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Abstract

We compare a variety of different anatomical connectivity measures, including several novel ones, 

that may help in distinguishing Alzheimer’s disease patients from controls. We studied diffusion-

weighted MRI from 200 subjects scanned as part of the Alzheimer’s disease Neuroimaging 

Initiative (ADNI). We first evaluated measures derived from connectivity matrices based on 

whole-brain tractography; next, we studied additional network measures based on a novel flow-

based measure of brain connectivity, computed on a dense 3D lattice. Based on these two kinds of 

connectivity matrices, we computed a variety of network measures. We evaluated the measures’ 

ability to discriminate disease with a repeated stratified 10-fold cross-validated classifier, using 

support vector machines (SVMs), a supervised learning algorithm. We tested the relative 

importance of different combinations of features based on the accuracy, sensitivity, specificity, 

and feature ranking of the classification of 200 people into normal healthy controls, and people 

with early- or late-stage mild cognitive impairment (MCI), or Alzheimer’s disease (AD).
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1. Introduction

Current approaches used to classify Alzheimer’s disease (Kohannim et al., 2010; Klöppel et 

al., 2008) rely on features such as volumetric measures from anatomical regions in magnetic 

resonance imaging (MRI) images of the brain, CSF biomarkers, ApoE genotype, age, sex, 

body mass index, and, in some cases, clinical and cognitive tests. Here we attempted to 

improve our understanding of the best features for Alzheimer’s disease classification by 

studying the utility of a variety of brain connectivity measures derived from diffusion-

weighted images (DWI) of the brain. Some of the features we chose came from standard 

tractography-based maps of fiber connectivity (Rubinov and Sporns, 2010) between brain 

regions; we supplemented these with more novel features derived from a flow-based 

connectivity method (Prasad et al., 2013a). We aimed to understand the information 

contained in the raw connectivity matrices versus network measures derived from them; we 

used all of the resulting features to differentiate diagnostic categories related to Alzheimer’s 

disease (e.g., MCI). To do this, we employed support vector machines (SVMs), a machine 

learning algorithm for classification, to learn from training data and then classify a separate 

test set.

Cui et al. (2012) used SVMs to classify amnestic mild cognitive impairment (aMCI) based 

on features indexing anatomical atrophy through segmentations of T1-weighted MRI and 

fraction anisotropy values from diffusion images using tract-based spatial statistics (TBSS). 

They ranked the features using Fisher scores, and selected the best performing subset using 

cross-validation. They achieved an accuracy of 71.09%, sensitivity of 51.96%, and 

specificity of 78.40% for the classification of aMCI. Our method differs in that we use only 

measures of connectivity from diffusion images for our feature set and the ranking is 

computed within a set of features we are interested in evaluating. Laplacian Regularized 

Least Squares was used to classify Alzheimer’s disease in (Zhang and Shen, 2011) where 

they tried to incorporate structural MRI, PET imaging data, and CSF biomarker features 

from MCI into an AD classifier, which achieved a performance of almost 95% accuracy. In 

our case, we explore classification of both MCI and AD and focus on the information 

contained in different types of connectivity features. Cortical thickness features from 

structural MRI were evaluated by Eskildsen et al. (2012) using classification though they 

focused on conversion from MCI to AD and achieved accuracies ranging from 70–76% 

depending on the time to conversion, in contrast we used classification as a means to 

understand the information captured in measures of connectivity. The emphasis in the 

current study is to explore and understand which diffusion based network measures are 

predictive of Alzheimer’s disease in contrast to the goal of optimizing the accuracy of 

classification in previous studies.

