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Brain connectivity and novel network measures for Alzheimer’s
disease classification2
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3Department of Neurology, UCLA School of Medicine, Los Angeles, CA, USA

Abstract

We compare a variety of different anatomical connectivity measures, including several novel ones,
that may help in distinguishing Alzheimer’s disease patients from controls. We studied diffusion-
weighted MRI from 200 subjects scanned as part of the Alzheimer’s disease Neuroimaging
Initiative (ADNI). We first evaluated measures derived from connectivity matrices based on
whole-brain tractography; next, we studied additional network measures based on a novel flow-
based measure of brain connectivity, computed on a dense 3D lattice. Based on these two kinds of
connectivity matrices, we computed a variety of network measures. We evaluated the measures’
ability to discriminate disease with a repeated stratified 10-fold cross-validated classifier, using
support vector machines (SVMs), a supervised learning algorithm. We tested the relative
importance of different combinations of features based on the accuracy, sensitivity, specificity,
and feature ranking of the classification of 200 people into normal healthy controls, and people
with early- or late-stage mild cognitive impairment (MCI), or Alzheimer’s disease (AD).
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1. Introduction

Current approaches used to classify Alzheimer’s disease (Kohannim et al., 2010; Kldppel et
al., 2008) rely on features such as volumetric measures from anatomical regions in magnetic
resonance imaging (MRI) images of the brain, CSF biomarkers, ApoE genotype, age, sex,
body mass index, and, in some cases, clinical and cognitive tests. Here we attempted to
improve our understanding of the best features for Alzheimer’s disease classification by
studying the utility of a variety of brain connectivity measures derived from diffusion-
weighted images (DWI) of the brain. Some of the features we chose came from standard
tractography-based maps of fiber connectivity (Rubinov and Sporns, 2010) between brain
regions; we supplemented these with more novel features derived from a flow-based
connectivity method (Prasad et al., 2013a). We aimed to understand the information
contained in the raw connectivity matrices versus network measures derived from them; we
used all of the resulting features to differentiate diagnostic categories related to Alzheimer’s
disease (e.g., MCI). To do this, we employed support vector machines (SVMs), a machine
learning algorithm for classification, to learn from training data and then classify a separate
test set.

Cui et al. (2012) used SVMs to classify amnestic mild cognitive impairment (aMCI) based
on features indexing anatomical atrophy through segmentations of T1-weighted MRI and
fraction anisotropy values from diffusion images using tract-based spatial statistics (TBSS).
They ranked the features using Fisher scores, and selected the best performing subset using
cross-validation. They achieved an accuracy of 71.09%, sensitivity of 51.96%, and
specificity of 78.40% for the classification of aMCI. Our method differs in that we use only
measures of connectivity from diffusion images for our feature set and the ranking is
computed within a set of features we are interested in evaluating. Laplacian Regularized
Least Squares was used to classify Alzheimer’s disease in (Zhang and Shen, 2011) where
they tried to incorporate structural MRI, PET imaging data, and CSF biomarker features
from MCI into an AD classifier, which achieved a performance of almost 95% accuracy. In
our case, we explore classification of both MCI and AD and focus on the information
contained in different types of connectivity features. Cortical thickness features from
structural MRI were evaluated by Eskildsen et al. (2012) using classification though they
focused on conversion from MCI to AD and achieved accuracies ranging from 70-76%
depending on the time to conversion, in contrast we used classification as a means to
understand the information captured in measures of connectivity. The emphasis in the
current study is to explore and understand which diffusion based network measures are
predictive of Alzheimer’s disease in contrast to the goal of optimizing the accuracy of
classification in previous studies.

Our results and experiments seek to characterize the information contained in different
features used to represent connectivity in the brain. This is related to the problem of feature
selection methods (Guyon and Elisseeff, 2003), which rank features in a meaningful way to
understand the ones that are important and those that can be discarded because they are
redundant or irrelevant. One approach to select the best features (Peng et al., 2005) is to use
mutual information to find the most relevant features for a target class. Another popular
approach is the least absolute shrinkage and selection operator (Tibshirani, 1996) that uses a
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linear model and its regression coefficients to choose the best subset of features. De Martino
et al., (2008) chose the most informative voxels in functional MR images using a recursive
feature elimination approach that repeatedly trains an SVM model to remove features
contributing a small amount to the training model. In our technique, we use the accuracy
from classification to evaluate different types of brain connectivity features and to
understand which ones may have an advantage to classifying MCI or AD. In addition, we
used the SVMs to rank the features within the different feature sets to get a better
description of what features were driving the classifier.

Our connectivity measure computation, classification framework, and ranking was applied
to publicly available structural magnetic resonance imaging (MRI) and diffusion MRI from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller et al., 2005). We studied
neuroimaging data from 200 subjects: 50 normal healthy controls, 38 people with late-stage
mild cognitive impairment (L-MCI), 74 with early MCI (eMCI), and 38 AD patients.

We extracted measures of connectivity between 68 automatically parcellated regions of
interest on the cortex using both fiber and flow connectivity methods and organized the
information into connectivity matrices. From these connectivity matrices, we computed a
variety of widely-used network measures. These features were then fed into a repeated
stratified 10-fold cross-validation design, using SVMs to classify controls vs. AD, controls
vs. eMCI, controls vs. L-MCI, and eMCI vs. L-MCI. Our results show a significant
difference in the accuracy of various combinations of features that were used to distinguish
between the various diagnostic groups.

2. Methods

2.1. Data

Our data was from 200 subjects scanned as part of ADNI-2, a continuation of the ADNI
project in which diffusion imaging (among other scans) was added to the standard MRI
protocol. The dataset included diffusion MRI data from 50 cognitively normal controls (C),
74 early- and 38 late-stage MCI subjects (eMCI, LMCI), and 38 people with Alzheimer’s
disease (AD).

Subjects were scanned on 3-Tesla GE Medical Systems scanners, which collected both T1-
weighted 3D anatomical spoiled gradient echo (SPGR) sequences (256 x 256 matrix; voxel
size = 1.2 x 1.0 x 1.0 mm3; T1=400 ms; TR = 6.98 ms; TE = 2.85 ms; flip angle = 11°), and
diffusion weighted images (DWI; 256 x 256 matrix; voxel size: 2.7 x 2.7 x 2.7 mm?3; scan
time = 9 min). Per subject, the DWIs consisted of 41 diffusion images with b = 1000 s/mm?
and 5 T2-weighted bg images. This protocol was chosen after an effort to study trade-offs
between spatial and angular resolution in a tolerable scan time (Jahanshad et al., 2011).

The groups were matched in both age and sex that we confirmed using two-sample t-tests
and multiple comparison correction. Detailed demographic information for each subgroup of
subjects is listed in Table 1.
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2.1.1. Image Preprocessing—We processed the T1-weighted images to parcellate them
into 68 cortical regions. We first automatically removed extra-cerebral tissues from the
anatomical images using ROBEX (Iglesias et al., 2011a), a method that learned from manual
segmentations of hundreds of healthy young adults. Skull-stripped brains were
inhomogeneity corrected using the MNI N3 tool (Sled et al., 1998) and aligned to the
Colin27 template (Holmes et al., 1998) with FSL Flirt (Jenkinson et al., 2002). The resulting
images were segmented into 34 cortical regions (in each hemisphere) using FreeSurfer
(Fischl et al., 2004) and are listed in Table 2. These segmentations were then dilated with an
isotropic box kernel of 5 x 5 x 5 voxels to make sure they intersected with the white matter
for subsequent connectivity analysis.

