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Meaning Representation in Natural Language Categorization

Trevor Fountain (t.fountain@sms.ed.ac.uk) and
Mirella Lapata (mlap@inf.ed.ac.uk)

School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB, UK

Abstract

A large number of formal models of categorization have been
proposed in recent years. Many of these are tested on artificial
categories or perceptual stimuli. In this paper we focus on cat-
egorization models for natural language concepts and specif-
ically address the question of how these may be represented.
Many psychological theories of semantic cognition assume
that concepts are defined by features which are commonly
elicited from humans. Norming studies yield detailed knowl-
edge about meaning representations, however they are small-
scale (features are obtained for a few hundred words), and ad-
mittedly of limited use for a general model of natural language
categorization. As an alternative we investigate whether cate-
gory meanings may be represented quantitatively in terms of
simple co-occurrence statistics extracted from large text col-
lections. Experimental comparisons of feature-based catego-
rization models against models based on data-driven represen-
tations indicate that the latter represent a viable alternative to
the feature norms typically used.

Introduction
Considerable psychological research has shown that people
reason about novel objects they encounter by identifying the
category to which these objects belong and extrapolating
from their past experiences with other members of that cat-
egory. This task of categorization, or grouping objects into
meaningful categories, is a classic problem in the field of cog-
nitive science, one with a history of study dating back to Aris-
totle. This is hardly surprising, as the ability to reason about
categories is central to a multitude of other tasks, including
perception, learning, and the use of language.

Numerous theories exist as to how humans categorize ob-
jects. These theories themselves tend to belong to one of three
schools of thought. In the classical (or Aristotelian) view cat-
egories are defined by a list of “necessary and sufficient”
features. For example, the defining features for the concept
BACHELOR might be male, single, and adult. Unfortunately,
this approach is unable to account for most ordinary usage
of categories, as many real-world objects have a somewhat
fuzzy definition and don’t fit neatly into well-defined cate-
gories (Smith and Medin, 1981).

Prototype theory (Rosch, 1973) presents an alternative for-
mulation of this idea, in which categories are defined by an
idealized prototypical member possessing the features which
are critical to the category. Objects are deemed to be members
of the category if they exhibit enough of these features; for
example, the characteristic features of FRUIT might include
contains seeds, grows above ground, and is edible. Roughly
speaking, prototype theory differs from the classical theory in
that members of the category are not required to possess all
of the features specified in the prototype.

Although prototype theory provides a superior and work-
able alternative to the classical theory it has been challenged
by the exemplar approach (Medin and Schaffer, 1978). In this
view, categories are defined not by a single representation but
rather by a list of previously encountered members. Instead
of maintaining a single prototype for FRUIT that lists the fea-
tures typical of fruits, an exemplar model simply stores those
instances of fruit to which it has been exposed (e.g., apples,
oranges, pears). A new object is grouped into the category if
it is sufficiently similar to one or more of the FRUIT instances
stored in memory.

In the past much experimental work has tested the predic-
tions of prototype- and exemplar-based theories in laboratory
studies involving categorization and category learning. These
experiments tend to use perceptual stimuli and artificial cat-
egories (e.g., strings of digit sequences such as 100000 or
0111111). Analogously, much modeling work has focused
on the questions of how categories and stimuli can be rep-
resented (Griffiths et al., 2007a; Sanborn et al., 2006) and
how best to formalize similarity. The latter plays an impor-
tant role in both prototype and exemplar models as correct
generalization to new objects depends on identifying previ-
ously encountered items correctly.

In this paper we focus on the less studied problem of cat-
egorization of natural language concepts. In contrast to the
numerous studies using perceptual stimuli or artificial cate-
gories, there is surprisingly little work on how natural lan-
guage categories are learned or used by adult speakers. A few
notable exceptions are Heit and Barsalou (1996) who attempt
to experimentally test an exemplar model within the context
of natural language concepts, Storms et al. (2000) who eval-
uate the differences in performance between exemplar and
prototype models on a number of natural categorization tasks,
and Voorspoels et al. (2008) who model typicality ratings for
natural language concepts. A common assumption underly-
ing this work is that the meaning of the concepts involved in
categorization can be represented by a set of features (also
referred to as properties or attributes).

