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MBoC  |  ARTICLE

Unbiased Boolean analysis of public gene 
expression data for cell cycle gene identification

ABSTRACT  Cell proliferation is essential for the development and maintenance of all organ-
isms and is dysregulated in cancer. Using synchronized cells progressing through the cell 
cycle, pioneering microarray studies defined cell cycle genes based on cyclic variation in their 
expression. However, the concordance of the small number of synchronized cell studies has 
been limited, leading to discrepancies in definition of the transcriptionally regulated set of 
cell cycle genes within and between species. Here we present an informatics approach based 
on Boolean logic to identify cell cycle genes. This approach used the vast array of publicly 
available gene expression data sets to query similarity to CCNB1, which encodes the cyclin 
subunit of the Cdk1-cyclin B complex that triggers the G2-to-M transition. In addition to 
highlighting conservation of cell cycle genes across large evolutionary distances, this approach 
identified contexts where well-studied genes known to act during the cell cycle are expressed 
and potentially acting in nondivision contexts. An accessible web platform enables a detailed 
exploration of the cell cycle gene lists generated using the Boolean logic approach. The 
methods employed are straightforward to extend to processes other than the cell cycle.

INTRODUCTION
The cell cycle has been extensively investigated using diverse ap-
proaches in different experimental models. Seminal breakthroughs 
in the cell cycle field came from genetic and biochemical analyses in 
models such as yeasts, invertebrate and vertebrate eggs/early 
embryos, and human tissue culture cells. These efforts have defined 
a large set of components that execute the many complex events in 
the cell cycle (Morgan, 2006).

The development of microarray technology in the late 1990s 
spurred efforts to employ transcriptional coregulation as an unbiased 
means to define genes whose expression varies in coordination with 
progression through the cell cycle (Cho et al., 1998; Whitfield et al., 
2002). Additional targeted studies have revealed involvement 
of RB-E2F, DREAM, and MMB-FOXM1 transcriptional regulatory 

complexes in cell cycle regulation in mammals (Wen et al., 2008; 
Lewis et al., 2012; Sim et al., 2012; Bertoli et al., 2013; DeBruhl et al., 
2013; Sadasivam and DeCaprio, 2013; Fischer et al., 2016). Previous 
attempts of the meta-analysis of different synchronization-based 
transcriptional data sets have led to conflicting results (de Lichtenberg 
et al., 2005; Marguerat et al., 2006; Gauthier et al., 2008; Wang et 
al., 2016; Giotti et al., 2017). A currently available website resource 
lists 378 human cell cycle–associated genes (Gauthier et al., 2008, 
2010; Santos et al., 2015). A recent meta-analysis of these data sets 
has also proposed a list of 1419 cell cycle genes (Giotti et al., 2017). 
Notably, there are only 165 common genes between the above two 
different lists of candidate cell cycle genes.

The use of an experimental perturbation (synchronization-release 
coupled with time-sampling of expression) to identify genes with 
periodic variation in expression during the cell cycle has generated 
five human gene expression data sets (total 305 samples) that have 
been the focus of the majority of transcriptional regulation-guided 
cell cycle gene analysis to date. In contrast to this small number of 
synchronized cell data sets, microarray expression profiles of 25,955 
human samples are publicly accessible. We have therefore focused 
on developing bioinformatic approaches to efficiently mine this 
large volume of public data to define cell cycle genes based on their 
transcriptional regulation. In our approach, there is no assumption 
that cell cycle genes exhibit periodic gene expression. Instead, the 
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approach is based on Boolean logic applied to the very large 
number of available expression data sets. In addition to defining cell 
cycle genes in individual species and their conservation across 
species, we have built a website resource that facilitates analysis of 
transcriptional relationships for cell cycle genes in four commonly 
studied multicellular model organisms.

RESULTS
A Boolean equivalence approach based on public gene 
expression data sets identifies cell cycle genes in humans
The informatic approach that we employed to mine publicly available 
gene expression data sets (n = 25,955 human samples) is known as 
Boolean Equivalent Correlated Clusters (BECC; Figure 1A, 
Supplemental Figure S1). BECC compares the normalized expres-
sion of two genes across all data sets by searching for two sparsely 

populated, diagonally opposite quadrants out of four possible quad-
rants (high–low and low–high), employing the BooleanNet algorithm 
(Sahoo et al., 2008). There are six potential gene relationships as-
sessed by BooleanNet: two symmetric (Equivalent and Opposite) 
and four asymmetric (Sahoo et al., 2008). Two genes are considered 
Boolean equivalent if they are positively correlated with only high–
high and low–low gene expression values. Two genes are considered 
Boolean Opposite if they are negatively correlated with only high–
low and low–high gene expression values. Asymmetric Boolean im-
plications result when there is only one sparsely populated quadrant. 
The BECC algorithm only focuses on Boolean equivalent relation-
ships to identify potentially functionally related gene sets.