We corrected head motion and eddy current distortion in each subject by aligning the DWI
images to the average by image with FSL’s eddy correct tool. The brain extraction tool
(BET) (Smith, 2002) was then used to skull-strip the brains. We EPI-corrected these images
with an elastic mutual information registration algorithm (Leow et al., 2007) that aligned the
DWI1 images to the T1-weighted scans. Preprocessing steps are further detailed in (Nir et al.,
2012).

We used a global probabilistic tractography method based on the Hough transform (Agan;j et
al., 2011). While ADNIs scans are not high angular resolution, due to the need for a fast
scan, this method takes advantage of all the diffusion information provided at each voxel,
parametrized by the orientation distribution function (ODF). The Hough method generates
curves in the fiber space and scores them based on fractional anisotropy (FA) and the ODF
at each point along the curve. FA was computed from the single-tensor model of diffusion
(Basser and Pierpaoli, 1996). ODFs at each voxel were computed with a normalized,
dimensionless estimator derived from Q-ball imaging (QBI) (Aganj et al., 2010). This model
is more accurate and outperforms the previous QBI definition (Tuch, 2004), offering better
detection of multiple fiber orientations (Aganj et al., 2010; Fritzsche et al., 2010) and
additional information for the scoring function.

To generate close to 50,000 fibers per subject, we used an accelerated form of this
tractography method (Prasad et al., 2013b). Our optimizations included an ODF lookup table
and a randomized search of the parameter space, to generate fibers in less than 1/60 of the
original time.

2.2. Connectivity Features

We used features derived from brain connectivity matrices that categorize connections
between different regions of interest on the cortex. From these matrices, we computed a set
of network measures that quantify different network characteristics. We chose different
subsets of these features in our experiments. We used the classification accuracy as a metric
to understand the utility of the connectivity information captured, in the context of
diagnostic classification of Alzheimer’s disease.

2.2.1. Connectivity Matrix—We computed connectivity matrices using two methods.
The first quantifies pairwise connectivity strength as the relative proportion of fibers
connecting the two brain regions. The second is a novel method that computes the maximum
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flow between regions by interpreting the diffusion image as a network of pipes - or a flow
graph (these terms are defined further below).

Our first method takes fibers computed using the accelerated Hough tractography method
and computes the number that intersect pairs of regions from the 68 cortical areas. We used
these frequencies to populate a 68 x 68 connectivity matrix (with no normalization).

The second method we used is a flow-based measure of anatomical connectivity between all
region pairs (Prasad et al., 2013a). In short, we first created a lattice network by connecting
all lattice points (voxel centers) to all their immediate neighbors in 3D. Edge weights were
based on the orientation density function (ODF) value in the direction of the edge. These
edges were interpreted as pipes and their weight as the capacity of the pipe. In contrast to
counting fibers between ROIs, we computed the maximum flow - or capacity - between each
ROI pair, by following connecting tractography fibers projected onto the flow network
edges. We used a modified maximum-flow algorithm that is robust to noise in the diffusion
data, and guided by biologically viable pathways and structure of the brain. The resulting
flow is used to create a distinct 68 x 68 flow connectivity matrix. Fig. 1 gives an example
flow connectivity matrix using this method from our data. The lack of detected
interhemispheric connections could be because most of them travel through the corpus
callosum so it is difficult to detect fibers (for example) that connect frontal regions in the left
hemisphere to the temporal regions in the right hemisphere. Additional research (Hagmann
et al., 2008; Gong et al., 2009; Ingalhalikar et al., 2013) gives more examples of
connectivity matrices that have a similar inter- and intrahemispheric distribution of
connections.

2.2.2. Network Measures—\We represent the two types of connectivity matrices with
network measures described in (Rubinov and Sporns, 2010) and computed them with the
Brain Connectivity Toolbox. We derived these measures from both weighted and binary
connectivity matrices: global efficiency, transitivity, path length, modularity, small world,
radius, diameter, participation, local efficiency, optimal community structure, eigenvector
centrality, and eccentricity. In addition, we computed density, number of vertices, number of
edges, subgraph centrality, assortativity, nodal flow coefficient, average flow coefficient,
total flow across central node, degree, matching index, edge neighborhood overlap, node
pairs degree, and connected component sizes from only binary matrices and strengths from
only weighted matrices. As is standard, ten different thresholds were applied to each
connectivity matrix, to preserve a fixed fraction of the weights ranging from 0.1to 1, in
intervals of 0.1.

In some cases a network measure was computed for each node in the connectivity network,
this was the case for participation, local efficiency, and eigenvector centrality among others.
This resulted in a vector of 68 values for a single network measure. For matching index or
edge neighborhood overlap, the output was a 68 x 68 matrix of values. If a feature was
multi-dimensional, we took the mean value in addition to its raw values. The results from
each network measure were vectorized and the entire set contained 14,930 features per
threshold, making a total of 149,300 network measures per connectivity method. In addition,
there are 2,278 unique values from each connectivity matrix. These values represent the
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lower diagonal elements (not including the actual diagonal) and factoring in the ten
thresholds make 22,780 connectivity matrix features per connectivity method. In total there
are (149,300 network measure features + 22,780 connectivity matrix features) x (2
connectivity methods: fiber & flow) = 344,160 possible features per subject.

2.3. Classification

Support vector machines (SVMs) (Cortes and Vapnik, 1995) are supervised learning models
that we used to classify our connectivity features, to differentiate between disease states.
SVMs classify two-class data by training a model - or classification function - to find the
best hyperplane between the two classes in the data. Let x; € R9 represent the connectivity
feature vectors, where d is the dimension of the feature set of interest, and y; = £ be their
label with —1 and 1 representing two different disease states that could include controls,
eMCI, L-MCI, or AD. Our target hyperplane is

(w, z)+b=0,

where w € R9 should separate as many data points as possible. We find it by solving the L2-
norm problem

w,b,v

1
(1 DS 2
arg min <2<w,w>+ % vz>

such that

U 203

where v; are slack variables and D is a penalty parameter. In many instances, a hyperplane
cannot be found to completely separate the two classes of data, and the slack variables are
added to create soft margins to separate most of the points.

Our classification design was to test the information provided by the connectivity features
with repeated stratified 10-fold cross-validation as recommended by Kohavi, (1995). For the
results in the cross-validation our performance metrics were accuracy (AC), sensitivity (SE),
and specificity (SP). We repeated the cross-validation 30 times, which allows us to use
paired sample t-tests to statistically compare different feature subsets based on their
classification performance.

For each classifier we learned, the features were ranked by their relationship to the
hyperplane (De Martino et al., 2008). The ranking was computed by sorting in decreasing
order the |w| values from the hyperplane. Features with high values mean they contribute the
most to the final boundary between the classes. In our experiments, we averaged the feature
ranking across all folds within repeated cross-validation instances. These rankings will tell
what network measure or what element of a connectivity matrix was most important to the
classifier in the context of all other features in a feature set of interest.

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Prasad et al. Page 7

2.4. Experiments

We designed experiments to test the utility of different subsets of features to identify
differences between sets of two disease states from our data. Our metric was the accuracy,
sensitivity, and specificity from stratified 10-fold cross-validation that was repeated 30 times
comparing controls vs. AD, controls vs. early-MCl, controls vs. late-MCl, and early-MCI
vs. late-MCI. In each of these classification problems we used nine different sets of features:
the fiber connectivity matrix, (FI(M)), the flow connectivity matrix (FL(M)), the fiber
network measures (FI(N)), the flow network measures (FL(M)), combinations of these sets
as FI (N+M), FL(N+M), FI(N)+FL(N), FI(M)+FL(M), and FI(N+M)+FL(N+M). Each of
these sets of features was organized into a matrix and then fed into the SVM algorithm using
a repeated stratified 10-fold cross-validation design. A summary of our experimental design
is in Fig. 2.