Indeed, featural representations have played a central role
in psychological theories of semantic cognition and knowl-
edge organization and many studies have been conducted to
elicit detailed knowledge of features. In a typical procedure,
participants are given a series of object names and for each
object they are asked to name all the properties they can
think of that are characteristic of the object. Although fea-
ture norms are often interpreted as a useful proxy of the struc-
ture of semantic representations, a number of difficulties arise
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when working with such data (e.g., Sloman and Ripps 1998;
Zeigenfusse and Lee 2009). For example, the number and
types of attributes generated can vary substantially as a func-
tion of the amount of time devoted to each object. There are
many degrees of freedom in the way that responses are coded
and analyzed. It is not entirely clear how people generate fea-
tures and whether all of these are important for representing
concepts. Finally, multiple subjects are required to create a
representation for each word, which limits elicitation studies
to a small number of words and consequently the scope of
any computational model based on these feature norms.

Even when the stimuli in question are of an abstract or
linguistic nature, the features elicited are assumed to be rep-
resentative of the underlying referents. As an alternative we
propose to model the categorization of linguistic stimuli ac-
cording to their distribution in corpora. Words whose refer-
ents exhibit differing features likely occur in correspondingly
different contexts; our question is whether these differences
in usage can provide a substitute for featural representations.

The idea that words with similar meaning tend to be dis-
tributed similarly across contexts is certainly not a novel
one. Semantic space models, among which Latent Seman-
tic Analysis (LSA, Landauer and Dumais 1997) is perhaps
known best, operationalize this idea by capturing word mean-
ing quantitatively in terms of simple co-occurrence statis-
tics (between words and paragraphs or documents). More re-
cently, topic models (Griffiths et al., 2007b) have arisen as a
more structured representation of word meaning. In contrast
to more standard semantic space models where word senses
are conflated into a single representation, topic models as-
sume that words observed in a corpus manifest some latent
structure — word meaning is a probability distribution over a
set of topics (corresponding to coarse-grained senses). Each
topic is a probability distribution over words whose content
is reflected in the words to which it assigns high probability.

In this work we investigate whether semantic represen-
tation models based on the statistical analysis of large text
collections can provide a viable alternative to feature norms
for natural language categorization. Specifically, we com-
pare categorization models that represent concepts by fea-
tures against LSA, Latent Dirichlet Allocation (LDA, Grif-
fiths et al. 2007b; Blei et al. 2003), a well-known topic model,
and a semantic space that takes syntactic information into
account (Padó and Lapata, 2007). These semantic represen-
tations are used as input to two well-established categoriza-
tion models, namely Nosofsky’s (1988) generalized context
model (GCM) and a prototype model derived from the GCM.
We evaluate the performance of these models on three adult
categorization tasks — category naming, typicality rating,
and exemplar generation — which have been previously mod-
eled using exclusively feature norms (Storms et al., 2000).
Our results indicate that LSA-based meaning representations
outperform more sophisticated alternatives across the board,
whilst lagging behind feature norms only by a small margin.

Meaning Representation
In this section we briefly describe the feature norms used in
our experiments. These were based on an existing general
purpose database (McRae et al., 2005) which we augmented
in several ways to suit our categorization tasks. We also de-

scribe three corpus-based models of meaning representation,
highlight their differences, and motivate their selection.

