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ABSTRACT OF THE DISSERTATION

Analyses of Next-Generation Sequencing Data to Identify Genes 

Associated with Complex Neuropsychiatric Disorders

by

Aliz Raksi Rao

Doctor of Philosophy in Bioinformatics

University of California, Los Angeles, 2017

Professor Stanley F. Nelson, Chair

Over the past decade, decreases in the cost of DNA sequencing has allowed for a surge in the 

amount of data being generated. This has led to the discovery of genes causal for hundreds of 

Mendelian disorders and genes associated with many complex disorders. Given the opportunity 

to use sequencing data to tackle neuropsychiatric diseases with a complex genetic architecture, I 

take a data-first approach to study two diseases, bipolar disorder and autism spectrum disorder 

(ASD). Combining information gleaned from next-gen sequencing (NGS) data with the latest 

analytic methods shines new light on the biology of these diseases.

In the first part of this dissertation, I present a whole-exome analysis of nine affected 

individuals from four families in which bipolar disorder was transmitted over several 

generations, and six unrelated, affected individuals. Our results demonstrate the genetic 

heterogeneity of bipolar disorder and provide support for rare-variant oligogenic disease model. 
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In the second part, I present an approach to identify rare variants associated with autism 

spectrum disorder (ASD) in a whole-genome sequencing study of 71 individuals diagnosed with 

ASD and their family members. I demonstrate that by incorporating knowledge of population-

wide variant frequencies to analyses of NGS data and taking an approach sensitive to complex 

family structures, as opposed to utilizing only case-control or trio data, one can identify patterns 

that would otherwise have been missed and thus gain novel insights into disease etiology.

Finally, I present a mutational burden dataset called SORVA (Significance Of Rare VAriants), 

which is useful in vetting candidate variants and genes from NGS studies. In effect, my studies 

of complex disorders using next-gen sequencing show the field is constantly evolving with new 

computational approaches allowing for many advances being made in the areas of psychiatric 

disorders and ASD, in particular.
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Chapter 1

Introduction

1.1 Challenges of studying complex disorders via next-gen 

sequencing

In the current era of rapidly decreasing sequencing costs, ever larger next-generation sequencing

(NGS)  datasets  are  enabling  the  analysis  of  complex  genetic  diseases  that  were  previously

intractable. By sequencing only a couple of affected individuals, the first NGS studies revealed

the genetic cause of rare Mendelian diseases through whole-exome or whole-genome sequencing

(Lupski  et  al.,  2010;  Murdock  et  al.,  2011;  S.  B.  Ng,  Bigham,  et  al.,  2010;  S.  B.  Ng,

Buckingham, et al., 2010; Sobreira et al., 2010). More recent studies seek to identify the genetic

underpinnings of common disorders with both genetic and environmental risk factors, such as

autism spectrum disorder (ASD), coronary heart disease, and late-onset Alzheimer’s disease (M.

Chahrour  et al.,  2016; Myocardial  Infarction Genetics Consortium Investigators  et al.,  2014;

Sirkis  et al., 2016; TG and HDL Working Group of the Exome Sequencing Project, National

Heart, Lung, and Blood Institute et al., 2014). These recent studies involve sequencing thousands

of  individuals,  as  researchers  attempt  to  discover  rare  variants  that  contribute  to  common

diseases,  and as the overall  scientific returns of hunting for genetic variants are  diminishing

relative  to  the  increasing  size  of  the  projects  (Farfel  et  al.,  2016).  Through  genome-wide

association studies (GWAS) and NGS studies, hundreds of genes and gene variants have been

associated with disorders such as ASD, deafness and cardiometabolic risk factors for coronary

heart disease (Banerjee-Basu and Packer, 2010; Orho-Melander, 2015; Wright and Hastie, 2007).
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However, high-throughput methods that are not hypothesis-driven may associate genetic findings

with disease by chance, and functional validation is often lacking to support these novel disease

associations. As a result,  genes that more frequently exhibit rare protein-altering variants are

more frequently associated with disease phenotypes  (Shyr  et al., 2014), and it is important to

validate findings through functional studies or robust statistical methods. The fact that many

disease  associations  may  be  a  result  of  chance  is  especially  problematic  for  psychiatric  or

neurological  disease,  since  many kinds  of  experiments  to  functionally validate  findings,  e.g.

methods that would require invasive techniques on the human brain, are technically or ethically

impossible  (Markram,  2013);  mouse  models  don’t  exist  for  many  psychiatric  diseases;  and

higher brain functions cannot be modeled in vitro. To summarize, abnormalities of the brain and

neuronal wiring cannot easily be studied, and instead, in silico experiments and robust statistical

tests must be used to provide evidence for disease association findings. 

1.2 Current methods to analyze large NGS datasets

Following the age of GWAS and linkage analyses, the increase in next-gen sequencing studies

required the development of new statistical tools to analyze the deluge of data. There have been

developments on many fronts, including improvements in the prediction of disease pathogenicity

of a variant, the development of various collapsing methods and tools to estimate mutational

burden to evaluate whether a gene is intolerant of variation in the population.

Early methods to predict variant pathogenicity such as SIFT and PolyPhen2 use conservation

and other sequence-based features to identify damaging variants (Adzhubei et al., 2010; P. C. Ng

and Henikoff, 2003).  Newer methods such as CADD, GWAVA, Eigen and GAVIN are meta-
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annotations, which integrate data from multiple existing tools using supervised or unsupervised

learning to achieve even greater sensitivity and specificity in classifying disease causing variants

(Kircher  et al., 2014; Ritchie  et al., 2014; van der Velde et al., 2017). Annotating variants for

deleteriousness is valuable for then prioritizing variants for further assessment using population

allele frequencies, cosegregation analyses, disease association studies, or a second-tier test that

complements the primary variant annotation tool  (van der Velde  et al., 2015). An example of

such a test would be one that ranks genes, as opposed to individual variants, based on a prior

likelihood of it being associated with disease. The idea is that the genes most likely to contribute

to disease are the genes in the human genome that are sensitive to mutational changes. Samocha

et al. (2014) identified such genes that are under selective constraint and the resulting missense Z

scores and pLI scores are a measure of deficit in missense or loss-of-function (LOF) variants

compared  to  the  expectation  generated  from predicted  mutation  rates.  LOF variants,  which

include frameshift  variants,  stop gain variants,  stop loss  variants,  i.e.  nonsense variants,  and

variants affecting splice sites, are less likely tolerated in genes essential for cellular functions,

and identifying LOF variants in a gene with a high pLI score can provide evidence towards such

a variant being pathogenic. The pLI score has become a widely used measure for vetting genes

and variants; however, methods continue to improve as reference datasets increase in size and

methods are refined to provide LOF intolerance measures at a finer scale, e.g. across regions

spanning known protein domains.

In  the  NGS  era,  improvements  in  all  of  these  areas  have  contributed  to  the  greater

understanding  of  Mendelian  and  complex  disease  genetics.  Next,  I  will  review  the  genetic

underpinnings of two such complex genetic disorders, namely bipolar disorder and ASD.
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1.3 The genetic basis of bipolar disorder

Bipolar  disorder  (BD)  is  a  severe  mental  disorder  characterized  by  recurrent  manic  and

depressive episodes with a prevalence ~1% (Kawakami, 2014; Merikangas et al., 2007). Family,

twin, and adoption studies have provided strong evidence for the importance of genetic factors in

the etiology of bipolar  disorder.  Despite its  estimated 0.7 to  0.8 heritability  (Sullivan  et al.,

2012), identifying the specific genetic causes of BD has proved challenging.

Initially,  linkage studies identified regions of interest  including 4p16, 12q23-q24, 16p13,

21q22, and Xq24-q26, and several regions on chromosome 18 (N Craddock and Jones, 1999). In

the  past  decade,  genotyping  of  large  collections  of  cases  and  controls  in  genome-wide

association  studies  have  revealed  individual  loci  associated  with  bipolar  disorder.  The  SNP

rs1006737 in the gene  CACNA1C is the most replicated and most studied common genomic

variant associated with bipolar disorder to date (Ferreira et al., 2008; Kerner, 2014; Moskvina et

al., 2009; Sklar et al., 2008). This gene encodes a calcium channel in ventricular cardiac muscle

and is also present in smooth muscle, many secretory cells, and throughout the brain, and the

protein  plays  a  role  in  dendritic  signaling  (Striessnig  et  al.,  2014;  Wheeler  et  al.,  2012).

However, other studies could not replicate this association  (Kloiber  et al., 2012; Zhang  et al.,

2013), and research suggests that the majority of bipolar disorder may involve the interaction of

multiple genes (epistasis) or other complex genetic mechanisms (N Craddock and Jones, 1999).

An important role for rare single-nucleotide variants (SNVs) in complex diseases has been

proposed based on theoretical grounds  (Keinan and Clark, 2012; Pritchard, 2001), and, more

recently,  high-throughput  whole-exome  sequencing  (WES)  and  whole-genome  sequencing

(WGS) has enabled the identification of such variants associated with bipolar disorder. Sample
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sizes  of  WES and  WGS studies  of  bipolar  disorder  have  been  small  compared  to  those  of

schizophrenia and autism; the largest autism and schizophrenia studies analyzed the exomes of

thousands of cases and controls  (De Rubeis  et al., 2014; Iossifov  et al., 2014a; Purcell  et al.,

2014), whereas the largest bipolar studies to date consisted of whole-exome sequencing of 237

trios (Kataoka et al., 2016), and whole-genome sequencing of 200 individuals from 41 families

with BD. This was followed by targeted sequencing of 26 candidate genes in an additional 3,014

cases and 1,717 controls (Ament et al., 2015). Nevertheless, several novel candidate genes have

emerged from the limited number of case-control and family-based sequencing studies of BD

that have been published (Ament et al., 2015; Collins et al., 2013; Cruceanu et al., 2013; Georgi

et al., 2014; Goes et al., 2016; Kataoka et al., 2016; Lescai  et al., 2017; Strauss  et al., 2014).

Ament et al. (2015) found evidence for an excess of rare variants in pathways associated with γ-

aminobutyric acid and calcium channel signaling, highlighting rare variant associations in ANK3,

a  synaptic  scaffolding  gene; voltage-gated  calcium  channel  genes  CACNA1B,  CACNA1C,

CACNA1D,  CACNG2; CAMK2A,  a prominent kinase in the central  nervous system that may

function in long-term potentiation and neurotransmitter release; and NGF, which is involved in

the regulation of  growth and the differentiation of  sympathetic  and certain sensory neurons.

Another study (Goes et al., 2016), although underpowered to implicate rare variants in individual

genes, highlights the gene KDM5B (also known as JARIDB1) that encodes a histone H3 lysine 4

(H3K4)  demethylase  that  has  been  linked  to  neural  differentiation  in  embryonic  stem cells

(Schmitz et al., 2011). The histone H3K4 methylation pathway has already been associated as a

pathway strongly associated with BD based on GWAS  (The Network and Pathway Analysis

Subgroup  of  the  Psychiatric  Genomics  Consortium,  2015). Other  BD-associated  pathways

derived from a GWAS meta-analysis include corticotropin-releasing hormone signaling, cardiac
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β-adrenergic signaling,  phospholipase C signaling,  glutamate receptor signaling,  endothelin 1

signaling, and cardiac hypertrophy signaling  (Nurnberger  et al., 2014). There appears to be a

notable overlap in susceptibility between bipolar disorder and schizophrenia (Nick Craddock and

Sklar, 2013). Disease associated pathways shared between these two disorders include calcium-

and  glutamate  signaling,  neuropathic  pain  signaling  in  dorsal  horn  neurons,  and calmodulin

binding (Forstner et al., 2017). The common theme between most studies of BD, however, is that

many genes are involved in BD, the groups of risk variants may be different in different families,

and exonic variants of major effect are unlikely to exist in this disorder  (Kember and Bućan,

2016). Recent studies also point to a role for de novo LOF and protein-altering mutations in the

etiology of bipolar disorder  (Kataoka  et al.,  2016),  and the trend points  towards sequencing

larger  cohorts,  which  will  undoubtedly  reveal  further  insights  about  the  genetics  of  bipolar

disorder in the future.

1.4 The genetic basis of autism spectrum disorders

Similarly to bipolar disorder, autism spectrum disorder (ASD) is a complex disease with high

heritability and genetic heterogeneity. Additionally, ASD also has high phenotypic heterogeneity

and consists of a constellation of neurodevelopmental presentations including autistic disorder,

Asperger syndrome, childhood disintegrative disorder, and pervasive developmental disorder not

otherwise specified (PDD-NOS) (American Psychiatric Association, 2013). To date, mutations

in hundreds of genes have been associated to varying degrees with increased ASD risk. Most

genes contribute to ASD risk by a small amount, with the notable exception of genes causal for

various  syndromes that  also  met  criteria  for  ASD diagnosis,  including  FMR1 for  Fragile  X

6



syndrome  (FXS),  TSC1/2 for  Tuberous  Sclerosis  Complex  (TSC),  and  MECP2 for  Rett

syndrome (RTT) (Schaefer and Mendelsohn, 2008). Dominant, recessive, oligogenic/polygenic,

and gene × environment mechanisms all clearly play a role in ASD; however, their individual

contributions in different ASD subpopulations are still to be fully elucidated (M. Chahrour et al.,

2016).

As focus has shifted from GWAS to large-scale WES studies in the past decade, the largest

studies  have taken the approach of  sequencing trios  to  detect  de novo mutations  in  affected

individuals. These include several studies published in 2012 and 2014, which analyzed WES

data from over 4000 affected children combined (De Rubeis et al., 2014; Iossifov et al., 2014b,

2012; Neale et al., 2012; O’Roak, Vives, Girirajan, et al., 2012; Sanders et al., 2012). By now,

hundreds of candidate genes have emerged, and dozens have been confirmed as high-confidence

ASD genes based on their recurrent disruption by de novo mutations in unrelated probands (De

Rubeis et al., 2014; Iossifov et al., 2014a; O’Roak et al., 2014; O’Roak, Vives, Fu, et al., 2012).

These include fragile X mental retardation protein targets,  chromatin modifiers (e.g.,  CHD8,

CHD2,  ARID1B), embryonically expressed genes (e.g.,  TBR1,  DYRK1A, PTEN), and nominal

enrichment for postsynaptic density proteins (e.g.,  GRIN2B,  GABRB3,  SHANK3) (M. Chahrour

et al., 2016). Networks constructed using these high-confidence ASD risk genes identify several

key  pathways  as  being  disrupted  in  ASD,  including  translational  control  and  chromatin

regulation  (Hormozdiari  et al., 2015; O’Roak, Vives, Girirajan,  et al., 2012; Parikshak  et al.,

2013; Willsey et al., 2013).

Other  studies  have  focused on identifying  recessive  and hemizygous variants  conferring

ASD risk;  examples of  such genes  include  CNTNAP2  (Strauss  et  al.,  2006),  SLC9A9/NHE9

(Morrow  et al., 2008),  BCKDK (Novarino  et al., 2012), and  CC2D1A (Manzini  et al., 2014).
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Some genes that have been found to contain recessive mutations are genes that, had they been

completely inactivated, would cause severe neurological syndromes. For example, Chahrour  et

al. (2012) identified  UBE3B as  a  candidate  gene,  and  this  gene  is  also  associated  with  a

syndrome of intellectual disability and microcephaly (Basel-Vanagaite et al., 2012). Similarly, a

complete  loss  of  ASD candidate  genes  AMT,  PEX7,  and  VPS13B will  lead,  respectively,  to

nonketotic hyperglycinemia, rhizomelic chondrodysplasia punctata, and Cohen syndrome (Yu et

al., 2013).

To further complicate the architecture of ASD genetics, there are sex differences: ASD is

four times more common in males than in females (Christensen et al., 2016). Multiple theories

have been proposed, including genetic, epigenetic, and hormonal explanations (Baron-Cohen et

al., 2011; Robinson et al., 2013; Werling and Geschwind, 2013). Multiple studies have identified

an excess of maternally inherited protein-damaging variants and copy-number variants (CNVs)

in cases (Bonora et al., 2014; Griswold et al., 2015; Krumm et al., 2015; Yuen et al., 2016), and

many of these variants and CNVs overlap genes previously identified to contain de novo variants

in  other  ASD  studies,  although  statistical  evidence  for  individual  gene  findings  remains

insufficient to establish the genes as high-confidence ASD genes (Abrahams et al., 2013).

To  further  our  understanding  of  the  genetics  of  both  ASD  and  bipolar  disorder,  larger

cohorts will need to be studied, as hundreds of genes may be mutated in only a handful of cases.

One approach to recruit the large number of families is to utilize web-based recruiting methods,

such as  the  system implemented  by IAN Genetics,  which  allows families  to  enroll  in  ASD

studies regardless of their proximity to study sites. We utilized this cohort to select individuals

for WGS in an attempt to identify rare variants of large effect contributing to ASD.

8



In the following chapters, I present findings from WES and WGS studies involving two

complex disorders,  bipolar  disorder  and autism spectrum disorder,  and present  a  mutational

burden dataset based on a reference population that aids the identification of candidate genes and

variants for follow-up studies from NGS datasets.
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Chapter 2

Rare  deleterious  mutations  are  associated  with  disease  in

bipolar disorder families

2.1 Abstract

Bipolar disorder (BD) is a common, complex and heritable psychiatric disorder characterized by

episodes of severe mood swings.  The identification of rare,  damaging genomic mutations in

families  with  BD  could  inform  about  disease  mechanisms  and  lead  to  new  therapeutic

interventions.  To  determine  whether  rare,  damaging  mutations  shared  identity-by-descent  in

families  with  BD  could  be  associated  with  disease,  exome  sequencing  was  performed  in

multigenerational  families  of  the  NIMH BD Family  Study  followed  by  in  silico functional

prediction. Disease association and disease specificity was determined using 5090 exomes from

the  Sweden-Schizophrenia  Population-Based  Case-Control  exome  sequencing  study.  We

identified 14 rare  and likely deleterious mutations in  14 genes that were shared identity-by-

descent among affected family members. The variants were associated with BD (P < 0.05 after

Bonferroni's correction) and disease specificity was supported by the absence of the mutations in

patients  with schizophrenia (SZ).  In  addition,  we found rare,  functional  mutations  in known

causal  genes  for  neuropsychiatric  disorders  including  holoprosencephaly  and  epilepsy.  Our

results demonstrate that exome sequencing in multigenerational families with BD is effective in

identifying  rare  genomic  variants  of  potential  clinical  relevance  and  also  disease  modifiers
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related to coexisting medical conditions. Replication of our results and experimental validation

are required before disease causation could be assumed.