3. Results

Figures 3-6 show bar charts of the results for each of our four classification problems using
the nine different subsets of features. These include controls vs. AD (Fig. 3), controls vs.
eMCI (Fig. 4), controls vs. L-MCI (Fig. 5), and eMCI vs. L-MCI (Fig. 6). It shows the
accuracy, sensitivity, and specificity as percentages for each of the nine feature sets
including FI(N), FI(M), FI(N+M), FL(N), FL(M), FL(N+M), FI(N)+FL(N), FI(M)+FI(M),
and FI(N+M)+FL(N+M) along with their 95% confidence intervals over the stratified 10-
fold cross-validated results that were repeated 30 times. For controls vs. AD we found
feature set FI(N)+FL(N) had the highest accuracy of 78.2% and using paired-sample t-tests
(p>0.05) we found it was not statistically different in performance from FI(N) and FI(N+M).
FI(N+M) had the highest accuracy of 59.2% for the controls vs. eMCI classifier and was not
significantly different in performance from FI(N+M)+FL(N+M). In the case of controls vs.
L-MCI, FL(N) had the highest accuracy of 62.8% and was significantly better in
performance than all other feature sets. eMCI vs. L-MCI performed best with FI(N)+FL(N)
reaching an accuracy of 63.4% and was significantly different than all other feature sets.

In addition to the bar charts we ranked the top five features for each classification problem
and feature set in Tables 3—-6. Each of the top features is also listed with its corresponding
threshold value. A multi-dimensional feature such as edge neighborhood overlap may be
listed multiple times at the same threshold for a single feature set and classification problem
because the ranking is differentiating between parts of the feature vector for that single
network measure. We also include the specific labels for elements in the connectivity
matrices that were highly ranked, the symbol “<->" represents the undirected edge between
the two regions on the cortex.

4. Discussion

For classification of normal elderly controls relative to people with AD, Table 1 shows
FI(N)+FL(N) has the highest classification accuracy. Even so, when these features combined
with additional features, the accuracy does go down in some instances. FI(N+M) was able to
distinguish controls vs. eMCI the best, and FL(N) was the best for distinguishing healthy
controls vs. L-MCI. In the eMCI vs. L-MCI classification experiments, we again saw a
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combination of network measures (FI(N)+FL(N)) produced the best results. The results
show that when studying L-MCI, including flow based network measures can have an
advantage in distinguishing class differences and may be useful for studying other aspects of
L-MCI. In the case of eMCI and AD, the performance of classification could be optimal
based on fiber measures alone, though the addition of flow in AD may have slightly higher
accuracy.

In addition to offering a principled approach to select or rank the importance of connectivity
features for this kind of classification problem, we provided a proof of concept and
framework for using support vector machines as a metric for use with brain connectivity
data. We recently used it to choose the architecture of the connectivity matrix by selecting
the best nodes or regions of the cortex. This adaptive cortical parcellation was created based
on a framework to evaluate different cortical parcellations by their accuracy from diagnostic
classifiers, such as SVMs (Prasad et al., 2014).

Learning algorithms, such as SVM, Adaboost, or random forest classification can be
sensitive to the feature set used. We note that other schemes may be used and their effects
could also be useful to categorize this dataset and other related data or even filter out
features in each of the feature sets we studied. Other classification techniques that may be
effective include a variation of manifold learning used by Iglesias et al. (2011b) to classify
Alzheimer’s disease using registration- and overlap-based similarity measures.
Alternatively, we could organize the features into a tensor representation for multilinear
subspace learning (Tao et al., 2007).

These other algorithms may be particularly adept at classification of AD because of how
well they can build a model with the relatively limited number of subjects in these studies,
by contrast with the large number of features for each subject. New subjects are continually
being added to the ADNI dataset and more training data would give us a stronger and more
secure understanding of these relationships. With larger datasets we can explore the absolute
and relative performance of different features and biomarkers using deep learning (Hinton et
al., 2006) or artificial neural networks that allow for a great deal of freedom and a richer
model when there are multiple layers included (Bengio, 2009) and massive amounts of data
available. Here we chose SVM as it works well with relatively small samples and a larger
number of features without having to apply regularization (Hastie et al., 2001).

The feature ranking approach we used leveraged the hyperplane from the SVM and gives a
ranking of a feature in the context of all other features in the set we are studying. Other
approaches such as uni-variate ranking by using t-tests on a single feature (Chu et al., 2012)
or by using regression on each feature (Polyn, 2005) give the importance of a single measure
by itself but may miss cases when a feature by itself is weak but in the context of other
features, the feature set becomes highly discriminatory. There is also a variety of multi-
variate feature selection approaches being proposed in the literature. One method by Liu et
al. (2013) addresses the geometric relationship of the target classes in Alzheimer’s disease
structural MRI training data by using graph matching. Another approach combines uni-
variate feature selection and multi-variate recursive feature selection by using correlation
based ranking of single features. It then uses recursive and forward sequential feature
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selection to select a set of features that will include mostly the top ranked features (Fan et
al., 2007). In (Cuingnet et al., 2011), the authors study ten algorithms that classify AD using
T1-weighted MRI and conclude that different feature selection methods did not greatly
affect performance. In our case, we used the feature selection to evaluate a classifier and its
features without removing or selecting features based on training data.

Different sets of features may uncover detail in the connectivity structure of the brain that is
better for representing important changes in networks across the various phases or stages of
Alzheimer’s disease. We can extend the framework in the current study to use different
features such as those from dynamic simulations of connectivity (Prasad et al., 2013c) or
connectivity measures that summarize the fibers from tractography using maximum density
paths (Prasad et al., 2011a) that are registered (Prasad et al., 2011b) into the same space. We
can then use the subset of features that best predicts or classifies a category in our data that
could include affects of aging, severity of the disorder, or even those that emphasize parts of
the network that are associated with the effects of risk genes for Alzheimer’s disease.

Acknowledgments

Algorithm development and image analysis for this study was funded, in part, by grants to PT from the NIBIB (R01
EB008281, R01 EB008432) and by the NIA, NIBIB, NIMH, the National Library of Medicine, and the National
Center for Research Resources (AG016570, AG040060, EB01651, MH097268, LM05639, RR019771 to PT). Data
collection and sharing for this project was funded by ADNI (NIH Grant U01 AG024904). ADNI is funded by the
National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through
contributions from the following: Abbott; Alzheimer's Association; Alzheimer's Drug Discovery Foundation;
Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers
Squibb Company; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its
affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer
Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development
LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation;
Pfizer Inc.; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research
is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the
Foundation for the National Institutes of Health. The grantee organization is the Northern California Institute for
Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the
University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the
University of Southern California. This research was also supported by NIH grants P30 AG010129 and K01
AG030514 from the National Institute of General Medical Sciences.

References

Aganj |, Lenglet C, Jahanshad N, Yacoub E, Harel N, Thompson PM, Sapiro G. A Hough transform
global probabilistic approach to multiple-subject diffusion MRI tractography. Medical Image
Analysis. 2011; 15:414-425. [PubMed: 21376655]

Aganj |, Lenglet C, Sapiro G, Yacoub E, Ugurbil K, Harel N. Reconstruction of the orientation
distribution function in single-and multiple-shell Q-ball imaging within constant solid angle.
Magnetic Resonance in Medicine. 2010; 64:554-566. [PubMed: 20535807]

Basser P, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative
diffusion-tensor MRI. Journal of Magnetic Resonance-Series B. 1996; 111:209-219. [PubMed:
8661285]

Bengio Y. Learning deep architectures for Al. Foundations and trends in Machine Learning. 2009;
2:1-127.

