 32% of
the time in the common disease, Cj., and 64% of the time
in the rare disease, Cj,.

In the neglect condition, Gluck & Bower’s (1988) base
rate neglect phenomena is replicated. The cue, pfy, is
classified as the common disease, Cy,, 13% of the time and
as the rare disease, Cyr, 77% of the time. This occurs even
though the cue equally predicts both the common and rare
disease (i.e., P(Cp/lpfur) = P(Cnclpfur) = 0.5)-

Although base rate neglect occurs in the neglect condition,
the inverse base rate effect did not occur. The cue, fpc +
Plnr, is categorized as the common disease, Cpc, 54% of the
time and as the rare, Cpyy, 40% of the time.

For the imperfect features alone, p; and py, both
conditions are similar to base rates. For the cue p; the



category, Cje, received 78% and Cjy received 13%. For the
cue pp the category Cy received 64% and C,,, received 27%
of the choice. For the cue py + pi the choice proportion
was 36% for the neglect common and 17% for the neglect
rare and 37% for the inverse common and 10% for the
inverse rare.

For the imperfect feature paired with the common perfect
feature of the other condition, for the cue p, + fic, the
category, Cpe, received 33% of the choice and Cjc receives
50% of the choice. For the cue p; + fy¢, the category, Cje,
receives 35% of the choice and Cpp receives 54% of the
choice.

For the imperfect feature paired with the rare perfect
feature of the other condition, given the cue. py + fjr. the
category, Cjp. received 65% of the choice and the Cj
received 23% of the choice. For the cue, pj + pfyr. the
category, Cpr, received 51% of the choice and Cj received
27% of the choice. These cues exhibit the inverse base rate
effect with the rare categories being preferred over the
common categories.

Table 5. Observed choice proportion for Exp. 3.

Cue Cpe Cpr Cic Cjr
Pn 64 .27 .03 .07
Pi 04 .06 .78 .13
Pn + Pi 36 .17 .37 .10
fuc 83 .11 .02 .04
fic 04 .03 .89 .04
_Jne + fic 49 .05 41 .05
plnr A3 .77 .04 .05
fir 01 .03 .03 94
plar + fir 02 .29 .04 .65
fne + plar 54 40 .02 .04
fic + fir 01 .02 .32 64

pnt fuc +pfr 88 .11 .01 .01
P+ e + I 09 .02 48 .41

Pn+fic 33 .16 .50 .02
pit+fnc 54 .05 .35 .07
o+ fir 23 .09 .03 .65
Pi+ phar 08 .51 .27 .14
Jnc +fir 29 .03 .01 .67
Phar + fic 08 .46 42 .04

Pnttpc+fir 70 .04 .00 .27
pi+ply+fie 14 17T .64 .05

Modeling Phenomena in Experiment 3

Both Bayesian models use the probabilities of the features in
the 120 training instances to model the data. In Experiment
3, the models are tested on twenty-one novel instances. The
instances are represented in the same fashion as in
Experiment 1.

Naive Bayesian Model

The naive Bayesian model for Experiment 3 again performs
in similar ways to the participants in general and on the
main effect of inverse base rates (r2 = 0.70, RMSD = 0.18;

compare Tables 5 & 6). For the same reasoning as in
Experiment 1, the ambiguous cue, fje + fir, is predicted to
be associated with the rare disease, C;r 73% and 27% for the
common disease.

The naive Bayesian classifier models the apparent base rate
neglect effect for the cue pfyy. The model predicts the rare
category in the neglect condition with 99% of the choice
proportion. This occurs because there are two mismatches
and a partial match for the common category while there is
only one mismatch for the rare category (see below
numerators).

Common Category
P(C no)P(=pp!Ce) Pt Cre Pl Ce) P—piC e P(= i Cpe) P(~fiICpc)

(ke lae e e ie)- e

versus Rare Category
P(Cpy P(=pplC e Pl I PP C o P(=IC 1 P(=6; cIC ) P 1)
15 1 16) 1616 16I16) 1
(ﬁ)(le 16 [E)[E][E 16)" 120

For the imperfect features alone, p; and pp, the naive
Bayesian model predicts the rare and common categories
equally for the inverse condition. For the neglect condition
the model predicts the rare category 59% and the common
41%. This is in the wrong direction in relation to the
participants' choice proportions. For the cue py 4+ p; the
naive Bayesian model predicts the rare neglect category 38%
and the rare inverse category 38%. This also is in the wrong
direction.

For the imperfect features paired with the perfect features
of the other condition, p, + fic and p; + fnc, the naive
Bayesian classifier predicts the rare class of the imperfect
feature condition. This occurs due to the same reasons
expressed for Experiment 1.

The cue py, + fir predicts the rare neglect category 45% and
the rare inverse category 45%. This is over-predicting the
rare neglect category and under-predicting the rare inverse
category. This is due to mismatched features on the
common neglect category which gets 11% of the choice
proportion. The cue p; + pfy, predicts both rare categories
equally each with 42% of the choice proportion. This is an
over-prediction of the rare inverse category,

Cue-Validity-Weighted Bayesian Model

The cue-validity-weighted Bayesian model performs in a
similar way to the participants on inverse base rates and base
rate neglect (cf., Tables 5 & 6). The general fit of the model
is r2 = 0.89 and RMSD = 0.12. It predicts the same choice
proportions as the naive Bayesian classifier when there are
no imperfect features in the cue. It predicts the rare disease
for the cue, fijc + fir, which is consistent with the inverse
base rate, and it predicts the apparent base rate neglect for the
cue, pfur.