To identify potential cell cycle genes with this approach, we 
employed BECC using CCNB1 (which encodes cyclin B1) as a 
seed gene. Cyclin B1 is the binding partner of the kinase Cdk1 and 

FIGURE 1:  Approach and analysis in human. (A) Schematic algorithm of BECC that was performed on large gene 
expression data sets. (B) Individual steps of the BECC algorithm. First step is to perform Boolean analysis by following 
the Boolean equivalent relationship twice. The second step is to compute a score for each gene and rank the genes. 
Finally, a threshold is imposed using the StepMiner algorithm to define a list of high-confidence genes. (C) List of 195 
high-confidence cell cycle genes in human categorized by their known biological function.
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Cdk1-Cylin B1 complex activity defines the mitotic phase of the cell 
cycle throughout eukaryotes. All gene pairs with CCNB1 were ana-
lyzed in a pooled human microarray data set built from 25,955 
human samples, and each tested probeset on the array was ranked 
based on the strength of its correlation for an equivalent Boolean 
relationship with the CCNB1 probeset. The data set exclusively uses 
the Affymetrix microarray platform where a group of short probes 
(probeset) target a particular gene at the 3′ end of the correspond-
ing mRNA sequences. Each array contains multiple probesets for a 
gene for which the signal intensity and noise characteristics can vary 
significantly. In our analysis, we used probeset ID 214710_s_at as 
the seed CCNB1 probe based on its robust signal and ability to 
capture a large dynamic range of expression. We note that a second 
probeset (228729_at) behaves very similarly and would yield 
essentially identical results.

The BECC algorithm was first used to identify a set of 145 
probesets (ProbeSet A) that were Boolean equivalent to the CCNB1 
probe (Supplemental Figures S1 and S2). Then, the same algorithm 
was used to identify additional probesets that were Boolean 
equivalent to ProbeSet A; pooling the hits in the second step to-
gether with those in ProbeSet A resulted in ProbeSet B composed 
of 1511 probesets. BECC computes Boolean equivalences for two 
steps because any additional steps have the potential to add 
significant noise. All probesets in ProbeSet B were then compre-
hensively analyzed relative to each other to assess the strength 
of their equivalences. A Boolean equivalence score for each probe-
set within ProbeSet B was computed based on the weighted aver-
age of the correlation coefficient and slope in pairwise analysis with 
all other probesets, as described in Materials and Methods. This 
effort resulted in a ranked list of 1511 probesets, corresponding to 
1259 unique genes, based on similarity to CCNB1. The entire 
ranked list of genes can be accessed online using our web resource. 
StepMiner, an algorithm that fits a step function to identify abrupt 
transitions in series data, was used to compute a threshold on 
the BE score to identify high-confidence cell cycle genes. Imposi-
tion of the threshold resulted in the identification of 248 significant 
probesets, representing 195 unique genes (Figures 1B and 2A, 
Supplemental Figures S1 and S2). These 195 genes represent high-
confidence hits from the ranked list generated prior to threshold 
imposition.

The 195 high-confidence genes identified by this unbiased 
data mining approach could be categorized into the following 
groups based on the literature (Figure 1C): cytokinesis (n = 10), 
centrosome (n = 6), kinetochore (n = 29), spindle (n = 10), chromo-
some (n = 18), cell cycle regulators (n = 24), replication and repair 
(n = 33), nuclear pore/periphery (n = 8), nucleotide synthesis (n = 
12), transcription factors (n = 3), and other (n = 42). Gene ontology 
(Ashburner et al., 2000), MSigDB pathway (Subramanian et al., 
2005), Reactome (Fabregat et al., 2018), and DAVID gene func-
tional classification tools (Dennis et al., 2003; Hosack et al., 2003) 
revealed enrichment of the term Cell Cycle in the list of 195 genes 
(Supplemental Figure S7). It is important to note that in a Boolean 
equivalence analysis the final list of predicted genes is not very 
sensitive to the choice of the initial seed gene within a related 
set—if a gene other than CCNB1 from the list of 195 genes was 
employed as a seed gene, the top ranking genes will always be 
present. For example, 155 high-confidence cell cycle genes were 
predicted using CCNB2 as a seed gene instead of CCNB1, and 
154 genes of these 155 genes overlap with the 195 genes identi-
fied using CCNB1 as a seed. CCNB2 is also expressed in dividing 
cells but unlike CCNB1 is dispensable for viability (Brandeis et al., 
1998).