Feature Norms
As mentioned earlier, many behavioral experiments have
been conducted to elicit semantic feature norms across lan-
guages. One of the largest samples for English has been col-
lected by McRae et al. (2005). Their norms consist of 541
basic-level concepts (e.g., DOG and CHAIR) with features col-
lected in multiple studies over several years. For each concept
several annotators were asked to produce a number of relevant
features (e.g., barks, has-four-legs, and used-for-sitting). The
production frequency of a feature given a particular concept
can be viewed as a form of weighting indicating the feature’s
importance for that concept. A spatial representation of word
meaning can be extracted from the norms by constructing a
matrix in which each row represents a word and each column
a feature for that word. Cells in the matrix correspond to the
frequency with which a feature was produced in the context
of a given word. An example of such a space is shown in Ta-
ble 2 (a) (the numbers correspond to production frequencies,
e.g., 12 participants thought has-legs is a feature of TABLE).

Unfortunately, McRae et al.’s (2005) norms do not include
any explicit relational information. Because we are interested
in using the norms in a model of categorization it was nec-
essary for us to augment the concepts with category labels
(e.g., ‘dog’ is an ANIMAL) and typicality ratings (e.g., ‘dog’
is a typical ANIMAL whereas ‘Snoopy’ isn’t). We collected
this information using Amazon Mechanical Turk1, an online
labor marketplace which has been used in a wide variety of
elicitation studies and has been shown to be an inexpensive,
fast, and (reasonably) reliable source of non-expert annota-
tion for simple tasks (Snow et al., 2008).

We obtained category labels as follows. We presented each
participant with twenty unrelated, randomly selected con-
cepts from McRae et al.’s (2005) data set and asked them to
label each with the category to which it best belonged. Re-
sponses were in the form of free text, i.e., participants were
asked to key in a label rather than select one from a list. Each
concept was labeled by ten participants; concepts were then
grouped according to the resulting categories. Because an-
notations collected from Mechanical Turk can be noisy we
then discarded those categories containing fewer than five
unique concepts, leaving 41 categories for 541 exemplars.
These category labels are listed in Table 1. To fully integrate
them into the norms it was necessary to collect semantic fea-
tures for them. To do this, we replicated the norming study
of McRae et al. (2005), again using Mechanical Turk. Par-
ticipants were presented with a single concept (drawn from
the set of category labels collected in our previous study) and
asked to generate ten relevant features. Instructions and ex-
amples were taken from McRae et al. (2005). For each cate-
gory label we collected features from 30 participants, result-
ing in a large number of features per item. These features
were then mapped into the features already present in the
norms; as in McRae et al. (2005) this mapping was performed
manually.2

1http://www.mturk.com
2The extended database can be downloaded from http://

homepages.inf.ed.ac.uk/s0897549/data/.
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INSTRUMENT keyboard FURNITURE chair HOUSING apartment DEVICE stereo
REPTILE rattlesnake CONTAINER bin VEHICLE bike TRANSPORTATION van
CLOTHING jeans STRUCTURE building VEGETABLE carrot FOOD bread
HARDWARE drill APPLIANCE stove BIRD seagull GARMENT coat
HOUSE cottage PLANT vine TOOLS hammer FISH trout
EQUIPMENT football UTENSIL ladle THING doll ENCLOSURE fence
TOY surfboard KITCHEN dish RODENT rat INSECT grasshopper
BUG beetle HOME house FRUIT grapefruit SPORTS helmet
MAMMAL horse OBJECT door ACCESSORIES necklace COOKWARE pan
STORAGE cabinet BUILDING apartment ANIMAL cat WEAPON bazooka

Table 1: Category labels with most typical exemplars produced by participants in category naming and typicality rating study.

This augmented dataset could be used as-is to evaluate a
model of categorization on either a category naming or an
exemplar generation task (we describe these tasks in detail
in the following section). We further wished to use typical-
ity rating as an additional means for evaluation (Voorspoels
et al., 2008). We therefore elicited typicality ratings again via
Mechanical Turk. Participants were presented with a single
category (e.g., FRUIT) along with twenty randomly selected
exemplars belonging to the category (e.g., ‘cherry’, ‘apple’,
and ‘tomato’) and asked to rate the typicality of each exem-
plar among members of the category. Typicality ratings for
each exemplar-category pair were collected from 20 partici-
pants and an overall rating for each exemplar was computed
by taking their mean. The highest rated exemplar for each
category is shown in Table 1.