Our results and experiments seek to characterize the information contained in different 

features used to represent connectivity in the brain. This is related to the problem of feature 

selection methods (Guyon and Elisseeff, 2003), which rank features in a meaningful way to 

understand the ones that are important and those that can be discarded because they are 

redundant or irrelevant. One approach to select the best features (Peng et al., 2005) is to use 

mutual information to find the most relevant features for a target class. Another popular 

approach is the least absolute shrinkage and selection operator (Tibshirani, 1996) that uses a 
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linear model and its regression coefficients to choose the best subset of features. De Martino 

et al., (2008) chose the most informative voxels in functional MR images using a recursive 

feature elimination approach that repeatedly trains an SVM model to remove features 

contributing a small amount to the training model. In our technique, we use the accuracy 

from classification to evaluate different types of brain connectivity features and to 

understand which ones may have an advantage to classifying MCI or AD. In addition, we 

used the SVMs to rank the features within the different feature sets to get a better 

description of what features were driving the classifier.

Our connectivity measure computation, classification framework, and ranking was applied 

to publicly available structural magnetic resonance imaging (MRI) and diffusion MRI from 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller et al., 2005). We studied 

neuroimaging data from 200 subjects: 50 normal healthy controls, 38 people with late-stage 

mild cognitive impairment (L-MCI), 74 with early MCI (eMCI), and 38 AD patients.

We extracted measures of connectivity between 68 automatically parcellated regions of 

interest on the cortex using both fiber and flow connectivity methods and organized the 

information into connectivity matrices. From these connectivity matrices, we computed a 

variety of widely-used network measures. These features were then fed into a repeated 

stratified 10-fold cross-validation design, using SVMs to classify controls vs. AD, controls 

vs. eMCI, controls vs. L-MCI, and eMCI vs. L-MCI. Our results show a significant 

difference in the accuracy of various combinations of features that were used to distinguish 

between the various diagnostic groups.

2. Methods

2.1. Data

Our data was from 200 subjects scanned as part of ADNI-2, a continuation of the ADNI 

project in which diffusion imaging (among other scans) was added to the standard MRI 

protocol. The dataset included diffusion MRI data from 50 cognitively normal controls (C), 

74 early- and 38 late-stage MCI subjects (eMCI, LMCI), and 38 people with Alzheimer’s 

disease (AD).

Subjects were scanned on 3-Tesla GE Medical Systems scanners, which collected both T1-

weighted 3D anatomical spoiled gradient echo (SPGR) sequences (256 × 256 matrix; voxel 

size = 1.2 × 1.0 × 1.0 mm3; TI=400 ms; TR = 6.98 ms; TE = 2.85 ms; flip angle = 11°), and 

diffusion weighted images (DWI; 256 × 256 matrix; voxel size: 2.7 × 2.7 × 2.7 mm3; scan 

time = 9 min). Per subject, the DWIs consisted of 41 diffusion images with b = 1000 s/mm2 

and 5 T2-weighted b0 images. This protocol was chosen after an effort to study trade-offs 

between spatial and angular resolution in a tolerable scan time (Jahanshad et al., 2011).

The groups were matched in both age and sex that we confirmed using two-sample t-tests 

and multiple comparison correction. Detailed demographic information for each subgroup of 

subjects is listed in Table 1.
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2.1.1. Image Preprocessing—We processed the T1-weighted images to parcellate them 

into 68 cortical regions. We first automatically removed extra-cerebral tissues from the 

anatomical images using ROBEX (Iglesias et al., 2011a), a method that learned from manual 

segmentations of hundreds of healthy young adults. Skull-stripped brains were 

inhomogeneity corrected using the MNI N3 tool (Sled et al., 1998) and aligned to the 

Colin27 template (Holmes et al., 1998) with FSL Flirt (Jenkinson et al., 2002). The resulting 

images were segmented into 34 cortical regions (in each hemisphere) using FreeSurfer 

(Fischl et al., 2004) and are listed in Table 2. These segmentations were then dilated with an 

isotropic box kernel of 5 × 5 × 5 voxels to make sure they intersected with the white matter 

for subsequent connectivity analysis.

We corrected head motion and eddy current distortion in each subject by aligning the DWI 

images to the average b0 image with FSL’s eddy correct tool. The brain extraction tool 

(BET) (Smith, 2002) was then used to skull-strip the brains. We EPI-corrected these images 

with an elastic mutual information registration algorithm (Leow et al., 2007) that aligned the 

DWI images to the T1-weighted scans. Preprocessing steps are further detailed in (Nir et al., 

2012).