Comparison of the cell cycle gene set defined by Boolean 
equivalence analysis to genes identified based on periodic 
expression in a single cell cycle
We next compared the 195 high-confidence gene list to six previous 
studies that identified periodic gene expression patterns in synchro-
nized cell cycle experiments (Cho et al., 1998; Whitfield et al., 2002; 
Bar-Joseph et al., 2008; Grant et al., 2013; Peña-Diaz et al., 2013; 
Giotti et al., 2017). In the Cho et al. (1998) study, expression of only 
80 of the 195 genes was measured and 32 (40%) of these 80 genes 
were defined as being cell cycle–regulated. In the Whitfield et al. 
(2002) study, 172 of the 195 genes were measured, and 106 (62%) 
were defined as cell cycle–regulated. Similarly, the overlap with other 
studies are as follows: Bar-Joseph et al. (2008) (108/167, 65%), Grant 
et al. (2013) (99/172, 58%), Peña-Diaz et al. (2013) (97/195, 50%), and 
Giotti et al. (2017) (127/167, 76%). Figure 2A presents the heatmaps 
for periodic expression for the genes we identified that overlap with 
the ones analyzed by Whitfield et al. (2002) (172 genes, 314 clones) 
and Bar-Joseph et al. (2008) (167 genes, 262 probesets).

We note that the concordance between the different periodic 
gene expression studies is limited, for example, from our 195 gene 
set, only 21 were found in all six studies and 38 were not found in 
any of the studies. While these differences may be related to techni-
cal reasons, the Boolean approach, which does not rely on artificial 
synchronization-release in culture, offers a complementary approach 
to defining cell cycle–regulated genes. Among the list of 195 genes, 
two candidate cell cycle genes, ATAD2 (Figure 2B) (Whitfield et al., 
2002; Bar-Joseph et al., 2008; Grant et al., 2013; Giotti et al., 2017) 
and CDCA7 (Figure 2C) (Whitfield et al., 2002; Peña-Diaz et al., 
2013), are highly ranked but have been subject to limited char-
acterization. We also note that certain standard cell cycle genes 
employed in the synchronization-release analysis in culture, such as 
the gene encoding VEGF-C (Whitfield et al., 2002), are not Boolean 
equivalent to CCNB1 (Figure 2D).

The cell division cycle is a fundamental biological process involv-
ing genes that are likely to be essential for viability. CRISPR/Cas9 
technology has been recently adapted to perform large-scale gene 
essentiality screens in human cultured cells (Blomen et al., 2015; Hart 
et al., 2015; Wang et al., 2015; Bertomeu et al., 2018). We plotted the 
195 high-confidence cell cycle genes that were designated as being 
essential in 10 different cell lines (Figure 2E). We found that 46 genes 
(24%) were essential in all 10 cell lines, 62 genes (32%) were catego-
rized as being not essential, and the remainder showed context-
dependent essentiality, in that they were essential in more than one 
cell line but not in all cell lines. Thus 133 (68%) of the genes identified 
by BECC have been designated as essential in more than one ge-
nome-wide screen, indicating a strong enrichment for essential genes 
in the gene set defined by the Boolean equivalence approach.

In relation to the complementary nature of the Boolean equiva-
lence approach relative to the synchronization-release experiments 
in culture, the expression of two cell cycle genes may be out-of-
phase with each other in a single cell cycle but still identified as 
equivalent by BECC. An example of an out-of-phase expression is 
shown for CCNB1 and CCNE2 (Figure 2, F and G, Supplemental 
Figure S4). Despite the striking negative correlation across a single 
cell cycle, CCNE2 is identified by BECC as a strong Boolean 
equivalent gene with CCNB1 (Figure 2H). This is likely because the 
majority of expression data sets are from tissue samples with varying 
numbers of dividing cells at different phases, resulting in average 
expression profiles across all cell cycle phases. Thus, the expression 
value of genes that is specifically expressed in dividing cells will be 
proportional to the fraction of dividing cells in the tissue/sample, 
resulting in Boolean equivalence, despite being out-of-phase in a 
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single cell cycle. This line of reasoning also explains why seeding the 
BECC algorithm with CCNB1, whose expression is regulated to 
occur after S-phase, identified genes acting in early S-phase. Thus, 
the Boolean equivalence approach, by mining public data sets with 
a single seed gene, is able to identify cell cycle genes, even if they 
are expressed at different phases in a single cell cycle.