Boser, B.; Guyon, I.; Vapnik, V. A training algorithm for optimal margin classifiers; Proceedings of
the Fifth Annual Workshop on Computational Learning Theory; 1992. p. 144-152.

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Prasad et al.

Page 10

Chu C, Hsu AL, Chou KH, Bandettini P, Lin C. Does feature selection improve classification
accuracy? Impact of sample size and feature selection on classification using anatomical magnetic
resonance images. Neurolmage. 2012; 60:59-70. [PubMed: 22166797]

Cortes C, Vapnik V. Support-vector networks. Machine Learning. 1995; 20:273-297.

Cui Y, Wen W, Lipnicki D, Beg M, Jin J, Luo S, Zhu W, Kochan N, Reppermund S, Zhuang L, et al.
Automated detection of amnestic mild cognitive impairment in community-dwelling elderly adults:
A combined spatial atrophy and white matter alteration approach. Neurolmage. 2012; 59:1209—
1217. [PubMed: 21864688]

Cuingnet R, et al. Automatic classification of patients with Alzheimer's disease from structural MRI: a
comparison of ten methods using the ADNI database. Neurolmage. 2011; 56:766—781. [PubMed:
20542124]

De Martino F, Valente G, Staeren N, Ashburner J, Goebel R, Formisano E. Combining multivariate
voxel selection and support vector machines for mapping and classification of fMRI spatial
patterns. Neurolmage. 2008; 43:44-58. [PubMed: 18672070]

Eskildsen, S.; Coupé, P.; Garcia-Lorenzo, D.; Fonov, V.; Pruessner, J.; Collins, L., et al. Improving
prediction of Alzheimer’s disease using patterns of cortical thinning and homogenizing images
according to disease stage; Medical Image Computing and Computer-Assisted Intervention—
MICCAI 2012: Novel Biomarkers for Alzheimer’s Disease and Related Disorders Workshop;
2012. p. 79-90.

Fan Y, Shen D, Gur RC, Gur RE, Davatzikos C. COMPARE: Classification of morphological patterns
using adaptive regional elements. IEEE Transactions on Medical Imaging. 2007; 26:93-105.
[PubMed: 17243588]

Fischl B, Van Der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat D, Busa E, Seidman L,
Goldstein J, Kennedy D, et al. Automatically parcellating the human cerebral cortex. Cerebral
Cortex. 2004; 14:11-22. [PubMed: 14654453]

Fritzsche KH, Laun FB, Meinzer HP, Stieltjes B. Opportunities and pitfalls in the quantification of
fiber integrity: What can we gain from Q-ball imaging? Neurolmage. 2010; 51:242-251.
[PubMed: 20149879]

Gong G, et al. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo
diffusion tensor imaging tractography. Cerebral Cortex. 2009; 19(3):524-536. [PubMed:
18567609]

Guyon |, Elisseeff A. An introduction to variable and feature selection. The Journal of Machine
Learning Research. 2003; 3:1157-1182.

Hagmann P, et al. Mapping the structural core of human cerebral cortex. PLoS Biology. 2008; 6(7):
1479-1493.

Hastie, T.; Tibshirani, R.; Friedman, J. The elements of statistical learning. Springer; 2001.

Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural computation.
2006; 18:1527-1554. [PubMed: 16764513]

Holmes C, Hoge R, Collins L, Woods R, Toga A, Evans A. Enhancement of MR images using
registration for signal averaging. Journal of Computer Assisted Tomography. 1998; 22:324-333.
[PubMed: 9530404]

Iglesias J, Liu C, Thompson P, Tu Z. Robust brain extraction across datasets and comparison with
publicly available methods. Medical Imaging, IEEE Transactions on. 2011a; 30:1617-1634.

Iglesias JE, Jiang J, Liu CY, Tu Z. Classification of Alzheimer’s disease using a self-smoothing
operator. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2011. 2011b:
58-65.

Ingalhalikar M, et al. Sex differences in the structural connectome of the human brain. Proceedings of
the National Academy of Sciences. 2013; 111(2):823-828.

Jahanshad, N.; Aganj, I.; Lenglet, C.; Joshi, A.; Jin, Y.; Barysheva, M.; McMahon, K.; de Zubicaray,
G.; Martin, N.; Wright, M., et al. Sex differences in the human connectome 4-Tesla high angular
resolution diffusion imaging (HARDI) tractography in 234 young adult twins; 2011 IEEE
International Symposium on Biomedical Imaging: From Nano to Macro; 2011. p. 939-943.

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Prasad et al.

Page 11

Jenkinson M, Bannister P, Brady M, Smith S, et al. Improved optimization for the robust and accurate
linear registration and motion correction of brain images. Neurolmage. 2002; 17:825-841.
[PubMed: 12377157]

Kldppel S, Stonnington C, Chu C, Draganski B, Scahill R, Rohrer J, Fox N, Jack C, Ashburner J,
Frackowiak R. Automatic classification of MR scans in Alzheimer’s disease. Brain. 2008;
131:681-689. [PubMed: 18202106]

Kohannim O, Hua X, Hibar D, Lee S, Chou Y, Toga A, Jack C, Weiner M, Thompson P. Boosting
power for clinical trials using classifiers based on multiple biomarkers. Neurobiology of Aging.
2010; 31:1429-1442. [PubMed: 20541286]

Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection.
IJCAI. 1995; 14:1137-1145.

Leow A, Yanovsky I, Chiang M, Lee A, Klunder A, Lu A, Becker J, Davis S, Toga A, Thompson P.
Statistical properties of Jacobian maps and the realization of unbiased large-deformation nonlinear
image registration. Medical Imaging, IEEE Transactions on. 2007; 26:822-832.

Liu F, Suk HI, Wee CY, Chen H, Shen D. High-Order Graph Matching Based Feature Selection for
Alzheimer’s Disease Identification. Medical Image Computing and Computer-Assisted
Intervention-MICCAI 2013. 2013:311-318.

Mueller S, Weiner M, Thal L, Petersen R, Jack C, Jagust W, Trojanowski J, Toga A, Beckett L. Ways
toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s disease neuroimaging initiative
(ADNI). Alzheimer’s and Dementia. 2005; 1:55-66.

Nir T, Jahanshad N, Toga A, Jack C, Weiner M, Thompson P. Connectivity network breakdown
predicts imminent volumetric atrophy in early mild cognitive impairment. Medical Image
Computing and Computer-Assisted Intervention-MICCAI 2012: Multimodal Brain Image
Analysis Workshop. 2012; 15:41-50.

Pearson K. On lines and planes of closest fit to systems of points in space. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science. 1901; 2:559-572.

Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency,
max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 2005; 27:1226-1238. [PubMed: 16119262]

Polyn SM, Natu VS, Cohen JD, Norman KA. Category-specific cortical activity precedes retrieval
during memory search. Science. 2005; 310:1963-1966. [PubMed: 16373577]

Prasad, G.; Jahanshad, N.; Aganj, I.; Lenglet, C.; Sapiro, G.; Toga, A.; Thompson, P. Atlas-based fiber
clustering for multi-subject analysis of high angular resolution diffusion imaging tractography;
2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro; 2011a. p.
276-280.