2.2 Introduction

Bipolar disorder (BD) is a severe psychiatric disorder characterized by episodes of extremely

elevated,  expansive or irritable  mood, grandiosity,  flight  of  ideas,  distractibility  or  agitation,

which  could  lead  to  marked  impairment  in  social  and  occupational  functioning  (American

Psychiatric Association, 2013). Episodes of mania are often followed by severe and disabling

depression.  In  general,  BD  is  conceptualized  as  a  complex  disease  with  genetic  and

environmental risk factors (Craddock and Jones, 1999). Heritability estimates range from 58% to

93% with a monozygotic twin concordance rate of about 0.43 (Kieseppä et al., 2004; Song et al.,

2015). Nevertheless, the etiology of the disease remains unknown. Linkage studies and genome-

wide association studies (GWAS) have suggested chromosomal and genomic regions potentially

related  to  BD,  but  the  identification  of  disease  causing  variants  remains  largely  elusive

(Craddock  and  Sklar,  2013;  Kerner,  2014).  Exome-wide  sequencing  offers  now  a  new

opportunity to lead these investigations to a new level. 

BD is a common psychiatric disorder with a population prevalence of 2-3% (Kessler et al.,

2005a; Kessler et al., 2005b). However, families in which the disorder is transmitted over several

generations are very rare. In the hope of finding genetic risk factors for BD with strong effect,

the National Institute of Mental Health (NIMH) ascertained a number of these families in which

a  Mendelian  mode  of  transmission  was  suggested  by  the  pattern  of  disease  segregation

(Nurnberger et al., 1997). However, after initial enthusiasm it was quickly realized that a single
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genetic risk factor with strong effect would most likely not explain the susceptibility to BD even

in individual families (O’Rourke et al., 1983; Crow and DeLisi, 1998; DeLisi and Crow, 1998).

Instead, mathematical model fitting suggested an oligogenic risk profile as the most likely cause

of the disease, but indicated also substantial interfamilial heterogeneity (Craddock et al., 1995).

Early linkage studies were not equipped to perform well  under this  scenario and knowledge

about the human genome was still in its infancy.

Although these early attempts had been unsuccessful in finding rare disease-causing genes in

BD, the search for common genomic polymorphisms as disease modifiers of BD dominated the

literature. Many reviews on this subject have been published and it is beyond the scope of this

paper to cover this extensive literature. Instead, it is the intent of this paper to collect and present

supporting  evidence  for  the  hypothesis  that  rare  mutations  might  contribute  to  the  risk  of

developing BD under an oligogenic mode of inheritance.

With human genome data available and falling sequencing costs, the time seems to be right

to revisit the original models of disease transmission in the families of the NIMH BD genetics

initiative. We conducted a family-based exome sequencing study in multigenerational families of

the NIMH to test the hypothesis that several rare functional mutations in gene-coding regions are

co-transmitted  over  several  generations  and  shared  identity-by-descent  among  the  affected

family members. We expected that the mutated genes would cluster into functional pathways

suggesting potential disease path mechanisms. Large, population-based samples of patients with

schizophrenia and healthy controls were also available to test disease association and disease

specificity. 
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2.3 Materials and Methods

2.3.1 Sample selection

The analysis presented in this article was based on publicly available data and biomaterial from

families of the NIMH-Bipolar Genetics Initiative (NIMH Genetics—Bipolar Disorder, 2015).

We selected nine affected individuals from four Caucasian families in which BD was transmitted

over  several  generations  following  an  apparently  Mendelian  mode  of  inheritance.  In  three

families, we selected the two most distantly related affected family members for exome-wide

sequencing. In one family, we selected three affected individuals, as the disease appeared to be

transmitted through the paternal and the maternal lineage. The ethnicity of the individuals was

determined  based  on  self-report.  All  affected  and  unaffected  family  members,  and  also  the

independent patients had been interviewed with the Diagnostic Interview for Genetic Studies by

trained health care professionals blinded to the clinical diagnosis. The Diagnostic Interview for

Genetic Studies is an extensively validated, structured clinical instrument developed by principal

investigators  at  the  NIMH for  the  assessment  and differential  diagnosis  of  major  mood and

psychotic disorders. Medical and psychiatric comorbidities were also recorded (Nurnberger  et

al., 1994). Non-hierarchical Best Estimate consensus diagnoses were reached by at least three

independent raters according to DSM-IV criteria (Leckman  et al., 1982; American Psychiatric

Association,  2000).  In addition,  we randomly selected six unrelated individuals with BD for

exome-wide sequencing, who had been evaluated under the same procedures (Fromer  et  al.,

2012).
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2.3.2 Exome sequencing and bioinformatics analysis

DNA  was  isolated  from immortalized  lymphoblastoid  cell  lines.  Genomic  DNA  extraction,

library preparation, sequencing, and data analysis were performed using established procedures.

Exome capture was carried out using the Illumina TruSeq Exome Enrichment Kit (Illumina, San

Diego, CA, USA) and the DNA was sequenced using the HiSeq 2000 for a 100-bp paired-end

run (Illumina). An average of 50 million independent paired reads were generated per sample to

provide a mean 10-fold coverage across the RefSeq protein-coding exons and flanking intronic

sequence (±2 bp) of 487.5% of these bases and a mean 20-fold coverage of 78.9% of the targeted

sequences (Supplementary Methods). As technical controls during the sequencing process and to

guard  against  technical  artifacts,  we used  the  DNA of  200 unrelated  individuals  who were

sequenced in our laboratory under the same exon capture and sequencing conditions.

Figure 2.1. Selection algorithm for rare variants in families with bipolar disorder.  The figure
delineates the algorithm that was used to select potentially disease-causing mutations in four families
with bipolar disorder.
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2.3.3 Variant annotation, filtering and interpretation

Single-nucleotide variants and small structural variants including insertions and deletions were

annotated  using  Golden  Helix  SNP  &  Variation  Suite  (SVS)  v8.1  (Bozeman,  MT,  USA).

Variants were filtered based on evidence for identity-by-descent sharing among affected family

members, minor allele frequency  0.01%, and predictions regarding consequence on protein⩽

function by the following in silico prediction tools: SIFT, PolyPhen 2, LRT, MutationTaster,

Mutation Assessor and FATHMM  (Ng and Henikoff, 2001; Ramensky et al., 2002; Chun and

Fay, 2009; Adzhubei et al., 2010; Pollard et al., 2010; Schwarz et al., 2010; Reva et al., 2011)

(Figure 2.1). The filtered variants were then genotyped in additional affected family members. In

addition, all selected variants were also genotyped in at least one unaffected family member per

family. On the basis of these results, we selected variants that were present in the affected family

members and absent in the unaffected family members. Finally, we used the exome data from the

Sweden-Schizophrenia  Population-Based  Case-Control  Exome  Sequencing  data  set  (dbGAP

accession:  phs000473.v1.p1)  for a  case–control  association analysis  on the selected variants.

This data set contained exomic data of 2545 individuals with SZ and 2545 controls.

2.3.4 Statistical analysis

To determine the statistical significance of mutation frequency differences between cases and

controls, we used the Fisher’s exact test for rare variants (St. Pierre et al., 1976) and corrected

for multiple testing using the Bonferroni procedure (Simes, 1986). In this analysis, the family

was considered to be the unit of observation because only variants shared among the affected

family  members  were  included  in  the  analysis.  Pathway  analysis  and  gene  set-enrichment

analysis  of  variants  that  were  significant  in  the  Fisher’s  exact  test  were  performed  in  the
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Database  for  Annotation,  Visualization,  and  Integrated  Discovery  (DAVID)  Bioinformatics

Resource 6.7 (Benjamini and Hochberg, 1995; Dennis et al., 2003; Huang et al., 2009a; Huang

et al., 2009b).

2.4 Results 

2.4.1 Sample characteristics

In four multigenerational families, multiple individuals were affected with a severe and complex

type of BD (Table 2.1). The patients had been diagnosed with BD on average at 18 years of age

(s.d. = 7.7), and at the time of interview, the majority of the patients had been ill for at least 15

years. Only one-fifth of the patients were male (20%). Almost all selected patients (93%) had

been  diagnosed  with  BD type  1  (BD1)  according to  DSM-IV criteria,  but  one  independent

patient carried the diagnosis of BD type 2 (BD 2). Eight patients (53%) fulfilled criteria for rapid

cycling BD, a disease subtype characterized by at least four separate mood episodes over the

course  of  one  year.  Ten  patients  (67%) had experienced  symptoms of  hallucinations  and/or

delusions, and ten patients (67%) had attempted suicide at least once during the disease course.

All patients had been diagnosed with one or more psychiatric comorbidities, including anxiety

disorders (73%), substance-use disorders (60%), attention-deficit hyperactivity disorder (40%),

obsessive  compulsive  disorder  (27%),  sleep  disorders  (27%),  eating  disorders  (20%)  and

antisocial personality disorder (20%). In addition, some patients also had medical disorders that

could  have  contributed  to  the  phenotype  variability.  Among  these  disorders  were  migraine

(67%),  seizure  disorders  (33%),  thyroid  disorders  (20%),  gastrointestinal  disorders  (20%),
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metabolic disorders (13%) and cardiovascular disorders (7%). Almost half of the sample had

been diagnosed with learning disability (40%).

Table 2.1. Phenotype of affected individuals in four families with bipolar disorder

2.4.2 Identification of rare, damaging mutations 

Whole-exome sequencing and genotyping of the 15 affected individuals identified 14 rare and

likely damaging mutations that were shared identity-by-descent. The mutations were absent in

the unaffected family members and also in the technical controls (Figure 2.1, Table 2.2). Seven

of  these  mutations  were  novel  and  seven  variants  had  been  described  previously  in  un-

phenotyped population samples at very low frequency (Table 2.3). The variants were of high 
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Table 2.2. List of mutated genes in bipolar disorder families

quality  and predicted  to  be damaging for  the  protein  structure  or  function  by  at  least  three

functional predictors (Supplementary Tables 2.S1 and 2.S2). In addition, we found one novel

frameshift  mutation  and  one  known,  rare  deletion/insertion  mutation,  both  with  unknown

functional consequences (Table 2.3). The mutations were private to the individual families, in

which they were discovered, and none of the mutations were present in 2545 ethnically matched

controls (P  1.6 × 10⩽ −3). Furthermore, none of the 2545 exomes of patients with SZ carried the

same  mutations,  indicating  disease  specificity.  Three  of  the  mutated  genes,  myosin  IXA

(MYO9A), TBC1 domain family, member 10C (TBC1D10C) and Rho GTPase activating protein

32 (ARHGAP32) had GTPase-activating function, but in silico analysis in DAVID revealed no 
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Table 2.3. Molecular characteristics of mutations in families with bipolar disorder

statistically  significant  clustering  of  the  mutated  genes  in  any  known  pathophysiological

pathway.

In addition to these 16 variants, we discovered two known, rare, compound heterozygous

variants in the gene solute carrier family 22 (organic cation transporter), member 1 (SLC22A1) in

one  severely  affected  individual.  The  first  mutation  (rs55918055)  was  inherited  through  the

paternal  lineage  and  the  second  mutation  (rs34059508)  was  inherited  through  the  maternal

lineage.  These non-synonymous coding mutations were predicted to  be deleterious.  We also

identified mutations in known, disease-causing genes for several medical conditions that could

have had disease-modifying effects (Supplementary Table 2.S3). For example,  a patient with

seizure disorder carried a mutation in the gene prickle homolog 1 (Drosophila)] (PRICKLE1), a

known gene for progressive myoclonic epilepsy 1B (EPM1B, MIM:612437). In one family, a

novel  mutation in  the gene dispatched homolog 1 (Drosophila)  (DISP1)  segregated with the

disease phenotype. Mutations in DISP1 are known to cause holoprosencephaly (HPE) type 2-4
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(HPE2, MIM:157170; HPE3, MIM:142945; HPE4, MIM:142946; HPE5, MIM:609637), and in

addition, this gene is also known as the main suspect in the Chromosome 1q41–q42 deletion

syndrome  (MIM:612530).  Although  epilepsy  and  HPE  could  present  with  seizures,  mood

symptoms,  psychosis,  developmental  delay  and  learning  disabilities,  mutations  in  these  two

genes  could  explain  some of  the  neuropsychiatric  phenotypes  that  segregated  in  two of  the

families. The gene Ankyrin Repeat and Kinase Domain Containing 1 (ANKK1), which has been

related to migraine and alcohol dependence, (Neville et al., 2004; Ridge et al., 2009; Ghosh et

al., 2013) also carried a likely damaging mutation. The gene T-box 2 (TBX2) has been related to

cognitive and behavioral abnormalities in the chromosome 17q23.1–q23.2 deletion syndrome

(MIM:613355),  and  toll-like  receptor  5  (TLR5)  has  been  associated  with  systemic  lupus

erythematosus  (SLEB1,  MIM:601744).  None  of  the  variants  could  be  replicated  in  the

independent patients with BD.

2.5 Discussion

We identified  rare,  deleterious  and  likely  disease-causing  mutations  in  gene-coding  regions

through  unbiased,  exome-wide  sequencing  in  families  with  BD.  Each  family  carried  rare

mutations in several genes that were shared identity-by-descent by affected family members and

the variants were absent in the unaffected family members. All variants were predicted to be

damaging by several in silico functional predictors. In each several rare, damaging mutations

were  associated  with  the  disease.  These  findings  are  consistent  with  the  currently  favored

hypothesis of oligogenic disease causation in BD (Neuman and Rics, 1992; Gershon, 2000).
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Exome-sequencing is increasingly utilized to identify very rare and likely disease-causing

mutations in many neuropsychiatric disorders (Binder, 2012). Our focus on rare and even private

mutations is consistent with current trends in genetic epidemiologic research; however, our study

is one of the first to examine the exomes of BD patients from multigenerational families in an

unbiased, genome-wide approach and to evaluate the results in the context of a large number of

population-based  healthy  controls  and  patients  with  SZ.  The  results  of  this  study  reveal  a

complex scenario of rare and private missense and loss-of-function mutations in novel candidate

genes. In addition, we found mutations in known disease-causing genes for medical conditions

that could have potentially had disease-modifying effects, for example on intellectual ability or

immune status.

Our results could be viewed in the context of previously published linkage analyses in the

families of the NIMH genetics initiative.  Genome-wide significant linkage signals have been

reported in the chromosomal regions 16p12.2 and 17q12 (Dick et al., 2003; Cheng et al., 2006).

The region 16p12.2 has also been linked to the sub-phenotype psychosis and suggestive linkage

has been found to the chromosomal regions 19p13 with the same phenotype (Cheng et al., 2006).

However, when considering linkage results it  has to be kept in mind that linkage regions on

average contain  hundreds  of  genes,  and therefore,  conclusions  about  supporting  evidence  of

linkage results should be viewed with great caution.

Our  conclusion  about  a  causal  relationship  between  the  described  variants  and  BD  is

plausible, and coherent with some pathophysiological theories. Especially GTPase-activation is a

pathophysiological  process  that  is  supported  by animal  models  and cell  culture  experiments

(Kalkman, 2012; Akula et al., 2014; Farhy et al., 2014) GTPases are a target of lithium, a drug

frequently used to treat BD; and therefore, a role for G-proteins in disease processes of BD has
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long been hypothesized (Drummond et al., 1988; Schreiber and Avissar, 1991; Kõks et al., 2004;

Roybal et al., 2007; Must et al., 2009; Kõks et al., 2011; Lee et al., 2011; Corena-McLeod et al.,

2013; Lee et al., 2013; Farhy et al., 2014; Gonzalez, 2014; Naismith et al., 2014; Soreca 2014;

Srinivasan et al., 2014; Bellivier et al., 2015; Carpenter et al., 2015).

The patients with BD had also been diagnosed with a number of medical and neurological

disorders including seizure disorders and learning disability. Therefore, it is highly likely that

some of the identified genes might in fact be related to these disorders rather than to BD itself. In

fact, we were able to identify rare mutations in genes that have previously been linked to seizure

disorders and HPE. These conditions could potentially modify the disease expression and the

disease course of BD. As none of the protein-damaging mutations were present in patients with

SZ, shared genetic risk factors between BD and SZ might be uncommon.

Limitations of our study are (1) the very small sample size of BD patients in this data set.

This limitation could result in an underestimation or overestimation of the effect size of these

rare  and  private  mutations.  Given  the  rare  nature  of  the  variants  in  the  general  population,

replication of individual variants is highly unlikely. Another limitation of our analysis was the

dependence on  in silico functional predictions. Many examples indicate that these predictions

might not always reflect the true biological, cell-specific consequences of a specific mutation on

an  individual’s  genetic  background.  Therefore,  it  is  recommended  to  test  the  functional

consequences of the identified mutations and experimentally validate the effect in cell culture

assays  and  in  in  vivo  models.  Despite  obvious  limitations,  our  results  are  consistent  with

previous  publications  in  the  literature.  For  example,  several  groups  have  identified  rare

functional mutations in BD families (Song et al., 2010; Green et al., 2011; Goes et al., 2016),

even though statistical significance after correction for multiple testing in larger samples still
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needs to be established. In addition, rare structural variants have been associated with BD, but

the  functional  consequences  of  these  variants  remain  to  be  determined (Mehta  et  al.,  2014;

Kember et al., 2015).

Although individual mutations and genes still require further support before generalizable

conclusion  can  be  drawn,  it  has  become  clear  that  BD  is  by  far  more  heterogeneous  than

previously anticipated. Our results support a rare-variant oligogenic disease models in families

with BD and stress the importance of protein-coding regions. On the basis of these results, we

recommend  to  fund  studies  that  focus  on  multi-generational  families  to  identify  functional

mutations. Furthermore, in clinical practice, it should be recognized that in some families, BD

might be transmitted with higher risk than generally anticipated in the framework of a common

complex disorder, and that genetic counseling might be recommended. Exome-wide sequencing

could  be  useful  in  high-risk  families  to  identify  known  disease-causing  mutations  for

neuropsychiatric disorders that might resemble BD, such as HPE and seizure disorders.

2.6 Conclusions 

The results of our study indicate that rare, deleterious mutations in gene-coding regions could be

related  to  a  BD  phenotype  in  families,  in  which  the  disease  is  transmitted  over  several

generations. Exome sequencing in multigenerational families with BD is effective in identifying

rare  genomic  variants  with  potential  clinical  relevance.  Our  results  further  support  the  rare-

variant oligogenic disease model of BD. The disease association of the identified mutations need

to  be  replicated  and  the  functional  consequences  of  the  mutations  validated  before  the

information could be used in clinical settings.
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2.7 Supplementary Methods

2.7.1 Exome capture and re-sequencing

Genomic DNA was isolated from cell lines following standard protocols. After DNA quality

control,  exome capture  was  performed  using  the  Illumina  TruSeqTM Exome Enrichment  Kit

(http://www.illumina.com/documents/products/datasheets/datasheet_truseq_exome_enrichment_

kit.pdf).  This  method  offers  uniform  coverage  across  62  Mb  of  exome  sequence  including

5’UTRs, 3’UTRs, microRNAs and other non-coding RNAs. Libraries were prepared using the

TruSeq DNA sample preparation kit (Illumina Inc., San Diego, CA). The assay is designed to

target   201,121 exons in 20,794 genes (based on the NCBI37/hg19 reference genome) covering

about 97% of the CCDS coding exons (Pruitt et al., 2009) and 96% of the RefSeq coding exons

(Pruitt et al., 2012). The exome capture was performed according to standard protocols and was

followed by sample amplification, cluster generation, and sequencing of 100 base paired ends on

the Illumina HiSeq 2000 Sequencing platform. Sequencing was done either at the UCLA Broad

Stem  Cell  Research  Center (BSCRC)  or  the  UCLA  Clinical  Genomics  Center.  In  order  to

maximize  coverage  and  minimize  cost  we  ran  4  or  6  exomes  per  lane,  expecting  average

coverage of 40X per  exome. The output images  were analyzed using the Illumina real time

analysis software.