We used a global probabilistic tractography method based on the Hough transform (Aganj et 

al., 2011). While ADNIs scans are not high angular resolution, due to the need for a fast 

scan, this method takes advantage of all the diffusion information provided at each voxel, 

parametrized by the orientation distribution function (ODF). The Hough method generates 

curves in the fiber space and scores them based on fractional anisotropy (FA) and the ODF 

at each point along the curve. FA was computed from the single-tensor model of diffusion 

(Basser and Pierpaoli, 1996). ODFs at each voxel were computed with a normalized, 

dimensionless estimator derived from Q-ball imaging (QBI) (Aganj et al., 2010). This model 

is more accurate and outperforms the previous QBI definition (Tuch, 2004), offering better 

detection of multiple fiber orientations (Aganj et al., 2010; Fritzsche et al., 2010) and 

additional information for the scoring function.

To generate close to 50,000 fibers per subject, we used an accelerated form of this 

tractography method (Prasad et al., 2013b). Our optimizations included an ODF lookup table 

and a randomized search of the parameter space, to generate fibers in less than 1/60 of the 

original time.

2.2. Connectivity Features

We used features derived from brain connectivity matrices that categorize connections 

between different regions of interest on the cortex. From these matrices, we computed a set 

of network measures that quantify different network characteristics. We chose different 

subsets of these features in our experiments. We used the classification accuracy as a metric 

to understand the utility of the connectivity information captured, in the context of 

diagnostic classification of Alzheimer’s disease.

2.2.1. Connectivity Matrix—We computed connectivity matrices using two methods. 

The first quantifies pairwise connectivity strength as the relative proportion of fibers 

connecting the two brain regions. The second is a novel method that computes the maximum 
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flow between regions by interpreting the diffusion image as a network of pipes - or a flow 

graph (these terms are defined further below).

Our first method takes fibers computed using the accelerated Hough tractography method 

and computes the number that intersect pairs of regions from the 68 cortical areas. We used 

these frequencies to populate a 68 × 68 connectivity matrix (with no normalization).

The second method we used is a flow-based measure of anatomical connectivity between all 

region pairs (Prasad et al., 2013a). In short, we first created a lattice network by connecting 

all lattice points (voxel centers) to all their immediate neighbors in 3D. Edge weights were 

based on the orientation density function (ODF) value in the direction of the edge. These 

edges were interpreted as pipes and their weight as the capacity of the pipe. In contrast to 

counting fibers between ROIs, we computed the maximum flow - or capacity - between each 

ROI pair, by following connecting tractography fibers projected onto the flow network 

edges. We used a modified maximum-flow algorithm that is robust to noise in the diffusion 

data, and guided by biologically viable pathways and structure of the brain. The resulting 

flow is used to create a distinct 68 × 68 flow connectivity matrix. Fig. 1 gives an example 

flow connectivity matrix using this method from our data. The lack of detected 

interhemispheric connections could be because most of them travel through the corpus 

callosum so it is difficult to detect fibers (for example) that connect frontal regions in the left 

hemisphere to the temporal regions in the right hemisphere. Additional research (Hagmann 

et al., 2008; Gong et al., 2009; Ingalhalikar et al., 2013) gives more examples of 

connectivity matrices that have a similar inter- and intrahemispheric distribution of 

connections.

2.2.2. Network Measures—We represent the two types of connectivity matrices with 

network measures described in (Rubinov and Sporns, 2010) and computed them with the 

Brain Connectivity Toolbox. We derived these measures from both weighted and binary 

connectivity matrices: global efficiency, transitivity, path length, modularity, small world, 

radius, diameter, participation, local efficiency, optimal community structure, eigenvector 

centrality, and eccentricity. In addition, we computed density, number of vertices, number of 

edges, subgraph centrality, assortativity, nodal flow coefficient, average flow coefficient, 

total flow across central node, degree, matching index, edge neighborhood overlap, node 

pairs degree, and connected component sizes from only binary matrices and strengths from 

only weighted matrices. As is standard, ten different thresholds were applied to each 

connectivity matrix, to preserve a fixed fraction of the weights ranging from 0.1 to 1, in 

intervals of 0.1.