To assess whether any of the 38 high-confidence cell cycle genes 
identified by our approach, but not in the prior synchronized cell 
culture studies, exhibit cell cycle–regulated expression, we turned 
to a new single-cell RNASeq data set GSE121265 (Hsiao et al., 

2019). This data set used iPSC lines that were genetically engi-
neered to express the FUCCI (fluorescent ubiquitination cell cycle 
indicator) reporters to indicate cell cycle status. Pearson’s correlation 
coefficient was computed between CCNB1, the green Fucci re-
porter (S/G2/M), and the 38 genes (Supplemental Figure S5A). The 
S/G2/M reporter and CDC20 were strongly correlated with CCNB1 
(correlation coefficient 0.71 with EGFP Fucci signal and 0.79 with 
CDC20; Supplemental Figure S5, B and C). CCNB1 was poorly cor-
related with NANOG (correlation coefficient 0.31; Supplemental 
Figure S5D), which is not considered a cell cycle gene. Notably, 

FIGURE 2:  Comparison with human synchronized cell analysis. (A) The heatmap shows that the majority of BECC-
identified high-confidence cell cycle genes are periodically expressed at different phases of the cell cycle in two 
synchronized cell cycle experiments. (B–D, H) Scatterplots of ATAD2, CDCA7, VEGFC, and CCNE2 with CCNB1, 
respectively, in the public human data set with 25,955 samples. (E) Histogram of cell lines where the genes show 
essentiality. (F, G) Expression patterns of CCNB1 (G2/M gene) and CCNE2 (G1/S gene) in Peña-Diaz et al. (2013). HaCaT 
data set shows strong negative correlation. (H) CCNB1 and CCNE2 show strong positive correlation.
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28 genes from the list of 38 genes exhibited correlation coefficients 
greater than 0.6 with CCNB1 (Supplemental Figure S5; for specific 
examples, see scatterplots in Supplemental Figure S5, E and F).

Assessing conservation of the cell cycle gene set between 
humans and mice
Mice are the premier mammalian genetic model and share a com-
mon ancestor with humans ∼80 million years ago. Genetic mouse 
models are critical for understanding normal and pathological cell 
cycle regulation, leading us to conduct the same analysis reported 
above in humans with 11,758 publicly available mouse samples 
(using probeset 1419943_s_at for Ccnb1 as a seed). Our approach 
identified a ranked list of 1435 probesets, corresponding to 
1116 genes, and, after threshold imposition, 259 high-confidence 
probesets corresponding to 190 unique genes (Figure 3A). Orthol-
ogous gene pairs in humans and mice were identified using 
Affymetrix annotations and the eukaryotic orthologues database 
InParanoid (O’Brien et al., 2005; Sonnhammer and Ostlund, 2015). 

Of 195 human genes, 193 had mouse orthologues, and of 190 
mouse genes 188 had human orthologues. Intersection of the hu-
man and mouse Boolean equivalence list using CCNB1/Ccnb1 as 
the seeds identified 118 genes in common (Figure 3B: cytokinesis 
[n = 8], centrosome [n = 4], kinetochore [n = 24], spindle [n = 6], 
chromosome [n = 15], cell cycle regulators [n = 20], replication and 
repair [n = 25], nuclear pore/periphery [n = 3], nucleotide synthesis 
[n = 4], transcription factors [n = 2], and other [n = 7]). Scatterplots 
in Figure 3C show strong positive correlation, and logical equiva-
lence between CDC2 (mouse orthologue Cdc2a) ATAD2, CDCA7, 
and CCNB1,– CDC2 encodes Cdk1 and was expected based on 
its central role in cell cycle control. CDCA7, mutated in human 
immunodeficiency-centromeric instability-facial anomalies syn-
drome, and ATAD2, a AAA+ enzyme considered to be a putative 
oncogene, are both chromatin factors with poorly studied roles in 
the cell cycle.

The above analysis shows that ∼40% of the high-confidence 
cell cycle genes are not shared between human and mouse. 