2.7.2 Quality control (QC)

For sample quality control, artificial double stranded DNA targets were incorporated during the

sample preparation step. These sequences were targeted during the sequence capture process and

were  used  for  quality  control  of  the  enzymatic  steps  and  troubleshooting  during  sample
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preparation. A standard phiX DNA library equally distributed over all 8 sequencing lanes served

as quality control during the sequencing step. Libraries loaded at a minimum of 500 000 reads

per mm2; more than 85% of the bases passed quality measures of greater than 30, based on the

Illumina  RTA  analysis.  There  were  a  minimum  of  50  million  reads  per  sample  and  the

percentage of reads with non-matching barcodes did not exceed four times the error rate.

2.7.3 Sequence alignment and variant calling

Sequencing reads were aligned to the reference genome using the Novoalign v3.04.01. software

package (Hercus, 2009). Variants were called using the Genome Analysis Toolkit (GATK) v3.5

(McKenna et al., 2010), which was run in multiple sample mode with additional exomes from

our laboratory, according to published Best Practice recommendations (DePristo  et al., 2011;

Van de Auwera et al., 2002). The total number of novel and known variants was assessed and

compared  to  the  expected  values  based  on  the  average  number  of  variants  called  in  our

laboratory.  We obtained additional quality control metrics using the GATK unless otherwise

noted. These included alignment summary, GC bias, hybridization selection (Picard), insert size,

mean quality by cycle, quality score distribution (Picard), capture specificity, efficiency of the

target  capture  reaction  at  10x  coverage,  percentage  of  duplicate  reads,  percentage  of  reads

mapped to a reference, percentage of variants called in dbSNP135, and a summary of coverage

statistics for the targeted regions. In addition, we confirmed sib ships by running PLINK (Purcell

et al., 2007) to calculate a matrix of genome-wide average IBS pairwise identities and verifying

that closely related individuals had higher relatedness values and that there was no inbreeding

within families.
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The average coverage was 55.4X per targeted base, and 59.7% of the aligned bases mapped to

the targeted regions. On average, 87.5% of the targeted bases in each individual were supported

by at least 10 independent sequence reads, and 78.9% were supported by at least 20 independent

reads.  On  average,  there  were  approximately  19,985  dbSNP sites  and  484  novel  SNPs  per

sample. Other quality control metrics such as the ratio of heterozygous to homozygous SNPs, the

ratio of transitions to transversions, and dbSNP concordance rate were within normal ranges. 

2.7.4 Variant annotation, filtering and interpretation

After quality control, we performed the variant annotation using Golden Helix SNP & Variation

Suite v8.1 (Bozeman, MT: Golden Helix, Inc.; Available: http://www.goldenhelix.com) and in

addition, we used custom annotation tables that were created using software that was developed

in-house  (Yourshaw  et  al.,  2014).  We incorporated  information  from UniProt  (The  Uniprot

Consortium, 2011) and GERP conservation scores from the mammalian alignment set (Cooper

et  al.,  2005). Minor  allele  frequencies  of  variants  and counts  for  the number  of  individuals

carrying a mutation were calculated from allele frequencies in the  Phase 1 Integrated Variant

Call  Set  of  the  1000 Genomes Project  and the NHLBI Exome Sequencing Project's  Exome

Variant  Server  (EVS)  (Database  of  Single  Nucleotide  Polymorphisms  (dbSNP);  The  1000

Genomes Project Consortium, 2010; Exome Variant Server, NHLBI Exome Sequencing Project

(ESP); NIEHS Environmental Genome Project).

Variants were filtered based on minor allele frequency (MAF) in both the 1000 Genomes Project

and the European EVS subpopulation, functional consequences for the encoded protein (Gorlov

et al., 2008; Kryukov et al., 2007), and evidence for identity by descent sharing among affected

family members. In addition, variants were excluded from the analysis if they were present in
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more than one percent of our technical controls, or predicted to be benign by all three functional

predictors, SIFT (Kumar  et al., 2009), PolyPhen2 (Adzhubei  et al., 2010), and MutationTaster

(Schwarz  et al., 2010). We selected variants that were likely loss of function mutations even

though  functional  prediction  scores  were  not  available,  such  as initiator  codon  changes,

frameshift indels, stop gain/loss mutation, or splice site disrupting variants. 

Then, we applied a stringent selection algorithm, which prioritized variants based on likely loss

of function or uniform prediction of deleterious consequences by at least  three predictors.  A

manual literature review was performed for all genes containing the selected variants. We also

performed  a  pathway  analysis  on  the  selected  genes  using  the  Database  for  Annotation,

Visualization and Integrated Discovery system (DAVID) (Dennis et al., 2003). 
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2.8 Supplementary Tables

Supplementary Table 2.S1: Sequencing quality of selected mutations in families with bipolar
disorder

Location Gene Identifier Quality Score Filter Result Avg Depth

11:128838929 ARHGAP32 novel 1054.11 Pass 59.9484

12:53694010 C12orf10 novel 1340.32 Pass 94.4452

16:23672532 DCTN5 novel 847.87 Pass 130.8452

1:51826856 EPS15 rs148821171 2012.58 Pass 86.1419

5:170238979 GABRP novel 1162.23 Pass 95.9226

11:549982 LRRC56 novel 858.58 Pass 70.7613

15:72191038 MYO9A novel 2020.3 Pass 117.1935

22:26224877 MYO18B rs373113816 639.86 Pass 59.9419

19:16860396 NWD1 rs148848880 2254.24 Pass 94.9226

11:17172051 PIK3C2A novel 1076.19 Pass 72.4839

1:202398004 PPP1R12B rs199816573 1489.24 Pass 74.4065

12:120650260 PXN novel 834.52 Pass 40.9548

11:67172591 TBC1D10C rs201081455 1445.25 Pass 68.1307

15:43762077 TP53BP1 rs28903074 4725.65 Pass 89.0452

11:5537397 UBQLNL rs7933557 2693.17 Pass 110.8194

17:33504148 UNC45B rs137917897 1396.38 Pass 64.9548
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Supplementary Table 2.S2: In silico functional predictions for selected mutations in families
with bipolar disorder

Abbreviations: Prob dmg: Probably damaging. Possibly dmg: Possibly damaging. DC: Disease
causing.  Pred:  Predicted.  non-func: non-functional.  func: functional.  L:  low. M: medium. H:
high.

Supplementary Table  2.S3:  Variants in  bipolar  disorder  families  known to  cause  different
disorders

See material attached with the dissertation.
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Chapter 3

Whole-genome  sequencing  of  web-based  recruited
individuals  with  autism  spectrum  disorders  reveals  novel
candidate genes

3.1 Abstract

Whole-exome and whole-genome sequencing have increasingly enabled new pathogenic gene

variant identification for complex disorders such as autism spectrum disorder (ASD), and have

provided insights into the etiology of ASD. We report on results from whole-genome sequencing

(WGS) of 188 individuals, which includes 71 subjects diagnosed with ASD and their family

members, recruited using a web-based platform. Gene pathways enriched among various models

include  cell  adhesion,  cell-cell  signaling  and  nervous  system  development,  and  molecular

functions enriched include ATP-dependent microtubule motor activity and calcium ion binding.

Comprehensive  analysis  that  incorporates  information  about  a  gene’s  population  mutational

burden and the relatedness between family members reveals several novel candidate ASD genes,

including  STAU2 and  PPFIA3. Our findings also provide support for the previously suggested

autism gene  KMT2C,  and genes with limited prior support,  including  GBX2 and  USP54.  To

conclude, we identified several candidate ASD genes that shed further light onto the etiology of

this disorder.
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3.2 Introduction

Autism  spectrum  disorder  (ASD)  is  a  highly  heterogeneous  group  of  neuro-developmental

disorders, and while strong familial evidence supports a substantial genetic contribution to the

etiology of ASD, specific genetic abnormalities have been identified in only a small minority of

all cases. Several large-scale whole-exome sequencing (WES) studies have been carried out to-

date in trios and quads to elucidate causal genes underlying autism spectrum disorders (ASD)

(Iossifov  et  al., 2012;  Neale  et  al., 2012;  O’Roak,  Vives,  Fu,  et  al.,  2012;  O’Roak,  Vives,

Girirajan,  et al., 2012; Sanders  et al., 2012). However, genes identified as containing  de novo

mutations rarely overlap between studies, and it is difficult to interpret structural variants (SVs)

and copy number variants (CNVs) from whole-exome data. Recently, whole genome sequencing

studies  have revealed additional  ASD-relevant  mutations and large structural variants,  which

highlight the substantial genetic heterogeneity that exists in ASD (Brandler et al., 2016; Yuen et

al., 2015). As of June 2017, 910 genes have been associated with ASD on AutDB (Basu et al.,

2009). However, each gene contributes to ASD risk by a small amount and many findings are

only  marginally  significant  (Vorstman  et  al., 2017).  Much  larger  cohorts  would  need to  be

sequenced to identify all ASD risk genes and their relevance to the many clinical sub-phenotypes

(Lee et al., 2010).

As the identification of genetic components of ASD has advanced rapidly in recent years, a

two-class risk genetic model has emerged for autism (Ronemus et al., 2014; Zhao et al., 2007).

In low risk families, a highly penetrant de novo loss of function (LOF) variant arises in a male to

cause autism. In high-risk families, a mother carries the LOF variant but is unaffected, and this

variant gets passed on to the male offspring in dominant fashion, who develops autism. This

model, in addition to the known heterogeneity between ASD patients, suggests that a family-
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centered approach to  next-gen sequencing (NGS) data  analysis  may be useful  in  identifying

genes causal for ASD, as opposed to the commonly used strategy of focusing on de novo LOF

variants  and  case-control  cohorts  in  datasets  of  ever  increasing  size.  Furthermore,  we  also

considered  a  model  of  autosomal  recessive  inheritance,  since  this  model  is  suggested  in  a

subgroup of families with autism (Betancur 2011; Lim et al., 2013; Ritvo et al., 1985; Yu et al.,

2013).  When  combined  with  newly  developed  statistical  methods,  we  demonstrate  that  this

approach is successful at identifying novel ASD candidate genes.

3.3 Methods

3.3.1 Sample recruitment

We recruited ASD-affected individuals and their families from across the United States using an

online recruitment process in collaboration with IAN Genetics, a project run by the Interactive

Autism Network (IAN). Phenotypic data was benchmarked to verify the accuracy of using a

web-based approach to autism phenotyping, and 98% of individuals were ascertained to meet

criteria for ASD (Daniels et al., 2012; Lee et al., 2010).

Of 1266 samples collected, we sequenced 200 individuals from larger families such as trios

and quads,  or  individuals  that  had phenotypes  in  addition to  ASD, such as  seizures,  mental

retardation,  motor  delay,  or  psychiatric  disorders.  Most  participants  were  white,  and  ASD

screening test scores, specifically SRS T-scores and SCQ Total Scores, were representative of

the population for affected and unaffected individuals (Figure 3.1). 188 samples passed quality

control filters. The sequenced dataset included 11 quads (consisting of the proband, at least one

sibling, and parents); 6 trios (proband and both parents); 39 probands with discordant and 
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Figure 3.1. Distribution of ASD screening test scores in IAN participants
(a)  Histogram of SRS T-scores of individuals enrolled in IAN, if SRS scores were available (N=5802
(affected); N=3485 (unaffected)), compared to individuals consented for participation in IAN Genetics
(N=1021  (affected);  N=476  (unaffected)),  individuals  who  gave  blood  or  saliva  samples  (N=442
(affected);  N=228  (unaffected)),  and  individuals  selected  for  sequencing  (N=73  (affected);  N=39
(unaffected)). SRS scores were unavailable for 7957 individuals enrolled in IAN. (b) Histogram of SCQ
Total Scores of individuals enrolled in IAN, if SCQ scores were available (N=9483 (affected); N=6213
(unaffected)), compared to individuals consented for participation in IAN Genetics (N=1117 (affected);
N=528  (unaffected)),  individuals  who  gave  blood  or  saliva  samples  (N=467  (affected);  N=246
(unaffected)), and individuals selected for sequencing (N=74 (affected); N=40 (unaffected)). SRS scores
were unavailable for 1565 enrolled individuals.
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concordant siblings and/or one parent sequenced; and 5 unrelated, independent individuals with

other phenotypes in addition to ASD. Probands had primary diagnoses that included autism;

childhood  disintegrative  disorder  (CDD);  pervasive  developmental  disorder,  not  otherwise

specified (PDD-NOS); and Asperger syndrome (Table 3.1).

3.3.2 Sequencing and bioinformatics pipeline

We completed whole-genome sequencing of blood- and saliva-derived genomic DNA at a mean

coverage of 35.8×. All samples were sequenced on the Illumina HiSeq X Ten sequencer using a

150-base  paired-end  single-index  read  format.  After  quality  control,  reads  were  mapped  to

human  reference  hg38  using  Illumina  Sequence  Integration  Software  (ISIS)

(http://support.illumina.com/sequencing/sequencing_instruments/miseq/downloads.ilmn).

Samples that  did not meet desired coverage metrics were re-sequenced and the data was merged

Table 3.1. Phenotypes of affected individuals in 61 families with ASD
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with the first run.

After  variant  calling  and  structural  variant  calling,  variants  were  annotated  using

GoldenHelix  VarSeq v.1.4.2  (Golden Helix,  Inc.,  Bozeman,  MT, www.goldenhelix.com) for

protein  consequence,  predicted  deleteriousness,  and  information  on  protein-coding  genes

extracted  from the  NCBI  RefSeq  gene  annotation  release  107. Additional  annotations  were

obtained from the GnomAD, dbNSFP and SORVA datasets  (Liu et al., 2016; Rao and Nelson

2017; Samocha et al., 2014). Protein coding variants were filtered according to multiple criteria.

We filtered out variants that were not reliably called. Next, we filtered out synonymous variants,

and we filtered out missense variants with a CADD PHRED-scaled score < 10, which would

suggest that the variant is not predicted to have deleterious consequences(Kircher et al., 2014).

Additionally,  we filtered out  variants  with a  minor  allele  frequency (MAF) <= 0.1% in the

NHLBI  ESP  dataset  and  those  that  were  called  in  more  than  two  independent,  unaffected

samples. Candidate de novo mutations were further filtered, and we excluded variants that were

called in >= 1 technical control,  or if  we observed more than one read in either parent that

supported the candidate  de novo mutations. To further reduce the list of putative variants, we

filtered  out  variants  that  were  called  in  unaffected  siblings  or  the  father  in  each  kinship.

Unaffected mothers of the proband were permitted to carry the variant, under the assumption that

we were seeking variants that fit the following model: autism may be caused by highly penetrant

de novo loss of function (LOF) variants in males, or a mother may carry the LOF variant but is

unaffected,  and this  variant  gets  passed on to  the  male  offspring  in  dominant  fashion,  who

develops autism. Structural variants (SVs) were called using MANTA and CNVnator, and the

overlap  of  calls  were  considered  to  be  a  high-confidence  call  set.  These  methods  are

complimentary in that MANTA combines paired and split-read evidence to call SVs and indels
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from mapped paired-end sequencing reads (Chen et al., 2016), while CNVnator uses read depth

information to call structural variants (Abyzov et al., 2011). Additional filtering was performed

on de novo SV calls: we excluded SVs that were supported by more than one read pair or split

read in either parent, and paired reads were manually inspected in IGV(Robinson et al., 2011;

Thorvaldsdóttir  et al., 2013).  Validation was attempted for predicted  de novo SNVs and SV

breakpoints via Sanger sequencing of all family members.

To  determine  whether  our  dataset  was  comparable  to  previous  ASD  whole-exome  and

whole-genome  sequencing  studies,  we  calculated  the  fraction  of  individuals  with  de  novo

missense or LOF variants in known ASD genes, defined as non-syndromic genes with a score of

1 or 2 on SFARI. We used a test for equality of proportions to determine whether this differed

significantly from the fraction observed in a previous ASD study that included whole-exome

sequencing data from 2,508 trios (Iossifov et al., 2012). We repeated this test with a list of 792

genes recognized to be autism-related from Butler et al. (2015), and curated lists of 528 known

intellectual disability (ID) genes and 1156 known and candidate ID genes (Gilissen et al., 2014).

To identify novel candidate ASD genes enriched for rare, protein-altering variants in our

dataset,  we identified genes that contained rare,  deleterious variants in multiple families that

segregated with ASD or and was either  de novo or inherited from the mother. We annotated

these genes with the number of individuals in the 1000 Genomes Project who have rare variants

in a gene, using the Significance of Rare Variants (SORVA) standalone tool  (Rao and Nelson

2017). Genes were ranked as candidate ASD genes if, in addition to observing rare variants in

multiple families, the gene is also found to be intolerant of rare missense and LOF variants in the

population based on SORVA. We obtained a more precise measure of the mutational burden for

top candidate genes by using data from the Genome Aggregation Database (GnomAD), which
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aggregates sequencing data from over 120,000 individuals  (Lek  et al., 2016). We filtered out

genes that had low or uneven coverage across exons in reference datasets, and genes in which

independent  families had variants at  the same loci.  These variants are  likely to be technical

artifacts  or  common variants  that  erroneously  passed  MAF thresholds  due  to  differences  in

variant filtering methods in reference datasets.

Finally, we merged our data with the TADA dataset used by De Rubeis  et al.  (2014) to

determine whether any previously highly ranked ASD genes receive additional support based on

our findings. We used TADA v1.1 and used parameters and methods identical to those used in

the  previous  study,  with  a  slight  difference  in  filtering  for  "probably  damaging"  missense

variants. We consider missense variants to be probably damaging if they have a CADD score

greater than 10, whereas De Rubeis et al.  (2014) considered missense variants characterized as

probably damaging by PolyPhen-2. All variants were filtered for MAF < 0.1%. 

3.3.3 Validation of de novo events

Putative de novo events were validated by sequencing the carrier and both parents using Sanger

sequencing  methods.  Reverse  transcription  (RT)  polymerase  chain  reaction  (PCR)  was

performed with MyTaq Polymerase (Bioline) in 50 mL reactions with an initial denaturation at

95°C for 1 minute, followed by 40 cycles of 95°C for 15 seconds, 59°C for 15 seconds, and and

a final elongation step of 72°C for 15 seconds. Oligonucleotide primers were designed for the

PCR amplification of cDNA fragments containing the  de novo mutation or SV breakpoint of

interest  (Supplementary  Table  3.S1).  When  validating  a  duplication  breakpoint  in  Lysine

Methyltransferase  2C  (MLL3;  KMT2C)  in  one  family,  we  used  a  cDNA  fragment  of  a
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ubiquitously expressed part of the gene as a positive control. PCR products were separated on a

3% agarose gel. Sanger sequencing was performed by Laragen, Inc.