In some cases a network measure was computed for each node in the connectivity network, 

this was the case for participation, local efficiency, and eigenvector centrality among others. 

This resulted in a vector of 68 values for a single network measure. For matching index or 

edge neighborhood overlap, the output was a 68 × 68 matrix of values. If a feature was 

multi-dimensional, we took the mean value in addition to its raw values. The results from 

each network measure were vectorized and the entire set contained 14,930 features per 

threshold, making a total of 149,300 network measures per connectivity method. In addition, 

there are 2,278 unique values from each connectivity matrix. These values represent the 
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lower diagonal elements (not including the actual diagonal) and factoring in the ten 

thresholds make 22,780 connectivity matrix features per connectivity method. In total there 

are (149,300 network measure features + 22,780 connectivity matrix features) × (2 

connectivity methods: fiber & flow) = 344,160 possible features per subject.

2.3. Classification

Support vector machines (SVMs) (Cortes and Vapnik, 1995) are supervised learning models 

that we used to classify our connectivity features, to differentiate between disease states. 

SVMs classify two-class data by training a model - or classification function - to find the 

best hyperplane between the two classes in the data. Let xi ∈ ℝd represent the connectivity 

feature vectors, where d is the dimension of the feature set of interest, and yi = ± be their 

label with −1 and 1 representing two different disease states that could include controls, 

eMCI, L-MCI, or AD. Our target hyperplane is

where w ∈ ℝd should separate as many data points as possible. We find it by solving the L2-

norm problem

such that

where vi are slack variables and D is a penalty parameter. In many instances, a hyperplane 

cannot be found to completely separate the two classes of data, and the slack variables are 

added to create soft margins to separate most of the points.

Our classification design was to test the information provided by the connectivity features 

with repeated stratified 10-fold cross-validation as recommended by Kohavi, (1995). For the 

results in the cross-validation our performance metrics were accuracy (AC), sensitivity (SE), 

and specificity (SP). We repeated the cross-validation 30 times, which allows us to use 

paired sample t-tests to statistically compare different feature subsets based on their 

classification performance.

For each classifier we learned, the features were ranked by their relationship to the 

hyperplane (De Martino et al., 2008). The ranking was computed by sorting in decreasing 

order the |w| values from the hyperplane. Features with high values mean they contribute the 

most to the final boundary between the classes. In our experiments, we averaged the feature 

ranking across all folds within repeated cross-validation instances. These rankings will tell 

what network measure or what element of a connectivity matrix was most important to the 

classifier in the context of all other features in a feature set of interest.
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2.4. Experiments

We designed experiments to test the utility of different subsets of features to identify 

differences between sets of two disease states from our data. Our metric was the accuracy, 

sensitivity, and specificity from stratified 10-fold cross-validation that was repeated 30 times 

comparing controls vs. AD, controls vs. early-MCI, controls vs. late-MCI, and early-MCI 

vs. late-MCI. In each of these classification problems we used nine different sets of features: 

the fiber connectivity matrix, (FI(M)), the flow connectivity matrix (FL(M)), the fiber 

network measures (FI(N)), the flow network measures (FL(M)), combinations of these sets 

as FI (N+M), FL(N+M), FI(N)+FL(N), FI(M)+FL(M), and FI(N+M)+FL(N+M). Each of 

these sets of features was organized into a matrix and then fed into the SVM algorithm using 

a repeated stratified 10-fold cross-validation design. A summary of our experimental design 

is in Fig. 2.