We assessed the quality of the data obtained from Mechan-
ical Turk by calculating their reliability, namely the likeli-
hood of a similarly-composed group of participants presented
with the same task under the same circumstances produc-
ing identical results. We split the collected typicality ratings
randomly into two halves and computed the correlation be-
tween them; this correlation was averaged across three ran-
dom splits. These correlations were adjusted by applying the
Spearman-Brown prediction formula (Storms et al., 2000;
Voorspoels et al., 2008). The reliability of the ratings aver-
aged over 41 concepts was 0.64 with a standard deviation
of 0.03. The minimum reliability was 0.52 (INSTRUMENT);
the maximum was 0.75 (FURNITURE). Reliability on the cat-
egory naming task was computed similarly, with an average
of 0.72, a maximum of 0.91 (INSTRUMENT), and a minimum
of 0.13 (STRUCTURE). These reliability figures may seem low
compared with Storms et al. (2000) who perform a similar
study. However, note that they conduct a smaller scale ex-
periment; they only focus on eight common natural language
concepts (whereas we include 41), and 12 exemplars for each
concept (our exemplars are 541).

Data-driven Approaches
In addition to feature norms, we obtained semantic represen-
tations for categories and exemplars from natural language
corpora. We compared three computational models: Latent
Semantic Analysis (LSA; Landauer and Dumais 1997), La-
tent Dirichlet Allocation (LDA; Griffiths et al. 2007b; Blei
et al. 2003), and Dependency Vectors (DV; Padó and La-
pata 2007). LSA has historically been a popular method
of extracting meaning from corpora, and has been success-
ful at explaining a wide range of behavioral data — ex-
amples include lexical priming, deep dyslexia, text compre-

hension, synonym selection, and human similarity judgments
(see Landauer and Dumais 1997 and the references therein).
LSA provides a simple procedure for constructing spatial
representations of word meanings. The same is true for de-
pendency vectors where co-occurrence statistics are com-
puted between words attested in specific syntactic relations
(e.g., object-of, subject-of). The assumption here is that syn-
tactic information provides a linguistically informed context,
and therefore a closer reflection of lexical meaning. LDA, in
contrast, imposes a probabilistic model onto those distribu-
tional statistics, under the assumption that hidden topic vari-
ables drive the process that generates words. Both spatial and
topic models represent the meanings of words in terms of an
n-dimensional series of values, but whereas semantic spaces
treat those values as defining a vector with spatial properties,
topic models treat them as a probability distribution.

Latent Semantic Analysis To create a meaning repre-
sentation for words LSA constructs a word-document co-
occurrence matrix from a large collection of documents. Each
row in the matrix represents a word, each column a docu-
ment, and each entry the frequency with which the word ap-
peared within that document. Because this matrix tends to be
quite large it is often transformed via a singular value de-
composition (Berry et al., 1995) into three component ma-
trices: a matrix of word vectors, a matrix of document vec-
tors, and a diagonal matrix containing singular values. Re-
multiplying these matrices together using only the initial por-
tions of each (corresponding to the use of a lower dimen-
sional spatial representation) produces a tractable approxima-
tion to the original matrix. This dimensionality reduction can
be thought of as a means of inferring latent structure in distri-
butional data whilst simultaneously making sparse matrices
more informative. The resulting lower-dimensional vectors
can then be used to represent the meaning of their correspond-
ing words; example representations in LSA space are shown
in Table 2 (b) (vector components represent tf-idf scores).