For the imperfect features alone, p; and pp, the cue-
validity-weighted Bayesian model predicts the rare category
24% and common category 75%. This is similar to human
performance which is 13% and 78% for the rare and common
categories, respectively. For the neglect condition the model
predicts the rare category 32% and the common 67%. This
is consistent with human performance in the inverse
condition which is 27% for the rare and 64% for the
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common category. For the cue pp + pi the cue-validity-
weighted Bayesian model predicts inverse common 28% and
the inverse rare 26%. This is more consistent with human
performance than the naive Bayesian classifier. Humans
choose the common 37% and the rare 10%. The common
neglect category is chosen 19% by the cue-validity-weighted
model and 26% for the rare neglect category. The human
performance is 36% for the common category and 17% for
the rare.

Table 6. Modeled choice proportion for Experiment 3.

Model Bayesian Cue-Validity-
Weighted Bayesian

Cue Cpe Cpr Cie CirdCpe Cyr Cie Cir
Pn 41 .59 00 .00).67 .32 .00 .00
Pi .00 00 .51 .49).00 .00 .75 .24
Pn + Pi .09 38 .14 38 ).19 .26 .28 .26
foc 99 01 00 01§99 .01 .00 .01
fic .00 .00 99 .00}).00 .00 .99 .00
’_[m:+ fio 40 01 .59 .01 Q.40 .01 .59 .01l
pfnr .01 99 00 .00f.01 98 .00 .01
fir .00 00 .00 1.0f4.00 .00 .00 1.0
pior+ fir .00 50 .00 500.00 .33 .00 .67
fio+ fir .00 .00 27 .731.00 .00 .27 .73
potfnc+pfnr] .94 06 00 00J.98 .02 .00 .00
pittictrir 1.00 .00 .51 A491.00 00 .76 .24
po+ fic A5 62 23 00§23 31 45 00
pit fnc A5 .00 23 .62 1.32 .01 .35 .32
po+ fir 1 45 00 4570.13 .17 .00 .70
pi+ Pfnr 00 42 15 42 1.00 .49 .27 .24
foc+ fir .20 .00 .00 .80f§.20 .00 .00 .80
Pforsfic 00 73 27 00}).00 .58 42 .00
pp+nc+ficr 1.99 .01 .00 .01).99 .00 .00 .01
pi+pfor +fic ] .00 .00 .99 00§00 .00 1.0 .00

For the imperfect neglect feature paired with the perfect
common inverse feature, py + fijc, the cue-validity-weighted
Bayesian modcl predicts the inverse common 45%, neglect
common 23%, and the neglect rare 31%. This is a better fit
than the naive Bayesian classifier. Humans' choice
proportion is 50%, 33%, and 16% respectively.

The imperfect inverse feature paired with the perfect
common neglect feature, p; + fy¢, predicts the common
neglect 32%, the common inverse 35%, and the rare inverse
32%. The human performance respectively is 54%, 35%,
and 7%.

The cue-validity-weighted Bayesian model predicts for the
cue, pn + fir, the rare neglect category 13% and the rare
inverse category 70%. This is consistent with human
performance of 23% and 65% respectively. The cue p; +
Pfnr predicts the rare neglect category 49%, the common
inverse category 27%, and the rare inverse category 24%.
This is consistent with human performance of 51%, 27%,
and 14% respectively.
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The effect of using cue validity to weight the naive
Bayesian classifier better fits the inverse base rate and base
rate neglect effects of Experiment 3 than the naive Bayesian
classifier. If the cues do not have imperfect features, the
model achieves similar results to the naive Bayesian
classifier. When cues with imperfect features are presented,
the cue-validity-weighted Bayesian model provides a better
match of the human performance than the naive Bayesian
classifier. Although Experiment 3 is more complex, the
cue-validity-weighted Bayesian classifier is able to model
many of the effects.

Conclusion

This paper has presented a cue-validity-weighted Bayesian
account of the psychological phenomena inverse base rates
and base rate neglect. The cue-validity-weighted feature
Bayesian model accounted for 93% and 89% of the variance
in the performance data of Kruschke's Experiment 1 and 3,
respectively. The naive Bayesian model accounted for 75%
and 70% of the variance, respectively. Kruschke modeled
the phenomena with a connectionist model with five
parameters. The model accounted for 99% of the variance in
Experiment 1 and 97% of the variance in Experiment 3. It
posited an early-late learning process to account for the
phenomena. Without positing processes or parameterizing
the model, the cue-validity-weighted feature Bayesian
classifier modeled inverse base rate effects and the base rate
neglect phenomena just as well as the naive Bayesian
classifier and better for cues including imperfect features.
The names of the phenomena “base rate neglect” and
“inverse base rate” may be misnomers, and more
investigation is required to evaluate the role of base rate
when participants are faced with novel composite cues.
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