3.3.4 Functional Enrichment and Network Analyses

To identify novel gene pathways that were enriched in the genes disrupted by the de novo

mutations,  we  tested  the  mutation  burden  in  all  the  gene-sets  listed  in  the  Gene  Ontology

Consortium’s GO Enrichment Analysis tool, which connects to the PANTHER Classification

System  (Mi  et al., 2017). The gene list provided included all genes with rare (MAF < 0.1%)

missense variants  with  CADD score > 10 or  LOF variants  that  met  either  of  the  following

models: de novo, possible compound heterozygous, rare homozygous, or there was a confirmed

structural variant overlapping the gene (Supplementary Table 3.S2). P-values reported have been

corrected for multiple testing using the Bonferroni correction.  DAPPLE software was used for

the genetic interaction and protein–protein interaction analysis using 1,000 permutations (Rossin

et al., 2011).

3.4 Results

The online sample recruitment process resulted in sample or phenotype mix-ups in 4 out of 61

families sequenced, and all 4 were resolved after analyzing the relatedness between samples and

patterns of inheritance. Three mix-ups were a result of switched samples within a family, and

one family reported an incorrect gender for an unaffected child.

After filtering for rare variants that segregate with affected status and are predicted to have

deleterious effects on protein transcripts, we found that 25 genes contained rare variants in at
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least two independent families in our dataset. We identified 18  de novo events in 18 affected

individuals whose both parents we had sequenced; 4 were stop-gain LOF mutations, 12 were

missense mutations, and 2 were de novo SVs. All de novo point mutations and SV breakpoints

were validated using Sanger sequencing. One gene with a  de novo mutation,  KMT2C, which

contained a duplication at chr7:152181665-152375113 (hg38), was a known high confidence or

strong candidate ASD gene, defined as genes with a score of 1 or 2 in the SFARI-Gene database

(Banerjee-Basu and Packer, 2010) (N=79). Given that only 4.75% of probands are expected to

carry de novo LOF or missense mutations in either known ASD gene, an estimate that we base

on a previously published dataset of 2,508 trios (Iossifov et al., 2014), our observation does not

differ from expectation (P = 0.87). Using a more permissive ASD gene list consisting of 792

genes (Butler et al., 2015), we observe mutations in 2 of these genes, which also does not differ

from expectation (P = 0.86).

Since the majority of our dataset did not consist of trios, we used the transmission and de

novo association test (TADA) to determine whether our findings provide additional support to

genes ranked highly by previous TADA tests by De Rubeis et al.  (2014); this test incorporates

information from transmitted variants and case-control data in addition to de novo variants. The

greatest increase in a gene’s Bayes factor (BF), a measure of the probability that a gene is causal

for autism, is seen for genes in which we observed de novo variants in our dataset, as expected.

De novo variants that originate in the parental germ line are a strong source of causality for

ASDs (Marshall et al., 2008; Ronemus et al., 2014; Sebat et al., 2007), and accordingly, TADA

parameters are set to score these highly. Genes that receive added support from our data are

distributed evenly across the list of genes ranked according to BF from the previous study. In

other words, we were equally likely to observe de novo and inherited variants in genes ranked
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low or high by De Rubeis et al. (2014), highlighting the heterogeneity of ASD risk gene lists and

the fact that lists have little overlap between studies  (Mosca  et al., 2017), as well as the high

likelihood of novel ASD findings from our dataset.

TADA is  most  useful  for  trio  and case-control  data,  and since our  cohort  also includes

additional family structures, we also used a family-based approach to analyzing the WGS data.

We filtered out variants present in unaffected siblings and specifically identified rare variants

that meet the two-class model of ASDs. Genes in which we observed de novo missense or LoF

variants are shown in Table 3.2.

To note are genes that contained rare missense or LOF variants in multiple ASD families

given that these genes are intolerant of rare missense or LOF variants in the general population

(Table 3.3). Two of these genes also had high pLI scores, suggesting that they have an essential

biological function. First, in the gene  STAU2 (Staufen 2), we observed one  de novo missense

Table 3.2. De novo variants observed in ASD trios

Variants denoted by * were in regions free of sequencing errors but could not be validated using
Sanger sequencing, and are possible mosaic variants.
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Table 3.3. Genes that contained rare variants in a multiple independent families and are
depleted of variation in the population

Multiple independent families contained rare missense or LOF variants in these genes. Given the
number of independent events, the depletion of variants in these genes in the general population,
and the rarity of de novo events, these genes ranked highly among candidate genes for follow-up.
Column (a) indicates the proportion of individuals in the 1000 Genomes Project dataset (N=2504)
who are heterozygous or homozygous for a rare (MAF <= 0.001) LOF variant anywhere in the
given  gene,  obtained  from the  SORVA dataset.  Column (b)  indicates  the  same,  but  includes
missense variants, as well.

variant (R107S), as well as two families in which affected individuals had inherited rare variants

from the  mother  (V22I  and  A365S).  Observing  rare  variants  in  three  independent  families,

including one de novo variant, is unusual given that only 0.8% of the general population carry

rare LOF or missense variants in STAU2 based on data in GnomAD, which contains data on over

120,000 unrelated individuals  (Lek  et  al.,  2016).  The variants were in three of four double-

stranded RNA-bindings domains in  STAU2, and this gene is known to be involved in  synaptic

plasticity, translation, localisation, and ribonucleoprotein formation (Heraud-Farlow and Kiebler,

2014). In the second, PPFIA3 (PTPRF Interacting Protein Alpha 3) we observed a missense de

novo variant (S335R) in one family, and a maternally inherited missense variant (A680V) that

was absent from three unaffected siblings in another family.
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It is important to note that the individual with a de novo mutation in STAU2 also had a de

novo nonsense variant in RBM48 (RNA binding motif protein 48), however this gene has a pLI

score of 0, indicating that it is tolerant of LOF variants and such variants are unlikely to have a

severe effect on phenotype.

Several genes with previous support for involvement in autism or intellectual disability were

found to contain rare de novo or inherited variants in our cohort. For example, USP54 (Ubiquitin

Specific Peptidase 54) contained a  de novo nonsense variant in one individual. Rare, missense

variants in  CHD8 (Chromodomain Helicase DNA Binding Protein 8) were inherited from the

mother in three independent families. This gene encodes a chromatin remodeller and has been

found to be recurrently mutated in ASD (Bernier et al., 2014; Neale et al., 2012; O’Roak, Vives,

Fu, et al., 2012; O’Roak, Vives, Girirajan, et al., 2012; Talkowski et al., 2012). However, given

that rare missense or LOF variants are seen in  CHD8 in 3.12% of the general population, our

results are not statistically significant.

To identify novel gene pathways that were enriched in the genes disrupted by the de novo

mutations, we tested the mutation burden in all the gene-sets listed in the Gene Ontology. We

found a significant enrichment of variants in pathways involved in "homophilic cell adhesion via

plasma  membrane  adhesion  molecules",  "cell-cell  signaling",  and  "nervous  system

development";  molecular  functions  that  were  enriched  include  “ATP-dependent  microtubule

motor  activity”  and  “calcium ion  binding”.  Our  results  are  largely  consistent  with  previous

findings (Wen et al., 2016). Genes in the pathway “non-integrin membrane-ECM interactions”,

which  is  known to  play  a  central  role  in  central  nervous  system development  and synaptic

plasticity (Kerrisk et al., 2014), were also significantly enriched in our dataset.
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Under the assumption that different genes harboring suspected causative mutations for the

same  disorder  often  physically  interact,  we  next  considered  whether  there  was  evidence  of

protein-protein interactions (PPIs) using DAPPLE (Rossin  et al., 2011).  The set of 32 unique

genes with  de novo SVs, LOF or missense variants analyzed resulted in one network of direct

PPIs encoded by 7 of these genes. (Figure 3.2a) The largest network has the gene SPTBN1 as its

hub; using DAVID, it is enriched for terms including Hippo signaling pathway (BHC P = 4.2 ×

10-6) and MAPK cascade (BHC P = 7.4 × 10-4) (Supplementary Table S3.3). Of note, the genes

Discs,  large homolog 4 (Drosophila) (DLG4), Mitogen-activated protein kinase 1  (MAPK1),

Catenin  (cadherin-associated  protein),  beta  1,  88kDa  (CTNNB1), mitogen-activated  protein

kinase 3  (MAPK3) and Glutamate receptor, ionotropic, N-methyl D-aspartate 1  (GRIN1) are

drawn into the gene network by virtue of their interactions by two other genes in the network.

These genes have been previously associated with ASD (Abrahams et al., 2013).

By including genes that fit a recessive mode of inheritance, we also analyzed a union set of

264 unique genes using DAPPLE. A single network was derived with an FDR ≤0.01 (P = 0.15

for direct interactions; P = 0.03 for indirect interactions) that included 97 genes from the three

gene lists: 14/30 (46.7%) genes containing  de novo LOF or missense variants; 1/2 (50.0%) de

novo SV genes;  and 82/232 (35.3%) genes  containing  rare,  homozygous  LOF or  damaging

missense  variants,  or  possible  compound  heterozygous  variants.  (Figure  3.2b) Analysis  of

overrepresented terms in the entire network and subnetworks identified functional themes related

to calcium, actin binding, ATP binding, DNA repair, SH3 domain, ECM-receptor interaction,

and focal adhesion. Many of these functional terms have been previously connected with autism

(Oron and Elliott, 2017; Wen  et al., 2016). Thus, despite little overlap between genes in our

dataset and known ASD genes, the overlap of significantly enriched molecular functions and
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biological  pathways in  the  resulting  networks  suggests  that  the  effects  of  distinct  mutations

might converge in previously known ASD pathways (Rossin et al., 2011).

3.5 Discussion

Using whole  genome sequencing of  individuals  and families  with  ASD, we provide  further

evidence for the extreme genetic heterogeneity underlying ASD. In the small number of trios

sequenced, we did not observe  de novo  variants in known ASD genes. However, the fact that

genes containing rare inherited and de novo variants converge in known ASD-associated protein-

protein interaction networks suggests that our study may provide evidence for novel ASD genes

that currently are missing statistical support from previous studies.

 Among novel  candidate  ASD genes,  our findings provide statistical  support  for  STAU2

playing  a  role  in  the  etiology  of  ASD.  Staufen  proteins  play  a  role  during  both  the  early

differentiation of neurons and in the synaptic plasticity of mature neurons, and Stau2 regulates

mRNA stability,  translation,  and localisation  of  mRNA (Heraud-Farlow and Kiebler,  2014).

mRNA  targets  include  RGS4  and calmodulin  proteins,  which  have  been  implicated  in

schizophrenia and autism, respectively  (Buckholtz  et al.,  2007; Levitt  et al.,  2006; Oron and

Elliott, 2017; Schmunk and Gargus, 2013), and other neuronal targets, such as proteins in the G

protein-coupled receptor pathway, dopaminergic and serotonergic pathways (Heraud-Farlow et

al., 2013). The serotonergic, dopaminergic, and cholinergic pathways are involved in synaptic

functions and are known to be enriched in genes involved in ASD (David, Enard, Ozturk et al.,

2016).  Due to  the  discovery  of  multiple  rare  de novo and  inherited  variants  in  STAU2,  the

protein's  role  in  mRNA transport  within  the  neuron,  and the  fact  that  an  mRNA target  has
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already been associated with ASD, we considered STAU2 as a candidate susceptibility gene for

ASD, and functional studies will be required to validate the effect of the variants we observed.

Figure 3.2. Protein-protein interaction networks between genes
(a) 32 genes with de novo LOF mutations, missense mutations or SVs were submitted as seed to
form a DAPPLE PPI network. The seed genes are shown in colored circles, and genes with the
same color were mutated in the same individual. Protein-protein interactions are shown as gray
lines (edges) and additional genes are pulled into the network to form indirect connections. The
gene names in  bold are  previously suggested ASD genes  (SFARI  gene score  <= 4).  (b)  The
analysis in (a) was repeated using 264 genes that included the previous gene set, as well as genes
that contained rare homozygous or possible compound heterozygous variants. All seed genes were
submitted to DAVID and select top gene ontology (GO) terms are shown labeling clusters that
contain most  of  the  genes  with the  GO term.   Clusters  with a  solid  outline  were statistically
significant in the entire network or the circled subnetwork (Benjamini Hochberg corrected P-value
< 0.05). Genes with similar GO terms were not always near each other in the PPI network; as an
example, genes annotated with the term “axon guidance” are circled with a turquoise dashed line.
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Of the 18 trios sequenced, one case can be considered “solved”. In one proband, a de novo

duplication  event  was  observed  in  the  gene  Lysine  Methyltransferase  2C  (KMT2C; MLL3),

which was identified as a gene strongly enriched for variants likely to affect ASD risk with a

false discovery rate (FDR) of <0.1 (De Rubeis et al., 2014), and the gene has prior support from

multiple ASD studies (Iossifov et al., 2014; O’Roak, Vives, Fu, et al., 2012; Yuen et al., 2017).

Mutations  in  this  gene  have  been  found  to  cause  Kleefstra  syndrome  (OMIM ID:  610253)

(Kleefstra  et  al.,  2012;  Koemans  et  al.,  2017),  which  is  characterized  by mental  retardation

without  speech  development,  hypotonia,  and  characteristic  facial  features  including

microcephaly, brachycephaly, hypertelorism, synophrys, midface hypoplasia, and eversion of the

lower lip. This phenotype is consistent with the phenotype of the affected child.

The family-centered approach to data analysis highlights the information that can be gleaned

from small, well-phenotyped and well-sequenced datasets. We also demonstrate that as reference

datasets become increasingly larger, the need for trio sequencing diminishes: variants that are

absent from the population can be considered to be possibly de novo variants, and this variant set

is also enriched in genes known to cause ASD. There have been several large ASD studies to

date,  but most  are  focused on identifying  de novo LOF mutations and structural  variants  in

recurring genes. By incorporating data from not only trios and case-control individuals as but

also complex family structures, and taking into account the model that unaffected mothers may

carry causal ASD variants, we were able to identify several candidate novel genes that may have

otherwise been overlooked.
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3.6 Supplementary Tables

Supplementary Table 3.S1: PCR primer sequences used for Sanger validation of de novo 

mutations.

Supplementary Table 3.S2: Rare de novo and inherited variants observed in individuals

with ASD. Shown are rare  de novo variants in trios, and ultra-rare heterozygous LOF variants

(MAF < 1E-5 in the GnomAD exomes dataset) that were either known to be inherited from the

mother or inheritance could not be confirmed as  de novo due to lack of sequencing data from

both parents.

See material attached with the dissertation.

62



3.7 Bibliography

Abrahams, B. S., Arking, D. E., Campbell, D. B., Mefford, H. C., Morrow, E. M., Weiss, L. A.,
et al. (2013). SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum
disorders (ASDs). Molecular autism, 4(1), 36. doi:10.1186/2040-2392-4-36

Abyzov,  A.,  Urban,  A.  E.,  Snyder,  M.,  & Gerstein,  M.  (2011).  CNVnator:  An approach to
discover, genotype, and characterize typical and atypical CNVs from family and population
genome sequencing. Genome Research, 21(6), 974–984. doi:10.1101/gr.114876.110

Banerjee-Basu,  S.,  & Packer,  A.  (2010).  SFARI Gene:  an  evolving database  for  the  autism
research  community.  Disease  models  &  mechanisms,  3(3–4),  133–5.
doi:10.1242/dmm.005439

Basu, S. N., Kollu, R., & Banerjee-Basu, S. (2009). AutDB: a gene reference resource for autism
research. Nucleic Acids Research, 37(Database issue), D832-836. doi:10.1093/nar/gkn835

Bernier,  R.,  Golzio,  C.,  Xiong,  B.,  Stessman,  H.  A.,  Coe,  B.  P.,  Penn,  O.,  et  al.  (2014).
Disruptive  CHD8 Mutations  Define  a  Subtype  of  Autism Early  in  Development.  Cell,
158(2), 263–276. doi:10.1016/j.cell.2014.06.017

Betancur,  C.  (2011).  Etiological  heterogeneity  in  autism spectrum disorders:  More  than  100
genetic  and  genomic  disorders  and  still  counting.  Brain  Research,  1380,  42–77.
doi:10.1016/j.brainres.2010.11.078

Bonaglia, M. C., Giorda, R., Beri, S., De Agostini, C., Novara, F., Fichera, M., et al. (2011).
Molecular  Mechanisms  Generating  and  Stabilizing  Terminal  22q13  Deletions  in  44
Subjects  with  Phelan/McDermid  Syndrome.  PLoS  Genetics,  7(7).
doi:10.1371/journal.pgen.1002173

Brandler, W. M., Antaki, D., Gujral, M., Noor, A., Rosanio, G., Chapman, T. R., et al. (2016).
Frequency  and  Complexity  of  De  Novo  Structural  Mutation  in  Autism.  The  American
Journal of Human Genetics, 98(4), 667–679. doi:10.1016/j.ajhg.2016.02.018

Buckholtz, J. W., Meyer-Lindenberg, A., Honea, R. A., Straub, R. E., Pezawas, L., Egan, M. F.,
et al. (2007). Allelic Variation in RGS4 Impacts Functional and Structural Connectivity in
the  Human  Brain.  Journal  of  Neuroscience,  27(7),  1584–1593.
doi:10.1523/JNEUROSCI.5112-06.2007

Butler, M. G., Rafi, S. K., & Manzardo, A. M. (2015). High-resolution chromosome ideogram
representation of currently recognized genes for autism spectrum disorders.  International
Journal of Molecular Sciences, 16(3), 6464–6495. doi:10.3390/ijms16036464

63



Bylund,  M.,  Andersson,  E.,  Novitch,  B.  G.,  Muhr,  J.  (2003).  Vertebrate  neurogenesis  is
counteracted by Sox1-3 activity. Nature Neuroscience, 6, 1162–1168. doi:10.1038/nn1131

Chen, X., Schulz-Trieglaff, O., Shaw, R., Barnes, B., Schlesinger, F., Källberg, M., et al. (2016).
Manta: rapid detection of structural variants and indels for germline and cancer sequencing
applications. Bioinformatics, 32(8), 1220–1222. doi:10.1093/bioinformatics/btv710

Daniels,  A.M.,  Rosenberg,  R.E.,  Anderson,  C.,  Law,  J.K.,  Marvin,  A.R.,  Law, P.A.  (2012).
Verification of parent-report of child autism spectrum disorder diagnosis to a web-based
autism registry.  Journal  of  Autism  and  Developmental  Disorders,  42(2),  256–265.  doi:
10.1007/s10803-011-1236-7

De Rubeis, S., He, X., Goldberg, A. P., Poultney, C. S., Samocha, K., Ercument Cicek, A., et al.
(2014).  Synaptic,  transcriptional  and  chromatin  genes  disrupted  in  autism.  Nature,
515(7526), 209–215. doi:10.1038/nature13772