Prasad, G.; Joshi, S.; Jahanshad, N.; Villalon, J.; Aganj, I.; Lenglet, C.; Sapiro, G.; McMohan, K.; de
Zubicaray, G.; Martin, N.; Wright, M.; Toga, A.; Thompson, P. White matter tract analysis in 454
adults using maximum density paths; Medical Image Computing and Computer-Assisted
Intervention-MICCAI 2011: Computational Diffusion MRI Workshop; 2011b. p. 1-12.

Prasad, G.; Joshi, S.; Nir, T.; Toga, A.; Thompson, P. Flow-based network measures of brain
connectivity in Alzheimer’s disease; 2013 IEEE International Symposium on Biomedical Imaging:
From Nano to Macro; 2013a. p. 258-261.

Prasad, G.; Nir, T.; Toga, A.; Thompson, P. Tractography density and network measures in
Alzheimer’s disease; 2013 IEEE International Symposium on Biomedical Imaging: From Nano to
Macro; 2013b. p. 692-695.

Prasad G, Burkart J, Joshi SH, Nir TM, Toga AW, Thompson PM. A dynamical clustering model of
brain connectivity inspired by the N-body problem. Medical Image Computing and Computer-
Assisted Intervention-MICCAI 2013: Multimodal Brain Image Analysis Workshop. 2013c;
16:129-137.

Prasad, G.; Joshi, S.; Thompson, P. Optimizing brain connectivity networks for disease classification
using EPIC; 2014 IEEE International Symposium on Biomedical Imaging: From Nano to Macro;
2014.

Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations.
Neurolmage. 2010; 52:1059-1069. [PubMed: 19819337]

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Prasad et al.

Page 12

Sled J, Zijdenbos A, Evans A. A nonparametric method for automatic correction of intensity
nonuniformity in MRI data. IEEE Transactions on Medical Imaging. 1998; 17:87-97. [PubMed:
9617910]

Smith S. Fast robust automated brain extraction. Human brain mapping. 2002; 17:143-155. [PubMed:
12391568]

Tao D, Li X, Wu X, Hu W, Maybank SJ. Supervised tensor learning. Knowledge and Information
Systems. 2007; 13:1-42.

Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society.
Series B (Methodological). 1996; 58:267-288.

Tuch D. Q-ball imaging. Magnetic Resonance in Medicine. 2004; 52:1358-1372. [PubMed:
15562495]

Zhang, D.; Shen, D. Semi-supervised multimodal classification of Alzheimer’s disease; 2011 IEEE
International Symposium on Biomedical Imaging: From Nano to Macro; 2011. p. 1628-1631.

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Prasad et al. Page 13

Connectivity Matrix

Left

Right

10

S— N—m
Left Right

Figure 1.
We present an example 68 x 68 flow connectivity matrix from our data. This matrix was

derived using a flow connectivity method that computed the maximum amount of flow
between pairs of regions of interest on the cortex. In this subject, the connections within
each hemisphere are far more extensive than those across the hemispheres. A brighter color
means there is a stronger connectivity (in the sense of greater normalized fiber counts)
between the two areas. We use this matrix - along with the standard fiber connectivity
matrix - to compute network topology measures. These are then used in a machine learning
model to classify different disease states in our data.
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Figure 2.
A summary of how we select features of brain connectivity and classify them using support

vector machines (SVMs). Our framework begins by computing hundreds of thousands of
network measures from both fiber and flow connectivity matrices. We created nine different
subsets of features that are combinations of the network measures and raw connectivity
matrices from a fiber and flow based connectivity method. Each subset is evaluated by
understanding their performance in classification problems based on the four different
groups of subjects. These problems include control vs. Alzheimer’s disease, control vs.
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early-mild cognitive impairment (MCI), control vs. late-MCI, and early-MCI vs. late-MCI.
For each problem we used a stratified 10-fold cross-validated support vector machine
classifier to understand how well the feature subset was able to discriminate between the
two classes. The metrics used to evaluate the classifier performance were accuracy,
sensitivity, and specificity.
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Figure 3.

We present the results from the stratified 10-fold cross-validated (CV) support vector
machine classification of controls vs. Alzheimer’s disease using nine subsets of connectivity
features. These features come from both a fiber connectivity method (FI) and flow
connectivity method (FL) and include a variety of graph based network measures (N) along
with the raw connectivity matrices (M). We evaluated the performance of each subset’s
ability to classify using accuracy, sensitivity, and specificity. The CV was repeated 30 times
for each feature set using corresponding CV folds and we evaluated differences using
paired-sample t-tests. The bar plot shows the mean accuracy, sensitivity, and specificity over
the 30 CV results along with 95% confidence intervals. FI(N)+FL(N) had the highest
accuracy of 78.2% and was not significantly different (p>0.05) in performance from FI(N)
and FI(N+M).
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Figure4.
We present the results from the stratified 10-fold cross-validated (CV) support vector

machine classification of controls vs. early-mild cognitive impaired subject using nine
subsets of connectivity features. These features come from both a fiber connectivity method
(FI) and flow connectivity method (FL) and include a variety of graph based network
measures (N) along with the raw connectivity matrices (M). We evaluated the performance
of each subset’s ability to classify using accuracy, sensitivity, and specificity. The CV was
repeated 30 times for each feature set using corresponding CV folds and we evaluated
differences using paired-sample t-tests. The bar plot shows the mean accuracy, sensitivity,
and specificity over the 30 CV results along with 95% confidence intervals. FI(N+M) had
the highest accuracy of 59.2% and was not significantly different (p>0.05) in performance
from FI(N+M)+FL (N+M).
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Figure5.

We present the results from the stratified 10-fold cross-validated (CV) support vector
machine classification of controls vs. late-mild cognitive impaired subject using nine subsets
of connectivity features. These features come from both a fiber connectivity method (FI) and
flow connectivity method (FL) and include a variety of graph based network measures (N)
along with the raw connectivity matrices (M). We evaluated the performance of each
subset’s ability to classify using accuracy, sensitivity, and specificity. The CV was repeated
30 times for each feature set using corresponding CV folds and we evaluated differences
using paired-sample t-tests. The bar plot shows the mean accuracy, sensitivity, and
specificity over the 30 CV results along with 95% confidence intervals. FL(N) had the
highest accuracy of 62.8% and was significantly different (p>0.05) in performance from all
other subsets.
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Figure6.
We present the results from the stratified 10-fold cross-validated (CV) support vector

machine classification of early-mild cognitive impaired subjects vs. late-mild cognitive
impaired subject using nine subsets of connectivity features. These features come from both
a fiber connectivity method (FI) and flow connectivity method (FL) and include a variety of
graph based network measures (N) along with the raw connectivity matrices (M). We
evaluated the performance of each subset’s ability to classify using accuracy, sensitivity, and
specificity. The CV was repeated 30 times for each feature set using corresponding CV folds
and we evaluated differences using paired-sample t-tests. The bar plot shows the mean
accuracy, sensitivity, and specificity over the 30 CV results along with 95% confidence
intervals. FI(N)+FL(N) had the highest accuracy of 63.4% and was significantly different
(p>0.05) in performance from all other subsets.
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Table 2
This is a list of the 34 regions that are segmented in the cortex by Freesurfer in each hemisphere, making a

% total of 64 regions. These regions represent the nodes in the connectivity network for both the fiber and flow
- connectivity methods. In the network each method calculated the connectivity strength between all pairs of
> regions. For fiber connectivity, this is computed as the number of tractography fibers that connect the two
<1-> regions and for the flow connectivity it is computed using an approximate maximum flow algorithm between
= the regions.
o
=
QZJ Cortical Regions
g 1. | Banks of the superior temporal sulcus | 18. | Pars orbitalis
% 2. | Caudal anterior cingulate 19. | Pars triangularis
iy
'9_ 3. | Caudal middle frontal 20. | Peri calcarine

4. | Cuneus 21. | Postcentral

5. | Entorhinal 22. | Posterior cingulate

6. | Fusiform 23. | Precentral

7. | Inferior parietal 24. | Precuneus

8. | Inferior temporal 25. | Rostral anterior cingulate
Z
E 9. | Isthmus of the cingulate 26. | Rostral middle frontal
'IU 10. | Lateral occipital 27. | Superior frontal
j; 11. | Lateral orbitofrontal 28. | Superior parietal
S_ 12. | Lingual 29. | Superior temporal
=
o 13. | Medial orbitofrontal 30. | Supra marginal
=
Z 14. | Middle temporal 31. | Frontal pole
% 15. | Parahippocampal 32. | Temporal pole
c
g 16. | Paracentral 33. | Transverse temporal
%' 17. | Pars opercularis 34. | Insula
~—t
=
i
o
>
>
c
~—+
0
o
=
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(@)
=.
©
~—t

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.