FIGURE 3:  Comparison of high-confidence gene lists between human and mouse. (A) Identification of candidate cell 
cycle genes in human and mouse using BECC algorithm; comparison of orthologous genes between humans and mice; 
Venn diagram. (B) List of 103 genes conserved between humans and mice. Red color highlights genes whose expression 
patterns are also conserved in fly data sets. (C) Three candidate cell cycle genes (CDC2, mouse orthologue Cdc2a, 
ATAD2, and CDCA7) show strong positive correlation with CCNB1 in publicly available pooled human (n = 25,955) and 
mouse (n = 11,758) data sets. CDC2 is a highly studied cell cycle gene, whereas ATAD2 and CDCA7 have been 
subjected to only limited analysis.
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However, when human genes were compared with the ranked 
list of genes before the threshold step in the mouse data set, we 
observed that 89% (171 genes) were common between human 
and mouse. This example highlights the value of considering not 
only the gene lists after thresholding but also the larger ranked 
list generated after two rounds of BECC. We analyzed whether 
the remaining 11% difference was due to technical errors or sug-
gestive of species-specific differences. We did not observe 
probe quality issues, with the dynamic range of gene expression 
values being high for at least one probeset. Therefore, it is pos-
sible that these are real differences, but experimental efforts in 

mouse and human cells are necessary to test whether this is 
indeed the case.

Prediction of new contexts for the action of cell cycle genes
The BECC algorithm generates plots of pairwise gene expression 
analysis across thousands of samples derived from many different 
sources. Inspection of these plots has the potential to reveal unex-
pected patterns that may represent potential new, context-specific 
functions for cell cycle genes. As shown in Figure 4A, ANLN, which is 
well known for its function in cytokinesis, also exhibits a strong off-axis 
group of points. Similarly, the plot for the gene encoding the AAA+ 

FIGURE 4:  Noncell cycle contexts of specific cell cycle genes. (A) Top, Tissue-specific gene expression patterns of three 
well-known cell cycle genes: ANLN, TRIP13 and CASC5. Bottom, Tissue annotation for each sample is highlighted in the 
scatterplots: Brain (red), Liver+Kidney (black), airway epithelial cells (green), other tissue (blue). In ANLN vs. CCNB1 
scatterplot, the outliers are mostly brain samples. In TRIP13 vs. CCNB1 scatterplot, the outliers are mostly airway 
epithelial cells. In CASC5 vs. CCNB1 scatterplot, the off-diagonal points are enriched in liver and kidney samples. 
(B) Top, Three previously known cell cycle genes (MCM10, PTTG1, and DHFR) are equivalent to CCNB1 in publicly 
available microarray data in 25,955 human samples. Bottom, Scatterplots between three previously known cell cycle 
genes (Mcm10, Pttg1, and Dhfr) and CCNB1 in publicly available microarray data in 11,758 mouse samples. All three 
scatterplots shows off-diagonal points that are enriched in liver and kidney samples. This demonstrates tissue-specific 
expression patterns for known cell cycle genes.
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enzyme TRIP13, well studied for its function in the spindle checkpoint 
and in meiotic chromosome dynamics (Vader, 2015; Corbett, 2017), 
shows a cluster of points that are not correlated with CCNB1. CASC5 
is also expressed in a group of samples that have low levels of CCNB1. 
To assess whether these new contexts represent tissue-specific func-
tions unrelated to cell cycle progression, we developed a dynamic 
interface, which identifies the data set for each point based on place-
ment of a cursor. Guided by this manual browsing, we highlighted the 
scatterplots to mark samples based on tissue origins, identified by 
automated searching of Gene Expression Omnibus (GEO) descrip-
tions of the primary microarray data sets (specifically, by searching for 
the words brain, liver, hepatocellular, kidney, and airway). As shown in 
Figure 4A, bottom panel, ANLN expression is correlated with that of 
CCNB1, except in brain samples, TRIP13 shows clear enrichment not 
correlated with CCNB1 in airway tissue, and CASC5 shows deviation 
in liver and kidney samples. For ANLN, there is prior work highlighting 
functions in the nervous system (Tian et al., 2015), whereas for TRIP13 
there is no prior analysis suggesting a function in airway epithelium. 
While addressing potential new roles for such components will 
require tissue-specific inhibitions (and potentially strategies that 
inhibit function in differentiated nondividing cells), these patterns 
provide the basis to motivate such analysis in the future.

The same approach was employed to identify species-specific 
differences; for example, the genes encoding the replication factor 
MCM10 (Mcm10), securin (PTTG1, Pttg1), and DHFR (Dhfr) show 
off-axis expression in liver and kidney samples in the mouse but not 
in the human data sets (Figure 4B). Such differences may complicate 
interpretation of genetic perturbations in mice, as observed pheno-
types may include consequences of perturbing function in tissue 
contexts that are not represented in humans.