Gilissen, C., Hehir-Kwa, J. Y., Thung, D. T., van de Vorst, M., van Bon, B. W. M., Willemsen,
M.  H.,  et  al.  (2014).  Genome sequencing identifies  major  causes  of  severe  intellectual
disability. Nature, 511(7509), 344–347. doi:10.1038/nature13394

Heraud-Farlow, J. E., Sharangdhar, T., Li, X., Pfeifer, P., Tauber, S., Orozco, D., et al. (2013).
Staufen2  Regulates  Neuronal  Target  RNAs.  Cell  Reports,  5(6),  1511–1518.
doi:10.1016/j.celrep.2013.11.039

Iossifov, I., O’Roak, B. J., Sanders, S. J., Ronemus, M., Krumm, N., Levy, D., et al. (2014). The
contribution of de novo coding mutations to autism spectrum disorder. Nature, 515(7526),
216–221. doi:10.1038/nature13908

Iossifov, I., Ronemus, M., Levy, D., Wang, Z., Hakker, I., Rosenbaum, J., et al. (2012). De novo
gene  disruptions  in  children  on  the  autistic  spectrum.  Neuron,  74(2),  285–299.
doi:10.1016/j.neuron.2012.04.009

Kerrisk, M. E., Cingolani, L. A., & Koleske, A. J. (2014). ECM receptors in neuronal structure,
synaptic  plasticity,  and  behavior.  Progress  in  Brain  Research,  214,  101–131.
doi:10.1016/B978-0-444-63486-3.00005-0

Kircher, M., Witten, D. M., Jain, P., O’Roak, B. J., Cooper, G. M., & Shendure, J. (2014). A
general  framework  for  estimating  the  relative  pathogenicity  of  human  genetic  variants.
Nature Genetics, advance online publication. doi:10.1038/ng.2892

Kleefstra, T., Kramer, J. M., Neveling, K., Willemsen, M. H., Koemans, T. S., Vissers, L. E. L.
M.,  et  al.  (2012).  Disruption of an EHMT1-Associated Chromatin-Modification Module
Causes Intellectual Disability.  The American Journal of  Human Genetics,  91(1),  73–82.
doi:10.1016/j.ajhg.2012.05.003

64



Koemans, T. S., Kleefstra, T., Chubak, M. C., Stone, M. H., Reijnders, M. R. F., de Munnik, S.,
et al. (2017). Functional convergence of histone methyltransferases EHMT1 and KMT2C
involved in  intellectual  disability  and autism spectrum disorder.  PLoS Genetics,  13(10),
e1006864

Lee, H., Marvin, A. R., Watson, T., Piggot, J., Law, J. K., Law, P. A., et al. (2010). Accuracy of
phenotyping of autistic  children based on internet  implemented parent  report.  American
Journal  of  Medical  Genetics  Part  B:  Neuropsychiatric  Genetics,  153B(6),  n/a-n/a.
doi:10.1002/ajmg.b.31103

Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., et al. (2016).
Analysis of protein-coding genetic variation in 60,706 humans.  Nature,  536(7616), 285–
291. doi:10.1038/nature19057

Levitt, P., Ebert, P., Mirnics, K., Nimgaonkar, V. L., & Lewis, D. A. (2006). Making the Case
for a Candidate Vulnerability Gene in Schizophrenia: Convergent Evidence for Regulator of
G-Protein  Signaling  4  (RGS4).  Biological  Psychiatry,  60(6),  534–537.
doi:10.1016/j.biopsych.2006.04.028

Lim, E. T., Raychaudhuri, S., Sanders, S. J., Stevens, C., Sabo, A., MacArthur, D. G., et al.
(2013). Rare Complete Knockouts in Humans: Population Distribution and Significant Role
in Autism Spectrum Disorders. Neuron, 77(2), 235–242. doi:10.1016/j.neuron.2012.12.029

Liu,  X.,  Wu,  C.,  Li,  C.,  & Boerwinkle,  E.  (2016).  dbNSFP v3.0:  A One-Stop Database  of
Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs.
Human Mutation, 37(3), 235–241. doi:10.1002/humu.22932

MacLean, H. E., Favaloro, J. M., Warne, G. L., & Zajac, J. D. (2006). Double-strand DNA break
repair with replication slippage on two strands: a novel mechanism of deletion formation.
Human Mutation, 27(5), 483–489. doi:10.1002/humu.20327

Marshall,  C.  R.,  Noor,  A.,  Vincent,  J.  B.,  Lionel,  A.  C.,  Feuk,  L.,  Skaug,  J.,  et  al.  (2008).
Structural Variation of Chromosomes in Autism Spectrum Disorder.  American Journal of
Human Genetics, 82(2), 477–488. doi:10.1016/j.ajhg.2007.12.009

Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D., & Thomas, P. D. (2017).
PANTHER  version  11:  expanded  annotation  data  from  Gene  Ontology  and  Reactome
pathways, and data analysis tool enhancements.  Nucleic Acids Research,  45(D1), D183–
D189. doi:10.1093/nar/gkw1138

65



Mosca,  E.,  Bersanelli,  M.,  Gnocchi,  M.,  Moscatelli,  M.,  Castellani,  G.,  Milanesi,  L.,  &
Mezzelani,  A.  (2017).  Network  Diffusion-Based  Prioritization  of  Autism  Risk  Genes
Identifies  Significantly  Connected  Gene  Modules.  Frontiers  in  Genetics,  8,  129.
doi:10.3389/fgene.2017.00129

Neale, B. M., Kou, Y., Liu, L., Ma’ayan, A., Samocha, K. E., Sabo, A., et al. (2012). Patterns
and rates of exonic de novo mutations in autism spectrum disorders.  Nature,  485(7397),
242–245. doi:10.1038/nature11011

O’Roak, B. J., Vives, L., Fu, W., Egertson, J. D., Stanaway, I. B., Phelps, I. G., et al. (2012).
Multiplex  targeted  sequencing  identifies  recurrently  mutated  genes  in  autism  spectrum
disorders. Science, 338(6114), 1619–1622. doi:10.1126/science.1227764

O’Roak,  B.  J.,  Vives,  L.,  Girirajan,  S.,  Karakoc,  E.,  Krumm, N.,  Coe,  B.  P.,  et  al.  (2012).
Sporadic  autism  exomes  reveal  a  highly  interconnected  protein  network  of  de  novo
mutations. Nature, 485(7397), 246–250. doi:10.1038/nature10989

Oron,  O.,  & Elliott,  E.  (2017).  Delineating  the  Common Biological  Pathways  Perturbed by
ASD’s Genetic Etiology: Lessons from Network-Based Studies.  International journal of
molecular sciences, 18(4). doi:10.3390/ijms18040828

Rao, A. R., & Nelson, S. F. (2017). Calculating the statistical significance of rare variants causal
for Mendelian and complex disorders. doi.org, 103218. doi:10.1101/103218

Ritvo, E. R., Spence, M. A., Freeman, B. J., Mason-Brothers, A., Mo, A., & Marazita, M. L.
(1985).  Evidence  for  autosomal  recessive  inheritance  in  46  families  with  multiple
incidences  of  autism.  American  Journal  of  Psychiatry,  142(2),  187–192.
doi:10.1176/ajp.142.2.187

Robinson, J. T., Thorvaldsdóttir,  H., Winckler, W., Guttman, M., Lander, E. S.,  Getz, G., &
Mesirov, J. P. (2011). Integrative genomics viewer.  Nature Biotechnology,  29(1), 24–26.
doi:10.1038/nbt.1754

Ronemus, M., Iossifov, I., Levy, D., & Wigler, M. (2014). The role of de novo mutations in the
genetics  of  autism  spectrum  disorders.  Nature  Reviews  Genetics,  15(2),  133–141.
doi:10.1038/nrg3585

Rossin, E.  J.,  Lage,  K.,  Raychaudhuri,  S.,  Xavier,  R. J.,  Tatar,  D.,  Benita,  Y.,  et  al.  (2011).
Proteins  Encoded  in  Genomic  Regions  Associated  with  Immune-Mediated  Disease
Physically  Interact  and  Suggest  Underlying  Biology.  PLoS  Genetics,  7(1).
doi:10.1371/journal.pgen.1001273

66



Samocha, K. E., Robinson, E. B., Sanders, S. J., Stevens, C., Sabo, A., McGrath, L. M., et al.
(2014). A framework for the interpretation of de novo mutation in human disease.  Nature
Genetics, 46(9), 944–950. doi:10.1038/ng.3050

Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, A. J., et
al. (2012). De novo mutations revealed by whole-exome sequencing are strongly associated
with autism. Nature, 485(7397), 237–241. doi:10.1038/nature10945

Schmunk, G., & Gargus, J. J. (2013). Channelopathy pathogenesis in autism spectrum disorders.
Frontiers in genetics, 4, 222. doi:10.3389/fgene.2013.00222

Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., et al. (2007). Strong
Association of De Novo Copy Number Mutations with Autism.  Science,  316(5823), 445–
449. doi:10.1126/science.1138659

Talkowski, M. E., Rosenfeld, J. A., Blumenthal, I., Pillalamarri, V., Chiang, C., Heilbut, A., et
al. (2012). Sequencing Chromosomal Abnormalities Reveals Neurodevelopmental Loci that
Confer  Risk  across  Diagnostic  Boundaries.  Cell,  149(3),  525–537.
doi:10.1016/j.cell.2012.03.028

Thorvaldsdóttir,  H.,  Robinson,  J.  T.,  & Mesirov,  J.  P.  (2013).  Integrative  Genomics  Viewer
(IGV):  high-performance  genomics  data  visualization  and  exploration.  Briefings  in
Bioinformatics, 14(2), 178–192. doi:10.1093/bib/bbs017

VarSeq. (n.d.). Bozeman, MT: Golden Helix, Inc.

Vorstman,  J.  A.  S.,  Parr,  J.  R.,  Moreno-De-Luca,  D.,  Anney,  R.  J.  L.,  Nurnberger,  J.  I.,  &
Hallmayer,  J.  F.  (2017).  Autism  genetics:  opportunities  and  challenges  for  clinical
translation. Nature Reviews. Genetics, 18(6), 362–376. doi:10.1038/nrg.2017.4

Wen, Y., Alshikho, M. J.,  & Herbert,  M. R. (2016). Pathway Network Analyses for Autism
Reveal Multisystem Involvement, Major Overlaps with Other Diseases and Convergence
upon  MAPK  and  Calcium  Signaling.  PLOS  ONE,  11(4),  e0153329.
doi:10.1371/journal.pone.0153329

Yu, T. W., Chahrour, M. H., Coulter, M. E., Jiralerspong, S., Okamura-Ikeda, K., Ataman, B., et
al. (2013). Using whole-exome sequencing to identify inherited causes of autism. Neuron,
77(2), 259–273. doi:10.1016/j.neuron.2012.11.002

Yuen, R. K. C., Merico, D., Bookman, M., Howe, J. L., Thiruvahindrapuram, B., Patel, R. V., et
al. (2017). Whole genome sequencing resource identifies 18 new candidate genes for autism
spectrum disorder. Nature Neuroscience, advance online publication. doi:10.1038/nn.4524

67



Yuen, R. K. C., Thiruvahindrapuram, B., Merico, D., Walker, S., Tammimies, K., Hoang, N., et
al. (2015). Whole-genome sequencing of quartet families with autism spectrum disorder.
Nature Medicine, 21(2), 185–191. doi:10.1038/nm.3792

Zhao, X., Leotta, A., Kustanovich, V., Lajonchere, C., Geschwind, D. H., Law, K., et al. (2007).
A unified genetic theory for sporadic and inherited autism.  Proceedings of the National
Academy of Sciences, 104(31), 12831–12836. doi:10.1073/pnas.0705803104

68



Chapter 4

A tool for calculating mutational burden of genes causal for

Mendelian and complex disorders

4.1 Abstract

With  the  expanding  use  of  next-gen  sequencing  (NGS)  to  diagnose  the  thousands  of  rare

Mendelian genetic diseases, it  is critical to be able to interpret individual DNA variation. To

calculate the significance of finding a rare protein-altering variant in a given gene, one must

know the frequency of seeing a variant in the general population that is at least as damaging as

the variant in question.

We developed a general method to better interpret the likelihood that a rare variant is disease

causing if observed in a given gene or genic region mapping to a described protein domain, using

genome-wide information from a large control sample. Based on data from 2,504 individuals in

the 1000 Genomes Project dataset, we calculated the number of individuals who have a rare

variant in a given gene for numerous filtering threshold scenarios,  which may be useful  for

vetting rare variants causal for disease.  Additionally, we calculated mutational burden data for

the number of individuals with rare variants in genic regions mapping to protein domains.

We describe how to apply the mutational burden data for use in predictive genomics and

predict  whether  a  person will  develop a  disease  given  their  genotype,  and describe  how to

calculate  the  statistical  significance  of  observing  rare  variants  in  a  given  proportion  of

independent, affected individuals. We present SORVA, a web tool that allows users to browse
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the mutational burden dataset. Finally, we demonstrate that using our dataset to rank genes based

on intolerance for variation, the ranking correlates well with pLI scores derived from the Exome

Aggregation Consortium (ExAC) dataset (ρ = 0.515), with the benefit that the scores are directly

interpretable.

In conclusion, we have presented a strategy that is useful for vetting candidate genes from

NGS studies and allows researchers to provide support for variants in a given gene or protein

domain that may be candidates for follow-up studies.

4.2 Introduction

Whole-exome sequencing has enabled the identification of causal genes responsible for causing

hundreds of rare, Mendelian disorders in just a few years; however, there remain hundreds, if not

thousands, more to be uncovered. The genetic basis has been determined for 4,803 of the rare

diseases, whereas the number of disease phenotypes with a known or suspected Mendelian basis

lies close to 6,419 based on data in Online Mendelian Inheritance in Man (OMIM) (2015). Next-

gen sequencing (NGS) studies are certain to uncover many disease-phenotype relationships in

the near  future,  but  for cases involving rare diseases with limited sample sizes,  determining

causality between phenotypes and novel genes, and distinguishing true pathogenic variants from

rare benign variants remains a challenge. Often disease causality of a given rare variant is only

clear  when  additional  affected  individuals  with  similar  rare  variants  in  the  same  gene  are

identified, which can take years to occur due to the rarity of these disorders. Thus, improvements

in  determining  disease  causality  or  likely  pathogenicity  would  greatly  enhance  efforts  to
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prioritize genes and gene variants for further molecular analysis, even if only a single affected

individual was identified.

Variants  identified  through  broad  based  NGS  technologies  are  typically  classified  as

pathogenic, likely pathogenic, variant of uncertain significance (VUS) or likely benign according

to multiple criteria, largely based on prior knowledge about the specific variant.  Novel variants

are evaluated individually and placed into discrete categories if they meet complex combinations

of  criteria,  which  include  thresholds  for  allele  frequency,  segregation,  number  of  affected

unrelated individuals, and known functional relevance (Dorschner et al., 2013; Amendola et al.,

2015). For example, a variant would be deemed pathogenic if the allele frequency threshold falls

below a given threshold and the variant  segregates  with a disorder in  at  least  two unrelated

affected families, or if other criteria are met. In brief, variants are evaluated individually based

on variant-specific annotations.

An additional source of information that would aid in variant prioritization would be a gene-

specific annotation describing mutational burden in the overall population. To illustrate, consider

a gene that has very few functional variants in the general population,  and several unrelated

patients were found to carry distinct protein-altering, rare missense or potential loss-of-function

(LOF) variants in the given gene and within a highly conserved protein domain. Under a model

for  a  rare  Mendelian disorder  caused by highly penetrant  variants,  we assume that  common

variants  cannot  be  considered  causal,  and rare  variants  in  genes  intolerant  of  mutations  are

deemed highly suspicious of being causal for disease even if no other information is known

about the variants. Therefore, knowing the population-wide mutational burden of a given gene

for rare variants would be informative.

71



While there are gene-ranking methods based on other parameters (Gill et al., 2014), recently

several gene-level ranking systems have emerged based on measures for intolerance to mutations

in the general population. The Residual Variation Intolerance Score (RVIS) generates a score

based on the frequencies of observed common coding variants compared to the total number of

observed variants in the same gene or protein domain (Petrovski  et al., 2013; Gussow  et al.,

2016). A second ranking system, in addition to these parameters, also incorporates the frequency

at which genes are found to be affected by rare, likely functional variants, and their findings

suggest that disease associations to genes which frequently contain variants, termed as FLAGS,

should  be  evaluated  with  extra  caution  (Shyr  et  al.,  2014).  Next,  the  Exome  Aggregation

Consortium (ExAC) dataset provides missense Z scores that describe the degree to which a gene

is  depleted  of  missense  variants  compared  to  expected  values  based  on  the  frequency  of

synonymous variants, and provides pLI scores that describe probabilities of a gene being LOF

intolerant (Samocha et al., 2014; Lek et al., 2016). Of these two metrics, pLI is less correlated

with coding sequence length and outperforms the  Z score as an intolerance metric (Lek  et al.,

2016). Another method, EvoTol, combines genic intolerance with evolutionary conservation of

whole protein sequences or their constituent protein domains to prioritize disease-causing genes,

and extends the RVIS method by leveraging the information on protein sequence evolution to

identify  genes  where  the  number  of  mutations  that  are  likely  to  be  damaging  based  on

evolutionary protein information is higher than expected (Rakham et al., 2015). Although these

methods may be useful in ranking genes and prioritizing variants in order to highlight those in

genes that frequently contain variants, neither results in a score that is directly interpretable in

order to calculate statistics about NGS findings and determine the significance of seeing a variant

in a given number of affected individuals.
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One tool  that  calculates  a  P-value  of  finding  a  true  association  through  clinical  exome

sequencing, RD-Match (Akle  et  al.,  2015),  allows researchers to calculate  the probability  of

finding phenotypically similar individuals who share variants in a gene through systems such as

Matchmaker  Exchange. The tool incorporates the probability of an individual  having a rare,

nonsynonymous variant in a gene by taking the sum of the allele frequencies of all rare (MAF <

0.1%)  nonsynonymous  variants  annotated  in  ExAC  (Lek  et  al.,  2016).  With  higher  MAF

thresholds  and  large  population  sizes,  this  is  problematic  because  an  individual  may  have

multiple variants in a gene that frequently contains rare variation, causing one to overestimate

the fraction of  the population carrying rare  variants  in  the gene,  hence the fixed,  low MAF

threshold. Furthermore, this tool is applicable to studies in which the affected individuals are

selected based on phenotype as well as the prior knowledge that they share rare variants in a

given  gene.  Finally,  RD-Match  does  not  allow  researchers  to  customize  variant  filtering

thresholds according to the disease model with regards to minor allele frequency or predicted

consequence such as LOF or missense variant.

Another method that calculates the significance of NGS findings, the Transmission And De

novo Association test (TADA), is a Bayesian model that combines data from de novo mutations,

inherited variants in families, and variants in cases and controls in a population (He et al., 2013).