Dependency Vectors Analogously to LSA, the dependency
vectors model constructs a co-occurrence matrix in which
each row represents a single word; unlike LSA, the columns
of the matrix correspond to other words in whose syntac-
tic context the target word appears. These dimensions may
be either the context word alone (e.g., walks) or the context
word paired with the dependency relation in which it occurs
(e.g., subj-of-walks). Many variants of syntactically aware se-
mantic space models have been proposed in the literature. We
adopt the framework of Padó and Lapata (2007) where a se-
mantic space is constructed over dependency paths, namely
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sequences of dependency edges extracted from the depen-
dency parse of a sentence. Three parameters specify the se-
mantic space: (a) the content selection function determines
which paths contribute towards the representation (e.g., paths
of length 1), (b) the path value function assigns weights to
paths (e.g., it can be used to discount longer paths, or give
more weight to paths containing subjects and objects as op-
posed to determiners or modifiers.), and (c) the basis map-
ping function creates the dimensions of the semantic space
by mapping paths that end in the same word to the same di-
mension. A simple dependency space in shown in Table 2 (c)
(vector components represent co-occurrence frequencies).

Latent Dirichlet Allocation Unlike LSA and DV, LDA is
a probabilistic model of text generation. Each document is
modeled as a distribution over K topics, which are them-
selves characterized as distribution over words. The individ-
ual words in a document are generated by repeatedly sam-
pling a topic according to the topic distribution and then sam-
pling a single word from the chosen topic. Under this frame-
work the problem of meaning representation is expressed as
one of statistical inference: give some data — words in a cor-
pus, for instance — infer the latent structure from which it
was generated. Word meaning in LDA is represented as a
probability distribution over a set of latent topics. In other
words, the meaning of a word is a vector whose dimensions
correspond to topics and values to the probability of the word
given these topics; the likelihood of seeing a word summed
over all possible topics is always one. Example representa-
tions of words in LDA space appear in Table 2 (d) (vector
components are topic-word distributions).

Implementation All three models of word meaning were
trained on the British National Corpus. For the LSA model
we used the implementation provided in the Infomap toolkit3,
with words represented as vectors in a 100-dimensional
space; for the DV model we used the implementation4 of
Padó and Lapata (2007) with dependency paths up to length 3
and a length-based path value function that assigns each path
a value inversely proportional to its length, thus giving more
weight to shorter paths corresponding to more direct relation-
ships. We obtained dependency information from the output
of MINIPAR, a broad coverage dependency parser (Lin, 2001).
Infrequent dependencies attested less than 500,000 times in
the BNC were discarded. The LDA model used the imple-
mentation5 of Phan et al. (2008) with 100 topics. Inference
in this model is based on a Gibbs sampler which we ran
for 2,000 iterations. Additionally, LDA has two hyperparam-
eters α and β which were set to 0.5 and 0.1, respectively.

Categorization
Models
The semantic representations described above served as the
input to two categorization models, representative of the
exemplar-based and prototype-based approaches. In the gen-
eralized context model (GCM, Nosofsky 1988; Medin and
Schaffer 1978) categories are represented by a list of stored

3http://infomap.stanford.edu/
4http://www.nlpado.de/˜sebastian/dv.html
5http://gibbslda.sourceforge.net/

(a) Feature Norms
has 4 legs used for eating is a pet ...

TABLE 12 9 0 ...
DOG 14 0 15 ...

(b) LSA
Document 1 Document 2 Document 3 ...

TABLE 0.02 0.98 -0.12 ...
DOG 0.73 -0.02 0.01 ...

(c) DV
subj-of-walk subj-of-eat obj-of-clean ...

TABLE 0 3 28 ...
DOG 36 48 19 ...

(d) LDA
Topic 1 Topic 2 Topic 3 ...

TABLE 0.02 0.73 0.04 ...
DOG 0.32 0.01 0.02 ...