Page 22

Prasad et al.

ledwesoddiyered ledwedoddiyeled Jedwesoddiyered ledwesoddiyered ledwesoddiyered
< <> <> <> <>
->[e1U044 B|PPIW a1e|nbuid Josjue snaundald |eJjuadald arenburd (N)14+
€0 | rensoy-d:(W)14 | €0 | rensod-o:(W)14 | €0 - (W) €0 - ()14 €0 | Jousisod-y :(N)14 (I
Anfenusd Anpenusd
SSaUURaMIRY SssauUaMIag dejiano depano
[epoN [ePON pooyJoqybiaN pooysoqybIsN (N)14+
90 Areurg :(N)14 S0 Areurg :(N)14 €0 abp3 :(N)14 €0 abp3 :(N) 14 T0 | sybuans :(N)1d (N1
deplano depieno deplsno deplano
pooysoqybieN pooyJoqybiaN pooysoqybieN pooysoqybieN
€0 abp3 €0 abp3 20 | xspulBulyore | zo abp3 20 abp3 (N+N)T14
ledwresoddiyered ledwesoddiyered Jedwresoddiyered
-I<-> <> [edwesoddiyered Jedwesoddiyered <>
|eluo.y alenbuio <> <> aenburd
€0 | alppiw jensoy-y | €0 | Jousiue [ensoy-y | €0 SNaUNJ3Id-Y €0 [eusoaid-Y €0 loLIg1s0d-y (n)14
depiano dejiano depiano depiano
pooyioqubiaN pooyioqybiaN pooyioqubiaN pooyioqubiaN
€0 abp3 2’0 | xapulBulyorey | €0 abp3 20 abp3 20 abp3 (N1
Anfenuad Arenuad Aijenuad Anfenuad Anfenuad
SSauusamlag SSauusaMlag SSauusamlag SSauusamlag SSauusamlag
60 [epoN Aseurg 80 [epoN Aseurg L0 [epoN Aseuig 90 [epoN Aseurg S0 [epoN Aseurg (N-+N)14
siiejnasado sire|naado
sred-<-> sied-<-> slreinaJado sirejnasado siiejnasado
arenburd |eJodwiay sied-1<-> sied-<-> sied-<->
20 | ayjosnwuysi-y | 20 Jouayul-y 20 | reoued sousyul-y | z°0 wioyIsn4-y 20 [eulyloua-y (I
Anfenusd Anpenusd Anjenuso Aufenusd Anfenusd
SSauusamilag SSauusamlag SSauusamlag SSauusamilag SSauusamilag
60 [epoN Aseurg 80 [epoN Aseurg L0 [epoN Aseulg 90 [epoN Aseurg S0 [epoN Aseurg (N)14
"YL/G ey Y1/ uey "y1/g Muey "Y1/e Auey YL/T Huey BS 8.nyead
AV 'SAS|041U0D

NIH-PA Author Manuscript

€9l|qel

NIH-PA Author Manuscript

Jomisu ALIAII98UU0I 81 Ul suoifisl oml syl Bunodsuuod abpa pardalipun syl syussaldal . .<->,, [OQUIAS 8y *S198uu09 abps ue Jey) uoleluswhas 18)unsssi
Ayl wouy suoifial 0M] 8y} SBPNJOUL [3GR] Y3 ‘SPIOYSIY] JUBILIP 18 SadLjew ALIAIDBUU0D Med 8yl Buipnjoul sainjesy asn Jey) sased uj 'sunJ jeadal

0E PU® SP|0} PalepIeA-SS0Id 0T 8Y) JO Yaea Jano pabieiane si pue Alepunog UoIeII4ISSe]d aulydew 1039aA oddns ayy wiody paaLap si Bupjues ayl "('yl)
ploysayy Buipuodsaliod J1ay1 yum Buoje umoys ate sainjea) ayl “T°0 JO SjeAsalul 1e (paurelal ate sabpa [e Bulueaw) 0T 01 T°0 wou) Buijuel pjoysaiyl
Jeuoiiodoud e Buisn palsjiy alam 1eyl sedLTew AlIAIBUUOD paiyblam pue Areulq woiy paindwod a1am sainseaw Y10Miau ayl “(IA) saourew AlIAIISUUOD
Mel 3y pue (N) sainseaw lomiau paseq ydelh jo A1ariea e Buisn poyrsw (74) A1AI98UUOD MOYS pue (14) AlIAIDBUU0I Jagly & Buisn paindwod

9J9M SaInJea) 8y "Wwa|qo.id UoIIeIIIISS.[O aSeasIp S, aWIBYZ|Y "SA S|0JIU0I 3} Ul S1I9SONS 81njea) 6 3yl JO Yoea WO} Sainjea) payuel anly dol ayl Moys apn

NIH-PA Author Manuscript

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.



Page 23

Prasad et al.

Ajenua) Anenus)
SSauuUdaMIag SSauuaaMIag depano depano
[epoN [ePON pooylogqybiaN pooyoqubiaN (IN+N) T4+
90 Kreurg :(N)I14 50 Areurg :(N)14 €0 8bp3 :(N)14 €0 8bp3 :(N) 14 T0 | sybuans:(N)14 (N+N)14
YL/S uey YL ued "YL/eued YL7Z Muey YL/T juey BS 8N

av 'sAs|011uod

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.



Page 24

Prasad et al.