Expression of cell cycle genes across species: human, 
mouse, fly, and plants
To investigate expression patterns of cell cycle genes that are shared 
across species, we performed independent analyses of human, 

mouse, fly (Drosophila melanogaster), and plant (Arabidopsis thali-
ana) data sets. Orthologous gene pairs were identified using 
Affymetrix annotations and the eukaryotic orthologues database 
InParanoid (O’Brien et al., 2005; Sonnhammer and Ostlund, 2015). 
The analyses of human and mouse data sets are described above. 
Because of the limited number of samples and lower diversity, the 
fly data set analysis identified slightly higher numbers of probesets 
and genes: 494 probesets in ProbeSet A, 3295 probesets in Probe-
Set B, 790 high scoring probesets, and 771 unique genes. The total 
number of 77 human probesets and 59 unique genes was shared in 
human, mouse, and fly analyses. Analysis of the plant data set 
resulted in 68 probesets in ProbeSet A, 703 probesets in ProbeSet 
B, 140 high scoring probesets, and 134 unique genes. The total 
number of 25 human probesets and 19 unique genes was found to 
be shared in all four species. While the absence of genes may reflect 
technical issues, these species-specific data sets provide an acces-
sible resource for potential functional follow-up work in these 
different models.

A resource for analyzing expression of cell cycle genes 
across species
To make the results of the analysis widely accessible, we developed 
a user-friendly website resource that enables browsing all of the 
pairwise expression data (including the dynamic plot browsing inter-
face) and for generating any desired pairwise plot between the 
set of genes. A detailed set of instructions on how to use the data 
is at http://hegemon.ucsd.edu/CellCycle (Figure 5). The website 
resource allows the user to perform following queries.

The website resource provides a set of links to explore the results 
of the BECC algorithm on human, mouse, fly, and plant data sets. 
The user can retrieve top N genes by specifying N in a text box and 
using the topGenes button. The user can then select a gene to plot 
against a reference gene which is CCNB1 by default. However, the 
reference gene can be changed using the makeRef button on the 
web page. A scatterplot is generated using the reference and 

FIGURE 5:  Resource. Website to explore the candidate cell cycle genes using three different web interfaces: cell cycle 
genes viewer, scatterplots viewer, annotation browser. All software packages developed for the analysis are also freely 
available on the website.
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selected probeset IDs using the button Plot. The link that starts with 
the name conserved provides similar tools to show plots side by 
side for orthologous pairs across species.

The website resource provides a link where the user can explore 
scatterplots between any gene-pairs of interest in human, mouse, 
Drosophila, and Arabidopsis. All scatterplots are associated with an 
Explore link that is used to explore the scatterplot in detail. The Ex-
plore button on the website shows the scatterplot where the points 
can be selected by dragging a rectangular area. The selected points 
appear on the right side as a group with the number of samples. A 
checkbox next to the group is used to highlight the samples in the 
scatterplot with a different color. The scatterplot explorer web page 
provides a button Show which gives the GEO links to the selected 
experiments.

One of the links in the website resource is dedicated to searching 
simple words in the GEO annotations in the context of a scatterplot. 
Using this tool, one can search the tissue types or other metadata 
that are provided on the GEO annotations web page of the National 
Center for Biotechnology Information (NCBI) in the context of a 
scatterplot. For example, it shows the enriched keywords that are 
present in a set of experiments selected from the scatterplot by 
mouse click using rectangular areas. Users can search for data re-
lated to brain tissues and the specific experiments are highlighted in 
the scatterplot using a different color. The steps are click global → 
click submit → select dataset, type gene names, click getPlots → 
select plots → click explore → select two groups of experiments by 
mouse click → select groups → click Annotations. To search brain 
tissue, enter the keyword brain in the textbox next to the Search but-
ton after the explore options and click on the Search button. Select 
the group created to highlight the experiments in the scatterplot.

All software tools and GEO accession numbers used and 
described above are provided in a link in the website resource. 
The relevant GEO accession numbers are GSE119083 (Arabidopsis 
thaliana) (Pandey and Sahoo, 2019), GSE119084 (Drosophila 
melanogaster), GSE119085 (mouse), GSE119087 (human), and 
GSE119128 (collections).