Table 2: Semantic representations for ‘table’ and ‘dog’ using
feature norms, Latent Semantic Analysis (LSA), Dependency
Vectors (DV), and Latent Dirichlet Allocation (LDA).

exemplars and inclusion of an unknown item in a category is
determined by the net similarity between the item and each of
the category’s exemplars. Specifically, the similarity ηw,j of
a novel item w to the category c is calculated by summing its
similarity to all stored items i belonging to c:

ηw,c =
∑
i∈c

ηw,i (1)

To calculate the inter-item similarity ηw,i we compute the co-
sine of the angle between the vectors representing w and i:

ηw,i = cos(θ) =
vw · vi

||vw||.||vi||
(2)

Following Vanpaemel et al. (2005), we can modify Equa-
tion (1) into a prototype model by replacing the list of stored
exemplars with a single ‘prototypical’ exemplar cj :

ηw,c = ηw,cj
(3)

For the category prototype cj we use the representation of the
category label, e.g., the prototype for the category FRUIT is
the semantic representation of the word ‘fruit’. The similarity
between an item and a category thus reduces to the cosine
distance between the item and prototype representations.

Tasks
We evaluated the performance of our models on three cate-
gorization tasks introduced in Storms et al. (2000): category
naming, typicality rating, and exemplar generation.

In category naming the model is presented with a previ-
ously unencountered word and must predict the most appro-
priate category to which it belongs, e.g., the exemplar ‘apple’
would be most correctly identified as a member of the cat-
egory FRUIT, or (with lesser likelihood) FOOD or TREE. In
the exemplar model (see (1)), we measure the similarity ηw,c
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Figure 1: Performance of exemplar model using feature norms and data-driven meaning representations.
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Figure 2: Performance of prototype model using feature norms and data-driven meaning representations.

of the novel word against all previously encountered exem-
plars and select the category with the highest net similarity
between its exemplars and the word in question; for the pro-
totype model (see (3)) this is the category with the highest
similarity between the word and the category’s label. Per-
formance on the category naming task was determined in a
leave-one-out fashion: a single exemplar was removed from
the training examples and then categorized. This was repeated
for each exemplar in the training set. The latter consisted of
41 subject-produced category labels each with an average of
30 exemplars.

In a typicality rating task the model is presented with both
an exemplar and label of the category to which it belongs, and
must predict the degree to which it is common amongst mem-
bers of that category. For the category FOOD, for example,
‘pizza’ or ‘bread’ would be considered highly typical exem-
plars, while ‘lutefisk’ or ‘black pudding’ would likely be con-
sidered much more atypical. The predicted typicality rating
for a word and a category is simply the similarity between the
two. In the exemplar model this is the sum similarity between
the word and each of the category’s exemplars; in the proto-
type model this is the similarity between the category’s label
and the word. Performance on the typicality rating task was
evaluated by computing the correlation between the models’
predicted typicality ratings and the average value predicted
by the participants of our rating study. The dataset included
typicality ratings for 1,228 exemplar-category pairs.

In an exemplar generation task the model is given a cat-
egory label and must generate exemplars typical of the cat-
egory, e.g., for FOOD we might generate ‘pizza’, ‘bread’,
‘chicken’, etc. Given a category the model selects from the
exemplars known to belong those that are most typical; typi-
cality is again approximated by word-category similarities as
determined by the model-specific ηw,c. We evaluate perfor-

mance on the exemplar generation task by computing the av-
erage overlap (across categories) between the exemplars gen-
erated by the model and those ranked as most typical of the
category by our participants.

Results
Figure 1 summarizes our results with the exemplar model
and four meaning representations: McRae et al.’s (2005) fea-
ture norms (Norms), Latent Semantic Analysis (LSA), Latent
Dirichlet Allocation (LDA), and Dependency Vectors (DV).
Results are shown for category naming (Figure 1(a)) typical-
ity rating (Figure 1(b)) and exemplar generation (Figure 1(c)).
We examined performance differences between models us-
ing a χ2 test (category naming and exemplar generation) and
Fisher’s r-to-z transformation (to compare correlation coeffi-
cients for the typicality rating task).