|e3U0.40110I0 |eIU0.40)1CI0 |eju0.40110I0 |ejuo.4011QI0 |eIU0440)1010
|eJare]-1<-> |eJare]-1<-> |eJale]-1<-> |elare]-1<-> |eJore - <>
|eJjualsod aulseo|ed sLiejnbuers SifengJo sLre[noJado )14+
€0 -4 (W) €0 Had-o ()14 €0 sied-d ()14 €0 sied-d :(IN) 14 €0 sied-d (W) 14 ((N]E]
Alenus) Alenua)
SSauusamlag SSauusaMlag b__m\:cmo b__mbcmo
abp3 abp3 Ssauusamlag SSauusamlag (N)14+
Lo | Areug:(N)id | 90 Areurg :(N)14 G0 | 8bp3 Areurg :(N)I1d | v'0 | 8Bp3 Areurg :((N)Id | 10 | subusns :(N)14d (N)14
|eJodwiay
Joadng-y<-> Aienuad Alenua)
21njonns _m._onEmu SSauusamlag SSauusamlag
70 Aunwwod €0 asiansuel -y T0 xapu| Buiyorew €0 abp3 Areuig €0 abp3 Areurg (N+N)T14
|eluo4401gJio
|eIU01J031CI0 |eluo.40110I0 e[nsu|-<-> |edore-1<->| sirenoJado
|edare-1<-> |edare-1<-> |ejuo.jouaIo |ejuo.jolaIo sled-1<->
€0 | sireuqiosied-y | €0 | suenosedo sied-y | 8°0 [e1paiN-d 0T [eJale -y G0 | 8uLedled Uad-y (ORE!
depano Alenua) Alenua)
pooyloqybiaN SSauusaMIag ssauusaMIag alnjonis
70 abp3 €0 abp3 Areurg €0 abp3 Areug 70 xapu| Buiyorein 70 Aunwwo) (N4
Alenua) depiano depano Alfenua) Alenua)
SSauusamlag uooc\_oQ:m_mZ uooc‘_on;m_mz SSauusamlag SSauusamilag
v'0 | 9bp3 Areuig €0 abp3 €0 abp3 €0 abp3 Areuig €0 abp3 Areurg (N+N)I14
snoIns
ajod ajod ledodwiay Jorsadns
Jesodwsa | -<-> [esodws | -T<-> ajod ajod ay} Jo syueg-y<->
lendiooo alenbuio lesodwa] -1<-> ledodwa] -7<-> ledodwa}
0T [elsre1-y 0T | aujosnwusi-d | 0T | relodwsyousjul-y | 0T | [eserred jousul-y | 0T as1ansuel |-y (I
Anjenuso Anpenusd Aufenusd Auenuso Anpenusd
SSauusamlag SSauusamlag SSauusamlag SSauusamlag SSauusamilag
L0 | 9bp3Areug 90 abp3 Areurg 70 abp3 Areuig G0 abp3 Areuig 70 abp3 Areurg (N)14
"Y1/G xuey Y1/ uey YL/e Nuey "YL/e Auey YL/T Muey BS 8.nyead
1D AR 'SAS|011U0D

Jomisu ALIAII8UU0I 8] Ul suoifisl oml syl Bunodsuuod abpa pardalipun syl siussaldal . .<->,, [OQWIAS 8y *S198uu09 abps ue Jey) uoleluswhas 18)nsssi
3yl woJj suoifial oM ay1 SBPNJIUL [age] 8yl ‘SPIOYSaIY] UL T8 SadLjew AJIAIIDBUU0D Mmed 8yl Buipnjoul sainyes) asn Jeyl sased uj ‘sunJ yeadal Qg pue
SP|0J PalepIeA-SS0Id 0T 8Y1 4O YIea JaA0 pabieiane siI pue Alepunog UoITedI}ISSe]d aulydew 10399 1oddns ayl woly paaLiap si bupjuel ayl “(‘YL) ploysaiys
Buipuodsaliod 11yl Yyum Buoje umoys ase sainjea) ayl “T°0 JO S[eAsaiul 1e (paulelal ale sabpa e Bulueaw) °T 01 T°0 WOy Bupjuel pjoysaiyl jeuoiiodoid
e Buisn paJal|ly a1aMm 1eyl sedlilew A1IAIIDaUU0D paryBiam pue Aleulq Wwoly pandwod a1am sainseaw Y10m1auU ayl “(JA1) SaoLITew ALIAII08UUOD Mel

3yl pue (N) sainseaw iomiau paseq ydelh jo A1ariea e Buisn poyrsw (74) A1AIIBUUOD MOYS pue (14) AIAIRDBUU0I Jagly e Buisn paindwod a1am sainiesy
3yl ‘wajgoid uonealyissed Juswiredwl sAIIUBOD pliw AJea "SA S|0JIU0I 3 Ul SI9SONS 81NJea) 6 aU) JO Uoea WO} Sainjea) payjuel anly dol ayl Moys apn

v alqeL
NIH-PA Author Manuscript

NIH-PA Author Manuscript NIH-PA Author Manuscript

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.



Page 25

Prasad et al.

1BIU0JJ031CI0

1BIU0JJ03ICI0

|elu01J03aI0

|eIU01}0310I0

|eJare-1<-> |eJare-1<-> |eJare]-1<-> |esare-1<->
aulled|ed suenBuels sifenglo suienaosado (N+N)14+
€0 | Wad-d:(W)14 | €0 sied-d (W) 14 €0 sied-d ()14 €0 sied-d ()14 10 | subuans:(N)14 (N+N)14
‘Y1/g quey ‘YLl Auey ‘Y1/e quey ‘YL/z quey ‘YL/T quey BS 9N

1D ANB SAS|041U0D

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.



Page 26

Prasad et al.

snoIns [eJodway snojns snojns
|elatied Jouadns ayy |elaLied ledodwsay Jouadns |edodwiay Joriadns
Jougyul-<-> JO Hueg-T<-> Jouyul-<-> ay} Jo Hueg-<-> ay} Jo sHueg-T<->
ajod suenbuern leuibrew si[englo sire|naJado )14+
60 | rewoird-1:(N)T4 | v'o | sted-d:(W)4 | 60 | eadns-Ti(A)T4 | O sted-y :(IN)14 v'0 sted-y :(IN)14 ((IE
depano depano depano depano depano
pooyJoqybiaN pooyJoqyBiaN pooyJoqybiaN pooysoqybieN pooyJoqybiaN (N)1+
S0 abp3 :(N)14 80 | @bp3:(N)I4 | L0 abp3 :(N)14 90 abp3 :(N)14 S0 3bp3 :(N)14 ((V]E]
depano depano depano
pooyloqybiaN pooyloqybiaN pooysoqybiaN Aouaion3
S0 abp3 7’0 abp3 70 afp3 TO0 | xapur Bulyore z0 [e207 Areuig (W+N)14
|elatied |elatied |elaLied 1eIU04}031CI0
Jougyul-<-> Jousyul-1<-> Jougyul-1<-> [enbuig-1<-> [eIPAN-TI<->
6'0 | ajod jeiodwal-7 | 60 | @jod [eluoi4-7 60 leutbrew eidns-1 60 | suenasado sied- 0T [eutbuew eidns-y ((RE!
dejano dejiano
pooytoqybiaN pooytoqybiaN Aouaoiy3
7’0 abp3 7’0 abp3 10 | xopul Buyoren 10 Xapu| Buiyoren 20 [ea0] Aseurg (N4
Anjenusd Anjenusd Anjenusd Anjenusd
SsauUdaMIag SsauUdaMIag SSaUUdaMIag ssauudaMIag
90 abp3 Areurg G0 | ebpakeurg | vo abp3 Areuig 10 xapu| Buiyoyen v'0 abp3 Areurg (N+N)I4
ajod ajod ajod
ledodwa] -7<-> |edodwa |leJodwa] -<-> ajod
|eIU04J0310I0 -<->endidoo alenburd lesodwa] -1<-> 8jod jesodwa] -7<->
0T |eJare]-y 0T |eJare]-y 0T ay Jo snwyis|-y 0T | resodwsay sousyul-y | 07T le1anied Jonayul-y [(OIE]
Aurenuad Anpenusd Anfenusd
SSauUdaMIag SsauUdaMIag SSauUdaMIag
G0 abp3 Areuig v'0 | ebpakeurg | vo abp3 Areuig 20 xapu] BuiyoreN 70 Xapul Buiyarein (QV]E]
YL/suey YLy uey "Ul/e uey Y172 suey YL/T quey ©S 8.njeed
IDIN-1'SAS|01]U0D