This method has been used to identify risk-conferring genes in whole-exome sequencing studies

of autism spectrum disorders and neurodevelopmental delay (De Rubeis et al., 2014; Sanders et

al., 2015; Berko et al., 2017). While TADA analysis has proven to be a critical first step in the

development of quantitative methods to assess risk genes, it is restricted to integrating trio and

case-control  data  and  is  unable  to  leverage  information  from  large  reference  datasets,  and

therefore, it cannot be used for calculating the P-value of findings in smaller studies.
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Here we describe a method, named SORVA for Significance Of Rare VAriants, for ranking

genes based on mutational burden. In addition to incorporating information from variant allele

frequencies,  we use  population-derived  data  to  precompute  an  unbiased,  easily  interpretable

score, which allows one to calculate the significance of observing rare variants in a given gene in

unrelated,  affected individuals.  For example,  one may then answer the question: what is  the

probability  of observing missense variants  in  three out  of ten unrelated affected individuals,

given that only one in a thousand individuals in the general population carry a missense variant

in the gene? Essentially, a model can be constructed to estimate the probability of drawing  n

unrelated families with similar biallelic genotypes by chance from the general population (Akawi

et  al.,  2015).  Conversely,  if  one  has  a  large  list  of  variants  of  unknown  significance,  the

significance  level  may  be  useful  in  prioritizing  variants  within  the  same  category  of

pathogenicity, and in improving the interpretation of variants in studies of Mendelian genetic

disorders.

4.3 Materials and Methods

4.3.1 Datasets

Genomic data and allele frequencies for calculating a priori probabilities of observing a variant

within a gene were obtained from the 1000 Genomes Project (phase 3 variant set) (The 1000

Genomes  Project  Consortium,  2012).  This  variant  set  contains  2,504  individuals  from  26

populations  in  Africa  (AFR),  East  Asia  (EAS),  Europe  (EUR),  South  Asia  (SAS),  and  the

Americas (AMR). 
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4.3.2 Bioinformatics pipeline

Genomic annotations were assigned to each variation using SNP & Variation Suite (SVS) v8.1

(Bozeman, MT) with the following parameters: gene set Ensembl release 75 (Cunningham et al.,

2015), human genome version GRCh37.p13.  Variants were filtered for coding mutations that

result in a change in the amino acid sequence (e.g. missense, nonsense and frameshift mutations),

or mutations that reside within a splice site junction (intronic distance of 2 base pairs). Biallelic

data  were  recoded  based  on  an  additive  model  to  correct  for  MAF  of  variants  on  the  X

chromosome for male samples, using a script in SVS. Variants were then filtered for minor allele

frequency thresholds of MAF < 5%, < 1%, < 0.5%, < 0.1% and < 0.05%, based on allelic

frequency within the dataset. For each filtered list of variants, we collapsed variants by gene and

performed the following two scenarios: 1) an individual was counted as having a rare variant in a

gene if the variant mapped to any transcript of a gene; 2) we counted the number of variants in a

given gene per individual, i.e. if an individual carried two rare mutations within a gene, they

were counted twice. In a separate analysis, we collapsed variants by protein domains obtained

from Interpro (Mitchell et al., 2015) using the Ensembl API (McLaren et al., 2010). Finally, we

repeated each analysis using a subset of the 1000 Genomes Project data grouped according to

superpopulation. Variant collapsing methods were performed using a custom Python script run

by SVS, and an individual was counted as having a rare variant in a gene if the variant mapped to

any transcript of a gene.

In addition to replicating the analysis for gene versus protein domain, for each population,

and  for  each  MAF  threshold,  we  also  repeated  the  calculations  for  multiple  categories  of

predicted  variant  consequence  on  the  protein  transcript.  The  two  categories  were  1)

nonsynonymous variants or those predicted to be more severe by Ensembl (Cunningham et al.,
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2015), briefly nonsynonymous or LOF variants, and 2) potential LOF variants (includes splice

site, protein truncation stop codon gain mutations, and frameshift indels). 

4.3.3 Comparison of disease gene categories 

To determine whether  our  results  show concordance with studies  identifying essential  genes

critical  for  the  survival  of  a  human,  we  compared  the  number  of  individuals  with  rare,

deleterious mutations between gene lists containing essential human genes, those known to cause

Mendelian diseases, and control genes, defined as genes not included in either category.  We

considered genes to be essential human genes if they were determined as such in at least one of

the following two studies. The first essential human gene set is defined as 'core' essential genes

that  are  required  for  fitness  of  cells  from both the  HAP1 and KBM7 cell  lines,  determined

through extensive mutagenesis in near-haploid human cells (N=1734) (Blomen et al., 2015). The

second essential human gene set consists of genes essential to four screened cell lines, KBM7,

K562, Raji and Jiyoye, determined using the CRISPR system. From the latter set, we selected

genes with an adjusted P-value CRISPR score< 0.4025 for each cell line (N=1878), which is the

set of genes that the authors determined to be essential for optimal proliferation in their screen,

although the precise set would depend on the score cutoff chosen (Wang et al., 2015).

To  identify  genes  known  to  cause  Mendelian  disease,  we  parsed  data  from  Online

Mendelian  Inheritance  in  Man  (OMIM)  (2015)  and  identified  phenotype  descriptions  with

known molecular basis. We parsed the genotype description field for the gene name and the

following  phrases:  'caused  by  heterozygous/homozygous  mutation',  'autosomal  recessive',

'autosomal  dominant',  'X-linked',  '  on  chromosome  X',  and  categorized  genes  as  autosomal

recessive  (AR)  (N=655),  autosomal  dominant  (AD)  (N=785),  and  X-linked  (XL)  (N=126)
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accordingly.

4.3.4 Comparison of gene ranking methods

Genic mutational intolerance scores were obtained from four previous studies and included the

Residual Variation Intolerance Score (RVIS) (Petrovski  et al., 2013), scores from Shyr  et al.

2014 (FLAGS), pLI scores based on the ExAC dataset (Samocha et al., 2014; Lek et al., 2016),

and EvoTol scores (Rackham et al., 2015). We considered 15,266 genes that were found in all

four datasets, as well as ours, and ranked genes based on scores obtained using each method.

Spearman's rho test (Erich 1975; Conover 1980) was used to measure the size and statistical

significance of the association between the rankings obtained from ExAC and those obtained by

RVIS,  FLAGS  and  SORVA  methods.  This  test  measures  the  strength  and  direction  of

association between two ranked variables.

In order to assess the performances of all five methods when prioritizing putative disease

genes and plot receiver operating characteristic (ROC) curves, we used the sets of OMIM genes

described earlier. We filtered the OMIM gene sets to overlap the 15,266 genes that were scored

by all five methods. Genes were ranked according to each metric and a count of the number of

disease-causing genes that would be found at each percentile are reported. In order to show the

baseline prediction, the result of randomly assigning a percentile to each gene is also shown.

SORVA genes were ranked according to the number of 1000 Genomes Project individuals who

were heterozygous or homozygous for rare (MAF<0.005) LOF variants in a given gene, and ties

between genes were resolved based on the number or individuals who have rare (MAF<0.005)

LOF or missense variants in a gene, and finally less rare (MAF<0.05) LOF or missense variants.
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4.3.5 Calculating depletion of variants in protein domains

We  performed  two  analyses:  first,  we  calculated  whether  protein  domains  in  a  gene  were

depleted of variation compared to the rest of the gene, and second, we calculated whether there

were any types of protein domains that were depleted of variation in general across the entire

genome.

First, for each protein domain mapping within a gene, we calculated whether domains were

depleted of variation compared to the rest of the gene. Depletion was calculated as: (number of

variants per individual in protein domain / number of variants per individual in exonic region of

a gene × length of protein domain / length of transcript). A value of 1 is expected by chance, and

a small value indicates protein domains most intolerant towards mutations. We then calculated

the P-value of obtaining such a depletion score using the binomial cumulative density function,

under  the  assumption  that  each  site  is  equally  likely  to  be  mutated.  This  P-value  is  then

"PHRED-scaled" by expressing the rank in order of magnitude terms rather than the precise rank

itself.  High scaled  scores  indicate  that  a  protein  domain  is  depleted  of  rare  (MAF < 0.5%)

mutations compared to the rest of the gene, hence protein domains with high scores tend to be

enriched for  highly mutated genes.  Our goal  was to  determine mutational  burden at  a  finer

resolution than the previous gene-based analysis enabled, and not to simply determine highly

mutated genes as previously done. Therefore, we filtered out protein domains that span more

than 50% of the length of the transcript. We also filtered out genes with no observed mutations.

These filtering steps resulted in 7,828 genes remaining.

 Next, we calculated whether there were any types of protein domains that were depleted of

variation in general across the entire genome. We weighted each gene with instances of the
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protein domain equally. In other words, if a gene had multiple instances of a protein domain, we

first calculated the mean number of heterozygous rare (MAF <=0.5%) LOF variants observed (in

the  entire  dataset  of  2,504  individuals)  in  either  protein  domain  within  the  gene.  Next,  we

calculated the mean and variance of the means for each gene.

To determine whether a protein domain was well covered by sequencing, we calculated the mean

coverage of an instance of a protein domain in the 1000 Genomes Project sample HG00096. We

calculated depth of coverage from phase 3 exome alignment data using GATK and custom code,

which is available at https://github.com/alizrrao/DepthOfCoveragePerInterval.

4.3.6 Observing rare variants in unrelated individuals

Given the number of individuals in the population who have a  potentially  damaging variant

anywhere  in  a  gene,  we  calculated  the  significance  of  seeing  the  observed  number  of

independent individuals carrying a rare variant in a gene, given the number of cases sequenced.

Specifically,  let  p be  the  a  priori probability  that  an  individual  has  a  heterozygous  or

homozygous mutation in a gene. Then, the P-value equals the probability of seeing X or more

individuals with a heterozygous or homozygous variant, out of n independent individuals, where

Pr(X = k) is the probability mass function for the random variable X with binomial distribution

B(n, p). This can be calculated as

.
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4.3.7 Availability of data and materials

Gene-based mutational burden datasets and the webtool are available for querying at the SORVA

website, https://sorva.genome.ucla.edu.

Standalone  software  and  datasets  are  freely  available  for  download  at

https://github.com/alizrrao/sorva.

The  1000  Genomes  Project  datasets  analysed  during  the  current  study  are  available  in  the

International Genome Sample Resource (IGSR), http://www.internationalgenome.org/data.

4.4 Results

To generate  a  mutational  burden  dataset  that  would  aid  in  prioritizing  candidate  genes  and

variants from NGS studies, we calculated the frequency of observing a variant in each gene in an

individual within the population by using a large control dataset and collapsing variants in exonic

regions  of  each  gene.  Calculations  are  based  on  data  from  2,504  individuals  in  the  1000

Genomes Project phase 3 dataset, which includes targeted exome sequencing data (mean depth =

65.7×) from individuals  from five “superpopulations” (European,  African,  East  Asian,  South

Asian,  and ad-mixed American).  We repeated  the  analysis  for  variants  filtered  according to

various  minor  allele  frequency and protein  consequence  thresholds  that  researchers  may use

when filtering variants.  First,  we filtered out common variants that met various minor allele

frequency (MAF) thresholds used in the literature and others: 5%, 1%, 0.5%, 0.1% and 0.05%.

We then filtered rare variants according to two scenarios before collapsing variants across genes:

1) we included all protein-altering variants, i.e. those that cause a nonsynonymous change in the
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protein transcript or have a more deleterious consequence, and 2) we filtered for potential loss-

of-function (LOF) variants, i.e. splice site, stop codon gain and frameshift variants.

Below, we present general findings in population and molecular genetics that can be gleaned

from the dataset, and illustrate how the dataset can be used as a control group to vet candidate

genes and variants. 

4.4.1 Population differences

Of  18,877  genes  that  are  in  the  union  of  the  Ensembl  and  RefSeq  gene  sets,  most  genes

contained heterozygous or homozygous missense variants in individuals in all populations; only

2.3% contain no rare variants (MAF < 5%), and 1.0% of genes have an identified variant in only

a single population. Lowering our MAF threshold does not decrease the number of genes much.

Many  genes  do  not  contain  any  rare  LOF variants  in  the  1000  Genomes  Project  data,  and

filtering variants to include only LOF variants reduces the number of genes containing variants

in the dataset to 9641, or 51.1% of genes in the dataset. (Figure 4.1) These results demonstrate 

Figure  4.1.  The  proportion  of  genes  (n=18877)  containing  rare  variation  in  individuals  in
various populations. A gene was considered mutated if at least one individual was heterozygous or
homozygous for an uncommon or rare (MAF < 5%) variant anywhere in the gene. Variants were
filtered  by  predicted  consequence  for  (a)  protein-altering (missense or  potential  loss-of-function)
variants,  or  (b) potential  loss-of-function  variants  only.  Abbreviations:  EUR,  European.  AFR,
African. EAS, East Asian. SAS, South Asian. AMR, ad-mixed American.
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that choosing the correct MAF threshold is not nearly as important as identifying the correct

protein consequence threshold to use when filtering variants. For instance, including all missense

variants when LOF variants are generally causal for a given disease would reduce power to

detect the gene associated with the disease.

The number of individuals who carried a heterozygous or homozygous variant in a given gene

was generally higher in the African population compared to other populations (Figure 4.2a),

which is expected given that African individuals are observed to have up to three times as many

low-frequency variants as those of European or East Asian origin (The 1000 Genomes Project

Consortium, 2012), which reflects ancestral bottlenecks in non-African populations (Marth et al.,

Figure  4.2.  Population  differences  between  the  number  of  individuals  mutated  for  a  gene
between populations.  (a) Each data point in the histogram represents the proportion of individuals
within a population who are heterozygous or homozygous for an uncommon (MAF < 5%) missense
variant in a given gene. (b) The number of individuals carrying uncommon variants in a gene differs
between populations. We plotted the variance of the count for each gene and colored high-variance
genes to denote which population differed most from the mean.
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2003). Conversely, regarding genes for which the number of individuals with a rare variant in the

gene differed between populations, the genes having the greatest difference between populations

tended to diverge most in the African population. (Figure 4.2b) Genes whose mutational burden

diverges most between populations are significantly enriched for a large number of biological

functional  terms,  including  glycoprotein,  olfactory  transduction  and  sensory  perception,  cell

adhesion,  various  repeats,  basement  membrane  and  extracellular  matrix  part,  cadherin,

microtubule  motor  activity,  immunoglobulin  and  EGF-like  domain.  It  is  important  to  note

differences between populations, because, in many cases, researchers would be advised to use

control populations similar to their study population. However, if a gene is associated with a

severe, childhood-onset disorder in one population, it is likely to be associated with disease in

other populations, as well, and knowledge that a gene frequently contains variation in African

populations would be useful in prioritizing candidate genes even if one is studying variation in

another population. In this case, such information would point towards reduced likelihood for

disease association.

4.4.2 Properties of known disease genes

To determine whether calculating the frequency of individuals who have a rare variant in a given

gene in the general population may be helpful in determining which genes are more likely to

cause  disease,  we compared the  counts  between multiple  categories  of  genes:  a)  “essential”

genes, defined as genes essential for cell survival in human cell lines, b) genes in which variants

are known to cause autosomal dominant disorders, c) genes in which variants are known to cause

autosomal recessive disorders, d) genes in which variants are known to cause X-linked disorders,

and e) all other genes. As expected, fewer individuals carry rare, protein-altering or LOF variants
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in genes known to cause Mendelian disorders compared to other genes, and genes associated

with X-linked disorders tend to be least tolerant of mutations (Figure 4.3; Supplementary Figure

4.S1). Although frequency counts overlapped between gene categories for every variant filtering

threshold, clusters were most differentiated when plotting the proportion of individuals who are

heterozygous for rare LOF variants in a gene. Furthermore, the differentiation between clusters

increased as the MAF threshold became more stringent,  as the datasets  became enriched for

deleterious variants that can only subsist at a low allele frequency in a population due to selective

pressure. (Supplementary Figure 4.S1)

Figure 4.3. The number of individuals heterozygous for a rare (MAF < 0.5%) potentially LOF
mutation in a gene.  Each data point represents a single gene, mutated in the aggregate population
(n=2504 individuals).  Genes are grouped according to whether they are an essential  gene,  or are
known  to  cause  autosomal  dominant,  autosomal  recessive  or  X-linked  disease.  Colored  shapes
indicate the centroids of each group. Abbreviations: nonsyn, nonsynonymous. LOF, loss-of-function.
AD, autosomal dominant. AR, autosomal recessive. XL, X-linked.
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Previous research suggests that 2.0% of adults of European ancestry and 1.1% of adults of

African  ancestry  can  be  expected  to  have  actionable  highly  penetrant  pathogenic  (including

novel  expected  pathogenic)  or  likely  pathogenic  single-nucleotide  variants  (SNVs)  in  112

medically  actionable  genes  (Amendola  et  al.,  2015).  If  we  look  for  rare  variants  in  1000

Genomes Project individuals—benign as well as pathogenic variants—, we find that a larger

proportion of individuals, 5.8% of European individuals and 3.3% of African individuals, are

heterozygous or homozygous for extremely rare (MAF < 0.0005) LOF variants in these 112

genes, highlighting the large number of benign variants that are found in the population at low

allele frequencies and should be filtered out by manual curation.

4.4.3 Depletion of variants in regions mapping to specific protein domains

It  has  been  suggested  previously  that  collapsing  variants  by  protein  domain  could  lead  to

improved gene-based intolerance scoring systems, as certain regions of the gene could be much

more constrained than others (Petrovski et al., 2013). We incorporated data for 322,772 protein

domains from Interpro (Mitchell et al., 2015) and calculated the average number of individuals

who have a  variant  in  any given type  of  protein  domain  (Supplementary  Table  3.S1),  after

filtering for rare (MAF < 0.5%), heterozygous LOF variants. Protein domains that are highly

constrained,  well  covered during exome sequencing and rarely contain variants  despite  their

large size include the Family A G protein-coupled receptor-like protein domain (Superfamily:

SSF81321), which is found in 660 genes and has a mean length of 965 base pairs; none of the

2,504 individuals carry rare variants in the region mapping to this protein domain. Other highly

constrained protein domains that occur throughout the human genome include Glutamic acid-

rich  region  profile  (PfScan:  PS50313),  Proline-rich  region  profile  (PfScan:PS50099),

85



Immunoglobulin (Superfamily: SSF48726), and Cysteine-rich region profile (PfScan: PS50311).

(Supplementary Table 4.S1) If an NGS study finds that affected individuals have rare variants in

variation  intolerant  protein  domains  such as  those  listed,  the  variants  would  become highly

suspicious of being causal.