On category naming the exemplar model performs signif-
icantly better with the feature norms than when using any
of the three corpus-derived representations (p < 0.01); how-
ever, LSA performs significantly better (p < 0.05) than DV
or LDA. On typicality rating there is no significant differ-
ence between the feature norms and LSA. The norms are
significantly better (p < 0.01) than either DV or LDA, while
LSA surpasses both of the other two corpus-derived represen-
tations (p < 0.01). Additionally, LDA performs significantly
better than DV (p < 0.05). On the exemplar generation task
the feature norms are significantly better (p < 0.01) than any
of the corpus-based representations; similarly, LSA performs
significantly better than LDA or DV (p < 0.01), while LDA
again outperforms the dependency space (p < 0.05).

Our results with the prototype model are shown in Figure 2
and broadly follow a similar pattern. On category naming the
feature norms outperform any of the corpus-based representa-
tions (p < 0.01), LSA is significantly better than LDA which
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in turn is better than DV (p < 0.05). On typicality rating
there is no significant difference between the feature norms
and LSA; the difference between LSA and either of the other
two representations is significant (p < 0.01). On the exem-
plar generation task feature norms significantly outperform
all other representations (p < 0.01); LSA is significantly bet-
ter (p < 0.01) than LDA or DV.

Discussion
In this work we have quantitatively evaluated feature norms
and alternative corpus-based meaning representations on
three natural language categorization tasks. Perhaps unsur-
prisingly our results indicate that feature norms are more ac-
curate representations when compared to corpus-based mod-
els. As feature norms rely on explicit human judgment, they
are able to capture the dimensions of meaning that are psy-
chologically salient. Corpus-based models on the other hand
learn in an unsupervised fashion and require no human in-
volvement or external sources of knowledge.

Overall we find LSA to be a reasonable approximation
of feature norms, superior to both LDA and the syntacti-
cally more aware dependency vectors. This result is consis-
tent across models (exemplar vs. prototype) and tasks. Im-
portantly, the LSA model is language-independent and capa-
ble of extracting representations for an arbitrary number of
words. By contrast, feature norms tend to cover a few hundred
words and involve several subjects over months or years. Al-
beit in most cases better than our models, feature norms them-
selves yield relatively low performance on all three tasks we
attempted using either an exemplar or prototype model (see
Figures 1 and 2). We believe the reasons for this are twofold.
Firstly, McRae et al.’s 2005 norms were not created with cat-
egorization in mind, we may obtain better predictions with
some form of feature weighting (see Storms et al. 2000). Sec-
ondly, the tasks seem hard even for humans as corroborated
by our reliability ratings.

The differences in performance between LSA, LDA, and
DV can be explained by differences between the notion of
similarity implicit in each. Closely related words in LDA ap-
pear in the same topics, which are often corpus-specific and
difficult to interpret; words belonging to different categories
may be deemed similar yet be semantically unrelated. By
contrast, the poor performance of the DV model is somewhat
disappointing. Our experiments used a large number of de-
pendency relations; it is possible that a more focused seman-
tic space with a few target relations may be more appropriate.

Finally, our simulation studies reveal that an exemplar
model is a better predictor of categorization performance than
a prototype one. This result is in agreement with previous
studies (Voorspoels et al., 2008; Storms et al., 2000) show-
ing that exemplar models perform consistently better across
a broad range of natural language concepts from different se-
mantic domains. This finding is also in line with studies in-
volving artificial stimuli (e.g., Nosofsky 1992).

Directions for future work are two-fold. Firstly, we wish
to explore alternative meaning representations more suited to
the categorization task. A potential candidate is the feature-
topic model (Steyvers, 2009; Andrews et al., 2009), in which
documents are represented by a mixture of learned topics
in addition to predefined topics derived from feature norms.

Secondly, we expect that developing specialized models for
natural language categorization that are tailored to data-
driven meaning representations would improve performance.
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