3. Results

Figures 3–6 show bar charts of the results for each of our four classification problems using 

the nine different subsets of features. These include controls vs. AD (Fig. 3), controls vs. 

eMCI (Fig. 4), controls vs. L-MCI (Fig. 5), and eMCI vs. L-MCI (Fig. 6). It shows the 

accuracy, sensitivity, and specificity as percentages for each of the nine feature sets 

including FI(N), FI(M), FI(N+M), FL(N), FL(M), FL(N+M), FI(N)+FL(N), FI(M)+FI(M), 

and FI(N+M)+FL(N+M) along with their 95% confidence intervals over the stratified 10-

fold cross-validated results that were repeated 30 times. For controls vs. AD we found 

feature set FI(N)+FL(N) had the highest accuracy of 78.2% and using paired-sample t-tests 

(p>0.05) we found it was not statistically different in performance from FI(N) and FI(N+M). 

FI(N+M) had the highest accuracy of 59.2% for the controls vs. eMCI classifier and was not 

significantly different in performance from FI(N+M)+FL(N+M). In the case of controls vs. 

L-MCI, FL(N) had the highest accuracy of 62.8% and was significantly better in 

performance than all other feature sets. eMCI vs. L-MCI performed best with FI(N)+FL(N) 

reaching an accuracy of 63.4% and was significantly different than all other feature sets.

In addition to the bar charts we ranked the top five features for each classification problem 

and feature set in Tables 3–6. Each of the top features is also listed with its corresponding 

threshold value. A multi-dimensional feature such as edge neighborhood overlap may be 

listed multiple times at the same threshold for a single feature set and classification problem 

because the ranking is differentiating between parts of the feature vector for that single 

network measure. We also include the specific labels for elements in the connectivity 

matrices that were highly ranked, the symbol “<->” represents the undirected edge between 

the two regions on the cortex.

4. Discussion

For classification of normal elderly controls relative to people with AD, Table 1 shows 

FI(N)+FL(N) has the highest classification accuracy. Even so, when these features combined 

with additional features, the accuracy does go down in some instances. FI(N+M) was able to 

distinguish controls vs. eMCI the best, and FL(N) was the best for distinguishing healthy 

controls vs. L-MCI. In the eMCI vs. L-MCI classification experiments, we again saw a 
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combination of network measures (FI(N)+FL(N)) produced the best results. The results 

show that when studying L-MCI, including flow based network measures can have an 

advantage in distinguishing class differences and may be useful for studying other aspects of 

L-MCI. In the case of eMCI and AD, the performance of classification could be optimal 

based on fiber measures alone, though the addition of flow in AD may have slightly higher 

accuracy.

In addition to offering a principled approach to select or rank the importance of connectivity 

features for this kind of classification problem, we provided a proof of concept and 

framework for using support vector machines as a metric for use with brain connectivity 

data. We recently used it to choose the architecture of the connectivity matrix by selecting 

the best nodes or regions of the cortex. This adaptive cortical parcellation was created based 

on a framework to evaluate different cortical parcellations by their accuracy from diagnostic 

classifiers, such as SVMs (Prasad et al., 2014).

Learning algorithms, such as SVM, Adaboost, or random forest classification can be 

sensitive to the feature set used. We note that other schemes may be used and their effects 

could also be useful to categorize this dataset and other related data or even filter out 

features in each of the feature sets we studied. Other classification techniques that may be 

effective include a variation of manifold learning used by Iglesias et al. (2011b) to classify 

Alzheimer’s disease using registration- and overlap-based similarity measures. 

Alternatively, we could organize the features into a tensor representation for multilinear 

subspace learning (Tao et al., 2007).

These other algorithms may be particularly adept at classification of AD because of how 

well they can build a model with the relatively limited number of subjects in these studies, 

by contrast with the large number of features for each subject. New subjects are continually 

being added to the ADNI dataset and more training data would give us a stronger and more 

secure understanding of these relationships. With larger datasets we can explore the absolute 

and relative performance of different features and biomarkers using deep learning (Hinton et 

al., 2006) or artificial neural networks that allow for a great deal of freedom and a richer 

model when there are multiple layers included (Bengio, 2009) and massive amounts of data 

available. Here we chose SVM as it works well with relatively small samples and a larger 

number of features without having to apply regularization (Hastie et al., 2001).