We also calculated whether  specific  genes contain protein domains that  are significantly

depleted of variation, given the frequency of variants in the gene overall. Filtering out protein

domains in genes with no variants and those with missing information reduced the dataset to

67,138  protein  domains  in  7,004  genes.  77  protein  domains  in  26  genes  were  significantly

depleted of variation compared to the rest of the gene. Specifically, the number of rare (MAF <

0.5%), heterozygous LOF variants per individual in the protein domains were significantly lower

than  expected  after  correcting  for  multiple  testing  by  the  number  of  genes.  (Figure  3.4)

Functional enrichment analysis in DAVID revealed that the most significant biological functions

in the gene list were related to tubulin-tyrosine ligase activity (P=0.015), and G-protein coupled

receptor, rhodopsin-like superfamily (P=0.05). Depletion values for all protein domains may be

found in Supplementary Table 4.S2. Information about whether a protein domain is significantly

depleted of variation despite being in a gene with frequently observed variation, or conversely,

whether it is enriched for rare variants, may be useful in distinguishing between pathogenic and

benign rare variants  within genes  containing regions under  different  degrees  of evolutionary

constraint.

4.4.4 Significance  of  findings  in  studies  of  rare  genetic  disorders  involving
independent individuals

Below, we present methods for calculating the significance of observing a given variant in a
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given  gene,  in  studies  of  independent,  unrelated  individuals.  In  the  simplest  case,  a  study

involving a  single family,  calculating  the  P-value is  relatively simple.  Consider  a  case of  a

severe,  pediatric-onset Mendelian disorder, in which both parents and the affected child are  

 

Figure  4.4.  Depletion  of  rare,  heterozygous  LOF  variants  in  regions  mapping  to  protein
domains. We plotted scaled protein domain depletion scores for each domain mapping within a gene;
high  scaled  scores  indicate  that  a  protein  domain  is  depleted  of  rare  (MAF <  0.5%)  mutations
compared  to  the  rest  of  the  gene.  Darkened  points  above  the  red  dashed  line  represent  protein
domains  that  are  significantly  depleted  of  mutations  after  correcting  for  the  number  of  genes
remaining after filtering. Larger points indicate protein domains with a greater length in proportion to
the transcript length. Points are colored if the protein domain is within a gene that is an essential
human gene or is causal for a Mendelian disorder. Abbreviations: AD, autosomal dominant.  AR,
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autosomal recessive. XL, X-linked.

sequenced to identify the causal variant. If only de novo variants are identified within a putative

gene, one can easily estimate the probability of at least one de novo mutation occurring in a gene

by random chance; one could multiply the per-base mutation rate by the length of the gene

transcript and make adjustments to account for CpG content related variation in mutation rates

(Supplementary Methods).

In studies that identify both de novo and inherited variants, calculating the significance of a

variant is more complex. First,  we generalize the equation for calculating the significance of

observing a de novo mutation in a gene for studies involving multiple unrelated individuals. The

P-value of observing independent de novo events in the same gene in s out of n individuals is

P = 1− BinomCDF(s − 1, n, ltxdc)

if multiple individuals are sequenced, where ltx is the length of the transcript in nucleotide bases

and d is the mean rate of  de novo single-nucleotide variants (SNVs) arising per nucleotide per

generation, estimated to have a lower bound of 1.2 × 10−8 per site per generation (Campbell and

Eichler, 2013; Conrad et al., 2011; Veltman and Brunner, 2012). The parameter c is the fraction

of de novo events that meet our protein consequence threshold. It is predicted that 2.85% of de

novo events  are  splice  site  altering  or  nonsense  events,  and  70.64% of  de  novo events  are

protein-altering, i.e. missense or LOF (Kryukov et al., 2007); these may be used as the respective

values for c depending on the variant filtering criteria used.

Consider  the  following  example.  Clinical  exome sequencing  (CES)  in  four  independent

families identified de novo nonsense mutations in KAT6A in all probands displaying significant

developmental  delay,  microcephaly,  and  dysmorphism  (Arboleda  et  al.,  2015).  De  novo

nonsense mutations arising in this gene in all four individuals is highly unlikely by chance (P =
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2.66 × 10-12), and the statistical findings would support KAT6A as highly suspicious for causing

the disorder. Further experiments and the identification of multiple other affected individuals by

a separate study (Tham et al., 2015) confirmed this result.

If inherited variants are also observed in a gene, calculating the statistical significance of

findings requires incorporating information about the number of individuals who carry a variant

in the particular gene in the general population. The frequencies of the number of individuals

who contain rare variants in a given gene or protein domain for various filtering thresholds may

be  queried  through  our  online  database  called  SORVA  (https://sorva.genome.ucla.edu).

(Supplementary Figure 4.S2) Researchers can select the variant filtering thresholds identical to

those used in hard filtering variants in a given study. Minor allele frequency thresholds range

from 5%, useful for studies involving more common, complex disorders where less stringent

filtering  criteria  are  used,  to  0.05%  for  studies  involving  extremely  rare  disorders.  Then,

knowing the expected number of individuals who carry a variant in the gene or protein domain in

question, one can calculate the significance of seeing the observed number of singletons (variants

observed in a single individual) as follows.

Let fhom be the fraction of individuals in the general population with a homozygous variant in

a gene or protein domain. Then, the P-value of seeing k individuals with a homozygous variant,

out of n total unrelated individuals is

Pk,n = 1− BinomCDF(k − 1, n, fhom)

where BinomCDF denotes the binomial cumulative distribution function.

If the affected individuals are heterozygous for the putative variants, the P-value is

Pk,n = 1− BinomCDF(k − 1, n, fboth)
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where fboth is the probability of an individual having either a heterozygous or homozygous variant

in the gene of interest.

The a priori probability  p can be queried from the SORVA dataset online, and standalone

computer software for obtaining p and calculating the P-value based on the methods described

herein is also available on the SORVA website (https://sorva.genome.ucla.edu/).

4.4.5 Challenges  of  evaluating  findings  in  large-scale  studies  of  complex
disorders

In complex disorders where most of the genes contributing to risk remain unknown, our dataset

may be used to provide additional evidence supporting novel gene findings. As an example,

several large-scale whole-exome sequencing (WES) studies have been carried out to-date in trios

and quads to elucidate causal genes underlying autism spectrum disorders (ASD) (Iossifov et al.,

1012; Neale et al., 2012; O’Roak et al., 2012a; O’Roak et al., 2012b; Sanders et al., 2012; Yuen

et al., 2015). However, genes identified as containing  de novo variants rarely overlap between

studies, raising the question of how many genes are truly causal and how likely genes are to be

identified as associated with autism by chance in these studies as well as others. We assessed the

number of individuals carrying rare (MAF<0.1%), heterozygous LOF variants in 1145 genes

cumulatively associated with ASD by more than a dozen studies, meta-analyses and reviews

(Vorstman et al., 2005; Kumar & Christian, 2009; Betancur et al., 2011; Miles 2011; Vieland et

al., 2011; Davis et al., 2012; Kou et al., 2012; Li et al., 2012; Michaelson et al., 2012; Novarino

et al., 2012; O’Roak  et al., 2012b; Koshimizu  et al., 2013; Yu  et al., 2013; De Rubeis  et al.,

2014; Jeste & Geschwind 2014; Liu et al., 2014; Toma et al., 2014; Butler et al., 2015; Lee et

al., 2015; Turner  et al., 2015). There was no significant difference between the distribution of
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values and that of all genes, and assuming that truly causal genes are more intolerant of rare LOF

variants,  our  findings  support  the  hypothesis  that  many  genes  could  have  been  randomly

associated with the disorder. (Figure 4.5, Supplementary Table 4.S3) Furthermore, there are 19

putative autism genes in which >0.5% of individuals carry rare, LOF variants. These genes are

likely to be false positives, because no single gene contributes to a large proportion of autism

cases. Our results highlight the need to perform statistical validation of findings involving genes

associated with complex disorders.

Appropriately,  several WES studies on ASD calculate the significance of their  findings.  For

example, Sanders et al. (2012) demonstrate in a study which identifies de novo coding mutations 

Figure 4.5. Histogram of the number of individuals with rare LOF variants in putative autism
genes. The distribution of the number of individuals with a rare variant (MAF < 0.1%) in all genes is
nearly identical to the distribution for putative autism genes (N=1145) and high-confidence autism
genes (N=109) (dashed lines), suggesting that the genes may have been associated with autism by
chance. Genes that frequently contain rare LOF variants in the population (red shaded region) are
unlikely to be causal for ASD.
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in 928 individuals that finding two independent  de novo mutations in a single gene is highly

unlikely by chance, and this occurring is viewed as evidence for association between ASD and

the gene  SCN2A (sodium channel, voltage-gated, type II, α subunit). Neale  et al. (2012) also

consider the probability of seeing two independent  de novo mutations in a single gene when

evaluating  their  findings.  Iossifov  et  al. (2012)  demonstrates  that  disrupted  genes  are

significantly  enriched  for  FRMP-associated  function;  however,  they  also  highlight  several

individual non-FRMP-associated genes based on their plausibility to cause an ASD phenotype

but make no attempt at applying statistics when considering these. In fact, de novo mutations in

genes may have arisen in these genes by chance (Iossifov et al., 2012). This example highlights

the challenges faced when evaluating genes associated with complex disorders such as ASD, and

the  importance  of  presenting  supporting  evidence  for  findings  using  statistics  or  follow-up

studies before a gene can be established as a high-confidence ASD gene.

4.4.6 Applications in predictive genomics

If a genetic disease is associated with the presence of variants in a given gene, information about

the variants in the gene in affected individuals and in population controls can be used to more

accurately assess the probability that a person will develop a disease given their genotype.

Consider a randomly chosen person from the general population who is undergoing prenatal

genetic testing. Define A as the event that their child will be born with a disease, and B as the

event that the child carries a rare, LOF variant in a given gene associated with the disease. For

many heterogeneic Mendelian disorders, studies of large cohorts provide information regarding

the relative contribution of individual causative genes and the genotype–phenotype correlations,

giving  us the  conditional  probability  P(B|A).  The  term  P(A)  can  be  defined  as  the  disease
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incidence, and the value of P(B), or the proportion of individuals carrying a rare, LOF variant in

the gene, can be queried from our dataset. Then, according to Bayes' theorem

P(A|B) = [ P(B|A) ×P(A) ] / P(B)

we can calculate that the probability that the child will have the disorder. The following example

illustrates such an application.

Consider that prenatal testing identified that a fetus is compound heterozygous for novel

variants in the gene  POMGNT1, which suggests a possible phenotype of congenital muscular

dystrophy (CMD). It is known that 53% of patients with CMD have homozygous or compound

heterozygous variants in one of six known CMD genes, 10% have homozygous or compound

heterozygous variants in  POMGNT1,  and the incidence of CMD is estimated to be  1:21,500

(Sparks et al., 1993; Mercuri et al., 2009). Since most mutations observed in affected individuals

are novel and are not found in healthy population controls, we will assume a low MAF threshold

of 0.1% for variant filtering. At this threshold, 2 out of 2,504 individuals (0.08 %) in our dataset

have  a  rare  protein-altering  variant  in  the  gene  POMGNT1,  therefore  P(B)=0.0008,  and  we

calculate that the positive predictive value (PPV), the probability that the child will have the

disease  given  a  positive  test  result,  is  roughly  1.0%.  Using  this  method,  sensitivity,  the

probability  P(B|A),  is  quite  low (10%);  whereas  specificity  is  high (1-P(B) = 99.9%).  If  we

aggregate data for all known CMD genes, we can increase sensitivity to 53% with a negligible

decrease in specificity,  due to the fact that  the other  CMD genes contains very few, in  any

variants in our dataset. This example highlights that sensitivity greatly depends on the proportion

of cases that can be explained by variants in a given set of genes. This type of analysis thus has
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implications for interpretation of broad NGS-based prenatal testing and can be extrapolated as

well to preconception testing and risk to potential children.

It is important to note that the extreme numbers involved—the very low prevalence of a disorder

and in many cases, the fact that no individual in the 1000 Genomes Project dataset had been

observed with variants in a gene, i.e. the lack of previous false-positive results—make it difficult

to compute the PPV. A previous study suggests that the latter “zero numerator” problem can be

solved using a Bayesian approach that  incorporates a prior distribution describing the initial

uncertainty about the false-positive rate (Smith  et al., 2000). Alternatively, the number of rare

LOF variants observed in a gene has been published as part of the ExAC dataset, which contains

information about 60,706 individuals (Lek et al., 2016). Although only nonsense or splice site

variants were included in the LOF classification, and they only include values for a single MAF

threshold of 0.1%, the number can be used a rough estimate for f. Furthermore, if even the ExAC

count is zero, we can assume that f is less than 1/60706, or 3/60706 if we are being conservative.

To summarize,  for  monogenic disorders  and disorders  where there exist  detailed phenotype-

genotype correlation data, our dataset will provide the denominator in the equation to calculate

the probability that an individual with a rare variant in a known disease gene will have a rare

genetic  disorder.  As  further  research  uncovers  novel  gene-disease  associations,  and  as  we

increase the size of the public dataset from which P(B) values can be calculated, we can update

expected  false-positive  rates  and  calculating  PPVs  will  become  increasingly  accurate.  As

illustrated,  our  methods will  be  be useful  for  applications  in  predictive  genomics,  including

prenatal testing and testing for late-onset genetic disorders.
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4.4.7 Comparison to other gene ranking methods

The rankings of frequencies at which a gene contains rare, deleterious variants is comparable

to previously published gene ranking methods for prioritizing variants. The list of genes sorted

and ranked according to the number of individuals carrying rare (MAF < 0.5%) heterozygous,

loss-of-function variants correlates well with genes ranked based on pLI scores, which describe

the probability that a gene is intolerant of LOF variation (ρ = 0.515) (Samocha et al., 2014; Lek

et al., 2016). These scores were derived from the ExAC dataset consisting of exome sequencing

data from 60,706 individuals. The order in which ExAC pLI score ranks genes correlates more

closely with SORVA rankings  than rankings based on EvoTol (Rackham  et  al.,  2015) (ρ =

0.400), RVIS (Petrovski  et al., 2013) (ρ = -0.157) and FLAGS (Shyr et al., 2014) (ρ = 0.278)

methods.

We  compare  methods  in  their  ability  to  prioritize  disease-causing  genes  from  the  Online

Mendelian  Inheritance  in  Man  (OMIM)  database  (2015).  pLI  scores,  EvoTol,  and  RVIS

outperform SORVA for known autosomal dominant disease genes, however all methods perform

similarly for autosomal recessive genes, and SORVA outperforms EvoTol, RVIS, and FLAGS

for  genes  known to  cause  X-linked  disorders.  (See  Supplementary  Figure  3.S3  for  receiver

operating characteristic (ROC) curves.)

4.5 Discussion

We demonstrated the utility of using mutational burden data to aid in prioritizing exonic variants

in genes and known protein domains in silico. Other metrics such as gene constraint pLI scores

and EvoTol rankings (Samocha  et  al.,  2014;  Rackham  et al.,  2015) are  also appropriate for
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prioritizing genes by their likelihood of causing genetic disorders, but our scores are directly

interpretable and can be used to calculate the statistical significance of findings when the study

involves sequencing multiple independent individuals.

Although there was some variation between the frequency of individuals with a rare variant

in a given gene between populations, and selecting a comparable population to a study would be

ideal  when calculating  variant  significance,  this  restriction  is  not  necessary.  To illustrate,  if

individuals in the African population frequently carry LOF variants in a gene but this does not

hold  true  for  another  population  that  more  closely  matches  the  study  population,  one  may

nevertheless consider the gene to be less likely to cause a rare Mendelian disorder.

A limitation of this method of ranking genes is that genes are prioritized on the basis of their

likelihood of being involved in disease in general rather than in the specific disease of interest

(Gill et al., 2014). On the other hand, this can be viewed as a benefit in the sense that results are

unbiased and do not depend on previously existing annotations, which would bias rankings to

prefer known and well-studied genes. This bias is a known issue in the interpretation of clinical

variants  (Wang  et  al.,  2014).  To illustrate,  Bell  et  al.  (2011) discovered that  an unexpected

proportion (27%) of literature-annotated disease variants in recessive disease-causing genes were

incorrect, and Piton et al. (2013) estimated that 25% of X-linked intellectual disability genes are

incorrect or require further review based on allele frequency estimates that have become more

accurate  with  the  availability  of  large-scale  sequencing  datasets.  Disease  genes  that  are

incorrectly annotated as disease-causing may explain the lack of difference between the average

number of individuals carrying variants in genes causal for autosomal dominant and autosomal

recessive genes. One would expect decreased counts for autosomal dominant disease genes due

to stronger purifying selection among deleterious variants that  arise  in  these genes,  where a
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single variant may be sufficient to cause disease (Blekhman et al., 2008). Another possibility is

that the sample size may be too small to include a sufficient number of individuals who are

carriers for rare, deleterious variants in recessive disease genes.

Future  improvements  to  our  methods  would  include  increasing  the  amount  of  genetic

information  from unaffected  individuals.  Our  results  suggest  that  for  most  applications,  low

MAF  thresholds  should  be  used  to  achieve  power  to  detect  genes  associated  with  disease;

however, at thresholds of MAF < 0.0005, most genes will lack any data; e.g. there will be no

individuals  observed who are  carriers  of  LOF variants.  The SORVA dataset  is  useful  in  its

current  state  with  data  from  a  relatively  small  number  of  individuals,  but  increasing  the

population size by several orders of magnitude will increase the utility of the application. The

recently approved Precision Medicine Initiative will fund sequencing and data collection from 1

million  or  more  Americans  and  make  the  data  accessible  to  qualified  researchers,  and  the

methods  described  in  this  manuscript  could  be  applied  to  this  larger  dataset  and  contribute

towards the aim of this initiative to generate knowledge applicable to the whole range of health

and disease (Collins & Varmus, 2015).

Additional  improvements  would  include  incorporating  additional  information  regarding

specific  categories  of  variants,  such as  the  degree  to  which  stop  codon gain  (also know as

nonsense)  variants  in  a  gene  are  constrained  to  the  end  of  the  gene.  Knowing  whether  an

essential  gene is highly intolerant of nonsense mutations in only certain regions of the gene

would allow one to lower the priority of nonsense variants in mutationally tolerant regions when

evaluating variants in silico. For example, Li et al. (2015) exclude stop-gain variants occurring in

the terminal gene exon and those that do not affect all transcripts of a gene when evaluating

deleterious  LOF  mutations  in  a  large  cohort  of  individuals.  The  limitation  to  providing
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individual-level mutational burden counts at such a high level of granularity is that researchers

will be restricted to following the same methods of filtering and annotating variants. This would

be problematic because, by default, many commonly-used software pipelines do not annotate

variants  with the information  about  the  proportion of  transcript  truncated (SNP & Variation

Suite, Bozeman, MT; Wang et al., 2010; McLaren et al., 2010; Yandell et al., 2011; Habegger et

al., 2012; Lucas et al., 2012). Selecting variant filtering thresholds in SORVA that are identical

to those used in one's study is essential in having comparable data with which to calculate variant

significance. For this reason, we also did not filter missense variants based on annotations from

commonly tools such as SIFT (Kumar  et al., 2009), PolyPhen-2 (Adzhubei  et al., 2010), and

CADD (Kircher et al., 2014), which provide an interpretation of mutation impacts.