Jomisu ALIAII98UU0I 8] Ul suoifisl oml syl Bunodsuuod abpa pardalipun syl siussaidal . .<->,, [OQUIAS 8y *S198uu09 abps ue Jey) uoleluswhas 18Jnsssi
3yl woJj suoifial oM 8yl SBPNJIUL [age] 83 ‘SPIOYSaIY] JUBJaLHIpP T8 SadLjew AJIAIIDBUU0D Mmed 8yl Buipnjoul sainyes) asn Jeyl sased uj ‘sunJ yeadal Qg pue
SP|0J PalepIeA-SS0Id 0T 8Y1 4O YIea JaA0 pabieiane sI pue Alepunogd UoITedI}ISSe]d aulydew 10399 1oddns ayl woly paaliap si bujuel ayl “(YL) ploysaiys
Buipuodsaliod 119yl Yyum Buoje umoys ase sainiea) ayl “T°0 JO S[eAsaiul 1e (paulelal ale sabpa e Bulueaw) °T 01 T°0 Wo4y Bupjuel pjoysaiyl jeuoiiodoid
e Buisn paJal|l) a1aMm 1eyl sedlilew A1IAIDaUU0D paryBiam pue Aleulq Wwoly pandwod a1am sainseaw Y10m1au ayl “(JA1) SaoLITew ALIAII08UUOD Mel

3yl pue (N) sainseaw iomiau paseq ydelh jo A1ariea e Buisn poyrsw (74) A1AIIBUUOD MOYS pue (14) AIAIRDBUU0I Jagly e Buisn paindwod a1am sainiesy
3yl wajgoid uonedlyissed Juswiredwl aAIIUBOD pjIW 8)e| "SA S|0J3U0D BY) UI S}8SqNS 24n1ea) 6 Yl JO Yoea WOy Sainjea) payuel aAly dol ayl moys apn

GalqeL
NIH-PA Author Manuscript

NIH-PA Author Manuscript NIH-PA Author Manuscript

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.



Page 27

Prasad et al.

Anjenua) Anenua)
Ssauusamlag Ssauusamiag Alenua) Alenua) Alenua)
abp3 abp3 SSauusaMmIag SSauuUdaMIag ssauusamlag (N+N)14+
60 Areurg :(N)14 80 | Areug:(N)Id | 20 | 86p3 Areuig:(N)I4 | 90 | 86p3 Aeuig:(N)14 | g0 | 8Bp3 Areurg :(N)I4 (N+N)14
YL/G uey YLy ued YL/g uey YL7Z Muey “YL/T Sued BS 8N

1D - SAS[04IU0D

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.



Page 28

Prasad et al.

ainmonns aImonns
Aunwwo) Alunwwo) 2lnonns 21Mmonns aInonis (N)14+
€0 | Awrug:(N)14 €0 (N4 €0 | Aunwwod :(N)14 | €0 | Amunwwod :(N)14 | €0 | Anunwwod :(N)14 (QV]E]
Anpenusd
SSaUUBaMIDG
[epoN aImonns aImonns
T0 Kreurg €0 Anunwuwiod 10 xapu| Buiyorey 10 xapu| Buiyorey €0 Anunwuwiod (N+N)T14
|eJodws}
Jouadng-<-> lerarred
alenbuio leulyloug-y<-> Jousjul-y<-> ajod [ejuoi4-<-> [enBuri-y<->
90 | ayrjosnwysi-y | €0 | resured sousul-y | 10 Jenuaoeied-y 10 snaund-y 60 | redweooddiyered-y )14
Auenuso
ssauusamiag
aImonns [epoN aImonns
€0 Aunwwod 10 Kreuig 10 xapu| Buiyore €0 Anunwuwiod 10 xapul Buiyorey ((VRE]
depssno lenfui-y<-> deplsnO
pooyJoqybiaN Jedodwsal pooyloqybiaN depiano
v'0 afp3 80 aslansuel |-y 70 | xapul Buryorew €0 abp3 €0 | pooysoqybren abp3 [ (IN+N)IH
leuibrew
Jeuibrew eldng-J<-> lendiooo Jeuibiew |euibiew
eldng-<-> Jesodwa} |eJale-<-> eldng-<-> eldng-<->
80 e|nsul- 80 aslansuel |- €0 si[eNcuo sred- 80 | @lodeiodwal-1 | 80 ajod [ejuoi4-1 ((OIE
Arenuad Ajrenuad
SSaUUaMIBG ssauusamiag dejlano
abp3 abp3 pooyloqybiaN depiano
7’0 Areurg 70 Areurg 70 | xapul Bulyorew €0 abp3 €0 | pooyloqybien abp3 ((V]E]
‘Y1/g quey YLy quey ‘Yyl/e uey ‘Yl/g fuey ‘YL/T Huey BSainyes
IDIN-T1SA IDIN®

"}JoMIBU AJIAIIIBULOI 31 Ul suoiBal om)

ay1 Bunosuuod abpa paloalipun sy sluasaidal ,<->,, |OQUIAS 8y 'S108UU02 abpa Ue Jey) uolieluswbas J1a1nsasl4 syl woly suoibal om) syl sspnjoul [age|
AU ‘SPJOYSaJUl JUBJaIP 1B SaoLITew ATIAIID8UU0I Med 8yl Buipnjoul sainjes) asn Jeyl $ased U] “suni jeadal QE pue Sp|oj PalepI[eA-SS01d QT 8yl 4O YIes Jano
pabelane sI pue Alepunod UOIRIISSe|d aulydew 1039aA Loddns ay) wol) paALiap si Bupjuel ayl “(‘yL) pjoysayy Buipuodsallod J1ayl yim Buoje umoys

ale sainjeay ayl “T°0 JO sjeAalul 1e (paurelal ae sabpa [e Bulueaw) 0T 01 T°0 wouy Buues pjoysaiy jeuontodoid e Buisn paia|iy a1om Jeyl sedLijew
A1A1198UU02 payBIam pue Areulq wouj painduwiod aam sainseal YJomiau ayl () SedLew ANIAIIOBUUOD Mel aUl pue (N) Sainseawl Y10M1aU paseq

ydeuh Jo A1arren e Buisn poyisw (T4) AIA1I98UU0D Mo)) pue (14) ANIAIBUU0D Jagly e Buisn paindwod aiam salniesy syl ‘wsjqold uoneanisse|d (1ON-1)
wswredwi aAIUB0D pliw-are] “sA (1DIAR) uawredwi aAnIubod pliw-ALIea ayl ul S19sgns ain1ea) 6 ayl JO Yoea Woiy Sainjea) paxueld aal) dol ayl Moys apn

9 alqeL
NIH-PA Author Manuscript

NIH-PA Author Manuscript NIH-PA Author Manuscript

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.



Page 29

Prasad et al.

aImonns 2imonns
Aunwwo) Aunwwo) 2InNNs 2IMonAis 2InonAis (N+N)13+
€0 (N1 €0 (N4 €0 | Aunwwod :(N)14 | €0 | Awunwwod :(N)1d4 | €0 | Auunwwod :(N)14 (N+N)14
aulJeded auLIed[ed
Uad-1<-> uad-1<-> auLIeded LIdd-<-> auLIed[ed 1ad-<-> auLIed[ed 1ad-<->
ajod leutbrew Jedodwal |elatied |ewuoly (N)14+
70 | rewosd-y:(W)14 | T0 | eudns-g:(W)14 | TO | Jomadns-y i(N)T14 | TO | dowadns-H ()14 | T'O | Jomedns-y ()T ((N)E]
‘Y1/g quey YLy quey ‘Yyl/e uey ‘Yl/g fuey ‘YL/T Huey BSainyes
IDIN-T1SA IDIN®

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.