DISCUSSION
Many genes have been implicated in the fundamental cell cycle pro-
cesses that are critical for proliferation. Cell cycle genes are essential 
for development and defects in their function or expression are as-
sociated with human diseases, such as cancer. Here, we describe an 
unbiased Boolean approach that identifies cell cycle genes using 
publicly available gene expression data. We provide ranked lists and 
high-confidence gene sets after imposition of a threshold in a web-
site resource for human, mouse, Drosophila melanogaster, and 
Arabidopsis thaliana (web link). Thirty-eight of the 195 high-confi-
dence human cell cycle genes identified by this approach were not 
identified by prior synchronization-release expression studies in cul-
tured cells. The difference between our study and previous studies 
may be due to the types of samples analyzed and the methodology 
employed in the array-based expression analysis. Notably, 28 of 
these 38 genes were validated using a new publicly available single-
cell RNASeq data set (GSE121265). Only 22 genes from the 195 hu-
man genes behaved in a significantly different manner in the mouse 
data set, consistent with the expectation that the majority of human 
cell cycle genes should have orthologous mouse cell cycle genes.

A limitation of our approach is that it is dependent on the quality 
of gene expression measurements. In Affymetrix microarray data 
sets, there are many probesets for each gene and these can exhibit 
dramatically different patterns. This variation raises the question of 
how to choose a representative probeset for each gene. For CCNB1, 

both probesets are similar, making the analysis robust. However, for 
other genes, we chose the probeset with the best dynamic range 
and strong signal. We computed the percentage of probesets iden-
tified as being a cell cycle gene from the overall probesets for that 
gene. The percentage for human was 65% and for mouse it was 
62%. For specific well-known cell cycle genes, such as E2F1, a good 
probeset is not available in the Affymetix microarray data (Supple-
mental Figure S6A); however, E2F1 expression data in TCGA breast 
cancer RNASeq data are robust and highly correlated with CCNB1. 
Another well-known cell cycle gene SLBP has good probesets avail-
able in the microarray data sets; however, only the mouse data set 
exhibited good correlation with CCNB1 (ranked #307). However, 
SLBP is poorly correlated with CCNB1 in the human microarray and 
breast cancer RNASeq data sets and therefore not ranked, suggest-
ing that SLBP expression may not be strictly cell cycle-correlated in 
tissue contexts.

We show here that despite a negative correlation between 
CCNB1 and CCNE2 in cell synchronization experiments, they are 
positively correlated in analysis of bulk tissue samples. Since the 
mRNA measurements in bulk tissue represent average gene expres-
sion from all cells, expression of CCNB1 and CCNE2 appears to be 
directly proportional to the fraction of cells dividing in tissues, result-
ing in strong positive correlation in bulk data sets. By focusing on 
these highly correlated clusters of genes in diverse big data sets, we 
hope to enrich genes whose function is limited to proliferation in 
diverse tissues, conditions, and diseases.

Our analysis suggests that certain cell cycles genes, such as 
ANLN, TRIP13, and CASC5, may function in contexts other than 
cycling cells (Figure 4A). These genes should be placed in a group 
of cell cycle genes that have off-axis points; however, it is difficult to 
assess the percentage of such genes using our approach. For ex-
ample, while there are many human samples with CCNB1 low and 
ANLN high (Supplemental Figure S6C), the off-axis points in the 
human data set are small enough in number to not impact the 
BooleanNet thresholds. However, in the mouse data set there were 
sufficient Ccnb1 low and Anln high off-axis points to prevent Anln 
from being Boolean equivalent with Ccnb1. Thus, ANLN was de-
tected as a cell cycle gene in the human data set but not in the 
mouse data set. This discrepancy is likely due to sample biases be-
tween these data sets and the Boolean approach severely punishing 
genes that have off-axis points. A modified computational approach 
will be necessary to classify genes that are similar to these three 
examples. We note that the scatterplots in our website resource can 
be queried to assess the identity of samples with off-axis points, 
enabling users with expertise in specific genes to assess whether 
there are sufficient such points to motivate experimental efforts.