Finally, future developments would include developing the statistics to calculate statistical

significance of findings in the case that related individuals, such as sibpairs, trios or distantly

related individuals, are sequenced.

4.6 Conclusions

Our methods provide a score for prioritizing variants within a gene that is unbiased and directly

interpretable. Restricted by the sample size of our dataset, we provide limited population-level

data, and adding more data will greatly improve the utility of our method. However, even in its

current state, SORVA is useful for determining whether genes and known protein domains are

depleted of rare variation and vetting candidate variants from NGS studies.
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4.7 Supplementary Methods

This section describes deriving the equation for calculating variant significance.

4.7.1. Calculating significance of a de novo variant in a single-family study

Consider a case of a severe, pediatric-onset Mendelian disorder, in which both parents and the 

affected child are sequenced to identify the causal variant. If only de novo variants are identified 

within a putative gene, making a rough estimate of the P-value is relatively simple, as we need to

calculate the probability of at least one de novo mutation occurring in a gene by random chance. 

The probability of two or more de novo mutations appearing in the same gene is close to zero 

and can thus be omitted. Ignoring variations in per-base mutation rates (Campbell and Eichler, 

2013): 

P≈ltx dc

where ltx is the length of the transcript in nucleotide bases and d is the mean rate of de novo 

single-nucleotide variants (SNVs) arising per nucleotide per generation. The genome-wide 

mutation rate is estimated to have a lower bound of 1.2 × 10−8 per site per generation (Campbell 

and Eichler, 2013; Conrad et al., 2011; Veltman and Brunner, 2012), although sequencing 

technologies used in the studies are biased against GC-rich DNA, and the rate of mutation at 

CpG dinucleotides has been observed to be 10- to 18-fold the rate of non-CpG dinucleotides 

(Campbell et al., 2012; Kondrashov, 2003; Kong et al., 2012; Lynch, 2010). Therefore, the CpG 

content of a gene should also be considered when determining the parameter d. The parameter c 

is the fraction of de novo events that meet our protein consequence threshold. It is predicted that 

2.85% of de novo events are splice site altering or nonsense events, and 70.64% of de novo 
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events are protein-altering, i.e. missense or LOF (Kryukov et al., 2007); these may be used as the

respective values for c depending on the variant filtering criteria used.

If the sample size is one and all genes are considered equally likely to cause disease a priori, 

then the P-value may not be significant after correcting for the number of genes in the human 

genome; hence, follow-up studies are still required in such cases. To illustrate, a whole-exome 

sequencing study of a single pair of identical twins with autism and seizures identified a de novo 

missense variant in KCND2 (Lee et al., 2014), which has a 5,331 base transcript, and the variant 

was confirmed by functional studies to support causality between the variant and phenotype. The

uncorrected P-value would be calculated as 4.5 × 10−5, which is significant despite the small 

sample size. However, the P-value corrected for the number of sequenced genes—24,000 to be 

ultra-conservative—is not significant. In this case, the authors bolstered their study by 

performing functional studies. Generally, observing a de novo variant in an “N=1” study will not 

be significant, and the relative P-values of genes containing rare variation would be used to 

either prioritize genes to perform functional studies on, or to identify additional individuals with 

undiagnosed diseases who carry variants in the same gene, as previous studies have done (Chong

et al., 2016; Takenouchi et al., 2016).

4.7.2. Observing homozygous variants in unrelated individuals

Let fhom be the a priori fraction of individuals in the population that have a rare, homozygous 

variant in a given gene. Assume that we sequence n singletons and find that k of these 

individuals have a variant in the gene. The random variable X is the number of times an 
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individual is seen with a homozygous variant in the gene (“successes”) out of n individuals 

sequenced (“independent trials”), and X ~ Binom(n, π) where π is the parameter corresponding to

the probability of success on any trial. Let H0: π ≤ fhom be the null hypothesis of no association 

between the phenotype and an individual being homozygous for a variant in the gene. Let H1: π >

fhom be the alternative hypothesis that we see a greater number of individuals with a homozygous 

variant in the gene than expected. The probability of getting exactly k successes is:

P ( X=k )=(n
k ) f hom

k
(1− f hom)

n−k

.

The one-sided p-value is the probability of observing at least k successes and can be expressed 

as:

P ( X≥k )=P ( X>k−1 )=1−P ( X≤k−1 )=1−BinomCDF (k−1,n,f hom)

where BinomCDF denotes the binomial cumulative distribution function.

4.7.3. Observing heterozygous variants in unrelated individuals

Let's assume that we observe heterozygous variants in the gene of interest. A P value is the 

probability of obtaining an effect at least as extreme as the one observed, assuming the truth of 

the null hypothesis. The effect that is at least as extreme as the one observed is equivalent to 

seeing at least as many individuals who are heterozygous or homozygous for a variant in the gene

of interest. Therefore, the p-value becomes

P ( X≥k )=1−BinomCDF (k−1,n,f both )

101



where fboth is the fraction of individuals in the population that have either a heterozygous or 

homozygous variant in the gene of interest. 

4.7.4. Adjusting for cases where f = 0

When calculating the significance of observing homozygous or heterozygous variants in a gene 

for which no individuals have been observed with a rare variant in the population (fhom = 0 or fboth 

= 0, respectively), then the calculated P value would mistakenly always seem significant. 

Therefore, for these cases, we set f to a very small number, arbitrarily to the pseudocount

f=
1

2N

where N is the population size from which f was originally derived. The implicit assumption is

that if we were to sequence twice the number of samples, we may observe a single individual

with a variant in the gene. For genes that are very rarely mutated, the value of  f will still be

overestimated, resulting in a conservative calculation of the P-value.
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4.8 Supplementary Figures

Supplementary Figure 4.S1: Number of individuals carrying a rare variant in a gene under various 
filtering thresholds. Each data point represents a single gene which contains a variant in the aggregate 
population (n=2504 individuals). Calculations were repeated using multiple variant filtering thresholds to 
determine the scenario that most differentiates between essential genes, those known to cause autosomal 
dominant, autosomal recessive or X-linked disease, and other genes. We varied filters for type of variant 
(‘LOF or missense’ or ‘LOF only’), zygosity (Het or Hom) and MAF threshold. Colored shapes indicate 
the centroids of each group of genes. Abbreviations: LOF, loss-of-function; nonsyn, nonsynonymous or 
LOF; het, heterozygous; hom, homozygous; ess, essential; AD, autosomal dominant; AR, autosomal 
recessive; XL, X-linked.
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Supplementary Figure 4.S2: Screenshot of an example query run on SORVA. Users can select 
variant filtering thresholds such as population, MAF cutoff, zygosity and whether to consider only LOF 
variants or missense variants. Output includes the number of individuals who carry a rare variant in the 
gene and in any protein domain that maps to the gene.
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Supplementary Figure 4.S3: ROC curves for the selection of known disease-causing genes from
gene rankings. Comparison between gene ranking metrics from SORVA, FLAGS, ExAC pLI score,
RVIS, and EvoTol using the OMIM database, showing the cumulative percentage plots for the residual
scores  for  three  OMIM gene  lists.  The  OMIM gene  categories  are  (a) autosomal  dominant  disease
causing (N=681),  (b) autosomal recessive disease causing (N=556),  and  (c) X-linked disease causing
(N=118).  SORVA  were  based  on  the  number  of  1000  Genomes  Project  individuals  who  were
heterozygous or homozygous for rare (MAF<0.005) LOF variants in a given gene. Dashed lines indicate
control. Abbreviations: ROC, Receiver Operating Characteristic; AUC, area under the curve, LOF, loss-
of-function.
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4.9 Supplementary Tables

Legends are provided below for supplementary material attached with the dissertation.

Supplementary Table 4.S1: Mean number of individuals mutated for different types of 

protein domains. We calculated the mean number of individuals (out of 2,504 individuals) who 

carried mutations in a given type of protein domains, averaging per gene.

Supplementary Table 4.S2: Variant depletion scores for all protein domain in every gene.

For  each  instance  of  a  protein  domain  in  a  gene,  we calculated  variant  depletion  scores  to

identify regions within a gene that may be under differing degrees of evolutionary constraint.

Supplementary Table 4.S3: List of candidate autism genes. Genes listed were used to produce

Figure 5.
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Chapter 5

Conclusion

5.1 Summary

In  conclusion,  I  have  shown that  by  sequencing  cases  with  bipolar  disorder  and ASD,  two

complex disorders, and analyzing findings using a model that takes into account family structure,

novel candidate genes can be identified from studies even with modest sample sizes. First, I

demonstrated that WES in a small number of BD families was successful in identifying multiple

rare, deleterious variants in genes consistent with a plausible biological role. I identified 14 rare

and likely damaging mutations that segregated with the disorder. To note, a patient that also had

a seizure disorder  carried a mutation in  the gene  PRICKLE1,  a known gene for progressive

myoclonic  epilepsy  1B. Also,  multiple  genes  containing  rare,  protein-altering  variants had

GTPase-activating function. GTPases are a target of lithium, a drug frequently used to treat BD,

and  have been suggested to play a role in BD (Akula et al., 2014; Lachman and Papolos, 1989).

Although individual gene findings did not meet statistical thresholds for significance,  further

research may provide further support as larger BD cohorts are sequenced.

In  the  third  chapter,  I  presented  findings  from a  WGS study of  188 individuals,  which

included  71  individuals  affected  with  ASD.  Consistent  with  previous  studies,  our  results

highlight the extreme genetic heterogeneity in ASD, and although we identified few rare LOF or

de novo variants in known ASD genes, enriched gene pathways included cell adhesion, cell-cell

signaling and nervous system development,  which provides support consistent  with previous
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findings. Using SORVA, I also identified several genes significantly enriched for rare missense

or LOF variants in our dataset, given the number of individuals in the general population with

rare variants in these genes. The first, STAU2, plays a role during both the early differentiation of

neurons and in the synaptic plasticity of mature neurons (Heraud-Farlow and Kiebler, 2014) and

is a promising candidate for follow-up studies. The second,  PPFIA3, is a member of the LAR

protein-tyrosine  phosphatase-interacting  protein  (liprin)  family,  and  liprins  are  known to  be

important for axon guidance (Spangler and Hoogenraad, 2007).

It is important to highlight the need to provide additional support for NGS findings when

functional  validation  is  not  feasible  due  to  resources  and  ethical  or  technical  difficulties.

Otherwise,  genes  that  are  frequently  mutated  or  studied  tend  to  be  the  genes  most  often

highlighted by NGS studies (Shyr et al., 2014), leading to future studies repeatedly highlighting

the same genes in candidate gene lists. To address this issue, in the fourth chapter I presented a

precomputed dataset of mutational burden in all genes and known protein domains, derived from

the 1000 Genomes Project dataset (The 1000 Genomes Project Consortium, 2015). This dataset,

named SORVA, can be useful for ranking variants in genes and known protein domains. In

addition, I proposed applications in predictive genomics, i.e. calculating the probability that an

individual with a rare variant in a known disease gene will have a rare genetic disorder. To full

realize  SORVA’s  clinical  utility,  the  underlying  dataset  can  be  recalculated  using  larger

reference datasets such as GnomAD for future updates  (Lek  et al., 2016). Furthermore, as the

genetic basis underlying Mendelian and complex diseases continue to be revealed, the utility of

these methods in predictive genomics will increase, as well.
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5.2 Recommendations

In the past decade, next generation sequencing studies have become popular, and with ever-

larger  studies  underway,  the  pace  of  sequencing  does  not  appear  to  be  slowing  down.  For

example, one effort to decipher ASD genetics, Simons Foundation Powering Autism Research

for Knowledge (SPARK), aims to build a cohort of 50,000 individuals with ASD over the next 3

years. Another effort led by Ambry Genetics, AmbryShare, strives to enroll and sequence 10,000

patients with ASD. As sample sizes has grown by orders of magnitude, recruitment methods

have changed, as well, and large studies including SPARK and IAN Genetics use web-based

recruitment and collect phenotypic data reported by patients as opposed to clinicians (Lee et al.

2010). Large WES studies stemming from efforts such as these have and will continue to provide

value due to their unbiased approach towards disease gene discovery. However, future studies

would  benefit  from  integrating  findings  with  epigenetic  findings  and  gene-environment

interactions, and following up results with functional validation to test the biological impact of

identified variants  (Chahrour  et al., 2016). At the same time, studies across the wide range of

human diseases will benefit from increases in the size of public reference datasets to determine

which variants are ultra-rare in different populations, and from more complete protein-protein

interaction networks and pathways to reveal how disparate genetic findings converge and cause

shared phenotypes between families. Finally, while functional studies are often lacking, in silico

data from previously published datasets  must  be used to  provide  support  for  NGS findings,

whether for specific genes as shown for autism in the third chapter, or for identifying pathways

involved in diseases such as bipolar disorder, as shown in the second chapter. In conclusion, the

methods and findings in this thesis are impactful and can be useful for motivating analysis and

interpretations of future sequencing datasets in complex neuropsychiatric diseases.

123



5.3 Bibliography

Akula, N., Barb, J., Jiang, X., Wendland, J. R., Choi, K. H., Sen, S. K., Hou, L., Chen, D. T. W., 
Laje, G., Johnson, K., Lipska, B. K., Kleinman, J. E., Corrada-Bravo, H., Detera-Wadleigh, 
S., Munson, P. J., and McMahon, F. J. (2014). RNA-sequencing of the brain transcriptome 
implicates dysregulation of neuroplasticity, circadian rhythms and GTPase binding in 
bipolar disorder. Molecular Psychiatry, 19(11), 1179–1185. doi:10.1038/mp.2013.170

Chahrour, M., O’Roak, B. J., Santini, E., Samaco, R. C., Kleiman, R. J., and Manzini, M. C. 
(2016). Current Perspectives in Autism Spectrum Disorder: From Genes to Therapy. The 
Journal of Neuroscience, 36(45), 11402–11410. doi:10.1523/JNEUROSCI.2335-16.2016

Heraud-Farlow, J. E., and Kiebler, M. A. (2014). The multifunctional Staufen proteins: 
conserved roles from neurogenesis to synaptic plasticity. Trends in Neurosciences, 37(9), 
470–479. doi:10.1016/j.tins.2014.05.009

Lachman, H. M., and Papolos, D. F. (1989). Abnormal signal transduction: A hypothetical model
for bipolar affective disorder. Life Sciences, 45(16), 1413–1426. doi:10.1016/0024-
3205(89)90031-3

Lee, H., Marvin, A. R., Watson, T., Piggot, J., Law, J. K., Law, P. A., et al. (2010). Accuracy of
phenotyping of autistic  children based on internet  implemented parent  report.  American
Journal  of  Medical  Genetics  Part  B:  Neuropsychiatric  Genetics,  153B(6),  1119–1126.
doi:10.1002/ajmg.b.31103

Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., O’Donnell-
Luria, A. H., Ware, J. S., Hill, A. J., Cummings, B. B., Tukiainen, T., Birnbaum, D. P., 
Kosmicki, J. A., Duncan, L. E., Estrada, K., Zhao, F., Zou, J., Pierce-Hoffman, E., 
Berghout, J., et al. (2016). Analysis of protein-coding genetic variation in 60,706 humans. 
Nature, 536(7616), 285–291. doi:10.1038/nature19057

Shyr, C., Tarailo-Graovac, M., Gottlieb, M., Lee, J. J., Karnebeek, C. van, and Wasserman, W. 
W. (2014). FLAGS, frequently mutated genes in public exomes. BMC Medical Genomics, 
7(1), 64. doi:10.1186/s12920-014-0064-y

Spangler, S. A., and Hoogenraad, C. C. (2007). Liprin-alpha proteins: scaffold molecules for 
synapse maturation. Biochemical Society transactions, 35(Pt 5), 1278–82. 
doi:10.1042/BST0351278

124



The 1000 Genomes Project Consortium. (2015). A global reference for human genetic variation.
Nature, 526(7571), 68–74. doi:10.1038/nature15393

125


	Abstract of the Dissertation
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	List of ABBREVIATIONS
	Acknowledgements
	Vita
	Chapter 1
	Introduction
	1.1 Challenges of studying complex disorders via next-gen sequencing
	1.2 Current methods to analyze large NGS datasets
	1.3 The genetic basis of bipolar disorder
	1.4 The genetic basis of autism spectrum disorders
	1.5 Bibliography

	Chapter 2
	Rare deleterious mutations are associated with disease in bipolar disorder families
	2.1 Abstract
	2.2 Introduction
	2.3 Materials and Methods
	2.3.1 Sample selection
	2.3.2 Exome sequencing and bioinformatics analysis
	2.3.3 Variant annotation, filtering and interpretation
	2.3.4 Statistical analysis

	2.4 Results
	2.4.1 Sample characteristics
	2.4.2 Identification of rare, damaging mutations

	2.5 Discussion
	2.6 Conclusions
	2.7 Supplementary Methods
	2.7.1 Exome capture and re-sequencing
	2.7.2 Quality control (QC)
	2.7.3 Sequence alignment and variant calling
	2.7.4 Variant annotation, filtering and interpretation

	2.8 Supplementary Tables
	2.9 Bibliography

	Chapter 3
	Whole-genome sequencing of web-based recruited individuals with autism spectrum disorders reveals novel candidate genes
	3.1 Abstract
	3.2 Introduction
	3.3 Methods
	3.3.1 Sample recruitment
	3.3.2 Sequencing and bioinformatics pipeline
	3.3.3 Validation of de novo events
	3.3.4 Functional Enrichment and Network Analyses

	3.4 Results
	3.5 Discussion
	3.6 Supplementary Tables
	3.7 Bibliography

	Chapter 4
	A tool for calculating mutational burden of genes causal for Mendelian and complex disorders
	4.1 Abstract
	4.2 Introduction
	4.3 Materials and Methods
	4.3.1 Datasets
	4.3.2 Bioinformatics pipeline
	4.3.3 Comparison of disease gene categories
	4.3.4 Comparison of gene ranking methods
	4.3.5 Calculating depletion of variants in protein domains
	4.3.6 Observing rare variants in unrelated individuals
	4.3.7 Availability of data and materials

	4.4 Results
	4.4.1 Population differences
	4.4.2 Properties of known disease genes
	4.4.3 Depletion of variants in regions mapping to specific protein domains
	4.4.4 Significance of findings in studies of rare genetic disorders involving independent individuals
	4.4.5 Challenges of evaluating findings in large-scale studies of complex disorders
	4.4.6 Applications in predictive genomics
	4.4.7 Comparison to other gene ranking methods

	4.5 Discussion
	4.6 Conclusions
	4.7 Supplementary Methods
	4.7.1. Calculating significance of a de novo variant in a single-family study
	4.7.2. Observing homozygous variants in unrelated individuals
	4.7.3. Observing heterozygous variants in unrelated individuals
	4.7.4. Adjusting for cases where f = 0

	4.8 Supplementary Figures
	4.9 Supplementary Tables
	4.10 Bibliography

	Chapter 5
	Conclusion
	5.1 Summary
	5.2 Recommendations
	5.3 Bibliography