The feature ranking approach we used leveraged the hyperplane from the SVM and gives a 

ranking of a feature in the context of all other features in the set we are studying. Other 

approaches such as uni-variate ranking by using t-tests on a single feature (Chu et al., 2012) 

or by using regression on each feature (Polyn, 2005) give the importance of a single measure 

by itself but may miss cases when a feature by itself is weak but in the context of other 

features, the feature set becomes highly discriminatory. There is also a variety of multi-

variate feature selection approaches being proposed in the literature. One method by Liu et 

al. (2013) addresses the geometric relationship of the target classes in Alzheimer’s disease 

structural MRI training data by using graph matching. Another approach combines uni-

variate feature selection and multi-variate recursive feature selection by using correlation 

based ranking of single features. It then uses recursive and forward sequential feature 
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selection to select a set of features that will include mostly the top ranked features (Fan et 

al., 2007). In (Cuingnet et al., 2011), the authors study ten algorithms that classify AD using 

T1-weighted MRI and conclude that different feature selection methods did not greatly 

affect performance. In our case, we used the feature selection to evaluate a classifier and its 

features without removing or selecting features based on training data.

Different sets of features may uncover detail in the connectivity structure of the brain that is 

better for representing important changes in networks across the various phases or stages of 

Alzheimer’s disease. We can extend the framework in the current study to use different 

features such as those from dynamic simulations of connectivity (Prasad et al., 2013c) or 

connectivity measures that summarize the fibers from tractography using maximum density 

paths (Prasad et al., 2011a) that are registered (Prasad et al., 2011b) into the same space. We 

can then use the subset of features that best predicts or classifies a category in our data that 

could include affects of aging, severity of the disorder, or even those that emphasize parts of 

the network that are associated with the effects of risk genes for Alzheimer’s disease.
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Figure 1. 
We present an example 68 × 68 flow connectivity matrix from our data. This matrix was 

derived using a flow connectivity method that computed the maximum amount of flow 

between pairs of regions of interest on the cortex. In this subject, the connections within 

each hemisphere are far more extensive than those across the hemispheres. A brighter color 

means there is a stronger connectivity (in the sense of greater normalized fiber counts) 

between the two areas. We use this matrix - along with the standard fiber connectivity 

matrix - to compute network topology measures. These are then used in a machine learning 

model to classify different disease states in our data.
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Figure 2. 
A summary of how we select features of brain connectivity and classify them using support 

vector machines (SVMs). Our framework begins by computing hundreds of thousands of 

network measures from both fiber and flow connectivity matrices. We created nine different 

subsets of features that are combinations of the network measures and raw connectivity 

matrices from a fiber and flow based connectivity method. Each subset is evaluated by 

understanding their performance in classification problems based on the four different 

groups of subjects. These problems include control vs. Alzheimer’s disease, control vs. 
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early-mild cognitive impairment (MCI), control vs. late-MCI, and early-MCI vs. late-MCI. 

For each problem we used a stratified 10-fold cross-validated support vector machine 

classifier to understand how well the feature subset was able to discriminate between the 

two classes. The metrics used to evaluate the classifier performance were accuracy, 

sensitivity, and specificity.
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Figure 3. 
We present the results from the stratified 10-fold cross-validated (CV) support vector 

machine classification of controls vs. Alzheimer’s disease using nine subsets of connectivity 

features. These features come from both a fiber connectivity method (FI) and flow 

connectivity method (FL) and include a variety of graph based network measures (N) along 

with the raw connectivity matrices (M). We evaluated the performance of each subset’s 

ability to classify using accuracy, sensitivity, and specificity. The CV was repeated 30 times 

for each feature set using corresponding CV folds and we evaluated differences using 

paired-sample t-tests. The bar plot shows the mean accuracy, sensitivity, and specificity over 

the 30 CV results along with 95% confidence intervals. FI(N)+FL(N) had the highest 

accuracy of 78.2% and was not significantly different (p>0.05) in performance from FI(N) 

and FI(N+M).
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Figure 4. 
We present the results from the stratified 10-fold cross-validated (CV) support vector 

machine classification of controls vs. early-mild cognitive impaired subject using nine 

subsets of connectivity features. These features come from both a fiber connectivity method 