Extending Boolean equivalence analysis beyond the cell cycle
The approach we describe here is focused on cell cycle genes but is 
straightforward to extend to any process using a well-chosen seed 
gene. In addition, the analysis we present is based on microarray 
data sets but is directly applicable to RNA-Seq data sets. The nor-
malization steps involved are distinct for the two types of expression 
data (Zhao et al., 2014). To facilitate analysis on a different process 
employing a new seed gene, we have deposited for open access 
the normalized human microarray data (at GSE119087) and the re-
quired software (at http://hegemon.ucsd.edu/CellCycle/Software/). 
A detailed set of instructions on how to conduct such an analysis is 
presented in the software links on the main website resources. No-
tably, the analysis requires storage space (50 GB) and computing 
power that are present in typical current desktop/laptop computers, 
making this approach accessible to all.
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MATERIALS AND METHODS
Data collection and annotation
Publicly available microarray databases in Human U133A (n = 
21,285, GPL96), Human U133 Plus 2.0 (n = 25,955, GPL570), Mouse 
430 2.0 (n = 11,758, GPL1261), Affymetrix Drosophila Genome 2.0 
Array (n = 2,687, GPL1322), and Arabidopsis thaliana ATH1 (n = 
4,306, GPL198) Affymetrix platform (Pandey and Sahoo, 2019) were 
downloaded from the NCBI GEO website (Edgar et al., 2002). Gene 
expression summarization was performed by normalizing each 
Affymetrix platform by Robust Multichip Average (Irizarry et al., 
2003). A single-cell RNASeq data set that quantifies continuous cell 
cycle phase using single-cell gene expression data (GSE121265) 
was used for validation (Hsiao et al., 2019). We considered all gene 
names annotated at NCBI (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
gene_info.gz, downloaded on July 12, 2018) in our comparisons 
with prior work.

Boolean analysis of data sets
The expression values of each gene were ordered from low to high 
and a rising step function was computed to define a threshold by 
StepMiner algorithm in the individual data set (Sahoo et al., 2007). If 
the assigned threshold for a gene was t, then expression levels 
above t + 0.5 were classified as high, and the expression levels be-
low t - 0.5 were classified as low. Expression levels between t - 0.5 
and t + 0.5 were classified as intermediate. Previously published 
BooleanNet algorithm was performed to determine Boolean Impli-
cation relationships between genes (Sahoo et al., 2008). Briefly, 
BooleanNet algorithm searches for at least one sparsely populated 
quadrant in a scatterplot between two genes. The intermediate 
expression values were ignored by the BooleanNet algorithm. 
There were six possible scenarios: one of the four quadrants was 
sparse (four asymmetric Boolean implications) and two diagonally 
opposite quadrants were sparse (Equivalent and Opposite Boolean 
implications).

BECC analysis
BECC analysis is based on Boolean equivalent relationships, pair-
wise correlation, and linear regression analysis (Supplemental 
Figure S1). A gene pair was included in the BECC analysis if they 
had a Boolean equivalent relationship or both had a Boolean 
equivalent relationship with a common third gene. This analysis 
was performed in two steps. First, a selected probeset of a seed 
gene was used as a starting point to identify a list of probesets 
(ProbeSet A) that are Boolean equivalent to the selected probeset. 
Next, this list was expanded (ProbeSet B, L) by identifying other 
probesets that are Boolean equivalent to at least one of the probe-
set from ProbeSet A. A score was computed for a pair of probesets 
from L by using the correlation r and slope of fitted line s (if s > 1, 
1/s was used as slope):

r sscore 2 2= +

The score is a number between 0 and 2 given r > 0 and s > 0. A 
matrix of scores M was computed for all probesets in L. Every row of 
this matrix was sorted based on the score in ascending order. The 
whole matrix was then multiplied using a column vector of ranks: 
[0 1 2 … len(L)-1]. In other words, the score for the probeset in row i 
gsi was computed as follows:
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where scoreik is the kth smallest score for the probeset in row i.

The StepMiner algorithm was used to compute a threshold to 
identify the high-scoring probesets gsi. The final result of the BECC 
is this list of high-scoring probesets.

Statistical justification
Empirical distribution of the pairwise gene scores was computed for 
each of our data sets by randomly selecting pairs of probesets (Sup-
plemental Figure S3). Using this distribution, average probeset 
score E[gsi] and stddev(gsi) can be estimated as follows:
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The p value for the StepMiner identified threshold was com-
puted using a Z-test. All statistical tests were performed using statis-
tical programming language R version 3.2.3 (2015-12-10).

Data submission
All the data generated in the described analyses are submitted 
to GEO: GSE119083 (Arabidopsis thaliana) (Pandey and Sahoo, 
2019), GSE119084 (Drosophila melanogaster), GSE119085 (mouse), 
GSE119087 (human), and GSE119128 (collections).

Data access
http://hegemon.ucsd.edu/CellCycle/:

GSE119083—Plant Boolean Implication Network.
GSE119084—Fly Boolean Implication Network.
GSE119085—Mouse Boolean Implication Network.
GSE119087—Human Boolean Implication Network.
GSE119128—An unbiased Boolean analysis of public gene 

expression data for cell cycle gene classification.
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