(FI) and flow connectivity method (FL) and include a variety of graph based network 

measures (N) along with the raw connectivity matrices (M). We evaluated the performance 

of each subset’s ability to classify using accuracy, sensitivity, and specificity. The CV was 

repeated 30 times for each feature set using corresponding CV folds and we evaluated 

differences using paired-sample t-tests. The bar plot shows the mean accuracy, sensitivity, 

and specificity over the 30 CV results along with 95% confidence intervals. FI(N+M) had 

the highest accuracy of 59.2% and was not significantly different (p>0.05) in performance 

from FI(N+M)+FL (N+M).
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Figure 5. 
We present the results from the stratified 10-fold cross-validated (CV) support vector 

machine classification of controls vs. late-mild cognitive impaired subject using nine subsets 

of connectivity features. These features come from both a fiber connectivity method (FI) and 

flow connectivity method (FL) and include a variety of graph based network measures (N) 

along with the raw connectivity matrices (M). We evaluated the performance of each 

subset’s ability to classify using accuracy, sensitivity, and specificity. The CV was repeated 

30 times for each feature set using corresponding CV folds and we evaluated differences 

using paired-sample t-tests. The bar plot shows the mean accuracy, sensitivity, and 

specificity over the 30 CV results along with 95% confidence intervals. FL(N) had the 

highest accuracy of 62.8% and was significantly different (p>0.05) in performance from all 

other subsets.
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Figure 6. 
We present the results from the stratified 10-fold cross-validated (CV) support vector 

machine classification of early-mild cognitive impaired subjects vs. late-mild cognitive 

impaired subject using nine subsets of connectivity features. These features come from both 

a fiber connectivity method (FI) and flow connectivity method (FL) and include a variety of 

graph based network measures (N) along with the raw connectivity matrices (M). We 

evaluated the performance of each subset’s ability to classify using accuracy, sensitivity, and 

specificity. The CV was repeated 30 times for each feature set using corresponding CV folds 

and we evaluated differences using paired-sample t-tests. The bar plot shows the mean 

accuracy, sensitivity, and specificity over the 30 CV results along with 95% confidence 

intervals. FI(N)+FL(N) had the highest accuracy of 63.4% and was significantly different 

(p>0.05) in performance from all other subsets.
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Table 2

This is a list of the 34 regions that are segmented in the cortex by Freesurfer in each hemisphere, making a 

total of 64 regions. These regions represent the nodes in the connectivity network for both the fiber and flow 

connectivity methods. In the network each method calculated the connectivity strength between all pairs of 

regions. For fiber connectivity, this is computed as the number of tractography fibers that connect the two 

regions and for the flow connectivity it is computed using an approximate maximum flow algorithm between 

the regions.

Cortical Regions

1. Banks of the superior temporal sulcus 18. Pars orbitalis

2. Caudal anterior cingulate 19. Pars triangularis

3. Caudal middle frontal 20. Peri calcarine

4. Cuneus 21. Postcentral

5. Entorhinal 22. Posterior cingulate

6. Fusiform 23. Precentral

7. Inferior parietal 24. Precuneus

8. Inferior temporal 25. Rostral anterior cingulate

9. Isthmus of the cingulate 26. Rostral middle frontal

10. Lateral occipital 27. Superior frontal

11. Lateral orbitofrontal 28. Superior parietal

12. Lingual 29. Superior temporal

13. Medial orbitofrontal 30. Supra marginal

14. Middle temporal 31. Frontal pole

15. Parahippocampal 32. Temporal pole

16. Paracentral 33. Transverse temporal

17. Pars opercularis 34. Insula
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